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Abstract

Country-level census data are typically collected once every 10 years. However, conflicts,

migration, urbanization, and natural disasters can rapidly shift local population patterns.

This study demonstrates the feasibility of a “bottom-up”-method to estimate local population

density in the between-census years by combining household surveys with contemporane-

ous geo-spatial data, including village-area and satellite imagery-based indicators. We

apply this technique to the case of Sri Lanka using Poisson regression models based on var-

iables selected using the Least Absolute Shrinkage and Selection Operator (LASSO). The

model is estimated in villages sampled in the 2012/13 Household Income and Expenditure

Survey, and is employed to obtain out-of-sample density estimates in the non-surveyed vil-

lages. These estimates approximate the census density accurately and are more precise

than other bottom-up studies using similar geo-spatial data. While most open-source popu-

lation products redistribute census population “top-down” from higher to lower spatial units

using areal interpolation and dasymetric mapping techniques, these products become less

accurate as the census itself ages. Our method circumvents the problem of the aging cen-

sus by relying instead on more up-to-date household surveys. The collective evidence sug-

gests that our method is cost effective in tracking local population density with greater

frequency in the between-census years.

Introduction

Up-to-date estimates of population density in small areas are valuable inputs for policymakers

[1, 2]. They could, for example, facilitate efficient delivery of public goods and services and

infrastructure projects [3]; track net migration patterns, especially in response to civilian con-

flicts, political upheavals, and climate tragedies; and help us better understand the impact of

geographically-targeted economic policy interventions, such as Special Economic Zones. Tra-

ditional population data sources do not meet these requirements, as censuses provide local

population measurements infrequently, typically decennially. Although household surveys can

yield more frequent population estimates, they do not cover the entire country, and are not

representative at small administrative levels, particularly in the developing world. The
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challenge of tracking population is exacerbated in low- and lower-middle- income countries

where population growth rates are high and net migration patterns are rapid [4].

This study implements a “bottom-up” method to generate local estimates of population

density and counts by combining household surveys with geo-spatial data [2]. In the areas cov-

ered under the survey, the method models population density obtained from surveys as a func-

tion of geo-spatial data. The model is then used to predict population density in the non-

surveyed areas. By implementing this approach using periodically available surveys and up-to-

date information from geo-spatial indicators, small area population estimates can be obtained

regularly in the between-census years.

Commonly used techniques for small-area population estimation typically redistribute cen-

sus population “top-down” from higher to lower administrative units using areal weighting

approaches or dasymetric mapping techniques. Even though these methods are popular, and

have continued to be refined by incorporating geo-spatial data and advanced statistical tech-

niques, they are constrained by one major limitation: they rely heavily on the input-population

data, that is, on the census [2, 5]. However, censuses may not always be available, are not con-

ducted often, and may quickly become outdated due to frequent migration patterns, rapid and

uneven population growth, or delays due to conflict and instability. For example, censuses are

outdated in countries such as Lebanon and Somalia, and postponed or cancelled in some oth-

ers such as Afghanistan, Madagascar and the Republic of Congo, due to conflicts or political

instability [2]. Our method, instead of relying on the census, exploits the updated demographic

information available from periodic household surveys, and the widespread coverage, and up-

to-date and granular information offered by geo-spatial data.

The technique is applied in the context of Sri Lanka using the Household Income and

Expenditure Survey (HIES), a nationally-representative household survey. The HIES is used in

combination with satellite-imagery- based indicators of various types and image resolution

categories, and other types of geo-coded ancillary data to estimate population density at the

Gram Niladhari (GN) division, the lowest administrative level in Sri Lanka.

To motivate this approach, we begin by probing the ability of geo-spatial indicators to pre-

dict population density using the census data. Specifically, we ask how accurately do geo-spa-

tial data predict out-of-sample GN-level census population density, and whether the accuracy

depends on sectoral classifications and the resolution of the satellite imagery. Next, we imple-

ment the bottom-up approach using the HIES, and ask how accurate are out-of-sample esti-

mates in comparison with the actual census density. Finally, we compare the accuracy of our

estimates with the accuracy of other bottom up estimates in the literature, and other top-down

estimates produced by open-source population products.

This study fits into a rapidly growing literature on estimating population in small areas.

Top-down approaches remain popular. Open-source population products that use this

approach include the Landscan, Facebook’s High Resolution Settlement Layer (HSRL),

Gridded Population of the World (GPW), WorldPop, and Global Human Settlement Layer

(GHSL). Additionally, studies have focused on redistributing population counts using a Ran-

dom Forest model-based weighting scheme in Cambodia, Vietnam, and Kenya [1], in redis-

tributing population density in Peru using satellite-imagery based covariates employing

regression and tree-based methods [6], in downscaling population counts using one billion

mobile phone call records from Portugal and France [5].

Relatively few studies use bottom-up techniques, and even fewer validate the accuracy of

their estimates against the census. Earlier applications of these methods used coarse satellite

imagery [7], focused on high-income countries where there are fewer data limitations (for

instance, [8] in the Netherlands, and [9] in Australia), or validated the accuracy of their
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estimates only in larger administrative areas, but not in small-areas, and focused on for chil-

dren under 5 years of age, and not the overall population [10].

In addition to the literature on population estimation, this study also speaks to the broader

literature that uses satellite data, and statistical- and machine-learning- techniques to predict

human welfare and demographic variables, and urban market boundaries [11–15].

We contribute to the literature by applying the bottom-up method in Sri Lanka, a lower-

middle income country, where the census is conducted decennially, and where frequent small-

area population density estimates would be a valuable policy input. To implement our

approach, we compile satellite imagery based indicators of various resolutions from several

open-source sources, and use texture and object features obtained from [13] that were in turn

derived from very-high resolution imagery sourced from the company, Maxar (formally Digi-

talGlobe). We merge these satellite-based indicators, and other geo-spatial data, such as, area

measures, with the HIES to create a unique dataset at the Gram Niladhari level.

Results indicate that the accuracy of our estimates are higher than prior bottom-up esti-

mates using satellite data of similar dimension and resolution [8, 9], and most other popula-

tion products using the top-down approach. Our results make a case for country statistics

departments or ministries to utilize geo-spatial data and surveys to closely track population

changes in their lower administrative divisions in a cost-effective manner.

Materials and methods

For better illustration of the details presented in this section, the hierarchical ordering of

administrative divisions in Sri Lanka is presented in Fig 1. There are about 14,000 GN divi-

sions that form the lowest administrative units. These divisions have an average area of 4.75

km2, and are similar in size to a village in many developing country settings, and we hence-

forth, for ease of exposition, refer to GN divisions as “villages”. While the term “village” com-

monly indicate settlements in rural areas in many countries, the usage in our context also

includes small administrative units in urban areas. There are about 331 Divisional Secretariat

divisions. These divisions are at one level higher than the villages, and one level lower than the

districts, and henceforth are referred to as “sub-districts”.

Population data sources

Our main sources of population density at the village level are the Census of Population and

Housing, Sri Lanka, 2012, and the 2012-13 Sri Lankan Household Income and Expenditure

Survey (HIES). The census universally covers all households in all of Sri Lanka’s 14, 000 vil-

lages. The HIES covers about 25,000 households in 2, 421 villages, spanning all the districts

and sub-district divisions in the country. While the census is conducted decennially, the HIES

is typically conducted once in three years.

The HIES follows a two-stage stratification process: the census blocks form the Primary

Sampling Units (PSUs), and the households form the Secondary Sampling Units (SSUs) or

Final Sampling Units (FSUs). The PSUs used in the HIES are census blocks, which are portions

of villages. There were 62,571 PSUs versus 13,984 villages in the 2012 census. Therefore, the

HIES can yield direct density estimates only at the PSU-level, and not at the village-level.

Unfortunately, it is not possible to model population density at the PSU-level due to the lack of

a PSU-level Geographical Information System (GIS) boundaries.

We therefore indirectly estimate the village population density using the HIES survey

weights under the assumption that the survey weights reflect the inverse probability of the

housing units being selected into the sample. This is approximately equivalent to scaling up

estimated PSU population derived from the survey using that PSU’s share of the village
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population in the census. The steps used to estimate village level population density from the

HIES are described in S1 Appendix. In order to apply this method, we limit the HIES sample

to the 97 percent of villages that contain exactly one surveyed PSU in the village. The correla-

tion in the HIES sample between the estimates of population density derived from the survey,

and the actual village population density obtained from the census, is 0.91. This strong correla-

tion indicates that this method, when applied in our context, generates credible village-level

population density estimates.

Geo-spatial data

The satellite imagery based geo-spatial data we use are categorized into four types, based on

their resolution, availability, and the nature of the extracted data. Most indicators are obtained

around 2012 (with a gap of +/- 2 years), the year around which the models are estimated. First,

we use low-resolution open-source indicators from three sources: (1) Night time lights from

the Visible Infrared Imaging Radiometer Suite (VIIRS) at a resolution of 750 m per pixel.

We use the maximum and mean intensity of two months, namely, March and September,

Fig 1. Hierarchical ordering of administrative divisions in Sri Lanka. Administrative divisions from the highest to

the lowest level.

https://doi.org/10.1371/journal.pone.0237063.g001
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2014; (2) Global Forest Change data based on [16], from which we use mean tree cover in

2000, and gain and loss in forest area between 2000 and 2014, at a resolution of 30 meters per

pixel; (3) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)’s ele-

vation and slope data at a resolution of 30 meters per pixel in 2009. Although elevation and

slope data are slightly older, these measures do not typically change over time, and hence it

might be still appropriate to use them.

Second, we use open-source built-up area measures based on higher resolution imagery.

The Global Urban Footprint (GUF) (year 2012) and Global Urban Footprint plus (GUF+)

(year 2015) provide built-up estimates at a resolution of 12 meters per pixel. While GUF was

constructed using the TerraSAR-X/TanDEM-X satellites that are based on radar-detection,

GUF+ additionally incorporates data from the Sentinel and Landsat satellites that are based on

optical remotely sensing. We also use Global Human Settlement Layer’s (GHSL) built-up esti-

mates that are at approximately 38 meters per pixel and Facebook’s High Resolution Settle-

ment Layer (HRSL) built-up area measure, available at a resolution of 30 meters per pixel.

Additionally, we use geo-spatial indicators extracted by [13] from very-high resolution

commercially available satellite imagery acquired from the company, Maxar (formally Digital-

Globe). These indicators cover about 1,178 to 1,275 villages within 55 sub-districts in the coun-

try. The list of these 55 sub-districts is available in S2 Appendix. These imagery were mostly

acquired for the years 2011 and 2012, although some were also captured for the year 2010. Our

third set of indicators include texture features extracted by [13], including Fourier transform,

Gabor filter, Histogram of Oriented Gradients (HoG), Line Support Regions (LSR), Pantex,

Normalized Difference Vegetation Index (NDVI), and Speed-Up Robustness Features

(SURF). Fourth, we use object-based features extracted by [13], including the number of cars,

building count and size, roof type, shadow pixels, road length and type, and type of farm land

(paddy or plantations). The features are identified using deep learning-based convolutional

neural networks (CNN) and object based image processing software. More details on these fea-

tures can be found in [13]. The data purchased and indicators derived by [13] costed $125,000

in the year 2015, but these data are considerably cheaper now.

The other geo-spatial variables we employ include the logarithm of village-area, and loca-

tional indicators such as binary indicator variables for the districts and the sector. There are 25

districts in Sri Lanka. The official sector classification includes the urban, rural, and estate sec-

tors. Although 91% of the villages have a unique sectoral assignment, there are multiple sectors

associated with each village in the remaining 9%. To simplify, we first create the following

modified sectoral definition: (1) rural or estate; (2) urban, and then assign villages with multi-

ple assignments to the urban sector.

Table 1 concisely presents the key variables used in the study, along with their source, time

frame, resolution type, and geographical coverage. Note that all data sources are Tables 2 and 3

present the summary statistics for the population variables and geo-spatial indicators for the

national sample and the 55 sub-districts, respectively.

Modeling

We use Poisson regressions to model population density at the village level. This takes the fol-

lowing form:

logðEðPvjXv;ZvÞÞ ¼ aþ bXv þ gZv; ð1Þ

where Pv is the population density (persons/km2) of village v. Xv is a vector of satellite imag-

ery-based indicators defined for village v. Zv is a vector that includes the natural logarithm of
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village area (Ln areav), an indicator variable for urban areas, and indicator variables for Sri

Lanka’s districts.

To prevent model over-fitting, we employ the least absolute shrinkage and selection opera-

tor (LASSO) regularization which estimates a regression model with an added constraint that

enforces parsimony. We follow a two-step procedure. First, a full set of variables is included,

on which LASSO regularization is conducted to choose variables. Second, the final Poisson

model is estimated using the chosen variables. Eq 2 presents the objective function for LASSO

regularization. Let τ represent the vector of all coefficients, β and γ, put together, of size p.

min
a;t
�

1

N
lða; tjXv;Z; PvÞ þ l

Xp

j¼1

jtjj; ð2Þ

where l is the value of the log likelihood function of the Poisson model using parameters α and

τ, and λ is a non-negative regularization parameter. While setting λ = 0 yields unconstrained

Poisson regression estimates, a large λ penalizes the absolute values of the elements of τ. Five-

fold cross validation is applied to choose the value of λ that minimizes the root-mean squared

error (RMSE) across the folds. The in-sample R2 from this step indicates the goodness of the

model fit. Since LASSO also generally shrinks the magnitude of all coefficients towards zero

Table 1. Satellite indicators by resolution and availability.

Indicator Source Time-frame Coverage Resolution Availability

A. Population
Population Census National Open-source

Population HIES 1421 villages Open-source

B. Geo-Spatial
Night time lights VIIRS 2014 National Low Open-source

Elevation ASTER 2009 National Low Open-source

Slope ASTER 2009 National Low Open-source

Tree cover [16] 2000 National Low Open-source

Tree cover gain/loss [16] 2000 to 2014 National Low Open-source

Built-up area GUF, GUF+ 2012, 2015 National High Open-source

Built-up area GHSL 2014 National High Open-source

Built-up area Facebook 2015 National High Open-source

Built-up area [13] 2011, 2012 55 sub-dist. High Commercially-available

Cars [13] 2011, 2012 55 sub-dist. High Commercially-available

Shadows [13] 2011, 2012 55 sub-dist. High Commercially-available

Roof type [13] 2011, 2012 55 sub-dist. High Commercially-available

Road type [13] 2011, 2012 55 sub-dist. High Commercially-available

Agricultural land type [13] 2011, 2012 55 sub-dist. High Commercially-available

Paddy land type [13] 2011, 2012 55 sub-dist. High Commercially-available

NDVI [13] 2011, 2012 55 sub-dist. High Commercially-available

Other Texture Ind. [13] 2011, 2012 55 sub-dist. High Commercially-available

HIES = the Household Income and Expenditure Survey; VIIRS = Visible Infrared Imaging Radiometer Suite; ASTER = Advanced Spaceborne Thermal Emission and

Reflection Radiometer; GUF = Global Urban Footprint; GHSL = Global Human Settlement Layer; NDVI = Normalized Difference Vegetation Index. [13] use

commercially-available imagery from Maxar (formally DigitalGlobe) to derive features and textures for 55 sub-district divisions. “Other Texture indicators” include

SURF, Pantex, and Histogram of Oriented Gradients. The time frame refers to the year(s) during which the satellite images were obtained. While NDVI data are

generally public, the NDVI values in Engstrom et al. 2017 were we calculated on the commercial imagery. Hence it is listed under commercial rather than open source

data.

https://doi.org/10.1371/journal.pone.0237063.t001
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[17], we avoid biased predictors by running a simple Poisson model based on the Lasso

selected variables. From this, we obtain the out-of-sample R2, mean absolute error (MAE), and

RMSE, all of which indicate out-of-sample predictive accuracy. For estimations, we use the

glmnet package in R which we invoke from Stata, using the wrapper, rlasso [18].

First, we implement the above model using the village level census population density as the

dependent variable (in the census year, 2012) to probe how well geo-spatial data can predict

population density. We conduct this exercise for a model in the entire country separately

using different indicators: (i) district and urban-area binary indicators; (ii) including log vil-

lage-area to i; (iii) including low-resolution open-source indicators to ii; (iv) including higher

resolution open-source indicators to iii. Doing this enables us to compare prediction accuracy

between higher versus lower resolution data in the national sample. In the 55 sub-districts

where the features from [13] are available, we implement models using: (v) texture-features

plus indicators in iv; and (vi) object-features plus the indicators used in v. For the 55 sub-dis-

tricts, we compare prediction accuracy successively from models in (i) through (vi). We also

repeat the analysis separately for urban areas, and for rural/estate areas.

We conduct two robustness checks. Focusing on the 55 sub-districts, we reduce the training

sample size to one-half and to one-quarter of the original sample, to examine if the prediction

accuracy is sensitive to the size of the training sample. We also implement a flexible random

forest algorithm (using the randomForest package in R) using population density as the

response variable, and employing the different sets of geo-spatial data described above, and

report out-of-sample accuracy measures.

Table 2. Summary statistics for villages in the national sample.

Indicator Mean Std. Dev. Min Max

Geographic Descriptors
Log village area 1.25 0.81 0.04 6.35

Urban indicator .092 0.28 0.00 1.00

Population Summary
Village Census Population Density(per km2) 1,400 2,703 0 50,126

Village HIES Population Density(per km2; N = 2,348) 1,996 3,394 0.607 49,209

Low Resolution Open-source Indicators
Night-time lights March 2014—Mean 0.98 2.25 0.000 72.57

Night-time lights March 2014—Maximum 1.45 4.13 0.000 274.93

Night-time lights September 2014—Mean 0.95 2.04 0.000 56.61

Night-time lights September 2014—Maximum 1.39 3.28 0.0 170.62

Mean Elevation 197.13 313.35 3.4 2,214.55

Mean Slope 8.68 5.15 1.2 28.79

Mean Tree Cover 46.93 26.91 0.0 97.26

Gain in Tree Cover 0.02 0.02 0.000 0.25

Loss in Tree Cover 0.005 0.012 0.000 0.330

High Resolution Open-source Indicators
GUF Built-up Area 10.60 20.37 0.0 100.00

GUF+ Built-up Area 14.21 25.83 0.0 101.05

GHSL Built-up Area 15.41 24.88 0.0 100.00

Facebook Built-up Area (N = 13,437) 15.65 19.16 0.0 99.55

Observations (N) 13,970

HIES = Household Income and Expenditure Survey; GUF = Global Urban Footprint; GHSL = Global Human Settlement Layer; NDVI = Normalized Difference

Vegetation Index.

https://doi.org/10.1371/journal.pone.0237063.t002
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Table 3. Summary statistics for villages in the 55 sub-districts sample.

Mean Std. Dev. Min Max

Geographic Descriptors
Log village area 0.97 0.60 0.09 4.27

Urban indicator 0.28 0.45 0.00 1.00

Population Summary
Village census population density 2621 3507 22 43,984

Village HIES population density(per km2; N = 414) 2,821 3,576 10.22 38,609

Low Resolution Open-source Indicators
Night-time lights March 2014—Mean 1.39 3.27 0.00 57.21

Night-time lights March 2014—Maximum 2.10 8.54 0.00 274.93

Night-time lights September 2014—Mean 1.26 2.50 0.00 28.96

Night-time lights September 2014—Maximum 1.76 3.88 0.00 92.13

Mean Elevation 209.96 428.52 5.56 2214.55

Mean Slope 7.63 5.14 1.15 23.89

Mean Tree Cover 44.22 26.35 0.00 92.24

Gain in Tree Cover 0.02 0.03 0.00 0.22

Loss in Tree Cover 0.01 0.02 0.00 0.33

High Resolution Open-source Indicators
GUF Built-up Area 21.81 26.92 0.00 97.11

GUF+ Built-up Area 31.68 36.52 0.00 100.11

GHSL Built-up Area 33.59 35.68 0.00 100.00

Facebook Built-up Area (N = 1,275) 30.16 28.18 0.67 97.43

Indicators Calculated from Commercial, Very High Resolution Imagery Road variables
% of roads that are minor paved (4 m width) 6.78 15.50 0.00 100

% of roads that are main paved (5 m width) 11.32 15.07 0.00 100

% of roads that are paved city (4 m width) 11.74 17.64 0.00 92.76

Building Density and Vegetation
% shadow pixels covering valid area (N = 1,353) 5.80 5.47 0.27 38.17

NDVI, mean scale 32 0.52 0.17 0.00 0.95

Total built-up area 69,757 68,699 0 7,08,867

Roof type
Fraction of total roofs that are clay 35.80 20.67 0.00 100

Fraction of total roofs that are aluminum 14.26 7.27 0.00 71.92

Fraction of total roofs are asbestos 7.79 11.66 0.00 71.20

Cars
log number of cars (N = 1,252) 3.42 1.02 0.88 8.30

Agricultural Land
% of Village agriculture that is paddy 44.46 37.65 0.00 100.00

% of Village agriculture that is plantation 55.14 37.58 0.00 100.00

Textural and spectral characteristics
Pantex (human settlements) mean, scale 8m 0.56 0.50 0.00 3.95

Pantex (human settlements) mean, scale 32m 0.66 0.59 0.00 4.68

Gabor filter (scale 64m, features 6), mean 0.67 0.32 0.01 2.03

Gabor filter (scale 64m, features 14), mean 0.68 0.31 0.02 1.95

Histogram of Oriented Gradients (scale 16m), mean 37.91 9.66 0.00 146.18

(Continued)
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Next, we implement the bottom-up method focusing on the 1,178 villages in the 55 sub-dis-

tricts sub-sample for which commercially-available texture and object features were obtained.

Out of these villages, the HIES was conducted in 414 villages. In this sub-sample, we estimate

Eq 1 using the HIES density as a function of all the geo-spatial indicators, including the com-

mercially-procured satellite indicators. Note that the dependent variable, population density,

is now measured for the year 2012-2013, the year the HIES was conducted. Since this is a sur-

vey-based model, we use the inverse of village population for village v as weights ( 1

popv
). In addi-

tion, there could be factors correlated with geo-spatial indicators that affect the probability of

selection of the village into the HIES. We also, therefore, adjust the weights based on the pre-

dicted probability of the village being sampled into the HIES based on geo-spatial indicators

available for all villages [19, 20]. This probability is obtained from the following probit model:

INv ¼ Z0 þ Z1 lassov þ �v; ð3Þ

where INv is a binary indicator for whether village v is sampled into HIES, and lassov repre-

sents all LASSO-selected variables from the Poisson model. We estimate Eq 3 using data for all

the 1,178 villages in the 55 sub-districts. The corrected weights based on the probability of the

village selection into the HIES, IN̂v , is given by 1

ðpopv�IN̂v
Þ.

Using the estimated model, we predict out-of-sample densities for the remaining 946 non-

HIES villages and report out-of-sample accuracy measures by comparing them with the actual

census density. To provide additional context, we compare the accuracy of this model with the

accuracy of estimates from a similar model that uses census-density as the dependent variable,

and with the accuracy of the estimates of other bottom-up estimates in the literature, and with

the accuracy of open-source top-down population products. Further, we calculate population

count estimates by multiplying these density estimates with village-level area, and report their

accuracy with respect to the census population.

Results

Predictive power of Geo-spatial data

Poisson regression results using the census data based on the variables selected from LASSO

regularization indicate that geo-spatial indicators have strong predictive power in predicting

village level population density (Table 4). The results are presented in panel A. At both the

national level and in the 55-sub-districts sample, simple locational indicators do not explain

much of the variation in population density. The out-of-sample estimation R2 is only about

0.36. However, adding log village area as an explanatory variable tremendously improves the

out-of-sample R2 to 0.65 in the national sample and to 0.589 in the 55-sub-districts. At the

national level, conditional on the locational indicators and village size, the value added in

using low-resolution open-source indicators (out-of-sample R2 is 0.702), and additionally

using high resolution open-source indicators (out-of-sample R2 is 0.75) is moderate but non-

Table 3. (Continued)

Mean Std. Dev. Min Max

Observations (N) 1,360

HIES = Household Income and Expenditure Survey; GUF = Global Urban Footprint; GHSL = Global Human Settlement Layer; NDVI = Normalized Difference

Vegetation Index. The NDVI scale refers to the size of the window used to calculate average NDVI. Summary statistics of LASSO-selected indicators across all models

are reported.

https://doi.org/10.1371/journal.pone.0237063.t003
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Table 4. Accuracy of population density estimates.

Geo-spatial Indicators Accuracy Measures No. of variables Villages

Loc. dummy Village

area

Low-res

(open)

High-res

(open)

Texture

(comm.)

Object

(comm.)

In-sample R
2

Out-of-sample R
2

Candidate Selected

A. All sectors

i. National

Sample

× 0.499 0.359 25 22 13,970

× × 0.806 0.650 26 15 13,970

× × × 0.843 0.702 35 16 13,970

× × × × 0.888 0.750 39 11 13,437

ii. 55 sub-

districts

× 0.422 0.361 25 5 1,428

× × 0.731 0.589 26 6 1,428

× × × 0.804 0.677 35 8 1,428

× × × × 0.858 0.710 39 7 1,428

× × × × × 0.874 0.755 46 9 1,343

× × × × × × 0.918 0.830 67 21 1,178

B. Rural/Estate

i. National

Sample

× 0.256 0.146 25 22 12,686

× × 0.757 0.646 26 23 12,686

× × × 0.806 0.726 35 24 12,686

× × × × 0.877 0.808 39 19 12,389

ii. 55 sub-

districts

× 0.217 0.179 25 6 1,046

× × 0.752 0.688 26 7 1,046

× × × 0.815 0.754 35 10 1,046

× × × × 0.898 0.838 39 4 935

× × × × × 0.919 0.882 46 26 935

× × × × × × 0.942 0.869 67 33 881

C. Urban

i. National

Sample

× 0.243 0.159 25 4 1,284

× × 0.595 0.493 26 2 1,284

× × × 0.654 0.540 35 5 1,284

× × × × 0.690 0.569 39 6 1,048

ii. 55 sub-

districts

× 0.189 0.160 25 1 382

× × 0.487 0.413 26 2 382

× × × 0.637 0.511 35 5 382

× × × × 0.665 0.525 39 5 340

× × × × × 0.740 0.668 46 6 340

(Continued)
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trivial. In the 55 sub-districts, adding commercially-procured texture features to open-source

imagery-based models does not improve the prediction accuracy (out-of-sample R2 remains at

around 0.7). However, adding object features to the model improves the out-of-sample R2 by

10 points (0.83). For the interested reader, the marginal effects of the full set of LASSO-selected

variables from the model using all geo-spatial indicators are provided in S1 Table.

The results separately for the rural/estate, and urban sectors are presented in panels B and

C respectively in Table 4. Log village area remains a strong predictor of population density sep-

arately in both sectors. Using the full national sample, the open-source satellite indicators

explain more variation in population density in the rural/estate sectors (0.808) than the urban

sector (0.569). In the sample with 55 sub-districts, the predictive power of urban population

density increases tremendously when adding the commercially-procured texture and object

features, relative to only including open-source indicators (0.804 compared to 0.525). Adding

commercially-procured indicators leads only to a limited improvement in prediction accuracy

in rural areas (0.869 compared to 0.838). This result is consistent with greater uniformity in

the relationship between built-up area and population density in rural areas, where simple

measures of built-up area are sufficient to predict population density. In urban areas, due to

the complex nature of the relationship between population density and buildings, where the

latter can be both commercial and residential, advanced measures such as object classifiers

and texture measures are required for better prediction.

As a robustness check, we show that Random forest (RF) models provide similar results in

terms of out-of-bag R2, RMSE, and MAE, overall, and across resolution-types and sector-types

(S2 Table). These results collectively indicate that LASSO selection performs as well as random

forest models in this setting. While random forest models are known to outperform LASSO

models in some contexts [21], these conclusions are based on linear models. Our usage of Pois-

son regressions may negate the predictive advantage of random forest models, which are tradi-

tionally better able to account for non-linear relationships. Further, studies predicting

population counts and density have specifically shown mixed results on comparative perfor-

mances between random forest and LASSO-based estimates [6].

We also show that the accuracy of our estimates is robust to changing the size of the train-

ing data (S3 Table). Using a sample of 1,178 villages in the 55 sub-districts, the out-of-sample

R2 increases marginally to 0.843 if we reduce the training sample by half, with a mild reduction

to 0.832 if we further reduce the sample size by another one-half. There is only a small increase

in the MAE and RMSE with the reduced sample sizes.

Table 4. (Continued)

Geo-spatial Indicators Accuracy Measures No. of variables Villages

Loc. dummy Village

area

Low-res

(open)

High-res

(open)

Texture

(comm.)

Object

(comm.)

In-sample R
2

Out-of-sample R
2

Candidate Selected

× × × × × × 0.860 0.804 67 31 336

Open indicates open-source indicators, and comm. refers to commercially-procured indicators. The results are based on a Poisson regression model whose dependent

variable is the census village population density, and whose independent variables are selected based on LASSO regularization in the respective models using different

sets of variables: “Loc. dummy” indicates locational indicators, namely, district fixed effects and an indicator for urban villages. “Village area” indicates log village-area.

“Low-res (open)” and “High-res (open)” indicators refer to the low-resolution and high-resolution open-source indicators respectively, as defined in Table 1. “Texture

(comm.)” and “Object (comm.)” indicators refer to very high-resolution texture and object features respectively from [13] as defined in Table 1. The out-of sample R2 is

obtained from stata’s crossfold command using five-fold cross-validation.

https://doi.org/10.1371/journal.pone.0237063.t004
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The bottom-up method using survey and Geo-spatial data

While it is encouraging to see that geo-spatial data accurately predict census population den-

sity at the village level, these results do not show that surveys combined with geo-spatial data

can be used to approximate population density. We now turn to examining this by testing the

accuracy of a survey-based model in the 55 sub-districts sample. We estimate a Poisson model

of HIES population density in the HIES-villages, and then obtain out-of-sample density esti-

mates in the non-HIES villages.

The results from a model using all geo-spatial indicators, including open-source and com-

mercially-procured imagery-based indicators are provided in panel A in Table 5. For the

model using the inverse of village population as weights, the R2, Spearman Rank Correlation

(SRC), and the MAE between the density estimates and the census density are 0.79, 0.91, and

664, respectively (columns 1 to 3). If the weights are corrected based on the probability of the

village being selected into the HIES, we obtain similar results: 0.78, 0.92, and 665 for the same

measures. In panel B, we present the same results based on a model using only open-source

satellite imagery. The out-of-sample prediction accuracies are very similar in this case (0.75,

0.92, and 663, and 0.77, 0.92, and 657 for the three measures using the two types of weights).

From both panels A and B, we can see that the HIES-based model performs equally well com-

pared to a similar model that uses census-density as the dependent variable.

We multiplied these density estimates with village-level area to obtain population count

estimates. The accuracy measures based on population counts are reported in columns (4)-(6).

The R2 and SRC are generally lower for population counts compared to density estimates, but

the MAEs are also lower. Further, we estimated a similar model using population count as the

dependent variable, from which we directly obtained population estimates (S4 Table). Popula-

tion count estimates derived indirectly from a density-based model are more accurate than

those obtained directly from a population-count-based model.

Table 5. Out-of-sample accuracy of HIES-based village population density estimates using open-source and commercially-procured satellite data, 55 sub-districts.

Population Density Population Count

R2 SRC Mean AE R2 SRC Mean AE Mean RE Median RE

(1) (2) (3) (4) (5) (6) (7) (8)

A.Model estimates, open-source & commercially-procured satellite imagery
HIES-based 0.79 0.91 664 0.60 0.67 607 37% 28%

HIES-based (balance correction) 0.78 0.92 665 0.58 0.67 607 35% 29%

Census-based 0.81 0.91 679 0.60 0.65 644 50% 28%

B.Model estimates, open-source satellite imagery
HIES-based 0.75 0.92 663 0.56 0.69 595 34% 28%

HIES-based (balance correction) 0.77 0.92 657 0.55 0.69 606 34% 28%

Census-based 0.76 0.91 750 0.56 0.63 739 58% 36%

HIES = the Household Income and Expenditure Survey; SRC = Spearman Rank Correlation; AE = Absolute error; RE = Relative Error (with respect to the census). We

retain only the 1,178 villages in the 55 sub-districts for which the commercially-procured data are available. The model is estimated using population density as the

dependent variable on sub-sample of 414 villages covered in 2012-2013 HIES survey. All models include district fixed effects, urban-area dummy, and log village area.

Out-of-sample prediction accuracy (with the census) are conducted on the 946 villages not covered in the HIES. The weights for the HIES-based model are 1

Popv
. The

balanced corrected weights are 1

ðPopv XIN̂v
Þ. Population count estimates were obtained by multiplying density estimates with village-area. The accuracy parameters for

population estimates are based on comparisons with the actual census population. The mean and median RE are mathematically the same for population density and

population count estimates.

https://doi.org/10.1371/journal.pone.0237063.t005
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The mean and the median relative errors are reported in columns 7 and 8, respectively. The

relative errors are the same for population density and count estimates because the only differ-

ence between the two measures is the multiplicative factor, village-area. Using all geo-spatial

indicators, the mean and median errors are 37% and 28%, and 35% and 29%, without and

with the additional weight correction. Using only open-source imagery-based indicators, the

mean and median REs are 34% and 28% for models without and with weights correction.

Discussion

Commercially-available versus open-source imagery

Table 5 predictionaccuracy provides the model accuracy using both open-source indicators

and commercially-available indicators for the 55-sub district sub-sample in panel-A, and using

the open-source imagery based indicators for the national sample (all sub-districts) in panel-B.

It is striking that the accuracy of the model involving open-source imagery is marginally better

than the accuracy of the model including the commercial-indicators. Therefore, while com-

mercial indicators may be expensive, unavailable, or unobtainable in some instances in specific

countries, our model without necessarily relying on them, works almost equally well with

open-source imagery based indicators.

We estimated the model by rural and urban areas separately. These results are not reported

in the paper, but are available upon request. Mirroring Table 5, in rural areas, the predictive

power of the models do not change with and without high-resolution commercial imagery.

However, in urban areas, where there is a complex nature of the relationship between popula-

tion density and buildings as elaborated earlier, commercial imagery does increase the predic-

tive power much more compared to a model that only has low and medium resolution open-

source imagery.

Cost effectiveness

The data purchased and indicators derived by [13] cost $125,000 in the year 2015, although

these data are considerably cheaper now. Procuring satellite imagery to update population

density in the between-census years would be considerably cheaper than repeating a whole

census at frequent intervals. To provide a sense of how expensive a whole census is, we draw

upon a study that examined the cost of conducting Ghana’s housing census [22]. Comparing

with Ghana, if anything, underestimates the per person cost of census data collection in Sri

Lanka because Ghana is comparatively less developed. The study estimates the cost of conduct-

ing the census in Ghana at $2.5/person. Given Sri Lanka’s total population of 20 million, the

total cost of conducting the census in Sri Lanka works out at least $50 million dollars.

We make this cost comparison with the census not to indicate that our method can replace

the decennial censuses, but to indicate that it cheaper to update population density estimates

in the between-census years using our method, rather than to repeat full censuses more fre-

quently. Furthermore, if we used only open-source imagery, for which the accuracy of the

model estimates are similar, the modelling costs are even lower.

Regular updating of satellite imagery

As much as the survey, the model relies crucially on the availability of updated geo-spatial

data. It might be worthwhile to inspect if these data and indicators are available in regular

intervals. Remarkably, many of the data sets in Table 1 are being regularly updated. For

instance, the GHSL and the tree cover data are being updated, and GUF data has been updated

with the release of the World Settlement Footprint which is in the process of being updated
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again now [23–25]. Further, all the commercial data used in this study can all be updated with

new imagery as it is collected. While one of the open-source datasets, the Facebook data, may

not be scheduled to be updated regularly, remarkably, the prediction accuracy does not fall if

we drop Facebook built-up area from the model (these results are not presented in the paper,

but available upon request).

Moreover, the costs for acquiring these data are dropping as more companies are able to

produce the data and more satellite providers collect the data. Possibly better data sets will be

created in the future that could be used in similar approaches described in this manuscript.

The Gates Foundation is funding building-footprint extraction for most of Africa from very

high spatial resolution imagery and plans to provide the data to research such as this [26]. We

have seen some output from this work, and used them in other studies and found them to be

very accurate; these data would be useful for modeling such as the present study. Additionally,

similar work is being done by Microsoft in the US, that has also released these data to the pub-

lic. Some of us have been in discussions with them in expanding this to other countries. Other

sources of data, such as the Open Street Map are getting better and more complete every day

[27]. Some of the inputs used such as slope and elevation, while important for modeling, do

not change over time. Taken together, while most of the data sets used in this study are being

regularly updated, there will be plenty of data (and possibly better) to do this type of work as

time progresses.

Comparison with other bottom-up estimates

The out-of-sample R2s for our bottom-up estimates range from 0.75 to 0.79 (Table 5). This is

higher than the out-of-sample R2 of 0.739 (the square of the reported correlation coefficient of

0.86) between original and estimated population density obtained for the case of Australia at

the level of the Australian census collection districts [9]. Our median RE at 28% is lower than

those reported for the Netherlands using geo-spatial data of similar dimension and resolution

as ours, which ranges from 42% to 85.4% [8]. These higher errors could be attributed to the

study’s usage of fewer satellite indicators, linear rather than non-linear regressions, and simple

rather than stratified random sampling in the survey. Although [8] report lower errors (18.3%

or 18.5%) by utilizing floor-space or volumetric (3-Dimensional) satellite data and functional

information about buildings, these data are costly to obtain periodically in low-income

countries.

Comparison with open-source top-down estimates

We compare our estimates with the following five “top-down” population products: (1) Land-

scan for the year 2010; (2) WorldPop for 2010 and 2015; (3) Facebook HRSL for 2015; (4)

Gridded Population of the World v3 (year 2010) and v4 (year 2015), and (5) GHSL for 2015.

All sources employ a top-down approach using a combination of areal interpolation tech-

niques, including basic dasymetric approaches in conjunction with ancillary data, and statisti-

cal modeling methods to distribute census population to smaller grids. While GPW

redistributes data based on an equal weighting technique, other sources use measures such as

built-up area, road count and density, elevation, slope, and light intensity (“covariates”) to pro-

portionally redistribute population. Facebook, WorldPop 2015, GPW 2015, and GHSL esti-

mates are based on the 2012 Sri Lankan census; WorldPop 2010 and GPW 2010 are based on

the 2001 census; and Landscan uses mid-year population of the country in the past year calcu-

lated by the Geographic Studies Branch, US Bureau of Census [28]. Detailed information on

the input population, ancillary data, and the redistribution methodology for each source is pre-

sented in S5 Table.
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At first glance, it may seem odd that we use built-up area measures from Facebook and

GHSL, and compare our population density estimates with the same sources. It is important

here to distinguish between estimates of built-up area, top-down estimates of population den-

sity, and bottom-up estimates of population density. Currently, built-up area estimates are

publicly provided by many companies including the Global Human Settlement Layer and

Facebook. These estimates of built-up area can be produced regularly solely from satellite

imagery, and do not require a ground-truth measure of population density. Our model uses

these built-up area as explanatory variables to predict population density. These companies

also independently combine their built-up area measures with census data to estimate local

population density. They utilize top down methods that redistribute census population counts

according to built-up area, and therefore become stale over time. In contrast, our method is a

“bottom-up” method that calibrates the model to survey data and therefore can be imple-

mented in between census years. The idea behind Table 6 is to compare our estimates with

other top-down estimates in a census year.

Using R2, SRC, and mean REs as metrics, our model estimates are better than all top-down

estimates except Facebook and Worldpop 2015 (Table 6). Our median REs are higher than

only Facebook and Worldpop 2015, and comparable to GHSL and GPW 2015, and much

lower compared to GPW, Worldpop, and Landscan (all in 2010). The relative performance of

our population count estimates in Table 5, in comparison to the top-down population esti-

mates in Table 6 is similar to that of the population density estimates.

Table 6 accuracy shows that the top-down products using the most recent census for redis-

tribution, and using higher resolution imagery-based covariates are performing better than the

others. For example, GPW and WorldPop 2010 estimates use the 2001 census for redistribu-

tion, and hence it is not surprising that they perform poorly in comparison to the 2012 census.

Similarly, an earlier unpublished version of Facebook’s estimates we worked with only yielded

a correlation coefficient of 0.5 because Facebook initially used the 2001 Sri Lankan census for

calibration. The lower accuracy of products that use the older census might seem intuitive. By

the same argument, it is important to foresee that even the best performing products seen in

Table 6 may become inaccurate with the passage of time because their source data, the census,

eventually becomes outdated. In other words, while the product that uses the 2012 census for

redistribution could estimate population density accurately in 2012, it might not predict

Table 6. Accuracy of existing top-down population products.

Population Density Population Count

R2 SRC Mean AE R2 SRC Mean AE Mean RE Median RE

(1) (2) (3) (4) (5) (6) (7) (8)

WorldPop 2015 0.99 1.00 312 0.99 0.99 237 13% 13%

Facebook HSRL 2015 0.91 0.97 417 0.90 0.93 309 20% 14%

GHSL Grid 2014 0.84 0.88 639 0.74 0.79 556 39% 26%

GPW 2015 0.68 0.90 1029 0.50 0.78 740 44% 27%

GPW 2010 0.29 0.28 1550 0.39 0.48 911 52% 35%

WorldPop 2010 0.31 0.81 1206 0.06 0.44 987 64% 34%

LandScan 2010 0.04 0.10 2562 0.01 -0.24 2012 135% 92%

HRSL = High Resolution Settlement Layer; GHSL = Global Human Settlement Layer; GPW = Gridded Population of the World; SRC = Spearman Rank Correlation;

AE = Absolute error; RE = Relative Error (with respect to the census). We retain only the 1,178 villages in the 55 sub-districts for which the commercially-procured data

are available. To be consistent with Table 5, the prediction accuracy with the census are reported for the 946 villages not covered in the HIES. The mean and median RE

are mathematically the same for population density and population count estimates.

https://doi.org/10.1371/journal.pone.0237063.t006
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density as accurately in the later years, until the next census is available (likely in 2022) and uti-

lized. This reinforces our motivation for using bottom-up methods that combine up-to-date

and periodic surveys with geo-spatial data to estimate population density, without having to

rely on the census that is only available at most decennially in most countries, including Sri

Lanka.

Coefficient of variation of the estimates

We calculated the coefficient of variation (CV) of predicted density estimates for each sub-dis-

trict based on the bottom-up method, and compared them with the full-survey based density

estimates for the entire country. The CV from the predicted density values is based on the

average of a Poisson model, with errors clustered at the sub-district level. It was calculated

using the Poisson command in Stata followed by the margins, pred(n) noesample vce(uncon-

ditional) command. The average CV of population density calculated directly from the full

survey, across 329 sub-districts, is 50.0. This is calculated using the Horvitz-Thompson

approximation, which allows for positive correlation in population density across GN Divi-

sions within sub-districts. The average CV of population density calculated from the model

predictions, for the same 329 sub-districts, is 6.7. Therefore, in the full sample, moving from

the survey to the model-based predictions generates an approximate 85 percent reduction in

the size of the CV of sub-district population density.

Conclusion

Many existing estimates of estimating local population use a top-down dasymetric mapping

approach to distribute census data based on a set of covariates derived from satellite imagery

and other ancillary data. These estimates are only as accurate as the source data—the census—

and hence their accuracy declines as the census itself ages. We propose a bottom-up technique

by pairing survey data with geo-spatial indicators using Poisson regressions employing vari-

ables selected based on LASSO regularization. This model can yield population density esti-

mates in areas where the survey was not conducted, and can be repeated frequently using

periodic survey and satellite data to frequently track population changes. We apply the method

in the context of Sri Lanka to predict population density at the lowest administrative level, the

Gram Niladhari (GN) division (village-level). Our model uses the Sri Lankan Household

Income and Expenditure Survey (HIES), and predicts density out-of-sample in the non-HIES

villages.

Four aspects of these results are particularly noteworthy. First, our performance is better

than the two other studies that report out-of-sample validation of bottom-up population esti-

mations using similar satellite data. Second, although our estimates are not as accurate as the

most accurate top-down estimates, the model gives comparable or better performance than

most others. However, because surveys are collected much more frequently than censuses, bot-

tom-up methods that combine geo-spatial data with surveys have the crucial advantage of

remaining up to date even if the census ages, unlike even the best performing top-down esti-

mates. Third, the survey used to calibrate the model covers only 17% of the villages in Sri

Lanka. The fact that the combination of geo-spatial data with this type of small survey esti-

mates population density as accurately as the estimates that use an entire census demonstrates

the cost-effectiveness of this approach. Fourth, overall, the predictive power of the models

does not change with and without high-resolution commercial imagery. Simply using open-

source low and medium resolution imagery would suffice to achieve adequate accuracy. How-

ever, in urban areas, as expected, high resolution- commercial imagery increase the predictive

PLOS ONE Estimating small-area population density in Sri Lanka

PLOS ONE | https://doi.org/10.1371/journal.pone.0237063 August 5, 2020 16 / 20

https://doi.org/10.1371/journal.pone.0237063


power much more compared to a model that only has low and medium resolution open-

source imagery.

The main reason why this method is useful is because surveys are more frequent and less

expensive than censuses, and geo-spatial data can be acquired routinely and with complete

spatial coverage, and hence can potentially be more efficiently utilized to track population

changes in small areas. It is important to clarify that even though the method does not directly

rely on the census, it does not reduce the importance of the censuses which remain essential to

provide the sampling frame for subsequent and periodic surveys. Moreover, the census data

provide authoritative data in the years the censuses are conducted. In the between-census

years, it will be very expensive to conduct a full census, in case a need for local-level data arises

for policy purposes. In this setting, our estimates provide the next best alternative and a cost-

effective method for obtaining population density that policy makers may use.

Our results make the case for national statistics offices to apply this method using open-

source geo-spatial data and administrative area measures in combination with frequently con-

ducted surveys to produce accurate local population estimates in the between-census years

and in areas where surveys are not conducted.

For a survey to be utilized for the purposes of our model, there are three main require-

ments. First, the survey should be nationally representative so that it can be utilized to provide

estimates across the country. This is not a stringent requirement as nationally representative

surveys such as the Demographic Health Surveys (DHS), Labor Force Surveys (LFS), and Liv-

ing Standards Measurement Surveys (LSMS) are conducted quite frequently. Importantly,

these surveys are conducted at a reasonable frequency even in low-income and conflict-ridden

countries. For example, the Afghanistan Living Conditions Survey (ALCS) is conducted in

portions of Afghanistan (it doesn’t cover conflict areas) every few years; the DHS have been

conducted in countries such as Democratic Republic of Congo and Sierra Leone, and the

LSMS have been conducted in countries such as Ethiopia and Niger reasonably regularly. Sec-

ond, the survey must conduct a full census of selected enumeration areas. This is also quite

standard. Third, local-level administrative shape files are required to be able to use satellite

imagery-based indicators (open-source or commercial), and the surveys should have the local

administrative region identifiers or geocoded household location. Increasingly nowadays,

shape files at lower administrative levels are being shared by census offices of countries. With

established trust and some negotiations, it is feasible to obtain local administrative level identi-

fiers from survey and statistical offices.

The Sri Lankan Department of Census and Statistics conducts the HIES every three years;

the most recent one was fielded in 2019, and the earlier surveys this past decade were in 2012-

13, and in 2016. Furthermore, Sri Lanka runs a continual Labor Force Survey that could also

be used for this purpose. Therefore, the results support the case for the Department of Census

and Statistics to keep careful track of the number of households identified in the relisting

phase, and use that information to generate revised local population estimates.

While we presented above a spatial model, without a time-dimension, the changes of popu-

lation density over time and space can also be estimated simultaneously. There are two poten-

tial methods to do this. The first would be to estimate a spatial-temporal model that explicitly

accounts for correlation across space and time. Adding earlier periods of data to the model

would generate more precise estimates, even after accounting for inter-temporal correlation,

but could lead to less accurate predictions if the relationship between predictors and popula-

tion density changes over time. The second approach would be to estimate a dynamic panel

data model that conditions on past population density, measured for example in the census.

For the latter to work, the imagery-based indicators would have to predict changes in

PLOS ONE Estimating small-area population density in Sri Lanka

PLOS ONE | https://doi.org/10.1371/journal.pone.0237063 August 5, 2020 17 / 20

https://doi.org/10.1371/journal.pone.0237063


population density over time. It is an open question of whether they can do so, and this an

interesting area for further research.
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