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ABSTRACT

For various reasons individuals in a sample survey may prefer not to confide to the 
interviewer the correct answers to certain potentially sensitive questions such as the 
illegal use of drugs, illegal earning, or incidence of acts of domestic violence, etc. 
In such cases the individuals may elect not to reply at all or to reply with incorrect 
answers. The resulting evasive answer bias is ordinarily difficult to assess. The 
use of a randomized response method for estimating the proportion of individuals 
possessing those sensitive attributes can potentially eliminate the bias. Following 
Chaudhuri and Dihidar (2014) and Dihidar (2016), here, as a possible variant, we 
have made an attempt to estimate the sensitive population proportion using a combi-

nation of binomial and hypergeometric randomized responses by direct and inverse 
mechanism. Along with the traditional simple random sampling, with and without 
replacement, we consider here sampling of respondents by unequal probabilities. 
Essential theoretical derivations for unbiased estimator, variance and variance es-

timators are presented for several sampling schemes. A numerical illustration is 
performed to make a comparative study of the relative efficiencies of the direct and 
inverse mechanism.

1. Introduction

Surveys for eliciting information on sensitive or stigmatizing attributes are plagued

by the problem of untruthful responses or non-cooperation by respondents, both of

which lead to biased estimates. To avoid this evasive answer bias and to preserve

the privacy of the respondent, Warner (1965) introduced an innovative technique

commonly referred to as randomized response (RR) technique. In his model, a

respondent answers ‘Yes’ or ‘No’ to either the sensitive question of interest or the

complementary question. For example, suppose that we are interested in whether
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a person belongs to the sensitive group A. The respondent uses a chance device to

select Question 1:‘Do you belong to Group A?,’ or Question 2: ‘Do you belong

to Group Ac?,’ where Ac is the complement of A, with probabilities, say, p : (1−
p), where p �= 0.5. Thus, if the respondent says ‘Yes’, the interviewer does not

know whether the ‘Yes’ refers to Question 1 or Question 2. These RRs gathered

from a sample of persons chosen by SRSWR provide an unbiased estimator for

the sensitive population proportion, say, θ . The variance of this estimator and an

unbiased estimator for that variance are also given by Warner (1965).

Later significant developments to Warner’s model are made by many researchers.

For example, to expect the greater participation rate of the respondents, Horvitz et

al. (1967), Greenberg et al. (1969) developed the unrelated question model, where

in place of both questions being about a sensitive characteristic, one question is

about sensitive, and the other is completely unrelated to the sensitive characteristic,

e.g. ‘Do you prefer football to cricket?’ or ‘Is red your favourite colour?’. Boruch

(1971) introduced the forced response model where the randomization determines

whether a respondent truthfully answers the sensitive question or simply replies

with a forced answer, ‘yes’ or ‘no’. The idea behind the forced response design is

that a certain proportion of respondents are expected to respond ‘yes’ or ‘no’ re-

gardless of their truthful response to the sensitive question, and the design protects

the anonymity of respondents’ answers. That is, interviewers and researchers can

never tell whether observed responses are in reply to the sensitive question. Kuk

(1990) proposed a method, where each person selected by simple random sampling

with replacement (SRSWR) is given two boxes, say, Box-1 and Box-2. Each of the

two boxes are filled with cards of two types, say, red and blue with their mixing

proportions being p1 : (1− p1), 0 < p1 < 1 in one box and p2 : (1− p2), 0 < p2 < 1

in the other; p1 �= p2 and p1 + p2 �= 1. Every selected person is requested to draw

cards for a fixed number of times, say, K times independently, either from the first

box or from the second, according as whether this person bears characteristic A or

not. The respondent is requested to report the number of red cards obtained out

of K cards drawn. Based on these RRs an unbiased estimator for θ , variance and

variance estimator are obtained.

Likewise, many contributors of this area have enriched the randomized response

literature, for instance, Moors (1971), Raghavarao (1978), Eichhorn and Hayre

(1983), Chaudhuri and Mukerjee (1987), Mangat and Singh (1990), Mangat (1994),

Haung (2004), Kim and Warde (2004), Gjestvang and Singh (2006), Chaudhuri,

Bose and Dihidar (2011a, 2011b), Singh and Grewal (2013), Singh and Sedory

(2013) among others. We refer to Hedayat and Sinha (1991) as an example of an

early text book on sampling which covers this area as a separate chapter (see Chap-



ter 11). For a comprehensive review of the literature on these techniques, we refer to

the books by Chaudhuri and Mukerjee (1988) and Chaudhuri (2011) and the various

articles in Chaudhuri et al. (2016).

In general, all the approaches of RR techniques assume that the respondents

answer truthfully according to the randomized response device. However, the meth-

ods are often criticized as being susceptible to cheaters, that is, respondents who do

not answer truthfully as directed by the randomizing device. Clark and Desharnais

(1998) has shown that by splitting the sample into two groups and assigning each

group a different randomization probability, it is possible to detect whether signifi-

cant cheating is occurring and to estimate its extent while simultaneously protecting

the identity of cheaters and those who may have engaged in sensitive activities. In

Feth et al. (2015) different forms of cheating is described and it has been shown in

detail how to obtain general solution for detecting the extent to which various forms

of cheating occurs and extends these analyses with practical hints for the flexible

use of these methods. However, although there may be some possibility of cheat-

ing occurrences, for the present research work we assume that the respondents are

tried to be well convinced to answer truthfully according to the randomizing de-

vice and therefore, based on this assumption, below we make an attempt to develop

alternative RR techniques for estimating the sensitive proportion.

As stated above, in Kuk’s (1990) approach the cards are drawn from either of

the two boxes with replacement. A natural question arises - what will happen if the

cards are drawn without replacement? In this paper we look into this matter. We

know that while drawing n cards with replacement from a box containing two types

of cards, the number of the first type of cards obtained follows binomial distribu-

tion whereas the number of trials to obtain a fixed number of the first type of cards

follows a negative binomial distribution, and drawing the cards without replace-

ment instead of with replacement will result in the hypergeometric and negative

hypergeometric distributions respectively for the same. Here, we consider estimat-

ing the sensitive population proportion by generating randomized responses using

a combination of binomial and hypergeometric distributions in the direct approach

as well by using a combination of negative binomial and negative hypergeometric

distributions in the inverse approach. Also, keeping in mind that many large scale

sample surveys consist of sampling of respondents by unequal probability sampling

even without replacement, in this paper we develop unbiased estimators for sensitive

population proportion by general sampling schemes instead of only simple random

sampling with replacement scheme of respondents. We organize our findings of this

research work in the following sections.

In Section 2 below, we present the necessary derivations for generating random-



ized responses using binomial distribution for Box-1 and hypergeometric distribu-

tion for Box-2. In Section 3, we present the same by negative binomial and negative

hypergeometric distributions respectively. In Section 4, we present the unbiased es-

timators for θ , variance and variance estimators based on some sampling methods,

namely simple random sampling (SRS) both with and without replacement (WR or

WOR), and some unequal probability sampling methods, namely probability pro-

portional to size with replacement (PPSWR), Rao, Hartley and Cochran’s (1962)

and Midzuno’s (1952) sampling schemes. We present the numerical illustration in

Section 5 for comparison purpose. Finally, we give some concluding remarks in

Section 6.

2. Generating RR by direct approach

Let U = (1,2, . . . ,N) denote a finite, identifiable population of N persons labeled 1

to N. Let

yi = 1, if ith person bears the sensitive character, say, A

= 0, otherwise.

We want to estimate the population proportion θ = 1
N ∑N

i=1 yi , proportion of indi-

viduals bearing the sensitive character A.

In our proposed methodology, two randomized response boxes, say Box-1 and

Box-2 are used, and each of the two boxes are filled with two types of cards,

say ‘Red’ and ‘Blue’; in proportion p1 : (1 − p1) in Box-1; and in proportion

p2 : (1− p2) in Box-2, 0 < p1 �= p2 < 1. Suppose Box-1 contains N1 total num-

ber of balls out of which r1 are red and the rest are blue, and Box-2 contains N2 total

number of balls out of which r2 are red and the rest are blue. Hence, p1 = r1/N1 and

p2 = r2/N2. Each respondent in sample s of units, collected with a given probability

p(s)> 0 according to a given sampling design p, is given two boxes. Every selected

person is instructed to use the first box if he bears A, otherwise to use the second

box, unnoticed by the interviewer, thus protecting the privacy of the respondent.

Additional instruction is also given to the selected respondent to draw cards at ran-

dom independently for a specified number of times, say, K times, with replacement

if he chooses the Box-1 and without replacement if he chooses the Box-2. Every

selected person is requested to report finally how many times a ‘Red’ marked cards

are actually drawn out of K trials. Let us denote fi as the number out of K trials, a

‘Red’ card happened to be obtained as reported by the person labeled i. Addition-

ally, let ER,VR,CR denote the expectation, variance and covariance operators with



respect to the randomized response generation. Then

ER( fi) = K[yi p1 +(1− yi)p2]

and

VR( fi) = K
[

yi p1(1− p1)+(1− yi)
N2 −K
N2 −1

p2(1− p2)

]

leading to

ER

[
fi

K

]
= yi(p1 − p2)+ p2

⇒ ER

[
fi
K − p2

p1 − p2

]
= yi, on noting that p1 �= p2.

Let ri =
fi
K − p2

p1 − p2
with ER[ri] = yi and

VR(ri) =
1

(p1 − p2)2
VR(

fi

K
)

=
1

(p1 − p2)2

1

K2
VR( fi)

=
1

K(p1 − p2)2

[
yi p1(1− p1)− yi

(
N2 −K
N2 −1

)
p2(1− p2)+

(
N2 −K
N2 −1

)
p2(1− p2)

]

= ayi +b

=Vi, say,

where

a =
1

K(p1 − p2)2

[
p1(1− p1)−

(
N2 −K
N2 −1

)
p2(1− p2)

]

and

b =
p2(1− p2)(N2 −K)

K(p1 − p2)2(N2 −1)
.

Then, an unbiased estimator of Vi is

V̂R(ri) = vi = ari +b, i ∈ s

because ER(vi) = ayi +b =Vi .



3. Generating RR by inverse mechanism

Here, every selected respondent is given instruction to use the first box if he bears A,

otherwise to use the second box. Additional instruction is given to each respondent

that, if he uses Box-1, he should draw cards WR until he gets a specified number,

say, t1 ‘Red’ cards, then he should report the number of required draws to obtain

t1 ‘Red’ cards, say, G = g, where G is the random variable denoting the number of

draws obtained from Box-1; similarly, if he uses Box-2, he should draw cards WOR

until he gets a specified number, say, t2(t2 < r2) ‘Red’ cards, then he should report

the number of required draws to obtain t2 ‘Red’ cards, say, H = h, where H is the

random variable denoting the number of draws obtained from Box-2.

Then G follows a negative binomial distribution with parameters t1 and p1 and

its probability mass function is given by:

P(G = g|t1, p1) =

(
g−1

t1 −1

)
pt1

1 (1− p1)
g−t1 ;g = t1, t1 +1, . . .

Similarly, the random variable H follows the negative hypergeometric distribution

with parameters N2,r2, t2 and its probability mass function is given by:

P(H = h|N2,r2, t2) =

( r2

t2−1

)(N2−r2

h−t2

)
( N2

h−1

) × r2 − t2 +1

N2 −h+1
;h = t2, t2 +1, . . . ,(N2 − r2 + t2)

At this stage, we may note that it may be possible that the response of an indi-

vidual with A could be g < t2 or g > N2 − r2 + t2, in which case it would be known

that the individual has characteristic A, compromising the privacy of the respondent.

So, in order to protect the privacy of the respondent, we consider t1 = t2 = t, say,

and ask the respondent to stop drawing when he reaches at the number of draws

at N2 − r2 + t, so that after getting the number of draws from respondent it will

not be possible to find out from which box the draws are made. Hence, instead of

usual negative binomial distribution, we consider the following truncated negative

binomial distribution. We also note that as the number of successes is fixed at t, the

number of failures is the random variable, and following Mir (2008) and Shonkwiler

(2016) we utilize below the properties of the un-truncated and the truncated random

variable. So, if X is the random variable denoting the number of failures preced-

ing t successes, then the probability mass function of the usual negative binomial

distribution is given by :

P(X = x|t, p1) =
t

t + x

(
t + x

x

)
pt

1(1− p1)
x;x = 0,1,2, . . . ,



for which the expectation and variance are

E(X) = t
1− p1

p1
and V (X) = t

1− p1

p2
1

.

Following Shonkwiler (2016), we obtain the expectation and variance of the

right truncated negative binomial distributed variable as

E(X |X ≤ N2 − r2) = t
1− p1

p1
−

t
p1
(N2 − r2 +1)h(N2 − r2 +1)

tP(X ≤ N2 − r2)
= μ0, say,

where h(N2−r2+1) is the un-truncated negative binomial probability mass function

P(X = x|t, p1) evaluated at N2 − r2 +1, and

V (X |X ≤ N2 − r2)

= μ0 +(N2 − r2)

(
μ0 − t

1− p1

p1

)
+μ0t

1− p1

p1

(
1+

1

t

)
−μ2

0 =V0, say.

Hence,

E(G = t +X |G ≤ N2 − r2 + t) = t +E(X |X ≤ N2 − r2)

= t + t
1− p1

p1
−

t
p1
(N2 − r2 +1)h(N2 − r2 +1)

tP(X ≤ N2 − r2)
= t +μ0 = μ1, say.

And

V (G = t +X |G ≤ N2 − r2 + t) =V (X |X ≤ N2 − r2) =V0.

So, if Zi denotes the randomized response obtained from ith chosen person, and

if GT denotes the above defined truncated negative binomial distribution, then

Zi = GT if ith person bears A

= H if ith person bears Ac .

On noting the expectation and variance of GT as derived above and that for the

negative hypergeometric distribution H(N2,r2, t) as

E(H(N2,r2, t)) = t
N2 +1

r2 +1
, V (H(N2,r2, t)) = t

(N2 − r2)(N2 +1)(r2 +1− t)
(r2 +1)2(r2 +2)

,



we have

ER(Zi) = yiER(GT )+(1− yi)ER(H)

= yiμ1 +(1− yi)t
N2 +1

r2 +1

= yi

(
μ1 − t(N2 +1)

r2 +1

)
+ t

N2 +1

r2 +1

This implies that if

μ1 − t(N2 +1)

(r2 +1)
�= 0 and r′i =

Zi − t N2+1
r2+1

μ1 − t(N2+1)
(r2+1)

then

ER(r′i) = yi.

We now note that

V ′
i =VR(r′i) =

VR(Zi)[
μ1 − (N2+1)t

r2+1

]2

= cyi +d,say

where, on writing

φ =

[
μ1 − (N2 +1)t

r2 +1

]2

,

c =
V0 − t(N2−r2)(N2+1)(r2+1−t)

(r2+1)2(r2+2)

φ
,

d =
t(N2 − r2)(N2 +1)(r2 +1− t)

(r2 +1)2(r2 +2)φ
.

An unbiased estimator for V ′
i =VR(r′i) is

V̂R(r′i) = v′i = cr′i +d, i ∈ s,

because

ER(v′i) = ER(cr′i +d) = cER(r′i)+d = cyi +d =V ′
i .



4. Comparative efficiencies of the inverse method versus direct one un-
der different sampling schemes

We now present a study of the relative efficiencies of the direct versus inverse RRT

as e = 100 V
V ′ , where V is the variance of the usual estimator of θ for direct method

and V ′ as the variance of the estimator of θ for the inverse method in different sit-

uations. We consider (1) Simple Random Sampling With Replacement (SRSWR)

by n draws and (2) Simple Random Sampling Without Replacement (SRSWOR)

in n draws, in these two cases the sample means of the transformed randomized

responses are used to estimate θ . Also some unequal probability schemes, for ex-

ample, (3) probability proportional to size with replacement (PPSWR), (4) Rao,

Hartley and Cochran’s (RHC,1962) sampling scheme and (5) Midzuno’s (1952)

scheme are used for the estimation of θ and variance of that estimator.

Let us denote Ep,Vp as the expectation and variance operators for design p,

then the overall expectation, variance operators denoted by E and V are given as

E = EpER and V = EpVR +VpER. We present below the essential formulation for

the estimator considering the direct method for generating RR (as described earlier)

and variance and variance estimators for θ based on the various sampling schemes

considered in this paper. For the inverse counterpart, ri, Vi and vi will of course

change in the manners described already, replacing them by r′i, V ′
i and v′i respec-

tively.

4.1. SRSWR in n draws

Let us denote yk as the y-value for a person chosen on the kth draw (k = 1, . . . ,n)
and rk as the transformed RR generated by the direct method from that person.

Then an unbiased estimator for θ = 1
N ∑N

i=1Yi = Y is given by r = 1
n ∑n

k=1 rk with

V (r)=VpER(r)+EpVR(r)=Vp(y)+Ep(
1
n2 ∑n

k=1VR(rk))=
1
n [θ(1−θ)]+ 1

Nn ∑N
i=1Vi,

where Vi =VR(ri). V (r) can be unbiasedly estimated by

V̂ (r) = v(r) =
1

n(n−1)

n

∑
k=1

(rk − r)2.

4.2. SRSWOR in n draws

In this case also an unbiased estimator for θ is r = 1
n ∑i∈s ri because E(r)=EpER(r)=

Ep(y) = Y = θ and V (r) = N−n
Nn

1
N−1 ∑N

i=1(yi −Y )2 + 1
Nn ∑N

i=1Vi. V (r) is unbiasedly

estimated by

V̂ (r) = v(r) =
N −n

Nn
1

(n−1) ∑
i∈s
(ri − r)2 +

1

Nn ∑
i∈s

vi.



4.3. PPSWR in n draws

Let us consider that for unequal probability sample drawing the normed size mea-

sures pis are from an auxiliary variable z with known zi > 0 for all i having Z =

∑N
i=1 zi such that pi =

zi
Z , where 0 < pi < 1, i = 1,2, . . . ,N and ∑N

i=1 pi = 1. Let us

denote pk as the normed size measure, yk as the y-value for a person chosen at the kth

draw (k = 1,2, . . . ,n). And also let us denote rk as the transformed RR generated by

the direct method for generating randomized response for a person chosen at the kth

draw, for k = 1,2, . . . ,n. Then, following Hansen and Hurwitz (1943) an unbiased

estimator for θ is given by ePPSWR = 1
Nn ∑n

k=1
rk
pk

with V (ePPSWR) =VpER(ePPSWR)+

EpVR(ePPSWR)=Vp(
1

Nn ∑n
k=1

yk
pk
)+Ep(

1
N2n2 ∑n

k=1
VR(rk)

p2
k

)= 1
N2

[
V
n + 1

n ∑N
i=1

Vi
pi

]
, where

V =
N−1

∑
i=1

N

∑
j>i

pi p j

(
yi

pi
− y j

p j

)2

and Vi =VR(ri). V (ePPSWR) can be unbiasedly estimated by

V̂ (ePPWSR) = v(ePPSWR) =
1

N2

[
1

2n2(n−1)

n

∑
k=1

n

∑
k′ �=k,k=1

(
rk

pk
− rk′

pk′

)2
]
.

4.4. Rao, Hartley and Cochran’s sampling scheme of size n

Rao, Hartley and Cochran’s (RHC, 1962) sampling of n persons from N population

units consists of making n non-overlapping random groups of the population units

of group sizes being Ni, i = 1, . . . ,n such that ∑n
i=1 Ni = N. Let Qi denote the sum

of the normed size measures of the Ni units falling in the ith group. Then, inde-

pendently from every group only one unit is selected with probability proportional

to the normed size measures, thus yielding a sample of required size n by RHC

method. For simplicity in notation, we denote the value obtained from the unit se-

lected from ith group as yi and its normed size measure as pi. With this notation, the

unbiased estimator for θ is

eRHC =
1

N ∑
n

ri
Qi

pi
.

Here ∑n means the sum over the n disjoint groups into which the population U
is divided into random groups. Following Rao et al. (1962), the optimal choices

of group sizes Nis are given by Ni = [N/n] for i = 1,2, . . . ,k and Ni = [N/n] + 1

for i = k+ 1,k+ 2, . . . ,n, k being determined by solving ∑n
i=1 Ni = N. Following



Chaudhuri and Dihidar (2014) we have

V (eRHC)=
1

N2

[
C

N

∑
i=1

Vi

pi
+(1−C)

N

∑
i=1

Vi +C

(
N

∑
i=1

y2
i

pi
−Y 2

)]
, with C =

∑n N2
i −N

N(N −1)
.

V (eRHC) is unbiasedly estimated by

V̂ (eRHC) = v(eRHC) =
1

N2

[
D∑

n
∑
n′

QiQi′

(
ri

pi
− ri′

pi
′

)2

+∑
n

vi
Qi

pi

]
,

where

D =
∑n N2

i −N
N2 −∑n N2

i
.

Here ∑n ∑n′ denotes the sum over non-overlapping pairs of n groups.

4.5. Midzuno’s (1952) sampling scheme of n persons

For our illustrative purpose we consider the fifth scheme as Midzuno’s (1952) scheme

of unequal probability sampling of n units. Sampling by this scheme is done first

by drawing one unit by probability proportional to size measure of the auxiliary

variable, say, z with Z = ∑N
i=1 zi. Then, keeping the selected unit aside, the re-

maining (n− 1) units are chosen by simple random sampling without replacement

(SRSWOR) out of the remaining (N −1) population units. Under this scheme, the

first and second order inclusion probabilities, πi and πi j, i �= j are as follows.

πi =
zi

Z
+

Z − zi

Z

(N−2
n−2

)
(N−1

n−1

) =
zi

Z
N −n
N −1

+
n−1

N −1
∀i = 1,2, . . . ,N, (1)

and

πi j =
zi

Z

(N−2
n−2

)
(N−1

n−1

) + z j

Z

(N−2
n−2

)
(N−1

n−1

) + Z − zi − z j

Z

(N−3
n−3

)
(N−1

n−1

)
=

zi + z j

Z
(N −n)(n−1)

(N −1)(N −2)
+

(n−1)(n−2)

(N −1)(N −2)
, ∀i �= j ∈U. (2)

For this scheme, πiπ j > πi j,∀i �= j ∈ U. An unbiased estimator for the sensitive

population proportion θ is given by Horvitz and Thompson(1952)’s estimator as

eHT =
1

N ∑
i∈s

ri

πi
.



Utilizing Yates and Grundy (1953)’s form of variance of the HT estimator the vari-

ance of eHT is given by

V (eHT ) =
1

N2

[
N

∑
i=1

N

∑
j=1, j>i

(πiπ j −πi j)

(
yi

πi
− y j

π j

)2

+
N

∑
i=1

Vi

πi

]
.

It is unbiasedly estimated by

V̂ (eHT ) = v(eHT ) =
1

N2

[
∑
i∈s

∑
j∈s, j>i

πiπ j −πi j

πi j

(
ri

πi
− r j

π j

)2

+∑
i∈s

vi

πi

]
.

4.6. Comparison of the efficiencies

It is clear from the variance formulae of the unbiased estimators for θ as given in

the above section, that in each case since ER(ri) = yi = ER(r′i), the VpER term will

remain same for both the direct and inverse RRT and the difference will be only

in the EpVR term. So, to compare the efficiencies of the two methods, we need to

examine the relative magnitudes of VR(r′i) versus VR(ri). So, the inverse method will

be superior to the direct one if

VR(r′i)≤VR(ri), that is if cyi +d ≤ ayi +b or yi ≤ b−d
c−a

, provided c−a > 0.

Maintaining the constraint c−a > 0, this condition may be equivalently stated by

0 ≤ θ ≤ b−d
c−a

or 0 ≤ θ ≤ b−d

(b−d)+
[

V0

φ − r1(N1−r1)

KN2
1 (

r1
N1

− r2
N2

)2

] .

Because of the complicated form of the above inequality, it seems excessively diffi-

cult to have any insightful idea about the superiority or otherwise of the estimators of

θ realized by survey data obtained through the revised RRT approach rather than the

procedure following direct method of randomized response generation. However,

we present below a simulation-based numerical evaluation for efficiency compari-

son.

5. Numerical illustration

For numerical illustration, the values of yi s and size measures zi s for i= 1,2, . . . ,N =

117 are taken from Chaudhuri and Dihidar (2014) and n is taken throughout as 24.

For those data we have θ = 0.188. For illustration of the simulation purpose, we



have used the device parameters as N1 = 30,r1 = 17, t = 9,N2 = 33,r2 = 13 and

K = 12. We have checked that all the conditions evolved in earlier sections are

satisfied with these chosen device parameters. Below we present the relative effi-

ciencies of the inverse mechanism for RR generation versus the direct one based on

the various sampling schemes considered in this paper for comparative illustration

purpose. We also show below few instances of our findings for the estimated stan-

dard error (se), which is the positive square root of V̂ (θ̂) and estimated coefficient

of variation (cv), which is cv = 100
se
θ̂

for various situations.

Table 1. Relative performances of the direct RRT versus the inverse RRT
based on SRSWR

Method 1:Direct RRT Method 2:Indirect RRT

serial number est se cv est se cv

1 0.227 0.192 84.582 0.183 0.118 64.481

2 0.289 0.187 64.706 0.372 0.180 48.387

3 0.229 0.127 55.459 0.201 0.105 52.239

4 0.209 0.132 63.158 0.212 0.115 54.245

5 0.278 0.150 53.957 0.292 0.144 49.315

Efficiency = 100(V(Method 1)/V(Method 2)) = 119.36.

Out of 100 cases estimated cv(Method 2) < estimated cv(Method 1) in 60 cases.

Table 2. Relative performances of the direct RRT versus the inverse RRT
based on SRSWOR

Method 1:Direct RRT Method 2:Indirect RRT

serial number est se cv est se cv

1 0.248 0.151 60.887 0.252 0.131 51.984

2 0.208 0.151 72.596 0.223 0.118 52.915

3 0.294 0.181 61.565 0.251 0.127 50.598

4 0.234 0.148 63.248 0.241 0.127 52.697

5 0.224 0.143 63.839 0.264 0.121 45.833

Efficiency = 100(V(Method 1)/V(Method 2)) = 120.52.

Out of 100 cases estimated cv(Method 2) < estimated cv(Method 1) in 65 cases.

We observe from Tables 1-5 that the randomized response model considered in

this paper can be profitably modified by generating randomized responses by the in-

verse method having greater efficiencies in comparison to the direct one. Also, from

the results obtained from the simulation exercise, it reveals that the inverse RRT has

relatively lower values of the estimated coefficient of variations than the ones for



Table 3. Relative performances of the direct RRT versus the inverse RRT
based on PPSWR

Method 1:Direct RRT Method 2:Indirect RRT

serial number est se cv est se cv

1 0.214 0.193 90.187 0.174 0.146 83.908

2 0.149 0.128 85.906 0.162 0.131 80.864

3 0.139 0.108 77.698 0.192 0.108 56.250

4 0.289 0.202 69.896 0.164 0.102 62.195

5 0.214 0.131 61.215 0.194 0.106 54.639

Efficiency = 100(V(Method 1)/V(Method 2)) = 103.92.

Out of 100 cases estimated cv(Method 2) < estimated cv(Method 1) in 54 cases.

Table 4. Relative performances of the direct RRT versus the inverse RRT
based on Rao, Hartley and Cochran’s sampling

Method 1:Direct RRT Method 2:Indirect RRT

serial number est se cv est se cv

1 0.401 0.269 67.082 0.179 0.108 60.335

2 0.328 0.260 79.268 0.249 0.111 44.578

3 0.421 0.266 63.183 0.223 0.121 54.260

4 0.321 0.254 79.128 0.253 0.145 57.312

5 0.317 0.249 78.549 0.173 0.125 72.254

Efficiency = 100(V(Method 1)/V(Method 2)) = 104.89.

Out of 100 cases estimated cv(Method 2) < estimated cv(Method 1) in 56 cases.

Table 5. Relative performances of the direct RRT versus the inverse RRT
based on Midzuno’s Scheme of sampling

Method 1:Direct RRT Method 2:Indirect RRT

serial number est se cv est se cv

1 0.157 0.119 75.796 0.273 0.157 57.509

2 0.147 0.118 80.272 0.263 0.139 52.852

3 0.217 0.125 57.604 0.203 0.109 53.695

4 0.272 0.124 45.588 0.293 0.119 40.614

5 0.162 0.134 82.716 0.190 0.131 68.947

Efficiency = 100(V(Method 1)/V(Method 2)) = 120.20.

Out of 100 cases estimated cv(Method 2) < estimated cv(Method 1) in 62 cases.



the direct RRT. Therefore, one may use the inverse method profitably in practical

survey situation in place of the direct counterpart, in any general sampling scheme,

some of which are considered here including the unequal probability sampling of

respondents, and hence this is the justification of this research.

6. Concluding Remarks

The study in this paper is relevant for socio-economic surveys where the underlying

variable is stigmatizing and qualitative and the objective is to estimate the popu-

lation proportion of the variable. Here we propose a randomization device which

generates the randomized response data from a combination of the binomial and hy-

pergeometric distribution. We also present the alternative procedure of generating

randomized responses by combining the inverse of these two distributions. While

preparing the randomized response devices, we take care about the privacy of the

respondents. In both cases we present the related estimation procedures consider-

ing the sample of respondents as chosen by simple random sampling and various

unequal probability sampling schemes as well. At the same time, we concentrate

on comparing these two approaches. Our numerical simulation-based comparison

shows that the inverse approach may be used in practical survey situation in place

of the direct approach not only in simple random sampling of respondents, but also

profitably in general unequal probability sampling of respondents.
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