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Estimating Short-term Synaptic Plasticity from Pre- and Postsynaptic Spiking 

Abed Ghanbari, PhD 

University of Connecticut 2019 

Information processing in the nervous system critically depends on dynamic changes in the 

strength of these connections. Characterizing functional connectivity between spiking neurons is 

an essential first step toward understanding how the brain processes information at the single-cell 

and population levels. As a dynamical system, our brain changes its function in time and 

implements these dynamics through synaptic plasticity. Synaptic plasticity refers to the ability of 

each neuron in the neural network to change its influence on other neurons in time. Short-term 

synaptic plasticity (STP) refers to changes in synaptic strengths on timescales ranging from a few 

milliseconds to a few seconds. STP has been extensively studied in vitro by stimulating a 

presynaptic input with pulses of different frequencies and observing depression or facilitation in 

the postsynaptic potentials (PSPs) or currents (PSCs). STP is believed to underlie temporal 

filtering of inputs, gain control, network stability, sound localization by coincidence detection, and 

working memory. However, since recording PSPs/PSCs in vivo is challenging, STP has not been 

fully characterized in awake, behaving animals. Rather than observing PSP/PSCs directly, here we 

deduce STP parameters from spike observations alone. We model the short-term changes in the 

probability of a postsynaptic spike following a presynaptic spike. In cross-correlations between 

pre- and postsynaptic spiking, monosynaptic connections show a rapid, transient change in the 

probability of evoking a postsynaptic spike, at a short delay after the presynaptic spike (~ <4 ms). 

We developed a model-based approach for decomposing the short-term changes in the probability 

of a postsynaptic spike into four components: 1) short-term synaptic plasticity, 2) integration of 

PSPs, 3) history effects from previous postsynaptic spikes, and 4) slow common input to both pre- 

and postsynaptic neurons. The observed spike probability depends on each of these factors as well 

as the synaptic strength itself and the distribution of presynaptic spike times. We developed an 

extension of a typical generalized linear model (GLM) to use only pre- and postsynaptic spike 

observations. Our dynamical GLM allows us to characterize short-term synaptic dynamics of a 

wide range of synaptic behaviors in vivo.  
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Chapter 1: Introduction 

Neurons in our brain are connected through synaptic structures with varying strength in 

connectivity which allows one neuron to communicate selectively with another. Information 

processing in the nervous system critically depends on dynamic changes in the strength of these 

connections between neurons. Characterizing functional connectivity between spiking neurons is 

an essential first step toward understanding how the brain processes information at the single-cell 

and population levels to carry out neural computations. As a dynamical system, our brain changes 

its function in time and implements these dynamics through synaptic plasticity. Synaptic plasticity 

refers to the ability of each neuron in the neural network to change its influence on other neurons 

in time. Plasticity could refer to long term plasticity (LTP) which these changes take place in the 

scales of minutes and hours and is believed to be involved in learning and memory. On the other 

hand, short-term synaptic plasticity (STP) is the activity-dependent change of synaptic strength 

based on the history of presynaptic spiking activity [1]. STP allows the connections between 

neurons to evolve on timescales of tens to hundreds of milliseconds. Both of these plasticity forms 

have been observed in different regions of the brain and can directly affect synaptic transmission 

and act to alter information processing in neuronal circuits [2–4].  

Short-term plasticity occurs due to calcium and vesicle dynamics in the synapse and varies across 

both cell-types and brain regions [5,6]. Based on their effects on synaptic efficacy, there are two 

types of STP, facilitation, where synaptic efficacy increases with consecutive presynaptic spikes, 

and depression, where synaptic efficacy decreases. Previous studies have shown that the STP 
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allows differences in temporal filtering [7], network stability [7], working memory [8] and 

regulation of plasticity on longer timescales [9]. These studies suggest that neural computation and 

higher-order cognitive functions are related to the neural network activity in short time-scales. 

Therefore, studying information transmission in short time-scales could lead to an understanding 

of the underlying neural computations. 

Traditionally, synaptic transmission and short-term plasticity is studied using intracellular 

recordings where the effect of presynaptic spikes is directly observed in the postsynaptic potentials 

or currents. With intracellular recordings, electrophysiologists have precise control of the stimulus 

and are able to study how pharmacological manipulations alter plasticity. In many experiments, 

short-term changes in the amplitude of the PSPs/PSCs is summarized using the paired-pulse ratio 

(PPR) or the steady-state response to a train of stimuli. However, most of these controlled current 

injections assume that the synapse is in its resting state and does not account for the variability of 

postsynaptic response to arbitrary presynaptic spiking.  

Using these intracellular recordings and to understand how different presynaptic spiking patterns 

result in changes in amplitude of postsynaptic potentials (PSPs), Tsodyks and Markram (TM) 

introduced a dynamical system of equations to explain the changes in release probability associated 

with short-term facilitation and the depletion of the resources in short-term depression [10,11]. 

The biophysical representation of the synaptic behavior in TM made it popular among others  [12–

14] and was used in several in vitro studies to fit intracellular recordings and to assess synaptic 

dynamics in different regions of the brain. However, large-scale intracellular recordings similar to 

in vitro experiment in behaving animals are currently challenging [15,16]. On the other hand, 

evidence of synaptic connectivity appears not only in postsynaptic potentials and currents but also 

in spike statistics and extracellular recordings might be used to study STP using spikes. 
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Large-scale extracellular recording techniques are growing [17] where hundreds of simultaneously 

recorded neurons and their synapses could be potentially studied simultaneously using their 

spiking activity. Previously, using the cross-correlation between pre- and postsynaptic spikes 

several studies have found evidence of synaptic connections [18,19]. They showed how it is 

possible to detect monosynaptic connections in cross-correlograms when postsynaptic spikes tend 

to follow presynaptic spikes with fast onsets and short latency [20]. To study STP using 

extracellular recordings, a descriptive method extended these methods by splitting cross-

correlograms into short and long presynaptic inter-spike intervals (ISI).  Using split cross-

correlation approach, they inferred the STP type (i.e. facilitation and depression) based on the 

efficacy differences in short and long ISIs [21,22]. Although the split cross-correlation approach 

made it possible to observe STP in vivo, it only provides a qualitative description of synaptic 

dynamics rather than a detailed account of release probability and vesicle depletion dynamics for 

full sequence of presynaptic spikes. 

Here we propose modelling approaches to study short-term synaptic plasticity using extracellular 

recordings of spiking activity. Our approach is able to include many covariates relating to network 

functions (i.e. common input, post-spike history, postsynaptic excitability) and could overcome 

the limitations of descriptive statistics (cross-correlations) in estimating biological meaningful 

parameters of a dynamical synapse. 

Explicitly, we develop dynamical functional connectivity models that include short-term plasticity 

based on a generalized linear model (GLM). Our model predicts probability of postsynaptic 

spiking as a function of the observed pre- and postsynaptic spiking history [23]. Previous models 

of this type have revealed the underlying structure of retina [24] and cortex [25], and result in more 

accurate detection of weak synapses [26]. However, in these studies strength of the functional 
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connections is assumed to be static. Here we modify the GLM and its covariates to allow the effect 

of the presynaptic spikes on postsynaptic spiking probability to vary on short timescales. Our 

dynamical model connectivity will allow us to infer (i) how neural correlation changes in short 

timescale, (ii) how this change is related to short-term synaptic plasticity, and (iii) how accurately 

it can predict postsynaptic spiking probability. 

In Chapter 2, we assess the ability of models to infer different forms of STP and validate these 

models using results from controlled in vitro experiments where we inject a presynaptic current as 

a combined current of a population of presynaptic neurons with simulated and known plasticity. 

Our results show that our models of dynamical functional connectivity can accurately recover the 

synaptic dynamics underlying spiking. Moreover, we examine the effects of synaptic weights, 

adaptation, stochastic vesicle release, spike sorting errors, and common input. These results 

suggest the feasibility of studying STP using spike observations. 

In Chapter 3, we follow the in vitro experiment and use extracellular recordings from behaving 

animal to study STP under different tasks and brain regions. Similarly, here we deduce short-term 

dynamics of synaptic transmission from spike observations using an extension to generalized 

linear models (GLMs) by including multiple factors that regulate the spike transmission 

probability in vivo. The main challenge in vivo is the common input and presence of multiple inputs 

from other neurons. In three identified synapses, our model captures short-term dynamics of spike 

transmission and decomposes the effects of local patterns of pre- and postsynaptic spikes. We used 

this model (i) to estimate how spike transmission dynamically shifts depending on stimulus type, 

and (ii) to study how spike transmission is postsynaptic cell-type specific in a large-scale 

extracellular recording. 
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Together, these two chapters demonstrate how it may be possible to estimate short-term synaptic 

dynamics from spikes alone, without intracellular observations of membrane potentials or currents. 

Our exploration through in vitro experiments and in vivo data is an attempt to bring insight to study 

short-term dynamics of spike transmission and provides a potential framework to understand 

neural computation that underlies several aspects of network functions in short-term timescales in 

behaving animals. 
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Chapter 2: Estimating short-term synaptic plasticity from pre- and 

postsynaptic spiking: a simulation and in vitro validation study 

Short-term synaptic plasticity (STP) critically affects the processing of information in neuronal 

circuits by reversibly changing the effective strength of connections between neurons on time 

scales from milliseconds to a few seconds. STP is traditionally studied using intracellular 

recordings of postsynaptic potentials or currents evoked by presynaptic spikes. However, STP also 

affects the statistics of postsynaptic spikes. Here we present two model-based approaches for 

estimating synaptic weights and short-term plasticity from pre- and postsynaptic spike 

observations alone. We extend a generalized linear model (GLM) that predicts postsynaptic 

spiking as a function of the observed pre- and postsynaptic spikes and allow the connection 

strength (coupling term in the GLM) to vary as a function of time based on the history of 

presynaptic spikes. Our first model assumes that STP follows a Tsodyks-Markram description of 

vesicle depletion and recovery. In a second model, we introduce a functional description of STP 

where we estimate how the coupling term is modified by directly inferring a function of 

presynaptic inter-spike intervals. To validate the models, we test the accuracy of STP estimation 

using the spiking of pre- and postsynaptic neurons with known synaptic dynamics. We first test 

our models using the responses of layer 2/3 pyramidal neurons to simulated presynaptic input with 

different types of STP, and then use simulated spike trains to examine the effects of spike-

frequency adaptation, stochastic vesicle release, spike sorting errors, and common input. We find 

that, using only spike observations, both model-based methods can accurately reconstruct the time-

varying synaptic weights of presynaptic inputs for different types of STP. Our models also capture 
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the differences in postsynaptic spike responses to presynaptic spikes following short vs long inter-

spike intervals, similar to results reported for thalamocortical connections. These models may thus 

be useful tools for characterizing short-term plasticity from multi-electrode spike recordings in 

vivo. 
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Introduction 

Short-term synaptic plasticity (STP) refers to fast and reversible changes of synaptic strength 

caused by the recent history of presynaptic spiking activity [1]. STP occurs on timescales from 

milliseconds to tens of seconds, and includes mechanisms for both facilitation of transmitter 

release, where synaptic strength increases with consecutive presynaptic spikes, and depression, 

where synaptic strength decreases. Facilitation and depression are mediated by the dynamics of 

presynaptic calcium and the depletion and replenishment of vesicles in the presynaptic terminals 

[1]. The relative contribution of facilitation and depression varies across synapses, cell types, and 

brain regions [5,6] with facilitation dominating at some synapses and depression at others. By 

shaping postsynaptic responses evoked by trains of presynaptic action potentials, STP alters 

neuronal information processing [2–4]. In vitro studies have shown that STP has profound effects 

on temporal filtering [7], network stability [7], and working memory [8]. Moreover, there is 

bidirectional interaction between STP and long-term synaptic changes: STP can determine the 

magnitude of long-term plasticity [27–30], and long-term synaptic changes also modify STP 

[30,31]. This results in an interplay between STP and long-term plasticity on multiple timescales 

[9,31]. Therefore, characterization of short-term plasticity in different systems is crucial for 

understanding neural computations. 

Traditionally, short-term plasticity is studied using intracellular recordings where responses of the 

postsynaptic neuron to presynaptic stimulation are directly measured as evoked postsynaptic 

potentials or currents. Based on results of intracellular recordings Tsodyks, Markram, and 

colleagues developed a computational model that describes STP in terms of dynamics of resources 

and their utilization [11,32]. The Tsodyks-Markram (TM) model provides a phenomenological 

description of the short-term dynamics of synaptic responses in terms of 1) changes in the 
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probability of transmitter release (utilization), related to the dynamics of presynaptic calcium and, 

2) the use and replenishment of synaptic vesicles (resources). The TM model accurately captures 

the dynamics of synaptic responses caused by STP, links the observed diversity in synaptic 

dynamics to differences in the model parameters (utilization, recovery of resources, and their time 

constants), and allows prediction of postsynaptic responses to an arbitrary sequence of presynaptic 

stimuli [33]. Although several alternative models of STP have been proposed [14,34], the TM 

model is the most broadly used because it provides a compact description of STP with 

biophysically relevant parameters. 

The TM model had been successfully used in a number of intracellular studies to assess synaptic 

dynamics in different connections [33,35,36] and changes of synaptic dynamics induced by long-

term plasticity [31], adaptation [37] or injury [38]. Traditionally TM model parameters are 

estimated from responses to presynaptic stimuli applied in bursts of different frequencies 

[11,31,37,38]. A recent study presented a Bayesian approach that estimates TM model parameters 

by fitting postsynaptic responses induced by stochastic trains of presynaptic spikes [33]. Thus, 

STP parameters can be extracted from responses to in vivo-like presynaptic activity. Here we ask 

whether it is possible to estimate STP parameters using only the spike trains of pre- and 

postsynaptic neurons without access to postsynaptic potentials or currents. If available such a 

method would greatly expand the possibilities for studying STP in vivo. Although multiple 

intracellular recordings or simultaneous extra and intracellular recordings in vivo are possible 

[18,39–41], they are technically prohibitive for large-scale studies. Techniques for large-scale 

extracellular recordings, on the other hand, allow simultaneous recording of spiking from hundreds 

of neurons [17,42,43]. Prior studies compared cross-correlograms calculated using presynaptic 

spikes occurring after short or long inter-spike intervals, and found evidence for both short-term 
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facilitation [44] and depression [20,21] of synaptic transmission in vivo. This split-correlograms 

approach, however, does not allow for a detailed reconstruction of synaptic weight for each 

presynaptic spike or estimation of underlying release probability and vesicular resources. 

Here we develop two statistical methods that use pre- and postsynaptic spike trains to estimate the 

dynamics of short-term plasticity. Both approaches are based on a generalized linear model (GLM) 

that predicts postsynaptic spiking as a function of the observed pre- and postsynaptic spikes [23–

25,45,46]. In these GLM-based methods we allow the effect of the presynaptic spikes to vary on 

short timescales as a function of the presynaptic spike timing. In a first model, the effect of 

presynaptic spikes is determined by the nonlinear dynamical equations of the TM model (TM-

GLM). In a second model, we introduce a functional description of short-term plasticity based on 

a generalized bi-linear model (GBLM). Although the parameters in the second approach are no 

longer linked to biophysical properties the GBLM allows us to capture a wide range of neuronal 

interactions and synaptic dynamics. 

To validate our models, we recorded spike responses of pyramidal neurons in vitro (cortical slices, 

layer 2/3 pyramids) to intracellularly injected currents composed of synaptic inputs with the known 

pre-defined short-term plasticity. We show that, using only pre- and postsynaptic spike trains, the 

TM-GLM can recover the underlying parameters of STP, and the GBLM is able to reconstruct 

synaptic dynamics using a descriptive plasticity “rule”. Estimates provided by each of the two 

models were in good correspondence to ground truth values for a wide range of synaptic weights 

and time scales of facilitation and depression. Additionally, using simulated neurons we show that 

estimation of STP by these models is robust to several potential confounds: spike frequency 

adaptation, noise from probabilistic vesicle release, and spike sorting errors. The methods 

developed here, thus, have the potential to serve as powerful tools for large-scale studies of short-
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term synaptic plasticity in vivo, including alterations of short-term plasticity during different 

behaviors, during learning, or as a result of pathology.   
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Methods and Models 

Ethics Statement: 

All animal use procedures conform to the principles outlined in the Guide for the Care and Use of 

Laboratory Animals (National Institutes of Health publication no. 86-23, revised 1985) and were 

approved by the Institutional Animal Care and Use Committee at the University of Connecticut. 

A phenomenological generative spiking model of short-term plasticity:  

Approaches using generalized linear models (GLMs) have proved to be effective tools for 

estimation neuronal connections from spike train data [47–49]. The standard GLM assumes that 

the spike train is a binary sequence of observations, 𝑚(𝑡), generated from a Poisson process. For 

a single pair of neurons, we model the conditional intensity, 𝜆(𝑡), of this process as a linear 

combination of a baseline firing rate 𝜇, a contribution from the presynaptic neuron 𝒓𝒙𝒕 and 

weighted contribution from the postsynaptic spike-history 𝒔𝒚𝒕 passed through an exponential 

nonlinearity (Fig. 2.1) 𝜆(𝑡 | 𝜇, 𝒓, 𝒔) = exp(𝜇 + 𝒓𝒙𝒕 + 𝒔𝒚𝑡) 𝑚(𝑡)~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆(𝑡 | 𝜇, 𝒓, 𝒔)) 𝒙𝒕 = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝐿(𝑡)], 𝑥𝑗(𝑡) = 𝑛(𝑡) ∗ 𝑏𝑗(𝑡) 𝒚𝒕 = [𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝐿(𝑡)], 𝑦𝑗(𝑡) = 𝑚(𝑡) ∗ 𝑏𝑗(𝑡) 

(1) 

where 𝑛(𝑡) and 𝑚(𝑡) are the pre- and post- synaptic spike trains, respectively. 

Our goal is to estimate the set of model parameters 𝒓 = [𝛽𝑐(1), 𝛽𝑐(2), … , 𝛽𝑐(𝐿)], 𝒔 =[𝛽ℎ(1), 𝛽ℎ(2), … , 𝛽ℎ(𝐿)] and 𝜇, describing the coupling, 𝑘(𝑡), and post-spike filter, ℎ(𝑡), which best 

predicts the postsynaptic firing 𝑚(𝑡).  
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𝑘(𝑡) = ∑ 𝛽𝑐(𝑗)𝑏𝑗(𝑡)𝐿𝑗=1 ; ℎ(𝑡) = ∑ 𝛽ℎ(𝑗)𝑏𝑗(𝑡)𝐿𝑗=1 ; 

𝑏𝑗(𝑡) = 12 cos(log(𝑡 + 𝐶𝑗) + 𝜋) + 12 

(2) 

where 𝑏𝑗(𝑡) are raised-cosine basis functions which reduce dimensionality and allow a smooth 

representation of the two filters [24]. This stochastic model of a Poisson spiking neuron has a 

guaranteed convex log-likelihood which gives a unique set of parameters for its global maximum 

[46]. 

In order to model plasticity, we modified the GLM, allowing the contribution of coupling to vary 

over time. A conventional GLM treats all presynaptic spikes 𝑛(𝑡), equally, with each presynaptic 

spike having the same “weight” when influencing conditional intensity, 𝜆(𝑡). To account for short-

term facilitation and depression we modify the weights of each spike according to the 

phenomenological Tsodyks-Markram (TM) model [11]. The TM model describes the dynamics of 

resources R and their utilization U by the following system of differential equations: 𝑑𝑅(𝑡)𝑑𝑡 = 1 − 𝑅(𝑡)𝐷 − 𝑢(𝑡−)𝑅(𝑡−)𝛿(𝑡 − 𝑡𝑠) 𝑑𝑢(𝑡)𝑑𝑡 = 𝑈 − 𝑢(𝑡)𝐹 + 𝑓[1 − 𝑢(𝑡−)]𝛿(𝑡 − 𝑡𝑠) 

(3) 

where resources, 𝑅(𝑡), represent the portion of available vesicles which instantly decreases after 

each spike at 𝑡𝑠 and gradually recovers with depression time constant 𝐷. The second equation 

describes release probability (utilization of resources), which instantly increases after each spike 

by 𝑓[1 − 𝑢(𝑡−)], where 𝑓 is the magnitude of facilitation and decays back to the baseline value, 𝑈, with facilitation time constant 𝐹.  
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The amplitude of the postsynaptic current 𝐼𝑠𝑦𝑛(𝑡𝑖) evoked by presynaptic spike at ti is described 

by 

 𝐼𝑠𝑦𝑛(𝑡𝑖) =  𝐴 𝑅(𝑡𝑖)𝑢(𝑡𝑖) (4) 

where 𝐴 is the maximal current that can be evoked at that synapse if all resources are recovered 

(𝑅 = 1) and are released at once.  

With different sets of parameters 𝜽 =  {𝑫, 𝑭, 𝑼, 𝒇} this model can reproduce diverse types of short-

term plasticity (depression, facilitation or a mixture of both) observed experimentally [33]. Using 

these dynamics, we create a “marked” point-process  𝑛∗(𝑡) =  𝐴 𝑅(𝑡)𝑢(𝑡)𝑛(𝑡) (5) 

where 𝑛∗(𝑡) captures the amplitudes of PSCs at the time-points of presynaptic spikes and is zero 

otherwise. By using 𝑛∗(𝑡) instead of 𝑛(𝑡) in the modified GLM (TM-GLM), we account for STP 

in the coupling term. Note that when 𝑛∗(𝑡) is constant (𝑅(𝑡) and 𝑢(𝑡) constant) the TM-GLM will 

describe a steady-state synapse with no short-term plasticity, and, in this case, TM-GLM is 

identical to the original GLM. 

With the modified coupling term the original observation model is rewritten as 𝜆(𝑡 | 𝜇, 𝒓, 𝒔) = exp(𝜇 + 𝒓𝒙𝒕∗ + 𝒔𝒚𝑡) 𝑚(𝑡) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆(𝑡 | 𝜇, 𝒓, 𝒔)) 

(6) 

Using the TM-GLM our goal is to estimate the static parameters of the synapse 𝜙 =  {𝜇, 𝒓, 𝒔}, as 

well as the plasticity parameters 𝜽 =  {𝑫, 𝑭, 𝑼, 𝒇}, given the pre- and postsynaptic spike trains. 

Specifically, we aim to find maximum a posteriori (MAP) estimates of 𝜃 and 𝜙 that optimize 𝑝 (𝜽, 𝝓|𝑛𝑝𝑜𝑠𝑡(𝑡), 𝑛𝑝𝑟𝑒(𝑡))  
∝  𝑝 (𝑛𝑝𝑜𝑠𝑡(𝑡)|𝜽, 𝝓, 𝑛𝑝𝑟𝑒(𝑡)) 𝑝 (𝜽, 𝝓|𝑛𝑝𝑟𝑒(𝑡)) 

(7) 
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= 𝑝 (𝑛𝑝𝑜𝑠𝑡(𝑡)|𝜽, 𝝓, 𝑛𝑝𝑟𝑒(𝑡)) 𝑝(𝜽)𝑝(𝝓) 

To prevent over-fitting and assure nonnegative values, we introduce weakly informative priors on 

the plasticity parameters 𝑝(𝜃) to span the parameters space only over meaningful intervals and 

prevent the optimization from getting stuck at local minima. We then use coordinate ascent, 

maximizing the log posterior by alternating between optimizing the plasticity parameters given the 

GLM parameters and fitting the GLM given fixed plasticity parameters. Although this posterior is 

not guaranteed to be convex, in many cases, the non-convexity of GLM-like models does not lead 

to optimization problems [50–52]. Previous work estimating STP parameters from intracellular 

recordings suggests that, rather than point estimates, a fully Bayesian approach may provide a 

more accurate understanding of the parameters [33,53]. Although it is possible to use MCMC to 

sample from the posterior, the large number of function evaluations (compared to optimization) 

makes it less attractive for our model with spike observations. 

When optimizing plasticity parameters (GLM parameters fixed) we randomly restart over the 𝜃-

space and use priors {0 < 𝑫, 𝑭 < 2} ~ 𝑔𝑎𝑚𝑚𝑎(𝛼 = 1.2, 𝛽 = 2) and {0 < 𝑼, 𝒇 <1} ~ 𝑏𝑒𝑡𝑎(1.01,1.01). We optimize the plasticity parameters in the log-domain using two-metric 

projection and numerical differentiation of the posterior [54]. Additionally, we found that when 

optimizing the plasticity parameters, convergence is improved by normalizing the static coupling 

term 𝑘(𝑡) and optimizing an amplitude 𝐴 (with prior 𝑝(𝐴) = 𝑐𝑎𝑢𝑐ℎ𝑦(0,50)) alongside the 

parameters 𝜽. These prior distributions and parameters were chosen to prevent the model from 

reaching the boundaries (e.g. 𝑈 or 𝑓 at 0 or 1), but they do introduce bias into the parameter 

estimates and may not necessarily work well for all sets of data. 

When optimizing the static GLM parameters 𝝓 (plasticity parameters fixed) we would typically 

assume 𝑝(𝝓) to be flat. However, we found that in some cases the coupling term 𝑘(𝑡) interacts 
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with the plasticity parameters. For instance, an excitatory depressing synapse will show a biphasic 

coupling term where a negative component can partially account for the reduced impact of a burst. 

To prevent this type of ambiguity we introduced a quadratic penalty on negative coupling 

coefficients 𝒓 with the improper prior log 𝑝(𝑟) ∝ −𝜂𝑟2 𝟏𝑟<0. In practice, we use LBFGS 

optimization of the penalized log-likelihood and this ensures that the estimated coupling term is 

approximately positive for excitatory inputs and negative for inhibitory inputs. With limited data 

or when extending the model to multiple inputs additional types of regularization may be useful 

[48]. 

A nonparametric generalized bilinear model of STP: 

The phenomenological model, described above, gives a clear view of the synaptic dynamics by 

searching over the 𝜽-space of STP parameters. However, in cases were TM assumptions on 

synaptic dynamics such as vesicle release and changes of the calcium changes in presynaptic 

terminal doesn’t hold, it may be preferable to have a model of STP that is not constrained to the 

TM dynamics. In a second type of model – the generalized bilinear model - instead of searching 

over the space of STP parameters we directly infer a short-term synaptic modification “rule”. This 

generalized bilinear model (GBLM) compartmentalizes the coupling term into a stationary and a 

short-term plastic modification (Fig. 2.2). 𝜆(𝑡 | 𝜇, 𝒓, 𝒔, 𝑤(𝑡)) = 𝑒𝑥𝑝 (𝜇 + 𝒓𝒙𝑡. 𝑤(𝑡) + 𝒔𝒚𝑡) 𝑚(𝑡) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆(𝑡 | 𝜇, 𝒓, 𝒔, 𝑤(𝑡))) 

(8) 

Here the modification term, 𝑤(𝑡), weights the static coupling term depending on the history of 

presynaptic spiking. For a synapse with no plasticity, 𝑤(𝑡) equals to one and the coupling term, 𝒓𝒙𝑡 is static and does not depend on previous presynaptic spiking. For a synapse with plasticity, 
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𝑤(𝑡) >1 would increase the static coupling term 𝒓𝒙𝑡 to account for facilitation and 𝑤(𝑡) <1 would 

decrease the 𝒓𝒙𝑡 to account for depression. In both cases, the effect of w(t) on the coupling term 

decays with time and the coupling term recovers to its static form. We defined the modification 

function as: 

𝑤(𝑡)  =  1 + ∑ 𝑞𝑘𝑘 ∑ 𝛿(𝑡𝑘 − 𝑙)exp (− 𝑙𝜏)𝑇
𝑙=0  

𝑞𝑘 = 𝜶 𝑩𝒎(𝛥𝑡𝑘) 

(9) 

where 𝑞(∙) determines the amplitude of exponentially decaying effects from previous spikes on 

the synaptic weight. Here 𝑘 indexes the presynaptic spikes with times 𝑡𝑘 and previous inter-spike 

intervals Δ𝑡𝑘. 

Although we could attempt to fit the decay function (instead of using single exponential) and its 

time-constant (𝜏 = .2) we fixed them to increase the robustness and speed of the maximum 

likelihood parameter fitting. Spikes are then convolved with the exponential kernel weighted by 

the modification terms 𝑞(∙). To ensure 𝑞(∙) is a smooth function we represent it using the B-spline 

bases, 𝐵𝑚(𝛥𝑡), with log-spaced sampling knots in 𝛥𝑡𝑘. The final model is linear in both the 

stationary parameters, {𝜇, 𝒓, 𝒔}, and STP parameters, 𝒒. To estimate the parameters, we alternate 

between two GLMs: fitting {𝜇, 𝒓, 𝒔} with fixed 𝒒 and fitting 𝒒 with fixed {𝜇, 𝒓, 𝒔} (both using 

iterative reweighted least squares - IRLS). Although the two GLMs are log-concave in this 

problem, the joint likelihood of {𝜇, 𝒓, 𝒔, 𝒒} is not guaranteed to be concave. However, we find that 

in practice convergence is fast using the alternating method and random restarts results in the same 

final solution.  



 19 

Experiments in Slices: Recording and Current Injection: 

Slices of visual cortex were prepared from male Wistar rats (P21-P23) as described in detail in our 

prior work [55]. Extracellular solution used during preparation of slices and for perfusion of 

recording chamber contained (in mM): 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 25 

NaHCO3, 25 D-glucose and was bubbled with 95% O2 and 5% CO2. Patch clamp electrodes for 

whole cell recordings were filled with K-gluconate based solution (in mM: 130 K-Gluconate, 20 

KCl, 4 Mg-ATP, 0.3 Na2-GTP, 10 Na-Phosphocreatine, 10 HEPES) and had a resistance of 4–6 MΩ. Whole-cell recordings were made from layer 2/3 pyramidal neurons of rat visual cortex. 

Membrane potential responses to injection of fully-defined fluctuating current ([55]; see below) 

were recorded using the bridge mode of a Dagan BVC-700A amplifier (Dagan Corporation, USA). 

Data were digitized at 20 kHz (Digidata 1440A, Molecular Devices, USA) and stored for further 

processing. Timings of postsynaptic spikes were determined as positive-slope zero crossings of 

the membrane potential signal.  

An artificial current for injection was designed to mimic the postsynaptic effect of a realistic 

cortical circuitry with inputs of different strength and unique short-term synaptic characteristics 

(Fig. 2.3). Current for injection was synthesized using a population of 96 presynaptic neurons (6 

pools of 16 neurons, 8 excitatory and 8 inhibitory). Five sets of STP parameters were chosen to 

cover the whole spectrum of the plasticity from strong depression to strong facilitation. The sixth 

set of synapses did not express short-term plasticity. For each neuron, we generated an 

inhomogeneous Poisson spiking series with the log rate generated using a cubic spline function 

with 1 knot/s and standard normally distributed amplitudes. The rate is then scaled to generate an 

average spike rate of 5Hz and the spikes are weighted to generate the postsynaptic current 

amplitudes of the TM model. The weighted series of postsynaptic current amplitudes was then 
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convolved with a synaptic integration kernel to generate the artificial postsynaptic current traces. 

We generated the kernel as a difference of two exponentials with time constants of 1ms and 10ms. 

Eight different synaptic weights with a normal inverse cumulative distribution function (𝜇 =.7 & 𝜎 = .93) were used to create a pool of excitatory synapses. Same synaptic weights, but with 

a negative sign were used to generate currents produced by inhibitory neurons. Because the number 

and weight distributions for excitatory and inhibitory presynaptic neurons were the same, the total 

input current was balanced. We used 20 different realizations of the current for injection. The 

duration of each current trace was 46s. Injections of fluctuating currents were separated by 

intervals of 60-100s. The amplitude of the injected current was adjusted to produce membrane 

potential fluctuations of 10-15 mV. DC current was added to achieve the average postsynaptic 

firing rate of ~5Hz.  

Thus, we knew the timing of presynaptic spikes for each simulated presynaptic neuron contributing 

a synaptic connection as well as its amplitude and the parameters governing its short-term 

plasticity. We used individual pairs of pre- and postsynaptic spike trains to compare the parameters 

of short-term plasticity, estimated by the models, to the ground truth values. 

Simulation: Leaky integrate-and-fire model with adaptation. 

To examine the limitations of our models more thoroughly, we simulated a leaky integrate-and-

fire model neuron receiving presynaptic input with short-term synaptic plasticity. In particular, to 

examine the effect of spike frequency adaptation we simulate a postsynaptic neuron with and 

without an after-hyperpolarization current [56]: 

𝜏𝑚 𝑑𝑉𝑚𝑑𝑡 = −(𝑉𝑚 − 𝐸𝑟𝑒𝑠𝑡) − 𝑟𝑚𝑔𝑠𝑟𝑎(𝑡)(𝑉𝑚 − 𝐸𝑘) + 𝑟𝑚𝐼(𝑡) (10) 
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𝜏𝑠𝑟𝑎 𝑑𝑔𝑠𝑟𝑎(𝑡)𝑑𝑡 =  −𝑔𝑠𝑟𝑎(𝑡) 

if 𝑉𝑚 = 𝑉𝑡ℎ then { 𝑉𝑚 → 𝑉𝑟𝑒𝑠𝑒𝑡𝑔𝑠𝑟𝑎(𝑡) → 𝑔𝑠𝑟𝑎(𝑡) + 𝛥𝑔𝑠𝑟𝑎 

where 𝐸𝑘 is the reversal potential due to K+, 𝑔𝑠𝑟𝑎(𝑡) is the spike rate adaptation conductance, 

which changes with rate 𝛥𝑔𝑠𝑟𝑎 = 200𝑛𝑆, and 𝐸𝑘 = 80 𝑚𝑉 is the reversal potential. The other 

parameters were set to 𝐸𝑟𝑒𝑠𝑡 = 80𝑚𝑉, 𝐸𝑘 = 80𝑚𝑉, 𝑉𝑟𝑒𝑠𝑒𝑡 = 80𝑚𝑉, 𝑉𝑡ℎ = 54𝑚𝑉, 𝜏𝑚 = 10𝑚𝑠, τ𝑠𝑟𝑎 = 100𝑚𝑠, and 𝑟𝑚 = 10𝑀𝛺. Similar to the in vitro experiment above, 𝐼(𝑡) is synthesized by 

simulating a presynaptic input with short-term synaptic plasticity (inhomogeneous Poisson spiking 

with Tsodyks-Markram PSC amplitudes). We then adjust the DC current, noise, and synaptic 

strength to achieve the desired postsynaptic spike rate (5Hz) along with a cross-correlogram 

similar to those obtained by the strongest synapses in the in vitro experiment. 

Simulation: Stochastic model of short-term synaptic plasticity 

Although the TM model treats short-term synaptic plasticity as a deterministic process, synaptic 

transmission is a discrete, stochastic process where a discrete number of vesicles are present and 

probabilistically released following presynaptic spikes. To model this additional variability, we 

use LIF simulations, as above, where rather than having PSC amplitudes be synthesized from the 

TM model we use a quantal, stochastic extension of the TM model.  

First, to make the TM model discrete, we consider an integer number of release sites, 𝑛𝑚𝑎𝑥  , where, 

at any point in time, only a fraction of resources are available to be released, 𝑎𝑚 = ⌊𝑛𝑚𝑎𝑥  𝑅𝑚⌋. 
Following each presynaptic spike, a discrete number of vesicles is released 𝑘𝑚 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑎𝑚, 𝑢𝑚) (11) 

giving the PSC amplitudes 
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𝐼𝑚 = 𝑘𝑚𝑛𝑚𝑎𝑥 (12) 

Following a spike, the resources and utilization at the following spike (after interval Δ𝑡) are given 

by 

𝑅𝑚+1  =  1 − ( 1 – 𝑎𝑚 − 𝑘𝑚𝑛𝑚𝑎𝑥 ) 𝑒  −𝛥𝑡𝐷  

𝑢𝑚+1  =  𝑈 +  ( 𝑢𝑚 +  𝑓( 1 – 𝑢𝑚)  −  𝑈  )𝑒  −𝛥𝑡𝐹  

(13) 
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Results 

Here we develop two model-based approaches to estimate short-term plasticity (STP) from trains 

of pre- and postsynaptic spikes. Both approaches are based on a generalized linear model (GLM) 

that predicts postsynaptic spiking as a function of the recent history of presynaptic spikes and the 

postsynaptic spikes. In the conventional GLM, the effect of presynaptic spikes is constant. In the 

new models we introduce a time-varying coupling term that depends on the history of presynaptic 

spikes and captures the short-term plasticity of synaptic connections. 

In the first model, the coupling term is assumed to vary according to a Tsodyks-Markram model 

(Fig. 2.1, TM-GLM). The TM model provides a comprehensive description of STP using 4 

physiologically motivated parameters: the baseline utilization of resources (U), the magnitude and 

time constant of facilitation (f and F), and the time constant for the recovery of resources (D). The 

dynamics of the synaptic resources and their utilization are described by two coupled differential 

equations that determine how postsynaptic responses depend on the history of presynaptic activity 

(Eq. 3 in the Methods). Using pre- and postsynaptic spike trains, the TM-GLM estimates both 

traditional GLM parameters (influence of postsynaptic spiking and coupling between pre- and 

postsynaptic activity) and the parameters θ =  {D, F, U, f} describing short-term plasticity in the 

TM model.  
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Fig. 2.1: TM-GLM. Here we use the output of the TM as an input to a generalized linear model 

(GLM) where the weighted presynaptic spikes n*(t) combines with the history of the postsynaptic 

spiking to predict future postsynaptic spiking activity (bottom). The goal of our TM-GLM 

framework is then to estimate both the parameters of the TM (D, F, U, and f) and the parameters 

of the GLM (baseline firing rate, coupling filter, and post-spike filter) given only observations of 

pre- and postsynaptic spiking. 
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In the second model, we implement short-term plasticity as a descriptive rule which modifies the 

coupling term of the GLM based on specific presynaptic inter-spike intervals (ISIs). In this 

generalized bilinear model (GBLM, Fig. 2.2) the modification rule of the coupling term is not 

constrained by the known presynaptic mechanisms of short-term plasticity at unitary connections. 

However, the GBLM can still distinguish between facilitation (where presynaptic spikes following 

short ISIs have larger postsynaptic effects) and depression (where spikes following long ISIs have 

larger effects). 
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Fig. 2.1: A generalized bilinear model (GBLM) can provide a descriptive model of how synaptic 

weight varies as a function of presynaptic inter-spike intervals. Here we again use a GLM with 

coupling from a pre- to postsynaptic neuron and post-spike history dynamics. However, the 

coupling term is weighted by a separate synaptic weight time-series w(t). Here we assume that 

w(t) is updated following presynaptic spikes according to a modification function 𝑞(𝛥𝑡) and 

decays exponentially. When the modification function is positive the synaptic weight has 

facilitating dynamics, and when the modification function is negative the synaptic weight has 

depressing dynamics (bottom). The goal of our GBLM framework is to estimate the modification 
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function (q) and the parameters of the GLM (coupling filter and post-spike filter) given only 

observations of pre- and postsynaptic spiking. 

To validate the models, we examine how accurately they can reconstruct synaptic dynamics from 

spike trains of pairs of neurons connected by synapses with known plasticity rules. We obtained 

such data using the spiking of layer 2/3 pyramidal neurons evoked by injection of a fully-defined 

current generated by a population of simulated presynaptic inputs [55]. The advantage of these 

data is that they are generated by real neurons, with physiological spike generation mechanisms 

and post-synaptic dynamics. To examine the possible effects of additional factors that are present 

in in vivo recordings and may affect estimation of STP, we also used spike trains generated by 

simulated leaky integrate-and-fire neurons with: 1) spike frequency adaptation, 2) stochastic 

release at synaptic inputs, 3) spike sorting errors, and 4) correlated common input. 

Current Injection Experiments with Known Short-Term Synaptic Plasticity 

To mimic recordings from pairs of neurons with known connectivity and short-term plasticity we 

made intracellular recordings from layer 2/3 pyramidal neurons in slices of rat visual cortex, and 

recorded spiking responses of neurons to injection of fully-defined fluctuating current. The 

injected current was designed to mimic the postsynaptic effect of synaptic inputs which have 

different strength and express unique synaptic dynamics (Fig. 2.3). To synthesize the current, we 

used a population of 96 presynaptic neurons where the spike times of each neuron were generated 

using an inhomogeneous Poisson process with a mean rate of 5 Hz. Six pools of 16 neurons (8 

excitatory and 8 inhibitory in each pool) expressed five distinct types of STP, each defined by a 

unique set of parameters and ranging from strong depression to strong facilitation, along with a 

sixth pool of neurons which did not express STP (Table 1). STP of synaptic responses was 



 28 

implemented according to the TM model. Average synaptic weights for the 16 inputs in each pool 

ranged from strongly excitatory to strongly inhibitory, with excitatory and inhibitory inputs having 

the same amplitudes but opposite signs. This resulted in a balanced fluctuating current.  
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Fig. 2.2: Artificial current injection to a Layer 2/3 pyramidal neuron. To validate our models, we 

recorded intracellularly from a cortical slice. We first simulated the spike times of 96 presynaptic 

neurons, then generated postsynaptic current traces corresponding to each input. Inputs had 

different types of plasticity ranging from strong depression to strong facilitation and a range of 

synaptic weights (both inhibitory and excitatory). The 96 current traces were then summed 

together and were intracellularly injected into the postsynaptic neuron whose spiking activity was 

recorded. These data then allow us to examine the relationship between pre- and postsynaptic 

spiking under 96 different plasticity/weight conditions. 
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Table 1: The five parameter sets used to simulate presynaptic currents. 

TM parameters D(s) F(s) U f 

Strong Depression 1.70 0.02 0.70 0.05 

Depression 0.50 0.05 0.50 0.05 

Facilitation-Depression 0.20 0.20 0.25 0.30 

Facilitation 0.05 0.50 0.15 0.15 

Strong Facilitation 0.02 1.00 0.10 0.11 

Using the membrane potential responses to the injected current we detected postsynaptic spikes as 

positive-slope zero crossings. Thus, in this dataset we knew the timing of presynaptic spikes of 

each simulated presynaptic neuron, the time-varying synaptic weight, and the timing of the 

postsynaptic spikes. 

To illustrate how STP at a single synapse affects postsynaptic firing in the presence of many other 

inputs, we performed a separate recording where the injected current had additional structure. One 

out of 96 presynaptic neurons repeatedly discharged with a pattern typically used for testing STP 

in slice experiments (9 regularly spaced spikes + 1 after a delay), while the spiking of the remaining 

95 presynaptic neurons followed uncorrelated inhomogeneous Poisson processes as described 

above. This resulted in a repeating test pattern at one synapse embedded in fluctuating noise 

produced by the activity of the remaining presynaptic neurons. The strength of this synapse was 

increased to increase signal-to-noise ratio. The average postsynaptic current, membrane potential, 

and peristimulus time histogram of spiking (PSTH) in response to the test stimulation patterns 

demonstrate that the effect of a single strong input (>100pA) is clearly observable [Fig. 2.4]. 

Moreover, synapses with different short-term synaptic dynamics: depression, facilitation and no 
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plasticity produce distinct postsynaptic responses at all levels. In recordings with in vivo-like 

activity, the effects of short-term synaptic plasticity will be more subtle, since presynaptic spike 

times do not occur in such regular, repeating patterns under natural conditions and synaptic weights 

in neuronal connections are much weaker. The remaining analysis focuses on the recordings 

without the test patterns, where the strongest synaptic weights were ~30pA. 
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Fig. 2.3: Postsynaptic responses to injection of a regular spike pattern immersed in fluctuating 

noise in vitro. To verify that the distinct types of STP directly affect postsynaptic spike statistics 

we compare the responses to a 50Hz train of presynaptic spikes for simulated synapses with short-

term synaptic depression (left), facilitation (middle), and without plasticity (right). Only one out 

of 96 simulated presynaptic neurons had this regular activity pattern; the other 95 presynaptic 

neurons generated Poisson sequences of spikes to mimic the in vivo setting where postsynaptic 

neurons receive many presynaptic inputs (SNR=-17dB). Average of n=3000 repetitions shows 

clear effects of plasticity in the postsynaptic current and potential, but also in the postsynaptic 

spiking (PSTH). 

In previous studies a split-correlogram approach had been used to reveal the effects of short-term 

plasticity on postsynaptic spike statistics in vivo [20,44]. By calculating cross-correlograms 

separately for presynaptic spikes following short ISIs (or in bursts) and for spikes following long 

ISIs (isolated spikes), evidence was found for both short-term facilitation [44] and depression 

[20,21] of synaptic transmission in vivo. To determine if this method of analysis could reveal 
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effects of STP in our data obtained with inhomogeneous Poisson presynaptic spiking, we split 

presynaptic spike trains into spikes following inter-spike intervals shorter than the 10th percentile 

and longer than the 90th percentile of ISI distribution (Fig. 2.5A). Separate analysis of the 

postsynaptic effects of presynaptic spikes from these two groups revealed clear differences 

between synaptic inputs with distinct types of plasticity [Fig. 2.5B]. In connections with depressing 

synapses the PSCs, PSPs, and, most importantly, peak spike counts in the correlograms were much 

reduced for short intervals. In connections with facilitating synapses, the postsynaptic effects were 

slightly increased following short presynaptic intervals [Fig. 2.5B]. In synapses with intermediate 

forms of plasticity the effect of ISI on postsynaptic responses was less pronounced and was 

between the two extremes. Note that because of temporal summation after short ISIs the increase 

of the postsynaptic responses (PSCs, PSP, and spike count) is evident in the short interval 

correlograms even shortly before 0 ms, similar to the results from in vivo study [44].  

Thus, the effects of STP on spike responses of neurons to injection of a fully-defined current were 

clearly expressed in the difference between split-correlograms, consistent with results reported for 

in vivo recordings [20,21,44]. Our results show that the effects of ISI on split-correlograms were 

more pronounced for depressing than for facilitating inputs. One possible reason for such 

asymmetry may be that the presynaptic spike statistics used here does not fully elicit the effects of 

facilitation. To address this issue, we examined the distribution of PSP amplitudes as a function of 

inter-spike intervals for synapses with the different types of STP used in our model [Fig. 2.5C]. 

While in depressing synapses the PSP amplitudes monotonically increase as ISIs increase, the 

response amplitudes in facilitating synapses depend on the ISIs in a non-monotonic way. At 

facilitating synapses, there is an ISI range in which PSP amplitudes are elevated, but for both 

shorter and longer ISIs the amplitudes are reduced (Fig. 2.5C). This pattern makes it difficult to 
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distinguish facilitation in split cross-correlograms, since short and long ISIs can produce similar 

PSP amplitudes. Moreover, facilitating responses also have higher variability than depressing 

responses for any given ISI, likely since stronger facilitation enhances the variability of utilization 

(release probability) compared with depressing synapses (Eq. 3). These factors appear to hinder 

detection of short-term facilitation with split-correlogram analyses.  
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Fig. 2.4: Postsynaptic responses for different presynaptic ISIs reveal the effects of STP. A) Inter-

spike interval (ISI) distribution of a presynaptic and the postsynaptic neuron B) PSCs and PSPs 

[top] for strongest excitatory synapses for five different types of plasticity (colors) separated by 

presynaptic ISI (<10th percentile, left; >90th percentile, right). Depressing synapses have much 

larger PSC/PSPs for ISIs >90th percentile, while facilitating synapses have larger PSC/PSPs for 
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the ISIs <10th percentile. Postsynaptic spiking [bottom] shows similar effects, but tend to be much 

more difficult to interpret due to the sparse spike responses. Split cross-correlograms are shown 

for two synapses: one with strong depression and one with strong facilitation [bottom]. For 

comparison, the PSPs and PSCs are vertically offset such that the average from -50ms to -30ms 

was set to 0. C) The distribution of PSP amplitudes as a function of presynaptic ISI for the different 

classes of plasticity used in experiment. One reason that split cross-correlograms are difficult to 

interpret is that there is no deterministic relationship between ISI and PSP amplitude, and, in some 

cases, such as with facilitating synapses, the relationship is nonlinear. 

The examples considered above show results for the strongest, excitatory simulated inputs (~30 

pA). Weaker excitatory synapses and inhibitory synapses express similar dynamics in their PSC 

and PSP amplitudes, however, the postsynaptic effects are less pronounced and show greater 

variability. For weak facilitating synapses there is often no detectable difference between the 

postsynaptic responses to short and long intervals. This analysis exposes a fundamental drawback 

of the split-correlogram approach: its low sensitivity to transient effects. By explicitly modeling 

how synapses vary in response to the history of presynaptic spiking, rather than modeling the 

average responses to only a single previous ISI, model-based approaches can more accurately 

reconstruct synaptic dynamics and distinguish between different types of STP.  

Inferring STP parameters from spike trains using the TM-GLM 

We extend the GLM framework to include short-term synaptic plasticity implemented according 

to the Tsodyks-Markram model (see Methods). The TM model describes the dynamics of synaptic 

transmission using two coupled differential equations for resources 𝑅 and their utilization (release 

probability) 𝑢 with a set of four parameters 𝜽 =  {𝑫, 𝑭, 𝑼, 𝒇} (Eq. 3 in the Methods). To fit the 
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TM-GLM to the observed spike trains we use an alternating coordinate ascent to maximize the 

(penalized) likelihood of observed postsynaptic spiking. Namely, we update the plasticity 

parameters with fixed GLM parameters and then update the GLM parameters with fixed plasticity 

parameters, alternating between the two optimization problems until the maximum is achieved. 

The TM formalism assigns a weight to each spike of the presynaptic neuron, while the GLM 

parameters characterize the influence of prior postsynaptic spiking and coupling between pre- and 

postsynaptic activity (as scaled by the TM weights). To facilitate convergence of the TM and the 

GLM parameters we impose prior constraints on both these parts of the model (see Methods). 

Using pre- and postsynaptic spike trains, we thus obtain estimates of both traditional GLM 

parameters and a complete set of parameters 𝜽 =  {𝑫, 𝑭, 𝑼, 𝒇} describing short-term plasticity in 

the TM model. 

We fit the TM-GLM separately for each simulated connection in our in vitro recording. The 96 

simulated presynaptic inputs had different weights and different types of STP, and our goal is to 

compare how these synaptic properties affect estimation of STP. Specifically, we have six sets of 

parameters corresponding to strong depression, depression, depression/facilitation, facilitation, 

strong facilitation, and a control set with no plasticity (Table 1). Although the optimization of the 

TM parameters is not convex, we find that, after adding informative priors (see Methods) the 

global optimum can be quickly found using random restarts. TM-GLM estimates of the time 

constant for depression 𝐷 and the release probability 𝑈 are closer to underlying true values than 

the estimates of the facilitation time constant 𝐹 and its magnitude 𝑓. Fig. 2.6A shows results of 

bootstrapping to estimate the parameter uncertainty for the different types of plasticity. Note that 

high variability in the estimation of facilitation parameters is not a specific drawback of our model, 

but represents a more general problem. Indeed, previous work showed that estimates of facilitation 
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parameters were non-precise even when direct measurements of postsynaptic responses, PSPs or 

PSCs (and not postsynaptic spikes as used in our model) were fitted [33,37]. Particularly for 

depressing synapses (where 𝑈 is large and 𝐹 is small), the estimation of 𝑓 is not well-posed. In 

this case, it may make more sense to use a more restricted TM model with fewer parameters [11,32] 

or to use a fully Bayesian approach where the posterior can be more completely assessed. More 

generally, the difficulty of estimating facilitation parameters might be a consequence of a relatively 

weaker effect of facilitation on postsynaptic activity as compared to depression. This interpretation 

is supported by the observation that despite the deviation of estimated parameters of facilitation 

from the true value, the model with the estimated parameters accurately predicts the steady-state 

filtering properties of dynamic synapses (Fig. 2.6C), as well as split cross-correlogram (Fig. 2.8A). 

Note that some of the bias in parameter estimation may be due to the choice of priors. Here we 

chose our priors to avoid local minima in the posterior that occur near the edges of parameter 

space, where 𝐹 or 𝑓 are close to zero. However, as the number of observations increases these 

biases will be reduced, since likelihood will have a larger impact on the posterior than the prior. 

In general, the accuracy and confidence of the estimates will be affected by many factors, such as, 

the number and pattern of presynaptic spikes, number of postsynaptic spikes, the synaptic weight, 

and the type of STP. 

For large-scale analysis of STP in neuronal networks it might be important to distinguish between 

different types of plasticity at a synapse (e.g. facilitating vs depressing) and attribute certain types 

of plasticity to different classes of synaptic connections, rather than to extract the exact parameter 

values for each synapse. Again, although the problem is not convex, we find that the different 

types of plasticity can be distinguished based on spiking observations alone. For the 5 strongest 

excitatory inputs with each type of plasticity we compare the likelihood under the different settings 
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of the TM parameters used in the recording [Fig. 2.6B]. This analysis treats the problem of STP-

identification as a classification problem. If the data do not provide a clear indication of the type 

of STP, e.g. for very weak synaptic inputs which have little effect on postsynaptic spiking, then 

the likelihood should be similar under all models – both facilitating and depressing. However, here 

we find that the true parameters do have the highest likelihoods, with depressing inputs having 

high likelihoods under the depressing model and facilitating inputs have high likelihoods under 

the facilitating model. 

Additionally, even though the estimated parameters may differ from their true values, the (steady-

state) synaptic dynamics of the estimated models typically matches the dynamics of the true 

models [Fig. 2.6C]. Depressing synapses show characteristic low-pass filtering, while facilitating 

synapses have band-pass filtering with cutoff frequencies depending on the exact TM parameters. 
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Fig. 2.6: Estimation of the TM parameters. A) Bootstrap distribution of the estimated parameters {𝐷, 𝐹, 𝑈, 𝑓} for synapses with five different types of STP, from strong depression to strong 

facilitation (left to right). Here only the results for the strongest excitatory synapses are shown. 

The black horizontal bar in each distribution represents the true value for each artificial synapse 

(Table 1). B) z-scored log-likelihood values for strong synapses modeled with the parameters of 

each possible model. Even though the optimization of the TM-GLM is not guaranteed to be convex, 

we can accurately discriminate between different types of STP. Note that the highest likelihood is 

along the diagonal where the true type of STP corresponds to the same type modeled. C) 

Normalized steady-state postsynaptic potentials in response to a regular train of presynaptic 

spikes with different input frequency for true parameter sets (solid) and estimated parameters 

(dashed). Inset shows the unnormalized steady-state response on a log-scale. 
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Inferring STP from spikes using a Generalized Bilinear Model 

The TM-GLM estimates the short-term dynamics of a synapse described with biophysically 

realistic parameters that are related to the vesicle and calcium dynamics. In many cases, however, 

it might be useful to detach the description of the coupling between pre- and postsynaptic spiking 

from the biophysics of synaptic dynamics at an individual synapse. To describe neuronal 

interactions in terms of ISI-dependent modifications, we introduce a generalized bilinear model 

(GBLM, Fig. 2.2) that captures functional changes in the synaptic efficacy for different presynaptic 

intervals. In this model, the coupling term changes as function of presynaptic spiking, e.g. at 

facilitating synapses it increases for short ISIs, and at depressing synapses it decreases for short 

ISIs. We use basis splines to fit a smooth modification function (see Methods) that describes how 

the coupling term has been adjusted following different presynaptic intervals. We further assume 

that the effect of the modification is transient, decaying exponentially [Fig. 2.2]. Compared to the 

TM-GLM, the GBLM has simplified description of the dynamics of coupling but provides a more 

explicit characterization of the effects of different ISIs on the modification of the coupling term. 

The GBLM provides clearly distinct estimates of the modification functions for synaptic 

connections with different types of short-term plasticity [Fig. 2.7]. For simulated inputs expressing 

the same type of STP, but having different weights (among strongest 3) or different signs 

(excitatory and inhibitory), the estimates of the modification functions were similar. These 

modification functions were estimated by maximizing the regularized log-likelihood. For stability, 

the spline basis was designed to have no effect on very short or very long ISIs where there is 

typically little data. However, for depressing synapses the modification function decreases the 

relative synaptic strength for ISIs between 0 and 1s, and for facilitating synapses the modification 

function increases the relative synaptic strengths. 
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Fig. 2.7: The modification function estimated using the generalized bilinear model (GBLM) for 

five different types of STP and for synapses with no plasticity. The modification functions for six 

strongest synapses (three inhibitory and three excitatory) are shown in color and the average is 

shown in black. These functions describe how synaptic weights change following different inter-

spike intervals and allow the different types of STP to be distinguished. For strong depression, the 

modification function is negative and for strong facilitation the function is positive, capturing the 

respective decreases and increases in synaptic strengths. 

Comparison of the Models 

Both the TM-GLM and the GBLM accurately describe split cross-correlograms for all examined 

types of STP, and for both excitatory and inhibitory inputs for the in vitro experiment [Fig. 2.8A]. 

However, in addition to the spike statistics we can also compare how well the models reconstruct 

the time-varying individual PSC amplitudes. After estimating the plasticity dynamics for each 

simulated input using the TM-GLM (𝑛𝑝𝑟𝑒∗ ) and the GBLM (𝑤(𝑡) ⊙ 𝑛𝑝𝑟𝑒) we then calculate 

correlations between the true PSC amplitudes and the estimated amplitudes under the two models 
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[Fig. 2.8B]. We find that the weights of the simulated inputs have a substantial effect on the 

reconstruction of PSC amplitudes. The estimated amplitudes at strong synapses (both excitatory 

and inhibitory) are reconstructed much more accurately than amplitudes at the weak synapses. 

Additionally, we find that the PSCs of depressing synapses are much more reliably reconstructed 

than PSCs of facilitating synapses (r=0.95±0.01 for synapses with strong depression vs. 

r=0.34±0.06 for synapses with strong facilitation). This is consistent with our observation that the 

PSCs of depressing synapses are more reliably related to ISIs compared to facilitating synapses 

[Fig. 2.5]. Finally, the TM-GLM model appears to consistently out-perform the GBLM (average 

correlation for the TM-GLM across all types of plasticity and weights is r=0.70±0.03 compared to 

r=0.52±0.03 for the GBLM). 
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Fig. 2.8: Split cross-correlograms. A) For each type of STP, the cross correlations between pre- 

and postsynaptic spiking split for the quartiles of the presynaptic ISI distribution (columns) from 

shorter (left) to longer inter-spike intervals (right). The estimated cross-correlation from TM-GLM 

(solid) and GBLM (dashed) are shown on top of the observed cross-correlation (gray bars). B) 

The correlation between true and estimated amplitudes of postsynaptic potentials in five different 

classes of plasticity as a function of the overall synaptic (based on 1000s recording time with 5Hz 

presynaptic firing rate). The PSPs of depressing synapses tend to be more accurately 

reconstructed than those of facilitating synapses, and weaker synapses (both excitatory and 

inhibitory) tend to be less accurately reconstructed than strong synapses. 
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Potential problems in raw spike data that may confound estimation of STP 

In vitro recordings of responses to simulated presynaptic spikes have the advantage that the 

postsynaptic spikes are generated by the biophysics of a real neuron. However, estimation of STP 

from spike trains recorded in the intact brain in vivo may be compromised by several additional 

factors, not considered in this controlled experimental setting. Below we will analyze possible 

effects of four such factors on STP estimation: spike frequency adaptation, stochastic release of 

transmitter, uncertainty of spike sorting, and correlated common input. To examine how these 

sources of variability may affect the estimation of short-term synaptic plasticity from spikes we 

simulated postsynaptic spike trains using leaky integrate-and-fire model neurons receiving 

synaptic inputs with defined STP in the presence of noise. For simplicity, we focus on model 

synapses with strong depression, strong facilitation, and no plasticity (Table 1). 

Spike Frequency Adaptation 

One factor that affects postsynaptic firing is spike frequency adaptation. In particular, an after-

hyperpolarization (AHP) current mediating fast spike frequency adaptation can change the pattern 

of postsynaptic firing and may act to mask the influence of presynaptic STP on generation of 

postsynaptic spikes. To test if our models can differentiate the effects of AHP currents (IAHP), 

which alter the dynamics of the postsynaptic neuron, from the effects of short-term synaptic 

plasticity, we simulated two leaky integrate-and-fire (LIF) neurons with and without an IAHP [56] 

(see Methods). In response to a long depolarizing pulse, the LIF neuron without an IAHP fires at a 

stationary rate. The LIF neuron with the IAHP, on the other hand, rapidly adapts – with a firing rate 

peaking immediately after the depolarization onset and gradually decreasing to a lower steady-

state. After stimulus offset the firing rate of the adapting LIF decreases below the pre-stimulus 
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level [Fig. 2.9A]. These effects are not due to synaptic dynamics but reflect the dynamics of the 

postsynaptic neuron itself. 

We simulated pre- and postsynaptic spike trains using the LIF model neurons (with and without 

an IAHP) receiving inhomogeneous Poisson input with short-term synaptic dynamics governed by 

the TM model and applied our models to estimate STP from these spike trains. Results from the 

TM-GLM and GBLM for the two leaky IF neurons show that the adaptation properties mediated 

by IAHP current are mostly captured in the post-spike history filters [Fig. 2.9B-C]. For connections 

with depression, facilitation, or no STP, the estimated TM parameters and the modification 

functions estimated with the GBLM are similar with and without the IAHP. Although frequency 

adaptation occurs on a similar timescale to short-term synaptic plasticity, the methods here thus 

seem to be able to distinguish purely postsynaptic dynamics from the time-varying effect of the 

presynaptic neuron on the postsynaptic neuron. 
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Fig. 2.9: Spike frequency adaptation affects post-spike history filters but does not affect STP 

estimation. A) Spiking of two LIF model neurons, with and without an IAHP current, in response to 

a long depolarizing current step. Current step, spike rasters and PSTHs are shown for each model 

neuron. B) Parameters estimated by the TM-GLM. Estimated coupling filter and post-spike history 

filter of the two neurons in response to inhomogeneous Poisson inputs with short-time depression 

(blue), facilitation (red), and no plasticity (turquoise). Violin plots show estimated TM parameters 

for inputs with each type of the plasticity for the model neurons without (beige) and with IAHP 

(green). C) GBLM estimates of coupling filter, post-spike history filter, and modification function 

for depressing (blue), facilitating (red), and no plasticity inputs (turquoise). Solid lines in the right 

panels show the average modification functions ±1 SD (bands). 

Stochastic Release 

One further potential source of noise that is not included in the Tsodyks-Markram model, and that 

was not accounted for in our experiments in slices, is stochastic vesicle release. Although the TM 

model and the GBLM treat the synaptic transmission as deterministic and the PSC/PSP amplitudes 
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can take any value, in real synapses PSC/PSP amplitudes are fundamentally stochastic with 

vesicles being probabilistically released from a limited number of sites. Compared to our in vitro 

experiments using the deterministic release, it may be more difficult to estimate STP parameters 

from the spiking of real neurons with stochastic release. To study how stochastic release impacts 

the estimation of STP parameters, we use a quantal model of synaptic plasticity [53,57]. In this 

model, the resources of the TM model are discretized based on the number of release sites and are 

then released according to a Binomial distribution with a time-varying probability given by the 

utilization variable of the TM model (see Methods). We simulated pre- and postsynaptic spike 

trains from LIF model neurons driven by inhomogeneous Poisson input with synaptic dynamics 

governed by the quantal TM model. The amplitudes of the postsynaptic currents are now noisy 

rather than deterministic functions of the presynaptic spike timing. In our simulations, increasing 

the number of release sites decreases the variance of the PSC amplitudes. For depressing synapses, 

stochastic release leads to a systematic bias in the estimates of the TM model parameters compared 

to their values under deterministic release [Fig. 2.10A]. For facilitating synapses, on the other 

hand, the TM parameter estimation was not substantially affected. Similarly, the modification 

functions estimated with GBLM for depressing synapses were changed as the number of release 

sites is varied, while the modification functions for facilitation are more stable. Both the TM-GLM 

and GBLM can still distinguish between depression and facilitation, but considering stochastic 

release may be necessary for accurate parameter estimates in vivo. 

Spike Sorting 

Another potential source of uncertainty, that may affect the estimation of synaptic dynamics from 

spikes, is imperfect spike sorting. In practice spike sorting from in vivo recordings is not a perfect 

process, and inaccuracies in spike sorting can lead to biased estimates of neural response properties 
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[58]. Here, we simulated presynaptic and postsynaptic spike trains using LIF model neurons with 

strongly depressing or facilitating dynamics on inhomogeneous Poisson input (as above, See Table 

1 for parameters). We then simulated the effects of imperfect spike sorting by randomly deleting 

and inserting spikes into both the pre- and postsynaptic spike trains before estimating STP. For 

insertion, we randomly selected spikes from two other inhomogeneous Poisson neurons (same 

baseline firing rates) and assigned the spikes to pre- and postsynaptic neurons. For both the TM-

GLM and GBLM we find that the imperfect assignment of spikes (both addition and deletion) 

results in only small biases in the estimation of STP parameters for connections with strong 

facilitation and depression [Fig. 2.10B]. Despite these small biases, we were able to distinguish 

between facilitation and depression even as the proportion of spike sorting errors becomes large 

(20-40% insertion/deletion). 
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Fig. 2.10: A) Stochastic vesicle release leads to a bias of STP estimates. Left panels; TM 

parameters for simulations with four different numbers of release sites: 8, 16, 32, and 64 (color 

coded). Right panels; median modification functions for 4 different release site numbers. Colors 

match with the left panel. B) Inaccurate spike sorting does not substantially alter STP estimates. 

Left panels; TM parameters estimated using simulated spiking of LIF neurons with random 

deletion or addition of spikes. From left to right: random deletion of -40%, -20%, -5% spikes; 

without deletion or insertion (0%), and with insertion of 5%, and 20% of spikes. Right panels: 

median modification functions for the same sets with deleted and inserted spikes (colors match 

with the left panel). Dashed line denotes the estimated modification function under perfect spike 

sorting (without insertion or deletion). 
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Common Input  

In vivo, neurons often have common synaptic input from unobserved sources. Common input 

introduces correlations in pre- and postsynaptic spiking that are not due to synaptic connections 

between the recorded neurons. To study how such correlations would affect STP estimation we 

simulated a microcircuit with different levels of synchrony. In this simulation, two presynaptic 

neurons receive input from three sources: 1) a private, slowly fluctuating current, 2) a 

shared/common, slowly fluctuating current, and 3) an independent white noise current. The 

postsynaptic neuron receives the common input, an independent white noise current, and inputs 

from each presynaptic neuron – one with a depressing synapse and one with a facilitating synapse 

[Fig. 2.11A]. We then vary the strength of the common input using a weight parameter 𝑤, which 

determines how much of each neuron’s input is originating from the shared/common source and 

how much of the input comes from the private current. As the weight of the common input 

increases there is a short-term synchronization between the spiking of all neurons [Fig. 2.11B]. 

At low (𝑤 = 0.25) and medium (𝑤 = 0.5) common input both the TM-GLM and GBLM were 

able to discriminate between depressing and facilitating inputs, but at 𝑤 = 0.75 neither model was 

able to distinguish between the depressing and facilitating input. This simulation demonstrates 

that, at least in some situations, strong common input can cause both models to fail to estimate 

underlying short-term synaptic plasticity. 
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Fig. 2.11: Common input can prevent accurate estimation of STP. A) We simulated a microcircuit 

where, rather than receiving independent input, the presynaptic and postsynaptic neuron both 

receive correlated, common input. We use three different sources of fluctuating input to each of 

the three LIF model neurons, varying the strength of common input. B) Cross-correlograms for 

three levels of common input (w= 0.25, 0.5, 0.75). C) Left panels: TM parameters estimated from 

spiking of neurons with (from left to right) low, medium, and high common input. Right panels: 

GBLM modification functions for the facilitating (top) and depressing (bottom) synapses and the 

three different levels of common input. 
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Discussion 

Intracellular recordings in brain slices have revealed a diversity of STP across cell types and 

anatomical connections [5,6]. Moreover, the details of STP at a given type of synapse may change 

depending on a multitude of factors, such as changes during development [59], neuromodulation 

[60], or induction of long-term plasticity [31]. Because STP critically affects information 

processing, understanding operation of neuronal networks during natural behavior requires large-

scale analysis of STP in vivo. However, since large-scale intracellular recordings are not feasible 

in vivo, alternative methods are necessary for such studies. Large-scale extracellular recordings, 

on the other hand, are feasible in vivo. Existing techniques allow simultaneous recording of spiking 

of hundreds of neurons, and this number appears to be growing exponentially [17]. Characterizing 

short-term plasticity using spike observations is more difficult than using intracellular (PSC/PSP) 

signals, but short-term synaptic plasticity does have observable effects on spike statistics.  

Prior evidence for STP in vivo obtained from spike trains alone employed a split cross-correlogram 

approach, in which the postsynaptic response to presynaptic spikes following short ISIs was 

compared to that following long ISIs. Several studies using this approach analyzed strong 

thalamocortical connections and found evidence for both short-term facilitation and depression 

[20,21,44]. To the best of our knowledge, however, the split cross-correlogram approach has not 

revealed evidence of short-term plasticity in weaker synapses, such as corticocortical connections. 

Here we introduce two new model-based methods to characterize short-term synaptic plasticity 

from pre- and postsynaptic spiking. By explicitly modeling synaptic dynamics these models are 

able to recover a detailed description of short-term plasticity. These models reproduce the results 

from split cross-correlograms (Fig. 2.8), but also provide an explicit characterization of the 

dynamics of STP and allow reconstruction of PSP amplitudes for each presynaptic spike. 
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To validate our methods, we used spiking of layer 2/3 pyramidal neurons in vitro induced by 

injection of a current composed of PSCs from an artificial population of presynaptic neurons, 

whose spiking and plasticity parameters are known. Even though each presynaptic input represents 

only a small fraction of the total injected current, we can accurately estimate the synaptic dynamics 

from pre- and postsynaptic spiking. In this setting, both model-based methods, the TM-GLM and 

GBLM, can robustly distinguish between different types of STP, and can reconstruct PSP 

amplitudes for a wide range of synaptic weights for both excitatory and inhibitory connections. 

The TM-GLM provides a compact description of STP with four parameters related to the vesicular 

release and calcium dynamics in the presynaptic terminal. The GBLM provides a functional 

description of how the synaptic weight changes as a function of presynaptic ISIs. An advantage of 

the GBLM approach is that the synaptic modification rule is not constrained by the biophysics of 

single synapses, but has the potential to capture more complex dependences, including 

polysynaptic effects. One further advantage of the GBLM over the TM-GLM model is that the 

synaptic dynamics are assumed to be linear, which increases both the speed and robustness of the 

optimization process. Depending on whether a functional or a biophysical description is required, 

the two methods may thus both be useful tools for large-scale characterization of short-term 

synaptic plasticity from spiking activity. 

Estimating synaptic plasticity from in vivo multi-electrode recordings of spiking activity will 

introduce several additional challenges. One challenge is simply detecting the connections 

between neurons. Strong monosynaptic connections are typically expressed in cross-correlograms 

as clear peaks (or troughs, for inhibition) with short latency and sharp onset, but weak connections 

or connections between neurons with low firing rates are difficult to detect in cross-correlograms. 

In previous work, we showed that model-based approaches can increase the sensitivity of detection 
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for weak connections compared to traditional cross-correlation approaches [26], and the GLM-

based approaches here are likely to have similar advantages.  

A second challenge is that short-term synaptic plasticity isn’t the only source of variation in the 

observed postsynaptic responses to presynaptic spikes. Changes in the excitability of the 

postsynaptic neuron, stochasticity of vesicle release, and spike sorting errors can alter the statistics 

of the response and could potentially bias our estimates of short-term synaptic plasticity. To study 

how these sources of variability affect estimation of STP parameters we simulated spike trains of 

connected leaky integrate-and-fire model neurons, and introduced each of these confounding 

variables individually. We found that adding an after-hyperpolarization current (IAHP) to the 

postsynaptic neuron impacts only the post spike-history filters in both the TM-GLM and GBLM, 

and does not substantially change STP estimation. Stochastic vesicle release and spike sorting 

errors, on the other hand, lead to biases in the estimation of short-term synaptic plasticity for our 

models. However, even with these additional noise sources, both the TM-GLM and GBLM are 

still able to reliably distinguish between connections expressing short-term facilitation and 

depression. 

A third challenge is that correlations between the spiking of two neurons may be produced by 

common input rather than, or in addition to, the synaptic connection between the neurons. In our 

experiments with current injection in neurons in slices, inputs were generated as independent 

inhomogeneous Poisson processes, without the correlations that are present in vivo. To understand 

how correlated spiking can affect STP estimation, we simulated a small, feed-forward network of 

neurons with common input. We found that as the common input becomes stronger, the 

synchronization between pre- and postsynaptic spikes can interfere with the estimation of STP. 
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The TM-GLM and GBLM were able to estimate synaptic dynamics only when common input was 

weak, but failed to accurately estimate the underlying synaptic dynamics for neurons with strong 

common input. While our in vitro experiment and simulations allowed us to compare STP 

estimation under controlled conditions with known synaptic dynamics, more work may thus be 

needed to account for all the dependencies that occur between pre- and postsynaptic neurons in 

vivo.  

Finally, a fourth challenge is that the assumptions of the TM model itself do not necessarily 

describe the dynamics of all interactions between the pre- and postsynaptic neurons. The TM 

model only aims to describe presynaptic mechanisms of STP. However, postsynaptic factors such 

as desensitization or saturation of postsynaptic receptors may play a role in STP at some synapses, 

and the synaptic weight may vary on other timescales (e.g. due to LTP/LTD). Replacing the TM 

model with alternative models of plasticity may be a tractable approach to address these challenges 

[12,14,34]. Alternatively, since the GBLM is not constrained by single-synapse biophysics, it may, 

in some cases, provide a more flexible first-order description of short-term dynamics, including 

those that are not well described by the TM model. 

Rather than describing anatomical connectivity, the two model-based methods introduced here 

describe the plasticity of functional interactions between neurons. Many of the techniques that 

have been used to improve models of functional connectivity without plasticity can be used to 

improve the TM-GLM and the GBLM presented here. For instance, it may useful to model 

multiple inputs simultaneously or to include latent common input in the model [61–63]. More 

structured regularization techniques may allow more accurate reconstruction with smaller sets of 

data [64,65]. To improve models of synaptic dynamics it may be useful to consider additional 
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timescales [34], a higher-order expansion of the ISI dependencies, or other types of plasticity 

occurring on longer time scales, such as spike-timing dependent plasticity [13,66,67]. Applying 

these methods in vivo may then allow us to characterize short-term plasticity during natural 

behavior and in larger populations than previously possible.  
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Chapter 3: Functional connectivity with short-term dynamics 

explains diverse patterns of excitatory spike transmission in vivo 

Short-term synaptic plasticity (STP) causes the effect of presynaptic spikes on a postsynaptic 

neuron to vary on timescales ranging from a few milliseconds to a few seconds. STP has been 

extensively studied in vitro by stimulating a presynaptic input with pulses of different frequencies 

and observing depression or facilitation in the postsynaptic potentials or currents. These studies 

have shown that the type and timescale of STP varies by cell type and brain region, and such 

differences may underlie differences in neural computations including temporal filtering of inputs, 

gain control, network stability, sound localization by coincidence detection, and working memory. 

However, since recording postsynaptic potentials (PSP) or currents (PSC) in vivo is challenging, 

short-term synaptic plasticity has not been fully characterized in awake, behaving animals. Rather 

than observing PSP/PSCs directly, we here deduce STP parameters from spike observations along, 

using a model of the translation from presynaptic to postsynaptic spiking. We model the short-

term changes in the probability of a postsynaptic spike following a presynaptic spike – the synaptic 

efficacy. In cross-correlograms between pre- and postsynaptic spiking, monosynaptic connections 

show a rapid, transient change in the probability of evoking a postsynaptic spike, at a short delay 

after the presynaptic spike (~ <4 ms). Previous work has argued that, in depressing synapses, this 

probability or efficacy is larger when presynaptic spikes are preceded by long inter-spike intervals 

(ISIs), and in facilitating synapses efficacy is larger for short intervals. However, in practice, the 

observed correlation between pre- and postsynaptic spiking is a mixture of multiple underlying 
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phenomena. Here we develop a model-based approach for decomposing the short-term changes in 

the probability of a postsynaptic spike into four components: 1) short-term synaptic plasticity, 2) 

integration of PSPs, 3) history effects from previous postsynaptic spikes, and 4) slow common 

input to both pre- and postsynaptic neurons. The observed spike probability depends on each of 

these factors as well as the synaptic strength itself and the distribution of presynaptic spike times.  

We developed an extension of a typical generalized linear model (GLM) to use only pre- and 

postsynaptic spike observations. Our dynamical GLM allows us to characterize short-term 

synaptic dynamics of a wide range of synaptic behaviors in vivo. The estimated synaptic 

parameters (e.g. membrane time constant) as well as plasticity parameters (e.g. release probability, 

facilitation/depression time constants) could be compared with in vitro measurements. To validate 

our model, first we measure postsynaptic in three strong putative synapses response probability in 

a range of presynaptic inter-spike intervals and compare it with the model prediction of the 

response probability. Our model captures diverse patterns of spike transmission probability, 

disentangles them into the above factors, estimates biologically meaningful parameters of the 

dynamical synapse, and measures improvements in prediction of postsynaptic spiking using 

Receiver Operating Curves (ROC). We then demonstrate how presynaptic spiking activity beyond 

the most recent ISI and the postsynaptic spiking activity is affecting the spike transmission 

probability.  
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Introduction 

Neural information processing is largely governed by synapses and their dynamics [2,68]. Short-

term synaptic plasticity (STP) alters synaptic transmission on timescales from a few milliseconds 

to several seconds depending on the sequence of presynaptic spiking. Presynaptic STP arises from 

a mixture of two main processes: depletion of neurotransmitter-containing vesicles, which causes 

depression, and the elevation of residual Ca2+ in the presynaptic terminal, which causes facilitation 

by increasing vesicle release probability [69]. This can be observed in intracellular recordings 

where, following repetitive stimulation of the presynaptic terminal, the amplitudes of postsynaptic 

potentials (PSPs) or currents (PSCs) will either decrease (depression) or increase (facilitation) 

[69,70]. The degree of STP differs depending on the pre- and postsynaptic cell type [71] and brain 

region [72,73]. Functionally, STP can act as a temporal filter [74], can allow neural circuits to 

specialize for specific tasks [8,75], and may also underlie gain control [76], network stability [7], 

and long-term synaptic plasticity [77]. Here we focus on understanding how STP-induced changes 

in PSP/PSC amplitudes shape postsynaptic spiking. In vivo studies have shown that postsynaptic 

spiking probability, similar to the amplitude of PSP/PSCs, depends on the recent history of 

presynaptic spiking [20,78]. Just as PSP/PSCs show diverse patterns of depression and facilitation, 

the postsynaptic spiking probability also appears to have complex patterns depending on the brain 

region and cell-types [22]. However, postsynaptic spiking probability is modified by many 

additional variables besides STP at a single synaptic input. Here we aim to understand how the 

pattern of presynaptic spiking activity and short-term synaptic plasticity shape postsynaptic 

spiking probability. 

To do so, we use simultaneously recorded pre- and postsynaptic spiking activity to detect and study 

putative monosynaptic connections. When an excitatory, monosynaptic connection is present, 
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cross-correlations between the spiking of a pre- and postsynaptic neuron often show a rapid, 

transient increase in postsynaptic spikes following the presynaptic spike. This occurs at an interval 

reflecting the presynaptic axonal conduction time plus the synaptic delay (usually < 4 ms) [19,79]. 

However, this cross-correlation is not static. Previous studies have found that the cross-correlation 

often differs for presynaptic spikes that are part of a burst compared to isolated spikes [20]. Spike 

transmission probability appears to depend on the timing of previous presynaptic spikes, and one 

factor influencing spike probability may be STP [80,81]. For example, depressing synapses would 

have more reliable synaptic transmission in response to isolated presynaptic spikes following long 

inter-spike intervals (ISIs) compared to shorter intervals (in bursts) [20,22]. On the other hand, 

facilitating synapses would show a stronger response to presynaptic spikes following shorter ISIs 

(bursts) compared to the presynaptic spikes following longer ISIs (isolated) [44]. By looking at 

the corresponding cross-correlograms from a subset of presynaptic spikes with specific ISIs, 

previous studies have found highly diverse, non-monotonic spike transmission patterns for 

different synapses [22]. This diversity in patterns of spike transmission probability, however, is 

not solely attributable to STP. When two presynaptic spikes occur in close succession, the 

membrane time-constant may cause postsynaptic potentials (PSP) to sum and increase the spike 

probability even if the individual PSPs were sub-threshold [82]. Moreover, the history of 

postsynaptic spiking also affects spike probability such that even if the PSP is strong, it may not 

trigger a spike if it falls within the refractory period or during an after-hyperpolarization (IAHP) 

current [83]. Finally, slow fluctuations in the overall excitability of the postsynaptic neuron, due 

to neuro-modulation, for instance, could also change synaptic transmission probability [84]. In 

different synapses the degree that each factor contributes varies and leads to diverse patterns of 

postsynaptic spike transmission probability. 
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The overall correlation structure in spiking data can often be estimated by generalized linear 

models (GLMs) [24,49]. However, previous models have treated these interactions as static, and, 

thus, cannot capture dynamic changes in spike transmission probability. Here we extend these 

GLMs to describe dynamic interactions between neurons and account for the diversity of spike 

transmission patterns [24,85,86]. For each individual presynaptic spike, our model aims to predict 

postsynaptic spikes accounting for the postsynaptic neuron’s baseline firing rate, slow fluctuations 

of the postsynaptic firing rate, the effect of postsynaptic spiking history, and a coupling term 

affected by synaptic summation and short-term synaptic plasticity. The conditional intensity of our 

model provides estimates of postsynaptic spiking probability following every single presynaptic 

event based on the previously observed sequence of pre- and postsynaptic spiking. The split cross-

correlogram only describes the average response conditioned on the ISI preceding the most recent 

presynaptic spike. By using a model-based approach we can incorporate the full sequence of 

presynaptic spikes beyond the most recent one, explicitly account for factors such as postsynaptic 

history, and link the observed patterns of spike transmission to the underlying dynamics of vesicle 

depletion and release probability. 

To evaluate the model, we first examined its ability to capture the observed patterns of spike 

transmission probability for three well-studied, strong putative synapses using pre- and 

postsynaptic spike observations from: 1) a pair of neurons in the mouse thalamus, 2) an auditory 

nerve projection onto a spherical bushy cell (ANF-SBC) in the gerbil, and 3) a neuron in 

ventrobasal (VB) thalamus of the rabbit projecting to a putative fast-spike inhibitory neuron in 

primary somatosensory (S1) barrel cortex (VB – Barrel). Short-term synaptic dynamics of this 

latter system have been extensively characterized in vivo [20,87,88]. Similarly, ANF-SBC 

synapses have been extensively studied in previous experiments and are well-characterized in vitro 
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[89–91]. Using the auditory brainstem connection, we explore how synaptic transmission 

probability changes depending on the stimulus. Our result suggests that a simplified model, 

without considering short-term plasticity, is insufficient to explain how patterns of spike 

transmission change as the pattern of presynaptic input changes. Finally, we apply our model to 

spiking data from a large-scale, multi-electrode array recorded from multiple areas in an awake 

mouse. Here we investigate the STP dynamics in putative synapses from excitatory neurons onto 

two putative inhibitory subtypes (e.g. FS: fast-spiking, RS: regular-spiking). We find that these 

two types of connections have distinct patterns of spike transmission, where excitatory-FS 

connections appear to be slightly more depressing than excitatory-RS connections. Together, these 

results illustrate the diversity of spike transmission patterns in vivo and present one potential 

approach to studying short-term synaptic dynamics in behaving animals. 

Most previous approaches to describing interactions between neurons using spiking activity have 

focused on static functional connectivity. These models improve both encoding and decoding 

accuracy and have been shown to capture physiological network structure in some cases [25]. Here 

we model dynamic functional connectivity where the effect of each presynaptic spike on the 

probability of postsynaptic spiking depends on the previously observed sequence of presynaptic 

spiking. This augmented GLM can be directly compared with the observed spike transmission 

probability and also allows us to disentangle the contributions of short-term synaptic plasticity, 

synaptic summation, presynaptic firing rate fluctuations, and spike history. Moreover, we find that 

modeling dynamic functional connections allows us to better predict postsynaptic responses 

compared to the static models. Since modeling static functional connectivity can improve decoding 

[24,49,92], modeling dynamic functional connectivity may improve decoding further as well. As 

multi-electrode arrays improve, and the number of simultaneously recorded neurons increases, 
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models of dynamic functional connectivity may provide insight into not just network structure, but 

also the extent of depression or facilitation in these networks, as well as differences in network 

dynamics across multiple brain areas and under different behavioral conditions. Here, our findings 

suggest that, at least in some cases, in vivo spike transmission dynamics differ substantially for 

different stimuli and different cell-types.  
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Methods 

Neural Data 

To illustrate how synaptic dynamics can be estimated from spikes, we first examined a set of three 

strong putative or identified synapses with diverse spike transmission probability patterns: (i) a 

dual-electrode recording of a thalamocortical projection in the barrel system, (ii) an in vivo loose-

patch (juxtacellular) recording at the calyceal endbulb of Held synapse in the auditory brainstem, 

and (iii) a recording from a pair of neurons in the thalamus detected from a larger multi-electrode 

array (MEA) recording. Next, we applied our model more generally to analyze a large sample of 

putative synaptic connections recorded from the MEA dataset. The data from these three identified 

strong synapses and the MEA data have been collected from different species, regions, cell-types, 

under different stimulation and show a diverse pattern of postsynaptic spiking probability. In all 

cases we deduce short-term synaptic dynamics on the basis of only pre- and postsynaptic spike 

observations. 

For the first putative synapse, we use in vivo data from simultaneous extracellular recordings in 

ventrobasal (VB) thalamic barreloids and topographically aligned, somatosensory cortical barrel 

columns (VB-Barrel) in awake, unanesthetized, adult rabbits. Detailed surgical and physiological 

methods have been described previously [93]. Spike-triggered averages of the cortical spikes 

following spiking of the VB neuron was used to identify connected S1 neurons. Based on the 

presence of high frequency discharge (3+ spikes, > 600 Hz) following electrical stimulation of the 

thalamus, and narrow spike waveforms, the S1 neuron in this recording was identified as a putative 

inhibitory neuron [94]. These recordings identified several putative thalamocortical projections. 

The putative synapse that we model here is particularly clear, with 68,345 pre- and 128,096 
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postsynaptic spikes recorded over the course of 92 minutes of spontaneous activity and has been 

previously studied in [20,21]. 

For the second synapse, we examined in vivo loose-patch recordings at the Endbulb of Held in 

young adult gerbils. Detailed surgical and physiological methods have been previously described 

[95]. Briefly, the glass electrode was positioned in the anterior portion of the ventral cochlear 

nucleus (AVCN) and single-units were recorded during varying acoustic stimulation. Single units 

were classified when recording a positive action potential amplitude of at least 2 mV and showing 

the characteristic complex waveform identifying them as large spherical bushy cells (SBC) of the 

rostral AVCN. This recording included a mixture of juxtacellular waveforms: an isolated 

excitatory PSP (EPSP) or an EPSP followed by a postsynaptic action potential. For both cases the 

timing of EPSPs and spikes and rising slope of the EPSPs were extracted. The timing and slope of 

the EPSPs were identified using a slope threshold for the rising part of EPSPs as previously 

described [96]. We then modeled spike transmission probability patterns for two recordings: (i) 

during randomized pure tone acoustic stimulation and (ii) during multiple stimuli, i.e. randomized 

frequency-level pure tone stimulation interspaced with spontaneous activity, natural sounds, and 

also during spontaneous activity. Using this second dataset, we characterized how variable 

presynaptic spike patterns evoked by different stimuli affected the patterns of spike transmission 

at the same synapse. 

We also use MEA spiking data to study the factors shaping spike transmission probability patterns 

in a large-scale recording with multiple cell-types. Here we use a previously collected, publicly 

available recording from the Cortex Lab at UCL [97,98] with data from two Neuropixels electrode 

arrays recorded simultaneously, each with 960 sites (384 active) with lengths of 10-mm and 

spacing of 70 × 20-μm (http://data.cortexlab.net/dualPhase3/). The two electrode arrays span 

http://data.cortexlab.net/dualPhase3/)
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multiple brain areas and ~90 min of data was collected in an awake, head-fixed mouse on a rotating 

rubber wheel during visual stimulus presentations. Spikes were automatically detected and sorted 

using Kilosort [99] on the broadband (0.3–10 kHz) signal and then manually curated. If two 

clusters of spikes had similar waveforms, cross-correlogram features, and spike amplitudes, they 

were merged into a single cluster and assigned to a single neuron. In total, 831 well-isolated single 

neurons where identified from the two probes in several different brain areas: visual cortex (n=74), 

hippocampus (n=64), thalamus (n=244), motor cortex (n=243), and striatum (n=200). Due to the 

large number of simultaneously recorded neurons in this dataset, there are many potential synapses 

(~8312). 

Synapse Detection: 

To identify putative monosynaptic connections between well-isolated single neurons, we looked 

for specific patterns in the cross-correlograms [100]. If two neurons are monosynaptically 

connected, the probability of postsynaptic spiking increases/decreases rapidly following a 

presynaptic spike. In spiking data, this rapid, transient change can be seen in cross-correlograms 

as an asymmetric bump/dip in the number of postsynaptic spikes following presynaptic spikes 

[79]. For each connection we calculated the cross-correlogram in a 5 ms window before and after 

presynaptic spikes with bin-size of 0.1 ms. To avoid aliasing in the cross-correlograms, we added 

a small, random shift to each postsynaptic spike drawn uniformly between −Δ𝑡/2 and Δ𝑡/2 where Δ𝑡 is the spike time resolution (0.01 ms in most cases). Here we used a model-based approach 

using the cross-correlograms to decide whether two synapses are monosynaptically connected. To 

fit the cross-correlogram we used a baseline rate 𝜇, a linear combination of B-spline bases 𝑩(𝑡), 

and a weighted alpha function to model the synapse, 𝑤 𝜶(𝑡), all passed through an output 

nonlinearity; 𝜆(𝑡) = exp(𝜇 + 𝒓𝑩(𝑡) + 𝑤 𝜶(𝑡)). The alpha function, 𝜶(𝑡) =  (𝑡 − 𝑡𝑑)/
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𝜏𝛼 exp(1 − (𝑡 − 𝑡𝑑)/𝜏𝛼), describes the shape of the synaptic potential where 𝑡𝑑 is the synaptic 

delay and 𝜏𝛼 is the synaptic time-constant [82]. For individual connections, we estimate these 

parameters by maximizing the penalized Poisson log-likelihood 𝑙(𝜇, 𝒓, 𝑤, 𝑡𝑑 , 𝜏𝛼) = 𝛴𝑦𝑖𝑙𝑜𝑔𝜆𝑖 −𝛴𝜆𝑖 + 𝜖‖𝒓‖2 where 𝑦𝑖 is the number of postsynaptic spikes observed in the 𝑖-th bin of the 

correlogram and ‖𝒓‖2 regularizes the model to penalize B-spline bases for capturing sharp 

increases in the cross-correlogram. 𝜖 is a regularization hyper-parameter which we set to 1 based 

on manual search. Due to the parameterization of 𝜶(𝑡), the log-likelihood is not concave. 

However, since the gradient of the log-likelihood can be calculated analytically, we efficiently 

optimize the likelihood using LBFGS. During the optimization, the delay and time-constant 

parameters are log-transformed, allowing us to use unconstrained optimization, even though they 

are strictly positive. We used random restarts to avoid local maxima. To identify putative 

monosynaptic connections in the large-scale multi-electrode array data, we compared this model 

with a smooth model with slow changes in cross-correlogram and without the synapse, 𝜆0(𝑡) =exp(𝜇′ + 𝒓′𝑩(𝑡)), using the log-likelihood ratio (LLR) test between our full model with synapse 

and the nested smooth model. Since low values of the likelihood ratio mean that the observed result 

was better explained with full model as compared to the smooth model, we then visually screened 

pair-wise connections with lowest ratios (LLR < -6) compared to the null model to find putative 

synapses. Out of ~8312 possible connections in this dataset we find ~200 putative synapses 

(0.03%). We handpicked a strong putative synapse between two thalamic neurons to study its 

efficacy pattern in detail alongside the VB-Barrel and ANF-SBC synapses. 

In addition to this single strong synapse, we also categorize putative pre- and postsynaptic cell 

types for the connections detected in the MEA dataset. For this purpose, we assessed single units 

based on their cross-correlograms, firing rates, and spike waveforms. We categorized units as 
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excitatory or inhibitory if, in accordance with Dale’s law [101], all outgoing cross-correlograms 

showed transient, short-latency (<4ms) increase/decrease in spiking probability [92]. We then 

looked into identified inhibitory neurons and categorized them into to putative fast-spiking (FS) 

and regular-spiking (RS) inhibitory neurons. Using these putative Excitatory-FS and Excitatory-

RS synapses, we then examine how the spike transmission patterns differ for these two subtypes 

of inhibitory neurons. 

Extending a Generalized Linear Model to Account for Short-term Plasticity (TM-GLM) 

Short-term synaptic plasticity causes the amplitude of postsynaptic potentials (PSP) to vary over 

time depending on the dynamics of synaptic resources and utilization and can be modeled using 

the pattern of presynaptic spiking [11,32]. However, changes in the overall postsynaptic spiking 

probability cannot be uniquely attributed to changes in amplitudes of postsynaptic potentials. To 

accurately describe the dynamics of spike transmission, we also need to account for the membrane 

potential summation, the excitability of the postsynaptic neuron (e.g. slow changes in the 

presynaptic firing rate) and the dynamics of postsynaptic spiking (e.g. refractory period, after 

hyperpolarization current). We developed an extension of a generalized linear model, which we 

call a TM-GLM to describe each of these effects. Concretely, the probability of a postsynaptic 

spike shortly after each presynaptic spike accounts for the full sequence of previous presynaptic 

spiking and the recent history of postsynaptic spiking. We define the conditional intensity of the 

postsynaptic neuron after the 𝑖-th presynaptic spike, 𝑡𝑠(𝑖)
, so that the probability of observing a 

postsynaptic spike in the 𝑗-th time bin after the 𝑖-th presynaptic spike is given as: 

𝜆𝑖(𝑡𝑗) = σ (𝛽0 + 𝑋𝑐(𝑡𝑠(𝑖))𝛽𝑐 + ∑  𝑋ℎ(𝑡𝑠(𝑖) − 𝑡𝑟(𝑙))𝛽ℎ𝑡𝑟(𝑙)<𝑡𝑠(𝑖)  + 𝐴𝑠 𝑤𝑖 𝛼(𝑡𝑗) ) 
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where 𝑡𝑟(𝑙)
 are the postsynaptic spike times preceding 𝑡𝑠(𝑖)

. For each presynaptic spike, our model 

decomposes the firing rate of the postsynaptic neuron into four effects: a baseline firing rate, 𝛽0, 

slow fluctuations in presynaptic firing rate 𝑋𝑐𝛽𝑐, history effects from the recent postsynaptic spikes 

(prior to 𝑡𝑠(𝑖)
), 𝑋ℎ𝛽ℎ, and a time-varying coupling effect from the presynaptic input, 𝐴𝑠𝑤 𝛼(𝑡) (Fig. 

3.1).  

 

Fig. 3.1: TM-GLM. Postsynaptic spiking probability before passing the spiking nonlinearity 

(yellow) changes as a linear combination of presynaptic coupling term with STP dynamics (blue), 

postsynaptic spiking history (green), the postsynaptic excitability (red). Transparent red curves 

show the bases of slow changes in postsynaptic probability at presynaptic spike times (𝑋𝑐). 

Here we model slow fluctuations in the postsynaptic rate 𝑋𝑐𝛽𝑐 with a linear combination of B-

splines with equally spaced knots every 50 seconds of recording time. In the history term, splines 

(𝑋ℎ) span a period of 10 ms prior to each presynaptic spike with 4 logarithmically-spaced knots. 

By scaling 𝜶(𝑡𝑗) with a multiplicative factor, 𝑤𝑖, the strength of a synapse can vary over time and, 

in this case, depends on the detailed sequence of presynaptic spiking and their corresponding inter-
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spike intervals. 𝐴𝑠 is the magnitude of the synaptic strength. In this case we use a model for short-

term synaptic plasticity that allows both depression (where the 𝑤𝑖 decreases for shorter presynaptic 

ISIs) and facilitation (where the 𝑤𝑖 increases for shorter presynaptic ISIs), and incorporates 

membrane summation. To model these effects, 𝑤𝑖 is determined by a nonlinear dynamical system 

based on the Tsodyks and Markram (TM) model [11,102] where: 𝑤𝑖 =
𝑤𝑖−1  exp (− 𝑡𝑠(𝑖)−𝑡𝑠(𝑖−1)𝜏𝑠 ) 𝜋𝑖 + 𝑅𝑖𝑢𝑖, where 𝜏𝑠 is the membrane time-constant and the first term of 

the equation describes how postsynaptic membrane potential summation increases the probability 

of postsynaptic spiking. This membrane summation will be ignored if there is a postsynaptic spike: 𝜋𝑖 = {0 if 𝑡𝑠(𝑖−1) < 𝑡𝑟(𝑖−1) < 𝑡𝑠(𝑖); 1 otherwise}. In the second term of this equation, 𝑅 represents 

the dynamics of resources and 𝑢 describes their utilization.  

𝑅𝑖 = 1 − [1 − 𝑅𝑖−1(1 − 𝑢𝑖−1)] exp (− 𝑡𝑠(𝑖) − 𝑡𝑠(𝑖−1)𝜏𝑑 ) 

𝑢𝑖 = 𝑈 + [ 𝑢𝑖−1 + 𝑓(1 − 𝑢𝑖−1) + 𝑈] exp (− 𝑡𝑠(𝑖) − 𝑡𝑠(𝑖−1)𝜏𝑓 ) 

where 𝜏𝑑 and 𝜏𝑓 are the depression and facilitation time-constants. 𝑈 is the release probability and 𝑓 is the magnitude of facilitation. To make the estimation more tractable, we approximate the full 

optimization problem and estimate synaptic delay, 𝑡𝑑, and time-constant, 𝜏𝛼, by fitting 𝛼(𝑡) using 

the full cross-correlogram, as above. We fix these parameters for the rest of the optimization 

process. We then maximize a penalized, Bernoulli log-likelihood 𝑙(𝜃) = 𝛴𝛴 [𝑦𝑖𝑗𝜆𝑖(𝑡𝑗) −
(1 − 𝑦𝑖𝑗) (1 − 𝜆𝑖(𝑡𝑗))] + 𝛾‖𝜃′𝑠𝑡𝑝‖2 where 𝛾 = 1 is the regularization hyperparameter to estimate 

the parameters: 𝜃 = {𝛽0, 𝛽𝑐=1:𝐶  , 𝛽ℎ=1:𝐻, 𝐴𝑠, 𝜃𝑠𝑡𝑝}, 𝜃𝑠𝑡𝑝 = { 𝜏𝑑, 𝜏𝑓 , 𝑈, 𝑓, 𝜏𝑠}.  
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As with previous applications of GLMs, we assume that bins are conditionally independent given 

the covariates, but unlike many other GLMs, here we only calculate the log-likelihood during short 

intervals (5ms) after presynaptic spikes. With 𝑦𝑖𝑗 being a binary value representing the presence 

of a postsynaptic spike in the 𝑗-th time bin after the 𝑖-th presynaptic spike. We again used a 

logarithmic transformation for the time-constants to avoid negative values and logit transformation 

for 𝑈 and 𝑓 to bound their values in the interval [0, 1]; 𝜃′𝑠𝑡𝑝 ={log (𝜏𝑑), log (𝜏𝑓), logit(𝑈), logit(𝑓), log (𝜏𝑠)}. By modeling STP this model is no longer a strict 

GLM, and the log-likelihood may have local maxima. Here we use random restarts to avoid local 

maxima in our optimization process. The parameters of each restart {𝛽0, 𝛽𝑐=1: 𝐶  , 𝛽ℎ=1: 𝐻, 𝐴𝑠} are 

initialized by adding noise (∼ 𝑁(0,1)) to the corresponding parameters in a standard GLM. We 

initialize the plasticity parameters with 𝜏′𝑑(0)~𝑁(−1,5), 𝜏′𝑓(0)~𝑁(−1,5), 𝑈′(0)~𝑁(0,5), 

𝑓′(0)~𝑁(0,5), 𝜏′𝑠(0)~𝑁(−3,5). We then use an LBFGS algorithm to optimize the log-likelihood 

where we calculate all derivatives analytically except for derivatives of 𝜃𝑠𝑡𝑝 which we calculate 

numerically. To estimate the uncertainty of the parameters, we bootstrap the data from each of the 

strong synapses by chunking the whole recording time into samples of 50 seconds then resampling 

the chunks to generate a new spike train with the same original length. 

Calculating spike transmission probability 

To demonstrate how the probability of postsynaptic spiking changes according to the 

corresponding presynaptic inter-spike intervals, we estimated spike transmission probabilities 

from the cross-correlograms directly instead of using a model. To calculate this probability, we 

focused on a transmission interval after the presynaptic spike where the conditional intensity (when 

corrected for the baseline rate) goes above 10% of the maximum of 𝜶(𝑡). We split the presynaptic 
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inter-spike interval distribution into log-spaced intervals, and, for each interval, we calculate the 

ratio between numbers of postsynaptic spikes in the transmission interval to the number of 

presynaptic spikes. Unlike previous studies [20,93] we do not correct this probability for the 

baseline postsynaptic rate. The uncorrected probability allows us to more directly compare the 

model predictions to the empirical spike transmission probabilities. Since our model gives an 

estimate of the postsynaptic probability after each individual presynaptic spike, we can average 

over the same transmission interval. However, we know if there is a postsynaptic spike in the 

transmission interval, probability of a postsynaptic spike goes to ~0 for all consecutive bins due to 

the post-spike dynamics (e.g. refractory period). Therefore, we measure the predicted probability 

of a postsynaptic spike in a 5ms window after 𝑖-th presynaptic spike from binned 𝜆𝑖(𝑡𝑗) as follows: 𝑧𝑖 = ∑ 𝜆𝑖(𝑡𝑗) ∏ (1 − 𝜆𝑖(𝑡𝑚))𝑗−1𝑚= 1𝐿𝑗=1 . Here we assume conditional independence of the 𝑗-th bin 

after a presynaptic spike, but we enforce a refractory period for all bins after a postsynaptic spike 

in our generative model. Here 𝐿 is the first bin that 𝑦𝑖𝑗 is nonzero. 𝑧𝑖 represents the probability of 

postsynaptic spiking after each presynaptic spike and we fit a smooth curve over the distribution 

of 𝑧𝑖′s and their corresponding inter-spike intervals to compare with the empirical spike probability 

patterns. 

Modeling the effect of local patterns of pre- and postsynaptic spiking 

The observed and modeled spike transmission patterns, as calculated above, reflect the expected 

postsynaptic spike probability given a specific presynaptic ISI. However, since the presynaptic 

ISIs are not independent and there are serial correlations in ISIs, the detailed sequence of the pre- 

and postsynaptic spiking likely affects the shapes of these curves. To quantify the effects of serial 

ISI correlations on the model of spike transmission probability we demonstrate how local patterns 
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of presynaptic spiking modifies spike transmission patterns in the data and the model. For each of 

the three strong identified synapses we measure postsynaptic spiking probability in response to 

presynaptic spike triplets. Due to the limited number of spikes in our data, we divide the 

presynaptic ISI distribution into few log-spaced intervals and measure the postsynaptic spiking 

probability for triplets with the two ISIs that fall in those intervals. Similarly, we measure the 

predicted postsynaptic probability in response to the presynaptic triplets. After measuring 

postsynaptic responses to presynaptic spike triplets in the data and the model, we simulate the 

contribution of STP in shaping the transmission pattern in response to these triplets. To factor out 

contributions of the postsynaptic history and slow changes in presynaptic firing rate, we fix the 

corresponding values in the model to their average values within the model. In these simulations, 

we also fix the initial values of the STP dynamics in the TM model for the first spike of the triplets 

to the average R and 𝑢 within the model. This approach enables us to illustrate how short-term 

synaptic plasticity in triplets of presynaptic spikes changes spike transmission probability and how 

serial correlations in presynaptic spiking affect spike transmission probability. 

The postsynaptic spike history and the serial correlations between the pre- and postsynaptic spiking 

also modify spike transmission probability patterns. To investigate history effects in the local 

pattern of pre- and postsynaptic spikes, we measured the postsynaptic spiking probability in 

response to two presynaptic spikes and a postsynaptic spike preceding the most recent presynaptic 

spike. Due to the limited number of spikes and sparseness of the split cross-correlograms, we again 

divided the presynaptic and postsynaptic ISI distributions into a few log-spaced intervals. We then 

measure the spike transmission probability for a group of presynaptic spikes that their preceding 

presynaptic ISIs and postsynaptic spike ISIs fall into different combinations of pre- and 

postsynaptic log-spaced intervals. After measuring postsynaptic responses to any possible 
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combination of the two most recent presynaptic spikes and their postsynaptic spikes in the data 

and the model, we simulate the contribution of the history and STP together in shaping the 

transmission. In our simulation the excitability was set to the model estimates. To measure the 

effects of postsynaptic spiking history, for each postsynaptic ISI, we fix the history contribution 

to estimated post-spike history filter value at that postsynaptic ISI. We then use the predicted STP 

parameters from the data to simulate the STP contribution in response to paired pulses of 

presynaptic ISIs where we again fix the initial values of the TM model for the first presynaptic 

spike to the average R and 𝑢 within the model. This approach enables us to illustrate how short-

term synaptic plasticity in local patterns of two presynaptic spikes and a postsynaptic spike 

changes spike transmission probability and quantifies how serial correlations between pre- and 

postsynaptic spiking affect spike transmission probability. 

Evaluating prediction accuracy 

In addition to evaluating the estimated parameters and comparing the model to empirical spike 

transmission probabilities, we also assess how accurately the model can predict postsynaptic 

spiking. Not only can we predict the probability of a spike given specific presynaptic ISIs, but we 

can also predict whether there will be a postsynaptic spike following each individual presynaptic 

spike. To quantify how well the predicted postsynaptic spike probability, 𝑧𝑖, predicts the 

postsynaptic spiking activity, we use Receiver Operating Characteristic (ROC) curves. To compute 

the ROC curve, we first create a threshold version of 𝑧𝑖 which operates as our prediction: {(𝑟̂𝑖 =1) if (𝑧𝑖 > thr); 0 otherwise}. Changing the threshold from 0 to 1 traces out a relationship between 

the true positive rate (TPR) and false positive rate (FPR). The area under the ROC curve (AUC) 

reflects the performance of each model, where a perfect classifier has AUC=1 and a random 

classifier has AUC=0.5. Effectively, the AUC is the probability of a randomly chosen spike having 
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a higher model probability than a randomly chosen non-spike [103]. Here we calculate the AUC 

for short intervals (~5ms) after presynaptic spikes and check whether we detect a postsynaptic 

spike in the transmission interval where 𝛼(𝑡) is above 10% of its maximum. Here we compare the 

AUC for the static model of connectivity without short-term synaptic plasticity with our dynamical 

model. 

A simplified rate model to simulate effects of synaptic summation and post-spike history 

Our TM-GLM’s prediction of the spike transmission pattern is data-driven and depends on the full 

history of pre- and postsynaptic spiking. To better understand and illustrate how STP, synaptic 

summation, and post-spike history interact to create the observed patterns of spike transmission, 

we simulated postsynaptic responses in a simplified voltage model. Namely, we consider PSP 

summation in response to a pattern of two presynaptic spikes. We assume that the synapse is 

initially fully recovered, and the PSC amplitudes are determined by the 4-paramter TM model with 𝑈 = 0.7, 𝜏𝑑 = 1.7, 𝜏𝑓 = 0.02, 𝑓 =0.05 for the depressing synapse and 𝑈 =0.1, 𝜏𝑑 = 0.02, 𝜏𝑓 =1, 𝑓 =0.11 for the facilitating synapse [86]. We then convolve the PSCs (delta function kernel) 

with a PSP kernel, exp(−𝑡/𝜏𝑣) − exp (−𝑡/𝜏𝑟), with 𝜏𝑣 = .01 and 𝜏𝑟=.001 ms to describe synaptic 

summation. We assume that the instantaneous postsynaptic spike probability is simply a nonlinear 

function of the distance to a threshold voltage 𝜎(5(𝑉(𝑡) − 𝑉𝑡ℎ)) where 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) and 𝑉𝑡ℎ = .5, . 75, and 1 correspond to strong, moderate, and weak inputs respectively. The spike 

transmission probability sums this instantaneous probability over a window of 20ms after each 

presynaptic spike. Finally, we adjust the spike transmission probability for the second PSP to 

account for potential post-spike history effects. Namely, we assume that the adjusted spike 

transmission probability for the second spike is 𝑝2∗ = (1 − 𝑝1)𝑝2 + 𝑝1𝑝2𝑓𝑎ℎ𝑝 where 𝑝1 is the 
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transmission probability for the first spike, 𝑝2 is the unadjusted probability for the second spike, 

and 𝑓𝑎ℎ𝑝 is the effect of the after-hyperpolarization. Here we use 𝑓𝑎ℎ𝑝(Δ𝑡) = (𝜎(150(Δ𝑡 −0.02)) − 𝑐)/𝑑 where Δ𝑡 is the presynaptic ISI, and 𝑐 and 𝑑 are constants ensuring that 𝑓𝑎ℎ𝑝(0) =0 and 𝑓𝑎ℎ𝑝(∞) = 1. Although this simulation is highly simplified, it demonstrates how the 

observed spike transmission pattern depends, not just on the type and timescale of STP, but on the 

interaction between STP, synaptic summation, after-hyperpolarization effects, and the spike 

nonlinearity. 
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Results 

Short-term synaptic plasticity directly affects synaptic information processing by altering the 

amplitude of presynaptic currents [68], but in most neural systems it remains unclear how these 

presynaptic effects translate to altered postsynaptic spike probability. Postsynaptic spiking is 

affected by many factors including short-term plasticity, postsynaptic spike history, summation of 

PSPs, and slow fluctuations in presynaptic firing rate. Here we developed a statistical model that 

includes each of these factors and allows their effects to be estimated solely using pre- and 

postsynaptic spiking activity. In this approach, working with spikes rather than PSC/PSPs enables 

us to understand the short-term changes in synaptic transmission probability in vivo where large-

scale intracellular recordings have not been achieved. 

Spike transmission probability varies strongly as a function of presynaptic ISIs 

Here we define spike transmission probability as the probability of postsynaptic spiking in a 

window shortly after each presynaptic spike. One conventional approach to study spike 

transmission and changes in transmission probability are cross-correlograms. Cross-correlograms 

of excitatory monosynaptic connections show a rapid, transient increase in the postsynaptic spiking 

probability shortly (usually < 4ms, although this depends on the presynaptic axonal conduction 

delay) after the presynaptic spike [19]. The timing and shape of the cross-correlogram depends on 

the synaptic delay, the strength of the connection and varies between synapses. However, in the 

overall cross-correlogram since all presynaptic ISIs are averaged, the dependence of spike 

transmission probability on the presynaptic ISIs remains hidden (Fig. 3.2A). To determine the 

effect of presynaptic ISI on spike transmission probability we can calculate the cross-correlogram 

for a subset of presynaptic spikes with a specific ISI. and previous studies showed that transmission 

probabilities can vary for different ISIs within the same synapse [20,22]. Moreover, the short-term 
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dynamics of spike transmission probability can differ for different synapses as a function of 

presynaptic ISIs. To illustrate this diversity, we examined three strong synapses from three distinct 

neural systems: (i) a pair of neurons in thalamus in a mouse, (ii) a projection from ventrobasal to 

somatosensory barrel cortex (VB-Barrel) in a rabbit, and (iii) the auditory nerve fiber to spherical 

bushy cell projection in a gerbil (ANF-SBC). Although the presynaptic neurons have diverse ISI 

distributions (Fig. 3.2B), splitting the spikes into ISI quantiles and calculating the correlogram for 

each quantile, demonstrates how postsynaptic responses differ following short and long 

presynaptic ISIs. For the pair of neurons in thalamus, spike transmission has a higher probability 

at short and long intervals and a lower probability for mid-range ISIs. For VB-Barrel transmission 

probability is higher for longer ISIs, while for ANF-SBC the highest transmission probability 

occurs at intermediate intervals (Fig. 3.2C). 
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Fig. 3.2: Spike transmission probability depends on the presynaptic ISI and differs between 

synapses. A) Cross-correlograms between pre- and postsynaptic spiking show an increase in the 

postsynaptic spike count (or probability) after a short latency, indicative of a monosynaptic 

connection. Efficacy (Eff.) for each synapse denotes the ratio between numbers of postsynaptic 

spikes in the synaptic peak (horizontal bars) corrected for the baseline number of expected 

postsynaptic spikes to number of presynaptic spikes. B) Inter-spike interval distributions (log-

scale) for the presynaptic neuron for three different synapses. The distributions are color-coded 

into 5 quantiles with equal number of presynaptic spikes. C) For each ISI quantile, we calculate a 

separate cross-correlogram. Colors correspond to (B) going from shorter presynaptic ISIs (left) 

to longer ISIs (right). Note that both the baseline firing rate and the synaptic peak for each 

connection change as a function of presynaptic ISI. Solid lines overlaying the cross-correlograms 

illustrate model fits used to estimate the synaptic effect and the smooth baseline.  
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The shape of spike transmission patterns depends on multiple factors 

In synapses exhibiting short-term synaptic plasticity the postsynaptic response after each 

presynaptic spike changes according to the recent history of presynaptic spiking [11,86]. However, 

besides synaptic dynamics there are additional factors that alter spike timing. At short presynaptic 

ISIs, membrane potential summation can lead to larger PSPs and increased spike probability, even 

in absence of short-term synaptic plasticity [82]. The spiking nonlinearity and the history of 

postsynaptic spiking can also alter how a given pattern of presynaptic input is transformed into 

postsynaptic spiking [24,104].  

To illustrate how STP, synaptic summation, and postsynaptic history interact to create the observed 

spike transmission pattern we simulated from a simplified rate model with linear voltage 

summation, short-term plasticity, a soft spiking nonlinearity, and an after-hyperpolarization (Fig. 

3.3). Similar to experimental data, the spike transmission probability in this simplified model 

depends on the presynaptic ISI as well as the type of STP. For depressing synapses, the spike 

transmission probability increases for longer presynaptic ISIs while for facilitating synapses it 

increases for mid-range ISIs [11,86]. Independent of STP type, PSPs sum at short ISIs (Fig. 3.3A). 

However, the exact shape of transmission probabilities also depends on the strength of the synapse 

and, possibly, the history of postsynaptic spiking. An after-hyperpolarization current following 

each postsynaptic spike, for instance, can briefly decreases the probability of subsequent spikes. 

In our simulation, we find that “spike interference” from previous postsynaptic activity can 

counteract membrane potential summation (Fig. 3.3B). This type of postsynaptic spike 

interference generally decreases the spike probability for shorter presynaptic ISIs, but the 

magnitude of this decrease depends on the synaptic strength and type of STP (Fig. 3.3C). These 

simulations illustrate how the pattern of spike transmission probability results from the complex 
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interaction between the membrane potential, the spike nonlinearity, the post-spike history, and 

short-term synaptic plasticity. 
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Fig. 3.3: A simulation of a simplified rate model shows how spike transmission probability 

depends on multiple factors. A: For different types of short-term synaptic plasticity, postsynaptic 

summation increases the amplitudes of the postsynaptic potentials (PSP) at shorter ISIs. Lines 

denote the membrane potential of a postsynaptic neuron in a simplified model as it responds to 

short (dark traces) and long (light) paired presynaptic pulses. Relative amplitudes of excitatory 

postsynaptic potentials increase under the simplified model depending on the type of STP (right 

panel). B: Spike generation changes with synaptic strength. In this paired-pulse stimulation 

paradigm, stronger synapses are more likely to generate a spike following the first presynaptic 

impulse which can then decrease the spiking probability following the second impulse if there are 

post-spike history effects. As in (B) traces denote postsynaptic membrane potential responses to 

short (dark) and long (light) presynaptic ISIs. Dashes denote example postsynaptic spiking, with 

“spike interference” occurring for strong synapses and short ISIs. C: The pattern of spike 

transmission probability under the simplified model changes depending on the type of STP, the 

coupling strength, and presence of post-spike interference. Dashed lines show transmission 

probability without interference from previous postsynaptic spikes, while solid lines show how 

post-spike history effects can decrease the spike transmission probability. 

Spike transmission patterns are diverse across regions and species 
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The combination of these factors could be one explanation for to the diversity of spike transmission 

patterns in experimental data. To account for STP, postsynaptic history effects, and slow changes 

of firing rate we extend a previously developed GLM framework for static functional connections 

[24] to include short-term dynamics. In the previous, static GLM the probability of postsynaptic 

spiking is modeled as a linear combination of a baseline firing rate parameter, a post-spike history 

filter to capture the postsynaptic spike dynamics, such as refractoriness and burstiness, and a 

coupling filter describing the fixed influence of presynaptic spikes. The sum of these effects is 

then passed through a spiking non-linearity [24]. In our extended model we added a linear term 

that allows changes in excitability of the postsynaptic neuron as a function of the presynaptic firing 

rate (timescale >1min) and allow the coupling term to change for each presynaptic spike according 

to the Tsodyks and Markram (TM) model of STP [11]. We fit the parameters of this TM-GLM 

using only the pre- and postsynaptic spike observations and obtain parameters for each effect using 

approximate maximum likelihood estimation (see Methods). This provides estimates of the history 

and coupling filters, as in a static GLM, as well as additional parameters for the dynamical synapse 

(TM model) including facilitation, depression, membrane time constants, and release probability. 

Given these parameters, the model estimates the postsynaptic spiking probabilities following each 

observed presynaptic spike and predicts spike transmission probabilities in response to arbitrary 

patterns of presynaptic inputs.  

After fitting the model to real pre- and postsynaptic spike-trains, we compared its behavior to 

experimentally observed patterns of spike transmission probability. In particular, we compare 

peaks in the split cross-correlograms to the average model prediction for the same sets of 

presynaptic spikes (see Methods). We find that our model is flexible enough to explain the changes 

in synaptic transmission probability observed in spiking statistics for all three synapses above (Fig. 
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3.4A). Moreover, using the model-based approach, the contributions of each model component 

can be disentangled. Our results suggest that the pattern of spike transmission probability for the 

thalamus connection is dominated by a combination of membrane potential summation and short-

term depression. Although depression decreases spike transmission probability at shorter ISIs, 

membrane summation acts to increase postsynaptic spiking. The ANF-SBC synapse, in contrast, 

shows an increase in spike transmission probability for a medium range of ISIs that is explained 

by a model dominated by short-term facilitation. Lastly, the VB-Barrel connection shows a higher 

postsynaptic response for spikes following longer ISIs (isolated) that is explained by the model as 

an effect of short-term synaptic depression. 

In addition to separating the factors affecting spike transmission, the model also improves the 

prediction of postsynaptic spike timing. To evaluate how spike prediction accuracy is influenced 

by STP, we compare the prediction of postsynaptic spiking activity after each presynaptic spike 

for our model with a static model containing all components except STP. In all three datasets, a 

model with short-term synaptic plasticity provides substantially better predictions of the 

postsynaptic spiking activity, assessed by Receiver Operating Characteristics (ROC) curves. For 

the model with short-term synaptic plasticity accuracies were AUC=0.76, 0.70, and 0.79 for the 

Thalamus pair, VB-Barrel, and ANF-SBC connections, respectively; compared to a model without 

STP where the model accuracies were AUC=0.54, 0.48, and 0.56. 

In our model, STP is described by two coupled differential equations with five parameters: 𝜃𝑠𝑡𝑝 ={ 𝜏𝑑, 𝜏𝑓 , 𝑈, 𝑓, 𝜏𝑠} (see Methods). Here we estimate values for depression, facilitation, and 

membrane time-constants along with release probability, 𝑈, and magnitude of facilitation, 𝑓, (Fig. 

3.4B). Our result for the thalamus pair shows a higher release probability and depression time-

constant with a larger membrane time constant. The VB-Barrel connection shows a higher 
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depression compared to facilitation time constant with a lower membrane time constant. The ANF-

SBC synapse shows a lower release probability compared to the other two connections and a lower 

depression and membrane time constant. Although here we estimate these parameters from pre- 

and postsynaptic spiking alone, they could also be estimated from intracellular measurements [33]. 

We are not aware of any in vivo experiments that measured depression or facilitation time-

constants for these systems. However, previous in vitro studies found a wide range of paired-pulse 

ratios (0.3 to 0.9) in thalamocortical projections [105], consistent with the depressing VB-Barrel 

synapse here. Additionally, in vitro observations of ANF-SBC connections report depression time-

constants on the order of 2-25ms in response to a 100 Hz stimulus train [106,107]. These previous 

estimates are substantially faster than the time-constants estimated by the TM-GLM for the ANF-

SBC connection here. However, as mentioned in [106], different patterns of presynaptic input (e.g. 

regular, Poisson, natural) can result in different time constants, which makes it difficult to compare 

in vitro and in vivo STP parameters directly. One parameter that may be more readily comparable 

across preparations is the membrane time-constant. We find that the estimated membrane time-

constant from the TM-GLM for the thalamus pair is consistent with thalamus relay cells observed 

intracellularly (12.2 ± 1.1 ms (n=8)) [108], and the estimated membrane time-constant for ANF-

SBC is approximately consistent with in vitro measurements (1.05 ± 0.09 ms) [106], as well. 

Previous work modeling intracellular recordings suggests that the full TM model may not be 

necessary to explain STP at some, purely depressing synapses [33]. Therefore, we explored how 

simplified TM models of STP, with fewer parameters, compare with the full model using the 

Akaike information criterion (AIC; see Methods). AIC evaluates model accuracy (log-likelihood) 

penalized by the number of parameters and determines if a simplified model with fewer parameters 

is preferred over a more complex model. We compare the full model to five reduced models: 1) a 
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model with only integration, without dynamic release probability and resources (𝜏𝑑 , 𝜏𝑓  = 0 and 𝑓, 𝑈 = 1), 2) a facilitation only model (𝜏𝑑 = 0), 3) a depression only model (𝜏𝑓 = 0), 4) a 3-

parameter TM model where the magnitude of facilitation is fixed (𝑓 = 𝑈), and 5) a full TM model 

without resetting integration when a postsynaptic spike occurs (𝜋𝑖 = 1). For the thalamus pair and 

VB-Barrel, a model with fixed magnitude of facilitation (𝑓 = 𝑈) performs better while for the 

ANF-SBC connection the full model gives a better prediction. The full TM model performs well 

in all cases, but, for some synapses, as previous results suggested [33], there may be ambiguity 

with parameter identifiability where many parameter settings explain the data. 
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Fig. 3.4: Model predictions of spike transmission dynamics. A: Spike transmission patterns are 

diverse across different connections. For three different connections (a pair in thalamus, 

ventrobasal thalamus to somatosensory cortex, auditory nerve fiber to spherical bushy cell) 

transmission patterns are explained by a combination of different factors. For each synapse, top 

panels show the presynaptic ISI distributions (log-spaced). In the second/third row, the observed 

spike transmission probability (red data points) and model predictions (blue with 95% confidence 

bands) for training and test set (2-fold cross-validation). We then used the estimated TM 

parameters for each synapse and simulated responses to for paired presynaptic pulses. Blue curves 

denote the PPRs of the full model, and gray lines denote PPRs for a model without synaptic 

summation. In the fourth row, we evaluate how accurately the TM-GLM can prediction individual 

postsynaptic transmission events. For each individual presynaptic spike, we compare the model 

transmission probability with the observed binary outcome. ROC curves show the prediction 

accuracy for the TM-GLM (blue) and a standard GLM without STP (orange). B: Estimates for the 

four STP parameters of the model for each synapse. Each dot represents estimation from a distinct 
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bootstrap sample. C: Model comparison for 6 different models (Akaike information criteria 

relative to a model without plasticity). Models: 1) Integration only (𝜏𝑑, 𝜏𝑓  = 0 and 𝑓, 𝑈 = 1), 2) 

Facilitation only (𝜏𝑑 = 0), 3) Depression only (𝜏𝑓 = 0), 4) 3-parameter TM (𝑓 = 𝑈), 5) 4-

parameter TM without resetting integration (𝜋𝑖 = 1), 6) 4-parameter TM. 

Recent patterns of pre- and postsynaptic spiking shape the synaptic transmission probability 

Although previous studies have focused largely on how spike transmission probability varies as a 

function of the single preceding presynaptic ISI, synaptic dynamics depend on the full sequence 

of presynaptic spiking. Unlike in vitro experiments where the state of the synapse can, to some 

extent, be controlled before studying responses to a specific presynaptic pattern, in vivo 

measurements of spike transmission can be heavily influenced by higher-order correlations 

between successive ISIs [87]. Additionally, it is difficult to assess the effects of multi-spike 

patterns empirically by splitting the correlograms, since the number of observations for any given 

presynaptic spike pattern rapidly decreases with the number of spikes in the pattern. Here we 

examine how spike transmission depends, not just on the preceding presynaptic ISI, but on triplets 

of spikes. We compare the empirically observed spike transmission probability following triplets 

to the estimated spike transmission probability from the TM-GLM. Then, after fitting the TM-

GLM, we simulate postsynaptic responses to isolated, local patterns of spikes and determine to 

what extent the observed spike transmission patterns are influenced by higher-order correlations 

between successive ISIs. 

First, in addition to the timing of the two preceding presynaptic spikes (ISI1), we split correlograms 

based on the timing of the three preceding presynaptic spikes using both ISI1 and ISI2. Since the 

TM-GLM provides estimates of the post-synaptic spike probability following every presynaptic 

spike, we can split both the data and model fits the same way (Fig. 3.5A). We find that the spike 
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transmission patterns clearly depend on the triplet patterns of presynaptic spikes. That is, the spike 

transmission probability is influenced by both ISI1 and ISI2, and their interaction differed between 

synapses, as expected from the TM-GLM model. However, similar to the descriptions of spike 

transmission as a function of ISI1, the TM-GLM accurately captures the patterns of spike 

transmission for triplets of presynaptic spikes at those three synapses. In the thalamus pair, spike 

transmission was dominated by ISI1, and the effect of ISI2 appears to be weak or, at least, doesn’t 

appear to be monotonic. Spike transmission at the VB-Barrel connection depends strongly on both 

ISI1 and ISI2, with higher spike transmission probability for longer ISI2, consistent with recovery 

from depression. Lastly, for the ANF-SBC connection, transmission probabilities decrease for 

shorter ISI2, but there also appears to be a strong interaction between ISI1 and ISI2, where 

transmission probability is high for multiple combinations of these two intervals (e.g. intervals of 

10ms then 100ms and intervals of 100ms then 10ms both result in high probability transmission). 

To examine to what extent the empirical observations of spike transmission are affected by higher-

order correlations between successive ISIs, we again use the estimated parameters in the TM-GLM 

to simulate postsynaptic responses to hypothetical, isolated triplets of presynaptic spikes. In these 

simulations we fix the post-spike history effect and the excitability in the model to their average 

values from model fits, and we fix the initial STP state (initial values of 𝑅 and 𝑢 in TM model) for 

the first spike in triplets to the average 𝑅 and 𝑢 values from the model fits. In experimental data, 

the initial state of the pre- and postsynaptic neurons before the triplets occur can wildly differ 

between different values of ISI1 and ISI2. By simulating, we can compare the influence of different 

triplets (ISI1 and ISI2) when the pre- and postsynaptic neurons start at the same state. Here we find 

that for the thalamus pair, although the empirical data showed no clear effect for ISI2, the simulated 

spike transmission probability increases with short ISI2, consistent with strong synaptic 
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summation. One reason that this effect may be masked in the empirical transmission probabilities 

is that post-spike history effects could act to decrease the probability of future postsynaptic spikes. 

For the VB-Barrel simulations, we find that short ISI2 decreases transmission probability, 

consistent with the empirical transmission patterns, although less pronounced. Serial correlations 

in the sequence of presynaptic spikes (such as long bursts) could act to accentuate the depression 

in the empirical observations beyond what we see with the simulated responses to isolated triplets. 

Finally, for the ANF-SBC, although the empirical transmission probability showed decreased 

transmission for short ISI2, the simulated responses to isolated patterns have increasing 

transmission at short ISI2 (due to synaptic summation). This difference is likely due to the post-

spike history effects, which has been fixed for the simulations, but can have a large effect in the 

experimental data. Since the overall efficacy of this synapse is quite high (>0.7), is likely that a 

postsynaptic spike follows the first or second presynaptic spike which then influences the response 

to the third spike. 

To better understand the effects of post-spike history, we examined how the postsynaptic spiking 

history changes the spike transmission patterns with a similar approach. In addition to splitting the 

correlograms based on ISI1, we also split based on the previous postsynaptic ISI, ISIpost (Fig. 3.5B). 

Here, as with the triplets of presynaptic spikes, we find that the spike transmission patterns depend 

on the triplet patterns of 2 pre- and 1 postsynaptic spike, and the TM-GLM accurately captures the 

patterns of spike transmission at our three synapses (Fig. 3.5B). Here, for both thalamus and VB-

Barrel pairs, synaptic transmission probability decreases after a long postsynaptic ISI for all values 

of ISI1. In contrast, the ANF-SBC connection shows decreased transmission probability at short 

postsynaptic ISIs. 
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As with the triplets of presynaptic spikes, we then simulate how these local patterns of 2 pre- and 

1 postsynaptic spike change spike transmission probability when the neurons start from the same 

initial conditions (average values of excitability, post-spike history, 𝑅 and 𝑢). For the thalamus 

and VB-Barrel pairs, the simulations of isolated, local patterns match the general trends of 

empirical spike transmission. However, for the VB-Barrel synapse, the effect of ISIpost in the 

empirical transmission patterns is stronger than in the simulations, suggesting that serial 

correlations in ISIs could again play a role and does decrease transmission probability for isolated 

patterns. However, as with the responses to triplets of presynaptic spikes, these local patterns alone 

are insufficient to explain the empirically observed patterns of spike transmission.  
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Fig. 3.5: Effects of pre- and postsynaptic spiking patterns. A: Synaptic transmission patterns 

change based on the full sequence of presynaptic spiking. Top panel shows a schematic of 4 

different patterns of presynaptic spike triplets with a fixed ISI between the two most recent 

presynaptic spikes (black dashed lines). We split the presynaptic ISI distribution into 8 quantiles. 

Each data point shows the observed spike transmission probability corresponding to the ISI2 

quantile with the same color. Solid lines are the average estimated probability for each pattern 

under the model (based on the full sequence of observed spikes). To examine the influence of serial 

correlations, we then stimulate model responses to the isolated triplet pattern, assuming the 

synapse is initially in an average state. B: Synaptic transmission patterns change depending on 

the history of postsynaptic spiking, as well. Here each data point in the scatter plots shows the 

spike transmission probability of the corresponding to the postsynaptic ISIs of the same color in 

the ISI distribution. Colors represent the corresponding time difference between presynaptic and 

previous postsynaptic spike. Solid lines are the average predicted probability for quantiles with 
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corresponding colors. Last row shows simulations of the model using estimated STP parameters 

and fixing the excitability from the model fits to their average values. Here the history effect for 

each ISI interval is set to the post-spike history filter value on that interval.  

Spike transmission patterns change depending on stimulus type 

These results suggest that the presynaptic spike pattern has a complex effect on spike transmission 

probability. In sensory systems, one variable that affects the presynaptic spike pattern is the 

external stimulus. To examine how differences in stimulus statistics might alter spike transmission, 

we fitted our model to a dataset recorded juxtacellularly from an ANF-SBC synapse, presented 

with natural sounds, a range of randomized frequency-level pure-tones (tuning stimuli), and 

spontaneous activity in the absence of acoustic stimulation. We merged these three datasets and 

fitted the model to the merged dataset. As with the previous fits of the ANF-SBC connection (based 

on a different set of tuning stimuli), the transmission probability under all three conditions exhibits 

a bandpass-like pattern suggesting facilitation and little to no synaptic summation. However, spike 

transmission during natural stimuli was markedly different from that during pure tone stimulation. 

During natural sounds, transmission probability is maximized at 100 ms rather than 10 ms in the 

tuning stimuli and during spontaneous activity. Further, natural stimuli have much lower 

transmission probability at short ISIs. Interestingly, the TM-GLM captures the overall facilitation, 

but also captures differences due to the different stimuli. In contrast, a static GLM captures almost 

none of the variations in spike transmission probability suggesting that a fixed coupling term, 

postsynaptic history, and, slow fluctuations of presynaptic spiking are not sufficient to capture 

patterns of spike transmission probabilities (Fig. 3.6A). Together, these results suggest that the 

combination of STP, synaptic summation, history, and excitability is sufficient to explain the 

observed differences between stimuli, without requiring any additional adaptation or plasticity. 
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Since these recordings were performed juxtacellularly, we also have access to the slope of 

individual (extracellular) PSPs, which correlates with the intracellular PSP amplitude. We 

compared patterns of individual PSP slopes for each stimulus type and how they correlate with the 

estimated coupling amplitude following individual presynaptic spikes in our model (Fig. 3.6B, 

5C). Note that patterns of PSP slopes do not have the same pattern as spike transmission 

probability, since there are other factors (e.g. postsynaptic spiking history) contributing to 

postsynaptic spiking. These results show the stimulus-dependence of PSP amplitudes and a static 

GLM without STP cannot account for these variations. Although the correlation is not perfect, the 

model does correlate with the measured PSP slope, even though the model only has access to 

spikes. By modeling dynamic functional connectivity, we can approximately reconstruct the 

amplitude of individual synaptic events. 
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Fig. 3.6: The TM-GLM captures stimulus-dependent changes in spike transmission probability 

at the ANF-SBC synapse. A) The TM-GLM captures stimulus-dependent spike transmission 

probability patterns better than a static model without short-term synaptic plasticity. Asterisks 

show spike transmission probability for (log-spaced) presynaptic ISIs during two types of auditory 

stimuli and during spontaneous activity: Natural Sounds (yellow), Spontaneous Activity (red), and 

Tuning Stimuli (blue). Solid lines and 95% confidence bands show model predictions for each 

stimulus type. Corresponding inter-spike interval distributions are shown on the right. B) The TM-

GLM captures changes in extracellularly recorded PSPs. Here the observed PSP slope (dashed 

lines) approximately matches and coupling term in the TM-GLM (solid lines) for each three 

stimuli. Although the spike transmission probability of the static GLM can vary as a function of 

presynaptic ISI due to non-synaptic factors, the coupling term is fixed. C) Estimates of individual 

PSP amplitudes predicted by the model and their PSP slopes in the juxtacellular recording. Black 

lines denote linear fits and the bar plot shows the corresponding Spearman correlations. 
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Postsynaptic cell-type specific changes in spike transmission patterns 

We applied our model to spiking data from a large-scale multi-electrode array recording to 

investigate the spike transmission dynamics in synapses from putative excitatory neurons to two 

different putative inhibitory subtypes. We detected putative synapses using the log-likelihood ratio 

(LLR < -6, ~200 synapses) between a full model of the correlogram that includes the synaptic 

effect and smooth model of the correlogram that only captures the slow structure (see Methods). 

We then found excitatory-inhibitory microcircuits where putative excitatory neurons (based on the 

cross-correlogram and spike waveform) give inputs to putative inhibitory neurons (41 excitatory 

synapses onto 9 inhibitory neurons in total). To identify inhibitory neurons as inhibitory, we 

required the neuron to have an outgoing connection to a third neuron with a fast, transient decrease 

in the cross-correlogram. Each of the 9 putative inhibitory neurons here had at least one outgoing 

connection where the spiking probability of a downstream neuron decreases >18% relative to 

baseline following its spiking (Fig. 3.7A). We then categorized each neuron as a putative fast-

spiking (FS, n=5) or regular-spiking (RS, n=4) unit based on the spike waveform and firing rate 

(Fig. 3.7B). Putative FS units had narrow-width spike waveforms (half-width of the trough = 

.08±.02 ms) and higher firing rates (26.07±9.6 Hz) compared to putative RS neurons (n=4) with 

broader waveforms (half-width = .14±.02 ms) and lower firing rate (10.18±10.01 Hz). 

We identified these microcircuits in different regions with 4 putative excitatory-inhibitory 

microcircuits recorded in hippocampus (depth differences: 77.2±49.4 𝜇m), 3 in thalamus 

(49.4±26.2 𝜇m), and 2 in motor cortex (36.4±23.5 𝜇m). Putative excitatory neurons showed a 

wide spike waveform (half-width = .18±.04 ms) similar to the putative regular-spiking inhibitory 

neurons, but these two classes can be distinguished by their outgoing connection types (e.g. 

inhibitory/excitatory) [109] (Fig. 3.6B). Average efficacies from putative excitatory-FS 
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connections (.22±.12, n=22) were larger, on average, compared to putative excitatory-RS 

efficacies (.13±.13, n=19). We then fit the TM-GLM to data from these 41 putative synapses, 

similar to the three identified synapses above. We find that the STP parameters for these two types 

of synapses largely overlap, except for the membrane time-constant. Interestingly, the membrane 

time-constants measured for these inhibitory subtypes in vitro overlap with our estimates here (Fig. 

3.7C) [110]. Although in vitro studies have not explored the same TM model used here, there is 

evidence of postsynaptic cell-type specific STP where putative excitatory-RS connections show 

facilitation and putative excitatory-FS connections show depression [71]. Here we find that both 

connection types are somewhat facilitating but excitatory-FS connections having a slightly shorter 

facilitation time constant. However, unlike what would be expected if excitatory-FS connections 

were depressing, the release probability of excitatory-FS connections is lower than for excitatory-

RS connections (Fig. 3.7C). 

To better understand synaptic transmission in vivo it is important to consider not just the 

parameters of the synapse but the full history of presynaptic spiking in the individual presynaptic 

neurons. We use the estimated model parameters to simulate responses to a train of regular 

presynaptic spikes with the frequency matched to the average firing rate of the corresponding 

excitatory input. In simulating postsynaptic responses to the spike train, we fix the excitability and 

postsynaptic history to their average values from model fits and set the initial STP state of the first 

spike in the train to the average 𝑅 and 𝑢 values from model fits. With these input-matched 

simulations, excitatory-RS connections show a higher postsynaptic potential compared to 

excitatory-FS connections (Fig. 3.7D). Similarly, we simulated the paired-pulse ratio (PPR) at 

different inter-stimulus intervals in our TM model following the average state. On average, 

connections to regular-spiking inhibitory neurons show a higher PPR (Fig. 3.7E). For all 



 101 

connections, we then evaluated the spike prediction accuracy of a model without STP (e.g. static 

GLM) with our TM-GLM using the Area Under the ROC Curve (Fig. 3.7F). The model with STP 

(TM-GLM) gives more accurate predictions when the postsynaptic neuron spikes following a 

presynaptic spike for our population of 41 putative excitatory-inhibitory connections 

(AUC=.69±.05) in comparison with the static GLM (AUC=.50±.03). Altogether, these results 

illustrate how a dynamic model of functional connectivity, such as the TM-GLM, may allow us to 

investigate cell-type-specific differences in short-term synaptic dynamics in behaving animals 

using only pre- and postsynaptic spiking. 
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Fig. 3.7: Distinctive short-term synaptic plasticity dynamics in connections between excitatory 

neurons to putative Regular-Spiking (RS) and Fast-Spiking (FS) inhibitory neurons. A) Here 

we examine putative synapses between excitatory neurons and inhibitory neurons (identified by 

their cross-correlations) and separate the putative inhibitory neurons into two classes: fast-

spiking, which have narrow spike waveforms and high rates (left), and regular-spiking (right), 

which have wide waveforms and lower rates. Identifying these synapses requires both finding both 

a putative excitatory input and a putative inhibitory output for the same neuron. B) Half-widths 

(of the trough) of the spike waveforms and firing rates for the FS (orange) and RS (blue) inhibitory 

neurons, as well as, their excitatory inputs (grey). Individual blue and orange waveforms 
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(maximum amplitude across the MEA) are shown for all 9 putative inhibitory neurons. C) 

Estimated depression, facilitation, and membrane time-constants for excitatory-RS and excitatory-

FS connections, along with the release probability (right). The purple error-bar next to the 

membrane time-constant estimations show the median and standard deviations from in vitro 

experiments [110]. D) Simulated postsynaptic potential amplitudes estimated from Tsodyks-

Markram model of short-term synaptic plasticity using estimated parameters. For each synapse, 

PSPs are estimated in response to a pulse train with inter-pulse intervals set to their corresponding 

average presynaptic inter-spike intervals. Dots and error bars denote the median and inter-

quartile range for excitatory-RS (blue) and excitatory-FS (red) connections. E) Simulated Paired-

Pulse Ratio for individual synapses of excitatory-RS (blue) and excitatory-FS (red) connections as 

a function of the presynaptic ISI. F) Area Under the Curve (AUC) of postsynaptic spiking 

prediction using the static GLM without short-term synaptic plasticity (green) and the TM-GLM 

with short-term synaptic plasticity (blue). 
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Discussion 

Short-term synaptic plasticity (STP) has been extensively studied in vitro and with intracellular 

recordings where the amplitudes of individual postsynaptic potential/currents (PSP/PSCs) can be 

directly measured. By using controlled experiments with specific, structured presynaptic spike 

patterns these studies established how short-term synaptic dynamics can be described by the 

interactions between release probability and vesicles/resource dynamics [11]. These alterations in 

PSP/PSP amplitudes can affect the statistics of postsynaptic spiking. Thus, STP could, explain 

why the probability of postsynaptic spiking depends not just on the presence of a presynaptic spike, 

but on the timing of the most recent presynaptic inter-spike interval [20,22]. However, the 

relationship between STP and in vivo spike transmission patterns is complex. Patterns of 

postsynaptic spike transmission are highly diverse and multiple factors beyond STP and the most 

recent presynaptic ISI shape these patterns. Here we aimed to disentangle the different 

contributions to spike transmission by developing an augmented generalized linear model, the TM-

GLM that explicitly includes STP dynamics as slow changes in postsynaptic excitability and the 

history of postsynaptic spiking. 

Synapses with different types of STP can allow the same sequence of presynaptic spikes to 

generate different patterns of postsynaptic spiking and thereby control the information flow in the 

brain. Here we tracked the observed spike transmission probability of three strong synapses from 

different species and brain areas. The dynamical spike transmission model enables us to 

disentangle different factors (e.g. slow firing rate changes, postsynaptic spiking history, synaptic 

summation, and STP) that shape these diverse patterns. First, we investigate the role of STP and 

the full sequence of presynaptic spiking activity in shaping the spike transmission patterns. In three 

strong synapses (an intra-thalamic synapse, a thalamocortical synapse, and an auditory brainstem 
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synapse) we show how models of functional connectivity with short-term synaptic plasticity can 

1) capture diverse pattern of spike transmission probability, 2) disentangle these transmission 

patterns to the multiple factors that shape postsynaptic response, 3) extract biologically plausible 

synaptic dynamics, and 4) improve prediction of postsynaptic spiking.  

Estimating static functional connectivity using spike times has revealed network structure in the 

retina [24] and hippocampus [48], can reconstruct true physiological circuitry [25], and improves 

encoding and decoding [24,49,92]. However, synaptic weights change over a wide range of 

timescales depend on external stimuli and behavior [81]. Additionally, synaptic dynamics can 

shape information transmission in different ways for different pattern of presynaptic spiking, e.g. 

different behavioral tasks. Although, standard GLMs can partially capture the first-order effects of 

recent presynaptic spikes on postsynaptic spiking probability, they fail to capture the nonlinear 

dynamics of synaptic transmission affected by the whole sequence. Here, in a recording from the 

endbulb of Held (ANF-SBC) we found that spike transmission patterns differed for different 

stimuli (natural sound stimuli, varying pure tones and without stimulation - e.g. spontaneous 

activity), and these differences were well-described by the TM-GLM. Although the STP-

parameters were the same for all stimuli, the different presynaptic spike patterns yield different 

synaptic dynamics and different patterns of spike transmission. Since spike transmission 

probability in the TM-GLM depends on the full history of presynaptic spiking, this model can 

account for changes on behavioral timescales even in the absence of adaptation or other forms of 

plasticity (e.g. STDP, LTP).  

Cell-type specific interactions in layers and regions of the brain perform different computational 

tasks. Previous in vitro studies have shown that STP dynamics depend on both presynaptic and 

postsynaptic cell-types [71]. Here in a large multi-electrode array recording of a freely behaving 
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mouse we investigated STP dynamics of synaptic connections from putative excitatory neurons to 

two different subtypes of putative inhibitory neurons: fast-spiking and regular-spiking. Using 

inferred short-term dynamics, predicted responses to train of spikes with the same input 

frequencies as the presynaptic neuron in those connections show facilitation in excitatory-RS and 

depression in excitatory-FS connections which are in line with previous in vitro findings [71]. 

Moreover, the model with short-term dynamics significantly improves the prediction of 

postsynaptic activity. As large-scale extracellular recordings advance, models such as the TM-

GLM are promising to characterize and compare the short-term dynamics of spike transmission of 

many different cell types, brain regions, and species. 

Although our model provides a tool to characterize the dynamics of spike transmission, there are 

limitations on how well TM-GLM can capture true synaptic dynamics. Firstly, functional 

connections inferred from spikes do not necessarily guarantee anatomical connections. A peak in 

the cross-correlogram does not uniquely indicate the presence of a monosynaptic connection 

[100,111]. Here we assume that the transient, short-latency increase in postsynaptic spiking 

activity following a presynaptic spike indicates the presence of an excitatory monosynaptic 

connection [19]. Nevertheless, verifying connections using optogenetics, juxtacellular recordings 

[112], imaging [113] or anatomical reconstruction provide a more accurate estimate of true 

anatomical connections. Secondly, to model short-term dynamics in spiking neurons we employ a 

rate model that does not explicitly account for the detailed membrane potential of the postsynaptic 

neuron. Other approaches to modeling synaptic transmission with realistic spike-generation 

mechanisms, currents, and even dendritic morphology do exist, but are typically less 

computationally tractable [114]. Here we employed an augmented GLM with a logistic spike 

nonlinearity. We chose the logistic nonlinearity over the conventional exponential function as it 
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appears to better describe strong connections, such as the ANF-SBC, but other nonlinearities may 

be better for other neurons [51]. There are also alternatives to the Tsodyks-Markram model for 

modeling synaptic dynamics. The TM model is biologically plausible, but, since it is deterministic, 

it ignores the stochasticity of synaptic release and only tracks the dynamics of average postsynaptic 

potentials. Finally, there are many covariates that could be added to improve model performance, 

including local field potentials, connections to other simultaneously observed presynaptic neurons 

[92], higher-order history or coupling terms [115,116], and covariates related to other types of 

plasticity [13,67,115,117,118]. Despite these simplifying assumptions and the fact that we only 

observe a fraction of inputs to the neuron, the TM-GLM captures a wide diversity of in vivo, 

excitatory spike transmission patterns. 

Short-term synaptic plasticity alters information transmission from presynaptic to postsynaptic 

neurons by dynamically changing the synaptic efficacy [11,20,22]. Intracellular studies in vitro or 

with artificial stimulation patterns have shown that short-term synaptic dynamics depend on cell-

types and brain regions [36,71]. However, there is evidence that, in addition to these anatomical 

dependencies, short-term synaptic dynamics also depend on stimulus type and the larger 

computational function of the neural circuit [119]. To understand how these synaptic dynamics 

alter neural computations we will need to study them during natural patterns of presynaptic spiking 

[6] and, ultimately, during natural behavior. Since large-scale intracellular recordings are currently 

not feasible in vivo, here we examined the possibility of using existing large-scale extracellular 

recordings to quantify the dynamics of spike transmission and infer the short-term dynamics of 

synaptic responses. We find that including STP in models of spiking neurons can capture diverse 

patterns of spike transmission, including patterns that are stimulus-dependent and cell-type-

specific. Additionally, these models substantially improve prediction of postsynaptic spiking 
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following presynaptic spikes and, at least in some cases, can approximately reconstruct individual 

PSP amplitudes. 
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Chapter 4: Discussion  

Short-term synaptic plasticity (STP) has traditionally been studied using intracellular, in vitro 

recording techniques where the membrane potential of a postsynaptic neuron can be directly 

observed from the postsynaptic potential (PSP). By measuring changes in PSP over time such 

intracellular, in vitro experiments have characterized many different forms of plasticity and 

identified the underlying molecular mechanisms and demonstrated how STP differs across cell-

types [2,68]. At specific synapses, STP can also change during development, as neuromodulator 

concentrations change, and after long-term plastic changes. Typically, in vitro experiments 

characterize STP using periodic pulses with fixed intervals. However, extending findings from in 

vitro experiments to understand how synapses change in vivo and during behavior is a major 

challenge. Measuring how synapses between neurons change over time is experimentally difficult 

and typically requires precise intracellular recordings and electrical stimulation. However, 

advances in neural recording technology are providing increasingly large datasets where the 

extracellular spiking activity of hundreds of neurons can be measured simultaneously. Our goal 

here was to build on static models of functional connectivity from spike observations and develop 

a framework that allows interactions between neurons to be dynamic. Here we developed methods 

that allow time-varying synaptic weights to be inferred from spike times alone. These models pave 

a way to study short-term synaptic plasticity and network dynamics that are crucial for temporal 

information processing in behaving animal. 
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In chapter 2, we introduced two methods (eTM-GLM and GBLM) for estimating short-term 

synaptic plasticity from spikes alone. To validate these methods, we used an in vitro current 

injection experiment where an artificial population of presynaptic neurons – whose spiking and 

plasticity parameters are known – acted as input to an intracellularly recorded neuron. Both models 

were able to robustly characterize different plasticity types and reconstructed PSP amplitudes. The 

advantage of these models is the ability to infer time-varying synaptic input using natural, ongoing 

spike activity.  

In chapter 3, we built upon eTM-GLM in the previous chapter and examined short-term synaptic 

dynamics in vivo. Here, we used a model-based approach (an extended version of a GLM; TM-

GLM) to incorporate the influences of membrane potential integration, post-spike history, and 

postsynaptic excitability. By incorporating all of these factors, we provided a detailed explanation 

for the observed patterns of spike transmission and also made accurate predictions about the 

postsynaptic responses to individual presynaptic spikes. 

Here we have shown that dynamic functional connectivity can describe synaptic transmission 

properties in short timescales. This work in its current state could be a useful tool for systems and 

computational neuroscientists interested in studying synaptic transmission in vivo. Moreover, 

future methods could improve the current work by including analytical description of short-term 

synaptic plasticity that guarantees identifiability. Also, this work shows how synaptic transmission 

and neural computation are task and cell-type specific. In future work, this insight could be 

incorporated in optimizing generative models of spiking neural networks. 
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