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ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION 
PROBABILITIES ARE LESS THAN ONE 
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Abstract. Nondetection of a species at a site does not imply that the species is absent 
unless the probability of detection is 1. We propose a model and likelihood-based method 
for estimating site occupancy rates when detection probabilities are < 1. The model provides 
a flexible framework enabling covariate information to be included and allowing for missing 
observations. Via computer simulation, we found that the model provides good estimates 
of the occupancy rates, generally unbiased for moderate detection probabilities (>0.3). We 
estimated site occupancy rates for two anuran species at 32 wetland sites in Maryland, 
USA, from data collected during 2000 as part of an amphibian monitoring program, Frog- 
watch USA. Site occupancy rates were estimated as 0.49 for American toads (Bufo amer- 
icanus), a 44% increase over the proportion of sites at which they were actually observed, 
and as 0.85 for spring peepers (Pseudacris crucifer), slightly above the observed proportion 
of 0.83. 

Key words: anurans; bootstrap; Bufo americanus; detection probability; maximum likelihood; 
metapopulation; monitoring; patch occupancy; Pseudacris crucifer; site occupancy. 

INTRODUCTION 

We describe an approach to estimating the proportion 
of sites occupied by a species of interest. We envision 
a sampling method that involves multiple visits to sites 
during an appropriate season during which a species 
may be detectable. However, a species may go unde- 
tected at these sites even when present. Sites may rep- 
resent discrete habitat patches in a metapopulation dy- 
namics context or sampling units (e.g., quadrats) reg- 
ularly visited as part of a large-scale monitoring pro- 
gram. The patterns of detection and nondetection over 
the multiple visits for each site permit estimation of 
detection probabilities and the parameter of interest, 
proportion of sites occupied. 

Our motivation for considering this problem in- 
volves potential applications in (1) large-scale moni- 
toring programs and (2) investigations of metapopu- 
lation dynamics. Monitoring programs for animal pop- 
ulations and communities have been established 
throughout the world in order to meet a variety of ob- 
jectives. Most programs face two important sources of 
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variation that must be incorporated into the design 
(e.g., see Thompson 1992, Lancia et al. 1994, Thomp- 
son et al. 1998, Yoccoz et al. 2001, Pollock et al. 2002). 

The first source of variation is space. Many programs 
seek to provide inferences about areas that are too large 
to be completely surveyed. Thus, small areas must be 
selected for surveying, with the selection being carried 
out in a manner that permits inference to the entire area 
of interest (Thompson 1992, Yoccoz et al. 2001, Pol- 
lock et al. 2002). 

The second source of variation important to moni- 
toring program design is delectability. Few animals are 
so conspicuous that they are always detected at each 
survey. Instead, some sort of count statistic is obtained 
(e.g., number of animals seen, heard, trapped, or oth- 
erwise detected), and a method is devised to estimate 
the detection probability associated with the count sta- 
tistic. Virtually all of the abundance estimators de- 
scribed in volumes such as Seber (1982) and Williams 
et al. (in press) can be viewed as count statistics divided 
by estimated detection probabilities. Not allowing for 
delectability and solely using the count statistic as an 
index to abundance is unwise. Changes in the count 
may be a product of random variations or changes in 
delectability, so it is impossible to make useful infer- 
ence about the system under investigation. 

The methods used to estimate detection probabilities 
of individual animals (and hence abundance) at each 
site are frequently expensive of time and effort. For 
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this reason, these estimation methods are often used in 
detailed experiments or small-scale investigations, but 
are not as widely used in large-scale monitoring pro- 
grams. The methods proposed here to estimate the pro- 
portion of sites (or more generally, the proportion of 
sampled area) occupied by a species can be imple- 
mented more easily and less expensively than the meth- 
ods used for abundance estimation. For this reason, our 
proposed method should be attractive as a basis for 
large-scale monitoring programs, assuming that the 
proportion of sites or area occupied is an adequate state 
variable with respect to program objectives. 

The second motivation for considering this estima- 
tion problem involves the importance of patch occu- 
pancy data to the study of metapopulation dynamics. 
The proportion of patches occupied is viewed as a state 
variable in various metapopulation models (e.g., Levins 
1969, 1970, Lande 1987, 1988, Hanski 1992, 1994, 
1997). So-called "incidence functions" (e.g., see Di- 
amond 1975, Hanski 1992) depict the probability of 
occurrence of a species in a patch, expressed as a func- 
tion of patch characteristics such as area. Under the 
assumption of a stationary Markov process, incidence 
function data are sometimes used to estimate patch ex- 
tinction and colonization probabilities (e.g., Hanski 
1992, 1994, 1997, Moilanen 1999). Given the relevance 
of patch occupancy data to metapopulation investiga- 
tions and models, it seems important to estimate patch 
occupancy probabilities properly. For most animal 
sampling situations, detection of a species is indeed 
indicative of "presence," but nondetection of the spe- 
cies is not equivalent to absence. Thus, we expect most 
incidence function estimates of the proportion of patch- 
es occupied to be negatively biased to some unknown 
degree because species can go undetected when pre- 
sent. 

In this paper, we first present general sampling meth- 
ods that permit estimation of the probability of site 
occupancy when detection probabilities are <1 and 
may vary as functions of site characteristics, time, or 
environmental variables. We then present a statistical 
model for site occupancy data and describe maximum 
likelihood estimation under this model. We illustrate 
use of the estimation approach with empirical data on 
site occupancy by two anuran species at 32 wetland 
sites in Maryland collected during 2000. Finally we 
discuss extending this statistical framework to address 
other issues such as colony extinction/colonization, 
species co-occurrence, and allowing for heterogeneous 
detection and occupancy probabilities 

METHODS 

Notation 

We use the following notation throughout this article: 
4i, probability that a species is present at site i; pi, 
probability that a species will be detected at site i at 
time t, given presence; N, total number of surveyed 

sites; T, number of distinct sampling occasions; n, num- 
ber of sites where the species was detected at time t; 
n., total number of sites at which the species was de- 
tected at least once. 

Our use of p, to signify detection probabilities, dif- 
fers from its customary use in the metapopulation lit- 
erature, where it is used to denote the probability of 
species presence (our qj). However, our notation is con- 
sistent with the mark-recapture literature which pro- 
vides the foundation of our approach. 

Basic sampling situation 

Here we consider situations in which surveys of spe- 
cies at N specific sites are performed at T distinct oc- 
casions in time. Sites are occupied by the species of 
interest for the duration of the survey period, with no 
new sites becoming occupied after surveying has be- 
gun, and no sites abandoned before the cessation of 
surveying (i.e., the sites are "closed" to changes in 
occupancy). At each sampling occasion, investigators 
use sampling methods designed to detect the species 
of interest. Species are never falsely detected at a site 
when absent, and a species may or may not be detected 
at a site when present. Detection of the species at a 
site is also assumed to be independent of detecting the 
species at all other sites. The resulting data for each 
site can be recorded as a vector of 1's and 0's denoting 
detection and nondetection, respectively, for the oc- 
casions on which the site was sampled. The set of such 
detection histories is used to estimate the quantity of 
interest, the proportion of sites occupied by the species. 

General likelihood 

We propose a method that parallels a closed-popu- 
lation, mark-recapture model, with an additional pa- 
rameter ('4) that represents the probability of species 
presence. In closed-population models, the focus is to 
estimate the number of individuals never encountered 
by using information garnered from those individuals 
encountered at least once (e.g., see Otis et al. 1978, 
Williams et al., in press). In our application, sites are 
analogous to individuals except that we observe the 
number of sites with the history comprising TO's (sites 
at which the species is never detected over the T sam- 
pling occasions); hence, the total population size of 
sites is known, but the focus is to estimate the fraction 
of those sites that the species actually occupies. One 
could recast this.problem into a more conventional 
closed mark-recapture framework by only considering 
those sites where the species was detected at least once. 
Use of such data with closed-population, capture-re- 
capture models (e.g., Otis et al. 1978) would yield es- 
timates of population size that correspond to the num- 
ber of sites where the species is present. However, the 
following method enables additional modeling of ip to 
be investigated (such as including covariate informa- 
tion). 

A likelihood can be constructed using a series of 
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probabilistic arguments similar to those used in mark- 
recapture modeling (Lebreton et al. 1992). For sites 
where the species was detected on at least one sampling 
occasion, the species must be present and was either 
detected or not detected at each sampling occasion. For 
example, the likelihood for site i with history 01010 
would be 

+[( -POPOO - Pi3)Pi4(l - PiA) 

However, nondetection of the species does not imply 
absence. Either the species was present and was not 
detected after T samples, or the species was not present. 
For site k with history 00000, the likelihood is 

5 

k H O Pkt) + O1 P) 
J=l 

Assuming independence of the sites, the product of all 
terms (one for each site) constructed in this manner 
creates the model likelihood for the observed set of 
data, which can be maximized to obtain maximum like- 
lihood estimates of the parameters. 

Note that, at this stage, presence and detection prob- 
abilities have been defined as site specific. In practice, 
such a model could not be fit to the data because the 
likelihood contains too many parameters: the model 
likelihood is over-paramet-rized. However, the model 
is presented in these general terms because, in some 
cases, the probabilities may be modeled as a function 
of site-specific covariates, to which we shall return. 

When presence and detection probabilities are con- 
stant across monitoring sites, the combined model like- 
lihood can be written as 

L(a p) = n H pt (1 - pt)()t 

, ~~~~~~~N-n. 
X H (1 - Pt) + (1 - 

Using the likelihood in this form, our model could be 
implemented with relative ease via spreadsheet soft- 
ware with built-in function maximization routines, be- 
cause only the summary statistics (n,, . . ., nT, n.) and 
N are required. Detection probabilities could be time 
specific, or reduced forms of the model could be in- 
vestigated by constraining p to be constant across time 
or a function of environmental covariates. 

We suggest that the standard error of 'j be estimated 
using a nonparametric bootstrap method (Buckland and 
Garthwaite 1991), rather than the asymptotic (large- 
sample) estimate involving the second partial deriva- 
tives of the model likelihood (Lebreton et al. 1992). 
The asymptotic estimate represents a lower bound on 
the value of the standard error, and may be too small 
when sample sizes are small. A random bootstrap sam- 
ple of N sites is taken (with replacement) from the N 
monitored sites. The histories of the sites in the boot- 
strap sample are used to obtain a bootstrap estimate of 

ij. The bootstrap procedure is repeated a large number 
of times, and the estimated standard error is the sample 
standard deviation of the bootstrap estimates (Manly 
1997). 

Extensions to the model 

Covariates.-It would be reasonable to expect that 
q may be some function of site characteristics such as 
habitat type or patch size. Similarly, p may also vary 
with certain measurable variables such as weather con- 
ditions. This covariate information (X) can be easily 
introduced to the model using a logistic model (Eq. 2) 
for +4 and/or p (denote the parameter of interest as 0 
and the vector of model parameters as B: 

= exp(XB) (2) 
1 + exp(XB)(2 

Because +4 does not change over time during the sam- 
pling (the population is closed), appropriate covariates 
would be time constant and site specific, whereas cov- 
ariates for detection probabilities could be time varying 
and site specific (such as air or water temperature). 

This is in contrast to mark-recapture models in 
which time-varying individual covariates cannot be 
used. In mark-recapture, a time-varying individual 
covariate can only be measured on those occasions 
when the individual is captured; the covariate value is 
unknown otherwise. Here, time-varying, site-specific 
covariates can be collected and used regardless of 
whether the species is detected. It would not be pos- 
sible, however, to use covariates that change over time 
and cannot be measured independent of the detection 
process. 

If +4 is modeled as a function of covariates, the av- 
erage species presence probability is 

N 

(3) 
N 

Missing observations.-In some circumstances, it 
may not be possible to survey all sites at all sampling 
occasions. Sites may not be surveyed for a number of 
reasons, from logistic difficulties in getting field per- 
sonnel to all sites, to the technician's vehicle breaking 
down en route. These sampling inconsistencies can be 
easily accommodated using the proposed model like- 
lihood. 

If sampling does not take place at site i at time t, 
then that occasion contributes no information to the 
model likelihood for that site. For example, consider 
the history 10_11, where no sampling occurred at time 
3. The likelihood for this site would be: 

'~PIO - P2)P4P5. 

Missing observations can only be accounted for in this 
manner when the model likelihood is evaluated sepa- 
rately for each site, rather than using the combined form 
of Eq. 1. 
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FiG. 1. Results of the 500 simulated sets of data for N = 40, with no missing values. Indicated are the average value of 
q, q; the replication-based estimate of the true standard error of q, SE(+); and the average estimate of the standard error 
obtained from 200 nonparametric bootstrap samples, SE(+), for various levels of T, p, and q,. 

SIMULATION STUDY 

Simulation methods 

A simulation study was undertaken to evaluate the 
proposed method for estimating 4i. Data were generated 
for situations in which all sites had the same probability 
of species presence, and the detection probability was 
constant across time and sites, .( )p(-). The effects of 
five factors were investigated: (1) N = 20, 40, or 60; 
(2) q, = 0.5, 0.7, or 0.9; (3) p = 0.1, 0.3, or 0.5; (4) 
T = 2, 5, or 10; (5) probability of a missing observation 
= 0.0, 0.1, or 0.2. 

For each of the 243 scenarios, 500 sets of data were 
simulated. For each site, a uniformly distributed, pseu- 
do-random number between 0 and 1 was generated (y), 
and if y ' qj then the site was occupied. Further pseudo- 
random numbers were generated and similarly com- 
pared to p to determine whether the species was de- 
tected at each time period, with additional random 
numbers being used to establish missing observations. 
The qj(.)p(-) model was applied to each set of simulated 
data. The resulting estimate of qj was recorded and the 

nonparametric bootstrap estimate of the standard error 
was also obtained using 200 bootstrap samples. 

Simulation results 

Fig. 1 presents the simulation results for scenarios 
where N = 40 with no missing values only, but these 
are representative of the results in general. The full 
simulation results are included in the Appendix. 

Generally, this method provides reasonable estimates 
of the proportion of sites occupied. When detection 
probability is 0.3 or greater, the estimates of qj are 
reasonably unbiased in all scenarios considered for T 
2 5. When T = 2, only when detection probability is 
at least 0.5 do the estimates of qj appear to be reason- 
able. For low detection probabilities, however, qj tends 
to be overestimated when the true value is 0.5 or 0.7, 
but underestimated when qj equals 0.9. A closer ex- 
amination of the results reveals that, in some situations 
in which detection probability is low, qJ tends to 1. 

In most cases, the nonparametric bootstrap provides 
a good estimate of the standard error for 4,, the excep- 
tion being for situations with low detection probabil- 
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ities. Again, this is caused by tI estimates close to 1; 
in such situations, the bootstrap estimate of the stan- 
dard error is very small, which overstates the precision 
of 1J. 

In general, increasing the number of sampling oc- 
casions improves both the accuracy and precision of 
4, although in some instances there is little gain in 
using 10 occasions rather than five. If only two occa- 
sions are used, however, accuracy tends to be poor 
unless detection probabilities are high, and even then 
the standard error of t is approximately double that of 
using five sampling occasions. 

Similarly, increasing the number of sites sampled, N, 
also improves both the accuracy and precision of 4t. 

Not presented here are the simulation results for sce- 
narios with missing observations. The proposed meth- 
od appears to be robust to missing data, with the only 
noticeable effect being (unsurprisingly) a loss of pre- 
cision. In this study, on average, the standard error of 
it increased by 5% with 10% missing observations, and 
by 11% with 20% missing observations. The bootstrap 
standard error estimates also increased by a similar 
amount, accounting well for the loss of information. 

FIELD STUDY OF ANURANS AT 
MARYLAND WETLANDS 

Field methods and data collection 

We illustrate our method by considering monitoring 
data collected on American toads (Bufo americanus) 
and spring peepers (Pseudacris crucifer) at 32 wetland 
sites located in the Piedmont and Upper Coastal Plain 
physiographic provinces surrounding Washington, 
D.C., and Baltimore, Maryland, USA. Volunteers en- 
rolled in the National Wildlife Federation/U.S. Geo- 
logical Survey's amphibian monitoring program, 
FrogwatchUSA, visited monitoring sites between 19 
February 2000 and 12 October 2000. Sites were chosen 
nonrandomly by volunteers and were monitored at their 
convenience. Observers collected information on the 
species of frogs and toads heard calling during a 3-min 
counting period taken sometime after sundown. Each 
species of calling frog and toad was assigned a three- 
level calling index, which, for this study, was truncated 
to reflect either detection (1) or nondetection (0). 

The data set was reduced by considering only the 
portion of data for each species between the dates of 
first and last detection exclusive. Truncating the data 
in this manner ensures that species were available to 
be detected throughout that portion of the monitoring 
period, thus satisfying our closure assumption. Includ- 
ing the dates of first and last detection in the analysis 
would bias parameter estimates because the data set 
was defined using these points; hence, they were ex- 
cluded. 

Three sites were removed after the truncation be- 
cause they were never monitored during the redefined 
period. Fewer than eight of the 29 sites were monitored 

TABLE 1. Relative difference in AIC (AAIC), AIC model 
weights (w), overall estimate of the fraction of sites oc- 
cupied by each species (,), and associated standard error 
(SE(+)). 

Model, by species AAIC wi SE(+) 

American toad 
4(Habitat) p(Temperature) 0.00 0.36 0.50 0.13 
tj(-) p(Temperature) 0.42 0.24 0.49 0.14 
if(Habitat) p(.) 0.49 0.22 0.49 0.12 
4( ) p(.) 0.70 0.18 0.49 0.13 

Spring peeper 
4i(Habitat) p(Temperature) 0.00 0.85 0.84 0.07 
tp(-) p(Temperature) 1.72 0.15 0.85 0.07 
4i(Habitat) p(.) 40.49 0.00 0.84 0.07 
V(-) p(-) 42.18 0.00 0.85 0.07 

on any given day and the number of visits per site 
varied tremendously, with a very large number of miss- 
ing observations (-90%). Note that in the context of 
this sampling, the entire sampling period included the 
interval between the date at which the first wetland was 
sampled and the date at which all sampling ended. A 
missing observation was thus any date during this in- 
terval on which a wetland was not sampled. Each time 
a site was visited, air temperature was recorded. Sites 
were defined as being either a distinct body of water 
(pond, lake) or other habitat (swamp, marsh, wet mead- 
ow). These variables were considered as potential cov- 
ariates for detection and presence probabilities, re- 
spectively. The data used in this analysis have been 
included in the Supplement. 

Results of field study 

American toad. -Daily records for the 29 sites, mon- 
itored between 9 March 2000 and 30 May 2000, were 
included for analysis. Sites were visited 8.9 times on 
average (minimum = 2, maximum = 58 times), with 
American toads being detected at least once at 10 lo- 
cations (0.34). Three models with covariates and one 
without were fit to the data (Table 1) and ranked ac- 
cording to AIC (Burnham and Anderson 1998). The 
four models considered have virtually identical weight, 
suggesting that all models provide a similar description 
of the data, despite the different structural forms. 
Therefore we cannot make any conclusive statement 
regarding the importance of the covariates, but there 
is some suggestion that detection probabilities may in- 
crease with increasing temperature and occupancy rates 
may be lower for habitats consisting of a distinct body 
of water. However, all models provide very similar es- 
timates of the overall occupancy rate (-0.49), which 
is 44% larger than the proportion of sites where toads 
were detected at least once. The standard error for the 
estimate is reasonably large and corresponds to a co- 
efficient of variation of 27%. 

Spring peeper.-Daily records for the 29 sites, mon- 
itored between 27 February 2000 and 30 May 2000, 
were included for analysis. Sites were visited, on av- 
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erage, 9.6 times (minimum = 2, maximum = 66 visits), 
with spring peepers being detected at least once at 24 
locations (0.83). The same models as those for the 
American toad were fit to the spring peeper data and 
the results are also displayed in Table 1. Here the two 
p(.) models have virtually zero weight, indicating that 
the p(Temperature) models provide a much better de- 
scription of the data. We suspect that this effect is due, 
partially, to a tapering off of the calling season as spring 
progresses into summer. The tJ(Habitat) p(Temperature) 
model clearly has greatest weight and suggests that 
estimated occupancy rates are lower for distinct bodies 
of water (0.77) than for other habitat types (1.00). This 
is not unexpected, given spring peepers were actually 
detected at all sites of the latter type. Regardless of 
how the models ranked, however, all models provide 
a similar estimate of the overall occupancy rate that is 
only marginally greater than the number of sites where 
spring peepers were detected at least once. This sug- 
gests that detection probabilities were large enough that 
spring peepers probably would be detected during the 
monitoring if present. 

DISCUSSION 

The method proposed here to estimate site occupancy 
rate uses a simple probabilistic argument to allow for 
species detection probabilities of < 1. As shown, it pro- 
vides a flexible modeling framework for incorporating 
both covariate information and missing observations. 
It also lays the groundwork for some potentially ex- 
citing extensions that would enable important ecolog- 
ical questions to be addressed. 

From the full simulation results for scenarios with 
low detection probabilities, it is very easy to identify 
circumstances in which one should doubt the estimates 
of tJ. We advise caution if an estimate of 4i very close 
to 1 is obtained when detection probabilities are low 
(<0.15), particularly when the number of sampling oc- 
casions is also small (<7). In such circumstances, the 
level of information collected on species presence/ab- 
sence is small, so it is difficult for the model to dis- 
tinguish between a site where the species is genuinely 
absent and a site where the species has merely not been 
detected. 

Our simulation results may also provide some guid- 
ance on the number of visits to each site required in 
order to obtain reasonable estimates of occupancy rate. 
If one wishes to visit a site only twice, then it appears 
that the true occupancy rate needs to be >0.7 and de- 
tection probability (at each visit) should be >0.3. Even 
then, however, precision of the estimate may be low. 
Increasing the number of visits per site improves the 
precision of the estimated occupancy rate, and the re- 
sulting increase in information improves the accuracy 
of the estimate when detection probabilities are low. 
We stress that whenever a survey (of any type) is being 
designed, some thought should be given to the likely 
results and method of analysis, because these consid- 

erations can provide valuable insight on the level of 
sampling effort required to achieve "good" results. 

Logistical considerations of multiple visits will prob- 
ably result in some hesitancy to use this approach, but 
we suggest that the expenditure of extra effort to obtain 
unbiased estimates of parameters of interest generally 
will be preferable to the expenditure of less effort to 
obtain biased estimates. If travel time to sites is sub- 
stantial, then multiple searches or samples may be con- 
ducted by multiple observers, or even by a single ob- 
server, at a single trip to a site, e.g., conduct two or 
more 3-min amphibian calling surveys in a single night 
at the same pond. If large numbers of patches must be 
surveyed, then it may be reasonable to conduct multiple 
visits at a subset of sites for the purpose of estimating 
detection probability, and perhaps associated covariate 
relationships. Then this information on detection prob- 
ability, perhaps modeled as a function of site-specific 
covariates, could be applied to sites visited only once. 
Issues about optimal design require additional work, 
but it is clear that a great deal of flexibility is possible 
in approaches to sampling. 

Site occupancy may well change over years or be- 
tween seasons as populations change; new colonies 
could be formed or colonies could become locally ex- 
tinct. When sites are surveyed on more than one oc- 
casion between these periods of change, for multiple 
periods, the approach described here could be com- 
bined with the robust design mark-recapture approach 
(Pollock et al. 1990). For example, suppose that the 
anuran sampling described in our examples is contin- 
ued in the future, such that the same wetland sites are 
surveyed multiple times each summer, for multiple 
years. During the periods when sites are closed to 
changes in occupancy, our approach could be used to 
estimate the occupancy rate as in our example. The 
change in occupancy rates over years could then be 
modeled as functions of site colonization and extinction 
rates, analogous with the birth and death rates in an 
open-population mark-recapture study. Such Markov 
models of patch occupancy dynamics will permit time- 
specific estimation and modeling of patch extinction 
and colonization rates that do not require the assump- 
tions of p = 1 or process stationarity invoked in pre- 
vious modeling efforts (e.g., Erwin et al. [1998] re- 
quired p = 1; Hanski [1992, 1994] and Clark and Ro- 
senzweig [1994] required both assumptions). 

Often monitoring programs collect information on 
the presence/absence of multiple species at the same 
sites. An important biological question is whether spe- 
cies co-occur independently. Does the presence/ab- 
sence of species A depend upon the occupancy state 
of species B? Our method of modeling species presence 
could be extended in this direction, enabling such im- 
portant ecological questions to be addressed. The mod- 
el could be parameterized in terms of TAB (in addition 
to iA and 0B): the probability that both species A and 
species B are present at a site. However, the number 
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of parameters in the model would increase exponen- 
tially with the number of species, so reasonably good 
data sets might be required. For example, four addi- 
tional parameters would be required to model co-oc- 
currences between species A, B, and C (JAB, 4PACT PBC9 

PABC), but if six species were being modeled, 57 extra 
parameters would need to be estimated. 

Not addressed are situations in which presence and 
detection probabilities are heterogeneous, varying 
across sites. Some forms of heterogeneity may be ac- 
counted for with covariate information such as site 
characteristics or environmental conditions at the time 
of sampling. On other occasions, however, the source 
of heterogeneity may be unknown. We foresee that 
combining our method with the mixture model ap- 
proach to closed-population, mark-recapture models of 
Pledger (2000) would be one solution, which enables 
the problem to be contained within a likelihood frame- 
work. It may also be possible to combine our method 
with other closed-population, mark-recapture methods 
such as the jackknife (Burnham and Overton 1978) or 
coverage estimators (Chao et al. 1992). For different 
sampling frameworks, where monitoring is performed 
on a continuous or incidental basis rather than at dis- 
crete sampling occasions, combining our methods with 
the Poisson family of models (Boyce et al. 2001, 
MacKenzie and Boyce 2001) may also be feasible, par- 
ticularly for multiple years of data. 

The three extensions to the proposed methods are 
currently the focus of ongoing research on this general 
topic of estimating site occupancy rates. 

Software to perform the above modeling has been 
included in the Supplement. 
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APPENDIX 

Full results of the simulation study are available in ESA's Electronic Data Archive: Ecological Archives E083-041-A1. 

SUPPLEMENT 

Software, source code, and the sample data sets are available in ESA's Electronic Data Archive: Ecological Archives E083- 
041-Si. 
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