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Abstract: Information regarding small area prevalence of chronic disease
is important for public health strategy and resourcing equity. This paper
develops a prevalence model taking account of survey and census data to de-
rive small area prevalence estimates for diabetes. The application involves
32000 small area subdivisions (zip code census tracts) of the US, with the
prevalence estimates taking account of information from the US-wide Be-
havioral Risk Factor Surveillance System (BRFSS) survey on population
prevalence differentials by age, gender, ethnic group and education. The
effects of such aspects of population composition on prevalence are widely
recognized. However, the model also incorporates spatial or contextual in-
fluences via spatially structured effects for each US state; such contextual
effects are allowed to differ between ethnic groups and other demographic
categories using a multivariate spatial prior. A Bayesian estimation ap-
proach is used and analysis demonstrates the considerably improved fit of a
fully specified compositional-contextual model as compared to simpler ‘stan-
dard’ approaches which are typically limited to age and area effects.
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1. Introduction

Information regarding area prevalence of diabetes is important for ensur-
ing that resources for diabetes care match need and for effective targetting of
diabetes-prevention services. In the US there is evidence of a growth in diabetes
levels over time (Mokdad et al, 2001), of wide geographic contrasts in preva-
lence, and of considerable differences in relative risk between the main ethnic
groups (Davidson, 2001; Harris, 1998). Thus in 1999-2000, the age-adjusted US
wide prevalence of previously diagnosed diabetes among adults was estimated
as 11.7% among blacks, 9.6% among Hispanics, and 4.8% among non-Hispanic
whites (CDC, 2003). This paper develops a binary regression model taking ac-
count of 2005 survey data, and 2000 US census data, to derive small area preva-
lence estimates for previously diagnosed diabetes in 32000 small area subdivisions
of the US.
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These estimates take account of information from the US-wide Behavioral
Risk Factor Surveillance System (BRFSS) surveys on prevalence differentials by
age, gender, ethnic group and education (e.g. Mukhtar et al, 2003). These
surveys are random-digit-dialed telephone survey to determine the prevalence
among adults (ages 18 and over) of major illnesses and health behaviors which
are related to the leading causes of death in the US. To determine diabetes
status, respondents were asked “Have you ever been told by a doctor that you
have diabetes?”, encompassing both types of diabetes.

The estimates described in this paper are based on around 360,000 survey
responses to the 2005 BRFSS, and on a binary regression model expressing the
impact on diabetes of major individual level risk factors measured by the survey.
However, since the ultimate goal of the analysis is small area prevalence estima-
tion, inclusion of risk factors (and interactions between them) in the model is
subject to the constraint that included risks are available also as tabulations for
small area populations. The regression model adjusts for US state level relation-
ships between diabetes and the levels of rurality and poverty, and for unmeasured
state level influences. The latter are modelled using a multivariate random ef-
fects approach that allows state level contextual effects to be differentiated by
ethnic group. The areas for which prevalence is estimated are 32000 ZIP Code
Tabulation Areas (ZCTAs) for which selected Census 2000 statistics have been
provided by the US Census Bureau (cf Grubesic & Matisziw, 2006).

2. Individual Level Risk Factors: Compatibility between Survey and
Small Area Variable Frames

The survey regression model for diabetes prevalence includes major individ-
ual level risk factors (age, gender, ethnicity, education level) that are known to
be significant sources of varying diabetes prevalence. A pronounced gradient in
diabetes prevalence by age is reported by CDC (2003) and Mokdad et al (2001),
while Maty et al (2005) report that socioeconomic disadvantage, especially low
educational attainment, is a significant predictor of incident Type 2 diabetes.
Prevalence variations by education level are also reported by CDC (2004). How-
ever, since the ultimate goal of the analysis is small area prevalence estimation,
inclusion of risk factors (and interactions between them) in the survey model is
subject to the constraint that included risks are available both in the BRFSS
and as tabulations for ZCTA populations; any assumed interaction between risk
factors requires a matching cross-tabulation in the ZCTA population.

Demographic risk categories, namely age group, gender and ethnic group
(white non-hispanic, black, hispanic, other) are available both as BRFSS vari-
ables and in a ZCTA level tabulation which cross-tabulates adult populations
by ethnicity, quinquennial age and gender. For comparably defined demographic
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risk groups (e.g. age-ethnic-gender subgroups), parameters from the survey model
(e.g. relative risk for hispanic males aged 45-49) can then be transferred to the
ZCTA sub-population. As mentioned in the description of the model below, age
gradients may vary both by gender and between ethnic groups, and it is impor-
tant to model such variation while also taking account of correlation between the
shapes of age profiles for different groups.

For other individual level risk variables (e.g. education), either primary ZCTA
tabulations are available from the 2000 census, or a limited cross tabulation (e.g.
male adults by education, and female adults by education), but not tabulations
involving cross-hatching against all other risk factors. For example, there is not a
ZCTA level census table that cross-tabulates the adult population simultaneously
by education, quinquennial age, ethnicity and gender. A small area prevalence
adjustment can then be applied only for the main effect of such variables, or for
a partial interaction. For example, the survey regression models show gender-
specific education gradients in relative risk of diabetes prevalence, and these
gradients can be applied to ZCTA male and female adult populations subdivided
by education level.

3. Geographic Influences

As is now well known, individual risk factors and contextual factors (includ-
ing the impact of geographic location) interact in their impact on many chronic
diseases. Although prevalence is to be estimated at ZCTA level, the ZCTA of
residence is not available for BRFSS respondents for confidentiality reasons, so
it is not possible to take account of the impact of (say) poverty rates for ZCTAs
on small area diabetes prevalence.

However, one may model the impact of broad scale geographic influences on
diabetes prevalence operating at the level of US states, since state of residence
(s = 1, .., 53, including the District of Columbia, Virgin Islands and Puerto Rico),
is available for all respondents. Some directly measured state level predictors may
have a significant influence on diabetes prevalence; those used here are the percent
of population in poverty and the percentage of rural population. Rural location
in the US is in fact a positive risk factor for diabetes prevalence and an adverse
influence on access to diabetes care (Mainous et al, 2004; AHRQ, 2005).

Many geographic influences are likely to be unobserved and these are proxied
in the regression model by state level random effects. These influences may reflect
environmental factors such as climate (Franz & Bailey, 2004), or the aggregate
effect of variables representing health behaviours. Such effects are taken to be
a sum of two effects, one of which is spatially correlated to reflect smoothly
varying risk factors in space that straddle arbitrary state boundaries (Richardson
& Monfort, 2000), while the other is unstructured in the sense of not incorporating
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spatial structure. In the disease mapping literature this approach, due to Besag
et al (1991), is known as a convolution model. Both types of random state
effects are differentiated by ethnic group (i.e. are multivariate), since contrasts
in diabetes prevalence between ethnic groups are likely to differ by state. Thus
CDC (2004) report that ”Hispanics continued to have a higher prevalence of
diabetes than non-Hispanic whites and that disparities in diabetes between these
two populations varied by area of residence”. For spatial isolates such as Alaska
and Puerto Rico, the impact on prevalence of state of residence is confined to the
unstructured random effect.

4. Survey Model Specification

The analysis is based on the 2005 BRFSS survey, with 136 thousand male and
217 thousand female respondents. As well as including relevant risk variables,
the model should incorporate survey weights wi for respondents i to account
for differential response between demographic categories, including a lower re-
sponse rate for males as against females, and for hispanics and blacks as against
whites. Because of the large number of respondents, seperate binary regressions
are carried out for males and females, and exclude cases with diabetes status
not reported or refused - missing status applies to under 0.1% of subjects (CDC,
2008). Separate analysis by gender is also supported by evidence from other
studies of gender effect modification over a wide range of risk factors (Cabrera et
al, 2003).

Let yi = 1 if a subject reports doctor diagnosed diabetes, with yi = 0 oth-
erwise (i = 1, .., N), and define πi = Pr(yi = 1) as the probability that a
respondent reports diagnosed diabetes. The analysis here then follows studies
such as Graubard et al (1997) in using a weighted likelihood, namely∏

i

πyiwi
i (1 − πi)wi(1−yi).

Taking Li = wi[yi log πi + (1 − yi) log(1 − πi)] as the weighted log-likelihood
for subject i, the total log-likelihood is L =

∑
Li. To facilitate straightforward

application of survey model parameters across to ZCTA populations a relative
risk interpretation was sought for parameters, which is achieved using a log link
(Robbins et al, 2002).

The regression model for each gender then involves the following features with
associated parameters in brackets:

a) an overall intercept (α),
b) differential risks for black, hispanic and other ethnic groups as against

whites as reference (unknowns βg, g = 2, 3, 4,with β1 = 0 as reference)



Estimating Small Area Diabetes Prevalence 239

c) differential education risks, according to education level e, namely 1=never
attended, elementary only, or some high school; 2=high school graduate; 3=some
college or technical school; 4=college graduate (unknowns ηe, e = 2, .., 4, with
η1 = 0 as reference)

d) effects of state level predictors, namely poverty rate Povs and percent
rural Rurs, where s = 1, .., 53 denotes the BRFSS respondent’s state of residence
(δ1, δ2). These predictors are centred so that their average over all states is zero.

The parameters under (a)-(d) are ‘fixed’ effects, whereas also included are
random effects to pool strength over ages, states and ethnic groups:

e) differential risks specific to combinations of age group x = 1, .., X and
ethnic group g = 1, .., G, with X = 12 and G = 4 (γxg); the age bands are
18-24,25-29,30-34, ..,70-74, and 75+.

f) spatially correlated effects by state s = 1, .., 49 of residence (excluding
states 50-53 that are spatial isolates, namely Alaska, Hawaii, Puerto Rico and
the Virgin Islands), and ethnic group g = 1, ..G, (csg);

g) spatially unstructured effects by state s of residence (s = 1, .., 53) and
ethnic group g, (usg).

Effects under (e) and (f) are modelled via multivariate normal conditional
autoregressive priors (of dimension G=4), respectively a multivariate first order
random walk and a multivariate spatial scheme (Fahrmeir & Lang, 2001). A
constraint is applied during estimation that ensures these effects to sum to zero
within ethnic groups, so that

∑
x

γxg =
∑
s

csg = 0. The area effects usg under

heading (g) are multivariate normal (with means of zero over all states) of di-
mension G, allowing for correlated effects across ethnic groups, but without any
form of autocorrelation over areas. The differentiation of area effects by ethnic-
ity reflects evidence such as that from (CDC, 2004) that disparities in diabetes
between ethnic sub-groups in populations vary by area of residence.

Let Si denote the state of residence for respondent i. Also let {xi, gi, ei}
denote the age, ethnicity and education level of respondent i. Then one may
write the survey prevalence model as

log(πi) = α + βgi + ηei + δ1PovSi + δ2RurSi + γxi,gi + cSi,gi + uSi,gi , (4.1)

where the csg terms are not included for Alaska, Hawaii, Puerto Rico and the
Virgin Islands. This model is run separately for males and females. For simplicity
of presentation, gender r = 1, 2 (1=males, 2=females) is omitted from (4.1), but
the complete parameterisation has the form

log(π(r)
i ) = α(r) +β(r)

gi
+η(r)

ei
+δ

(r)
1 PovSi +δ

(r)
2 RurSi +γ(r)

xi,gi
+c

(r)
Si,gi

+u
(r)
Si,gi

, (4.2)

for i = 1, Nr where N1 = 135038 and N2 = 217280.
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The parameters in (1) operate on the log relative risk scale. In particular,
smoothed state level relative risks by ethnic group ρsg may be obtained by expo-
nentiating the total area effect, namely ρsg = exp(csg + usg).

Excess risk can be defined in different ways, but one is that the 95% credible
intervals for ρsg are confined to values above 1. The smoothing of state risks
under this model follows the general principle of other hierarchical shrinkage
methods that the smoothed estimate for each area “borrow strength” (precision)
from data in other areas, with shrinkage greater for areas with low event counts.
Except in the spatially isolated states, two forms of smoothing are invoked: local
smoothing towards the average of neighbouring states, and global smoothing of
all prevalence risks toward the same US wide mean (Clayton & Kaldor, 1987).
The smoothing is multivariate and so also incorporates a within state correlation
between prevalence rates of different ethnic groups. Such smoothed prevalence
estimates are more precise and more robust against false-positive inferences (e.g.
regarding excess risk) than are unpooled prevalence rate estimators.

Some concerns have been raised that Bayesian risk estimates may tend to over-
smooth variations in disease or mortality risks, particularly when data are sparse
or there are discontinuities in the spatial pattern of risk (Green and Richardson,
2002). For such reasons, the area units for the survey model have been chosen as
US states rather than US counties (of which there are circa three thousand across
the US) to avoid data sparseness. As for distortion due to discontinuities (states
with prevalence unlike that of their neighbours), these are reduced by including
unstructured effects usg as well as spatially structured effects csg. Assuming
local smoothing via spatially configured csg as the sole relevant principle guiding
smoothed prevalence estimation is inappropriate when there are discontinuities.
It is possible that more elaborate ”adaptive” priors (e.g. Congdon, 2007) could
be applied to account for any discontinuities. However, it is important to use
information on geographic adjacencies, since some spatial pooling of strength is
likely to be relevant. Accumulated evidence indicates a clear spatial patterning
in US diabetes prevalence, and in mortality from diabetes and related conditions,
with elevated diabetes prevalence in the south eastern US, and lower prevalence
in the mountain and northern states (see for example Ahluwalia et al, 2003, Table
20). Such evidence supports the inclusion of a mechanism for spatial pooling of
strength in the survey model.

5. Model with Age and State Effects Only

To provide a benchmark against more conventional prevalence rate estimation
approaches and assess the gain in fit (if any) from using the detailed model in
(1), we also consider a simple approach (though still a model) with age and state
effects only. This provides estimates of relative diabetes risk for different states
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that adjust only for differences in population age structure between states.
Under this simplified model, the model for respondents i (again within each

gender) is
log(πi) = α + γxi + uSi , (5.1)

where the age parameters γx are fixed effects with γ1 = 0 for identification, and
the log relative risks {us, s = 1, .., 53} for states are unstructured normal random
effects with zero mean. Age adjusted state prevalence rates for each gender are
obtained from this model as ρs = exp(α + us).

Thus a model based approach to estimating geographic relativities is retained
under this simpler option, but this model is similar to conventional estimation
techniques for obtaining age-adjusted prevalence rates for states. Note that in
the conventional demographic approach, state rates are in effect treated as ‘fixed
effects’ parameters, though the implicit statistical assumptions are typically not
stated.

6. Small Area Prevalence Estimates

To translate the survey model parameters into small area estimates requires
disaggregated populations that match the risk categorisations used in that model.
Thus let Sj denote the state in which ZCTA j is located, with j = 1, ...,ms

and with
∑
s

ms = 31986, the total number of ZCTAs across the US. From the

estimates of the full survey prevalence model parameters, one may extract ZCTA
level estimated prevalence probabilities (here called rates for simplicity) specific
for age group, ethnicity and gender r as

p
(r)
jxg = exp(α(r) + β(r)

g + δ
(r)
1 PovSj + δ

(r)
2 RurSj + γ(r)

xg + c
(r)
Sjg + u

(r)
Sjg), (6.1)

and these may be applied to gender-specific populations Pjrxg for ZCTA areas to
obtain estimated prevalence totals.

Summary ethnic specific rates may be obtained by weighting the age bands
according the 2000 US Standard Population (National Cancer Institute, 2008).
Thus with weights {wx, x = 1, .., X} for the X = 12 adult age bands in the
diabetes prevalence model, and subject to

∑
x

wx = 1, overall diabetes prevalence

rates for the four ethnic groups in ZCTA j are

p
(r)
jg =

∑
x

wxp
(r)
jxg. (6.2)

One may adjust the estimated rates (6.1) and (6.2) to take account of the
impact on diabetes prevalence of the education attainment mix in each ZCTA.
The education mix in a small area is one measure of the impact of socioeconomic
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structure on health outcomes (cf. Catelan et al, 2008). Thus, let h
(r)
je be the

2000 census data relative proportions at education level e in each gender’s adult
population in ZCTA j with

∑
e

h
(r)
je = 1. Also let ς

(r)
e = exp(η(r)

e ) be the survey

model estimate of the relative diabetes risk at education level e after controlling
for age, ethnicity and gender. Then a measure of relative risk associated with
the educational mix in the jth ZCTA is H

(r)
j =

∑
e

h
(r)
je ς

(r)
e , and the overall ethnic

prevalence rates adjusted for education mix are p
′(r)
jg = H

(r)
j p

(r)
jg .

Table 1: Fixed effect coefficients, full survey model

Males Females

Mean 2.5% 97.5% Relative Risk Mean 2.5% 97.5% Relative Risk

α -2.69 -2.71 -2.66 -2.56 -2.60 -2.52
Ethnic Coefficients (log relative risk)∗

β1 0.00 1.00 0.00 1.00
β2 0.44 0.41 0.47 1.56 0.66 0.61 0.72 1.93
β3 0.13 0.09 0.18 1.14 0.31 0.23 0.40 1.36
β4 0.06 0.01 0.10 1.06 0.28 0.24 0.34 1.33
Education Coefficients (log relative risk)∗∗

η1 0.00 1.00 0.00 1.00
η2 -0.08 -0.13 -0.05 0.92 -0.30 -0.33 -0.26 0.74
η3 -0.04 -0.10 0.01 0.96 -0.39 -0.43 -0.35 0.68
η4 -0.39 -0.44 -0.34 0.68 -0.86 -0.91 -0.81 0.42
State Predictors
δ1 0.0115 0.0066 0.0147 0.0098 0.0041 0.0137
δ2 0.0028 0.0009 0.0039 0.0012 -0.0002 0.0026

∗ 1= White; 2= Black; 3= Hispanic; 4= Other
∗∗ 1= No school, elementary only, or some high school without graduating; 2=
High school graduate; 3= Some college; 4= College Graduate

7. Model Results

Fitting of the models (4.1-4.2) and (5.1) and assessment of their goodness
of fit follows a Bayesian approach, under which existing evidence on parame-
ters is expressed via prior densities on such parameters, with posterior evidence
provided by combining the prior evidence with the observed data. A Bayesian
strategy is advantageous for estimating models with several sets of random ef-
fects, including random effects which are spatially clustered. Goodness of fit (see
Appendix 1 for details) is assessed by the DIC (Spiegelhalter et al, 2002) and an
approximate marginal likelihood (Ibrahim et al, 2001), while ability of the model
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to reproduce the data is assessed via a posterior predictive check involving the
deviance D = −2L (e.g. Lynch & Western, 2004). A model will be preferred
if it both (a) successfully reproduces the data and (b) has best fit among those
models compatible with the data. Estimation uses iterative Monte Carlo Markov
Chain (MCMC) sampling methods (Gelfand and Smith, 1990), as provided in
the WINBUGS program (Lunn et al, 2000). Prior specifications are considered
in Appendix 2. Posterior summaries of parameters are based on the 2nd half
of runs of 5000 iterations, using two chains starting from dispersed starting val-
ues. Convergence was achieved in all models using Brooks-Gelman-Rubin criteria
(Brooks & Gelman, 1998).

Table 1 shows gender-specific estimates of the fixed effect parameters {α, βg, ηe,
δk} from the full survey model (1). It can be seen that there is a steeper edu-
cational gradient for females, for whom the relative risk for college graduates of
exp(η4) = 0.42 is under a half that of the first education category, those with lim-
ited education (elementary education only or did not graduate from high school).
There are also clearly significant ethnic effects for both genders, with elevated
relative risk for black and hispanic persons.

Figure 1: Left panel: Female Prevalence Rates by Age and Ethnic Group (High
School Graduates); right panel: Male Prevalence Rates by Age and Ethnic
Group (High School Graduates)

Age profiles for the four ethnic groups in a typical state (one with average
poverty and rurality levels), with the rates also specific for education level e, are
obtainable as

pxge = exp(α + βg + γxg + ηe).

For example, Figure 1, left panel and right panel show estimated age prevalence
profiles differentiated by ethnic group, with the rates specific for high school
graduates, obtained via

pxg2 = exp(α + βg + γxg + η2),
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where η2 is the parameter for high school graduates. Peak rates for nonwhite
groups occur for slightly younger age bands than the oldest age band in the
model, namely the over 75s. This may reflect cohort effects (Gilliland et 1997),
linked to the sharp rise in diabetes prevalence since the 1950s.

The overall age adjusted prevalence for ethnic groups g at education level e
is obtainable (for a state with average poverty and rurality) as pge =

∑
x

wxpxge.

Table 2 contains posterior summaries (expressed as percents) for the pge over
the four ethnic groups and four education levels. The widest contrast is among
women, exemplified by the rates for white, college-educated women (posterior
mean prevalence of 0.037), as opposed to black women with limited education
(posterior mean percent prevalence of 0.176).

Table 2: Age adjusted diabetes prevalence (percent) 2005, by ethnic group and
education level

Male Female

Education Mean 2.5% 97.5% Mean 2.5% 97.5%

White
Limited∗ 8.6 7.9 9.1 8.9 8.6 9.2
High school graduate 7.7 7.3 8.1 6.5 6.4 6.7
Some college/technical school 8.1 7.6 8.5 6.0 5.8 6.1
College graduate 5.6 5.3 5.9 3.7 3.6 3.9

Black
Limited∗ 13.7 12.5 14.7 17.6 16.9 18.3
High school graduate 12.1 11.4 13.0 12.9 12.4 13.4
Some college/technical school 12.7 11.8 13.6 11.8 11.3 12.3
College graduate 8.8 8.0 9.3 7.3 6.9 7.8

Hispanic
Limited∗ 13.3 12.1 14.7 14.3 13.8 15.1
High school graduate 11.9 10.7 13.0 10.5 10.1 11.1
Some college/technical school 12.5 11.2 13.6 9.6 9.2 10.1
College graduate 8.6 7.6 9.5 6.0 5.7 6.3

Other
Limited∗ 10.8 9.4 12.8 13.6 13.0 14.2
High school graduate 9.6 8.4 11.3 10.0 9.6 10.5
Some college/technical school 10.0 8.8 11.8 9.1 8.7 9.6
College graduate 6.9 6.0 8.1 5.7 5.3 6.0

∗ Never attended, elementary only, or some high school.

State relative risks ρsg for diabetes among males and females may be obtained
by exponentiating the total area effects csg+usg by ethnic groups g. These amount
to residual effects after controlling for the age and educational composition of
state populations, and also for state levels of poverty and rurality. Despite this
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Table 3: Highest and lowest state relative risks by sex-ethnic category

White (Non-Hisp) Males White (Non-Hisp) Females
Montana 0.73 Minnesota 0.75
Wyoming 0.78 Montana 0.82
Hawaii 0.83 Arizona 0.83
New Mexico 0.85 Colorado 0.84
Alaska 0.85 Rhode Island 0.88
Alabama 1.13 Nebraska 1.18
Georgia 1.13 Indiana 1.19
Vermont 1.14 West Virginia 1.20
Tennessee 1.14 New Hampshire 1.23
Delaware 1.28 Tennessee 1.23

Black Males Black Females
California 0.54 Utah 0.70
Wyoming 0.59 District of Columbia 0.77
Oregon 0.60 Iowa 0.79
Arizona 0.64 New Mexico 0.82
Nevada 0.65 Nevada 0.82
Nebraska 1.35 Massachusetts 1.27
Florida 1.39 N Dakota 1.30
Vermont 1.48 Vermont 1.36
Illinois 1.73 Maine 1.42
Kentucky 1.86 New Hampshire 1.51

Hispanic Males Hispanic Females
Montana 0.53 Nebraska 0.73
Washington 0.55 Minnesota 0.75
Iowa 0.57 Wyoming 0.75
N Carolina 0.61 Kansas 0.75
Utah 0.62 Tennessee 0.75
S Dakota 1.45 Georgia 1.49
District of Columbia 1.47 Connecticut 1.56
Vermont 1.51 New Hampshire 1.61
Indiana 1.78 Maine 1.69
Georgia 2.03 Rhode Island 1.72

there are consistent patterns, such as multiple elevated area impacts (two or more
ρsg significantly above 1, and none significantly below 1) in Maine and Georgia,
and multiple diminished area impacts (two or more ρsg significantly below 1,
and none above 1) in Colorado, Iowa, Louisiana, Nevada, North Carolina, Utah,
Wisconsin and Wyoming. Table 3 shows states with the lowest and highest
posterior mean ρsg for groups formed according to sex and ethnicity; it is apparent
that low relative risks tend to be concentrated in the mountain states, and high
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risks in the south and east, and also that risk contrasts are greater for blacks and
hispanics than for white non-hispanics.

For estimates at ZCTA level, one important feature is measures of variation
across areas and demographic groups. Thus ranges under model (1) in posterior
mean ethnic group prevalences p′jg (i.e. adjusted for education mix) are lowest
for whites. The minima and maxima posterior mean p′jg are {0.048,0.121} for
white males and {0.027,0.153} for white females. By contrast, for black males
and black females the extrema are {0.056,0.263} and {0.055,0.240}.

A summary expression of state level geographic differentials applicable across
all ethnic groups is obtainable from the additive age and area effects model (5.1).
The simplicity of this model is appealing, and it is sufficient to reproduce the
data according to the posterior predictive check based on the deviance (see Table
4). However, there is a clear deterioration in fit compared to model (1), both in
terms of a lower marginal likelihood and higher DIC.

Table 4: Model fit, full and simple survey models

Model 1 (Full Model) Model 2 (Simple Age-Area)

Criterion Males Females Males Females

log(pseudo marginal likelihood) -32294 -50964 -33057 -52553
Deviance(θ̄) 64379 101543 65975 104996
Mean Deviance 64515 101644 66001 105028
Effective Parameters 136 101 26 32
DIC 64651 101745 66027 105060
Posterior Predictive Check 0.41 0.45 0.57 0.60

Despite its worse fit, it is of interest to consider the state level relative preva-
lence risks ρs = exp(us) obtained from model (5.1), which are adjusted for age,
but not adjusted for population differences in ethnic composition and education
levels, or for state poverty or rurality measures; see Table 5 for a summary of
highest and lowest state level relative risks according to sex. High relative risks,
namely those significantly exceeding 1 (in the sense that the 95% credible in-
terval is confined to values over 1), occur in several southern states (Alabama,
Georgia, Louisiana, Mississippi, North and South Carolina) as well as in Puerto
Rico and Oklahoma. Low relative risks, those significantly under 1, occur in
west central and northern states such as Colorado, Montana, North Dakota,
Wisconsin, Alaska, Rhode Island and Massachusetts. A pattern with some sim-
ilarities (albeit for crude rates, not adjusted for age) is reported by the CDC at
http://apps.nccd.cdc.gov/gisbrfss/default.aspx.
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Table 5: Area effects (relative risks) from simple age-area model, posterior summary

Male Female

Mean 2.5% 97.5% Mean 2.5% 97.5%

Colorado 0.80 0.70 0.92 Minnesota 0.71 0.62 0.74
Montana 0.82 0.68 0.91 Vermont 0.73 0.67 0.85
Connecticut 0.83 0.76 1.01 Rhode Island 0.73 0.66 0.79
Alaska 0.85 0.70 0.98 Montana 0.76 0.72 0.88
Massachusetts 0.88 0.80 0.99 Colorado 0.78 0.74 0.92
Mississippi 1.15 1.06 1.28 Texas 1.33 1.26 1.45
Georgia 1.19 1.10 1.28 S Carolina 1.43 1.27 1.46
Alabama 1 .22 1.14 1.34 Mississippi 1.48 1.34 1.61
S Carolina 1.26 1.17 1.39 Virgin Islands 1.52 1.38 1.62
Puerto Rico 1.42 1.29 1.54 Puerto Rico 1.83 1.66 1.92

8. Conclusion

Variations in prevalence of chronic diseases between geographic areas will
reflect variations in the attributes of area populations, sometimes termed ‘com-
positional’ effects due to the demographic and social structure of area populations
(Duncan et al, 1998). However, prevalence variations are also likely to show spa-
tial structure, reflecting what are sometimes termed ‘contextual’ effects (Sacker
et al, 2006), or unobserved risk factors that vary smoothly over space (Richardson
& Monfort, 2000). Such contextual effects are likely to be differentiated between
ethnic groups and other demographic categories.

This paper has presented a binary regression model that takes account of in-
dividual level risk factors and the spatial context for a particular chronic disease,
diabetes. Contextual effects are represented by spatially structured and unstruc-
tured area random effects, as well as by known state level influences such as
poverty levels. Area random effects are differentiated by ethnic group, reflecting
evidence from other sources that ethnic relativities are not constant spatially. Age
effects are also differentiated by ethnic group using a multivariate autoregressive
prior.

Elaborations to the model presented in (1) are possible, such as state as
well as ethnic group differentiation in age gradients, or state differentiation in
education gradients. One might also consider spatially varying priors for the
impacts of the known state level predictors, such as state poverty rate (Gamerman
et al, 2003). Varying impacts of such predictors by ethnic group or age are also
possible, if for instance, poverty has a greater influence on middle age prevalence
contrasts. However, model variations are constrained to some extent in that
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the ultimate goal of the analysis is small area prevalence estimation, so that
inclusion of risk factor interactions is subject to the constraint that any assumed
interaction between risk factors requires a matching cross-tabulation in the small
area population.

The greatly improved fit for a model that includes both major individual risk
factors, and a full specification for contextual factors whether known or unob-
served, has been demonstrated. Results for the full model (1) show significant
spatial effects (Table 3) even after adjusting for age, education, ethnicity and
known state predictors. This may reflect climatic influences (Franz and Bai-
ley, 2004), unmeasured behavioral influences or the effectiveness of health care
systems.

Appendix 1: Assessing goodness of fit

Comparisons of model fit are based on the Deviance Information Criterion
(DIC) of Spiegelhalter et al (2002), and an approximate marginal likelihood,
denoted the pseudo marginal likelihood. The DIC criterion is obtained as the
posterior mean deviance (minus twice the log likelihood) plus a measure of com-
plexity de. The latter is in turn derived as the difference between the mean

deviance D over MCMC iterations and the deviance Dev(
−
θ) at the posterior

mean of the parameter set θ. Lower values of the DIC indicate better fitting
models.

The pseudo marginal likelihood is based on Monte Carlo estimates of the con-
ditional predictive ordinate or CPO, p(yi|y[i]), where y[i] denotes the dataset with
the ith subject excluded (Dey et al, 1997). The conditional predictive ordinate
amounts to a cross validation measure for each case, with the remainder of the
data forming the ‘test data’. Totalling the logs of the CPOs over all cases pro-
vides the logged pseudo marginal likelihood, and models with higher log pseudo
marginal likelihoods provide better fits (Ibrahim et al, 2001).

The ability of models to reproduce the data is assessed via a posterior predic-
tive check involving the deviance D = −2L (e.g. Lynch & Western, 2004). Let
ynew,i be replicates (predictions) sampled from the posterior predictive density
p(ynew,i|y). Then at each MCMC iteration t = 1, .., T the deviances {D(t)

obs, D
(t)
new}

are obtained using the likelihoods L
(t)
i = wi[yi log π

(t)
i + (1 − yi) log(1 − π

(t)
i )]

and L
(t)
i,new = wi[y

(t)
new,i log π

(t)
i + (1 − y

(t)
new,i) log(1 − π

(t)
i )]. The posterior predic-

tive check involves comparing D
(t)
obs and D

(t)
new, and in particular the indicator

C(t) = I(D(t)
new < D

(t)
obs) where I(A) = 1 when A is true and I(A) = 0 when A

is false. Posterior predictive p-values
∑
t

C(t)/T exceeding 0.9 or under 0.1 are

generally regarded as casting doubt on the model (Meng, 1994)



Estimating Small Area Diabetes Prevalence 249

Appendix 2: Prior Assumptions

For the fixed effects parameters, namely {α, βg, ηe} in model (1), and {α, γx}
in model 2 diffuse normal priors with mean zero and variance 1000 are adopted.
For the G-dimensional spatially structured area effects cs = (cs1, .., csG), s =
1, .., L, in model (1) over the L = 49 mainland US states and DC, a multivariate
pairwise-difference prior is adopted (Rue & Held, 2005). This has joint form
p(c|Π) =

(
1
2π

)LG/2 |Π|0.5exp[−0.5
∑
s∼u

c′sΠsucu], where c = (c1, .., cL), Π is a LG ×

LG joint precision matrix with G × G submatrices Πsu, and s ∼ u denotes
summation over states s and u that are contiguous. Diagonal submatrices of Π
are Πss = dsΩc, where ds is the number of states adjacent to state s, and the
G×G matrix Ω−1

c represents within state covariation between prevalence effects
for ethnic groups. The off-diagonal submatrices of Π are zero except when states
s and u are neighbours, when Πsu = −Ωc. The precision matrix Ωc is assigned a
Wishart prior with identity scale matrix and G degrees of freedom, following the
strategy of Natarajan & Kass (2000) and Chib & Winkelmann (2001).

To pool strength across the age profiles of different ethnic groups, a low order
multivariate random walk prior may be adopted for the G-dimensional vector
γx = (γ1x, .., γGx), x = 1, .., X. For example, first and second order random walk
priors have conditional forms

γx ∼ NG(γx−1, Ω−1
γ ),

γx ∼ NG(2γx−1 − γx−2, Ω−1
γ ), where the G × G matrix Ω−1

γ represents co-
variation between age mortality profiles of demographic groups. In model (1)
a first order random walk was used, and the precision matrix Ωγ is assigned
a Wishart prior with identity scale matrix and G degrees of freedom, namely
Ωγ ∼ Wish(I,G).

The multivariate unstructured area effects usg in model (1) are assigned a mul-
tivariate normal prior with G-dimensional mean vector of zero and G×G precision
matrix Ωu, with prior Ωu ∼ Wish(I,G). For the univariate spatially unstructured
random area effects in model (5.1), it is assumed that us ∼ N(0, 1/τu), where
τu ∼ Ga(1, 0.001), where the choice of gamma prior for τu follows the strategy of
studies such as Besag et al (1995) and Gschlößl & Czado (2008).
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