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Abstract. Snow lying on top of sea ice plays an important

role in the radiation budget because of its high albedo and

the Arctic freshwater budget, and it influences the Arctic cli-

mate: it is a fundamental climate variable. Importantly, ac-

curate snow depth products are required to convert satellite

altimeter measurements of ice freeboard to sea ice thickness

(SIT). Due to the harsh environment and challenging acces-

sibility, in situ measurements of snow depth are sparse. The

quasi-synoptic frequent repeat coverage provided by satellite

measurements offers the best approach to regularly monitor

snow depth on sea ice. A number of algorithms are based

on satellite microwave radiometry measurements and simple

empirical relationships. Reducing their uncertainty remains

a major challenge.

A High Priority Candidate Mission called the Copernicus

Imaging Microwave Radiometer (CIMR) is now being stud-

ied at the European Space Agency. CIMR proposes a coni-

cally scanning radiometer having a swath > 1900 km and in-

cluding channels at 1.4, 6.9, 10.65, 18.7 and 36.5 GHz on the

same platform. It will fly in a high-inclination dawn–dusk or-

bit coordinated with the MetOp-SG(B). As part of the prepa-

ration for the CIMR mission, we explore a new approach to

retrieve snow depth on sea ice from multi-frequency satel-

lite microwave radiometer measurements using a neural net-

work approach. Neural networks have proven to reach high

accuracies in other domains and excel in handling complex,

non-linear relationships. We propose one neural network that

only relies on AMSR2 channel brightness temperature data

input and another one using both AMSR2 and SMOS data

as input. We evaluate our results from the neural network ap-

proach using airborne snow depth measurements from Oper-

ation IceBridge (OIB) campaigns and compare them to prod-

ucts from three other established snow depth algorithms. We

show that both our neural networks outperform the other al-

gorithms in terms of accuracy, when compared to the OIB

data and we demonstrate that plausible results are obtained

even outside the algorithm training period and area. We then

convert CryoSat freeboard measurements to SIT using dif-

ferent snow products including the snow depth from our net-

works. We confirm that a more accurate snow depth product

derived using our neural networks leads to more accurate es-

timates of SIT, when compared to the SIT measured by a

laser altimeter at the OIB campaign. Our network with addi-

tional SMOS input yields even higher accuracies, but has the

disadvantage of a larger “hole at the pole”. Our neural net-

work approaches are applicable over the whole Arctic, cap-

turing first-year ice and multi-year ice conditions throughout

winter. Once the networks are designed and trained, they are

fast and easy to use. The combined AMSR2 + SMOS neural

network is particularly important as a precursor demonstra-

tion for the Copernicus CIMR candidate mission highlight-

ing the benefit of CIMR.

1 Introduction

Climate change and globalization are the dominant drivers

of societal impacts in the Arctic with economic develop-

ment rapidly transforming the geopolitics and the physical

and biogeochemical environment of the region. For example,

new prospectors are increasing their activities using modern

techniques for oil and gas, fisheries, and mineral resources,

and commercial ship traffic is growing dramatically. In this

context, snow depth is an important parameter for climate

studies, modelling and forecasting. Snow on sea ice strongly

influences the Earth’s radiation budget with its high albedo
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and behaves like an insulation controlling sea ice growth and

melt. In the melt season snow on sea ice contributes to the

freshwater input and inhibits deep ocean circulation because

of surface freshwater stratification. Additionally, to retrieve

sea ice thickness (SIT) from laser (NASA ICESat) or radar

altimeter (e.g European Space Agency (ESA) CryoSat) free-

board measurements, snow depth has to be known with a

high accuracy. The uncertainty in today’s snow on sea ice

products contributes significantly to the uncertainty in SIT

(Zygmuntowska et al., 2014; Giles et al., 2007). Ship traffic

across the Northern Sea Route in the Arctic is increasing and

will further increase as sea ice retreats. To navigate through

the sea ice, SIT is a key parameter, but also the snow depth

itself is relevant due to its very high friction (Huang et al.,

2018).

To derive SIT from CryoSat freeboard the Warren clima-

tology product (Warren et al., 1999) is often used. It relies

on snow depth measurements collected from manned drift-

ing stations and isolated locations (reached via aircraft) over

multi-year ice (MYI) in the Arctic between 1954 and 1991.

These measurements are summarized in monthly maps and

contour lines of snow depth have been derived. For lack of

a better operational product, this climatology is still widely

used – sometimes with a modification factor of 0.5 or 0.7 to

account for lower snow depths on first-year ice (FYI) and the

fact that less ice survives each summer (Kurtz and Farrell,

2011; Kwok and Cunningham, 2015). Obvious drawbacks of

this climatology are that it is outdated (Kern et al., 2015),

that it was collected mostly over MYI, its quite broad spa-

tial resolution and that it does not allow for any interannual

variation.

The quasi-synoptic frequent repeat coverage provided by

satellite measurements offers an excellent approach to reg-

ularly monitor snow depth on sea ice. Satellite microwave

measurements offer a clear advantage over visible or thermal

infrared techniques because they penetrate through clouds

and deliver measurements during the long polar night. Un-

fortunately, at this time the frequencies of primary interest

(1.4–7.0 GHz) are characterized by a large surface footprint.

Measurements made at higher frequency (18–89 GHz) are

used to derive estimates of snow depth on sea ice with vary-

ing degrees of success. A number of algorithms are based

on simple empirical relationships to in situ measurements,

and reducing the uncertainty in derived snow depth prod-

ucts remains a major challenge. The first algorithm that was

developed using satellite microwave radiometer data is re-

ported in Markus and Cavalieri (1998). It uses an empirical

relation between the gradient ratio of the 37.0 and 19.4 GHz

channels of the Special Sensor Microwave/Imager (SSM/I)

together with in situ and ship observations of snow depth in

Antarctica. Comiso et al. (2003) modified the Markus and

Cavalieri (1998) algorithm coefficients to match the slightly

different frequencies of the Advanced Microwave Scanning

Radiometer (AMSR-E) and follow-on AMSR2 mission. This

algorithm only produces reasonable results over FYI and in

general the use of microwave radiometer data is limited to

cold and dry snow conditions because in the melt season wet

snow acts as a blackbody (Markus et al., 2006).

Recently it was argued that the use of lower frequencies

(e.g. 6.9 GHz) that measure microwave emissions deeper in

the snow layer could improve the accuracy and allow the re-

trieval of larger snow depths since the 36.5 GHz signal is sat-

urated at around 50 cm (Markus et al., 2006). Rostosky et al.

(2018) proposed such an algorithm using the gradient ratio

between 6.9 and 18.7 GHz. Furthermore their algorithm en-

ables an extension to MYI by using two separate empirical

fits for FYI and MYI.

More recently, Kilic et al. (2019) make use of the low-

frequency 6.9 GHz channel, but instead of using the gradient

ratio, they fit a multilinear regression between microwave ra-

diometer data and snow depth using data from ice mass bal-

ance (IMB) buoys in the Arctic.

In general microwave radiometer observations are widely

used input data for snow depth retrieval. They benefit from a

long data record, allow at least daily coverage over the poles,

and most importantly are independent of weather and dark-

ness. The only drawback is the rather broad spatial resolution

(AMSR2 has a 35 km × 62 km footprint at 6.9 GHz). The Eu-

ropean Space Agency (ESA) is now studying a High Priority

Candidate Mission (HPCM) called the Copernicus Imaging

Microwave Radiometer (CIMR; Donlon and CIMR Mission

Advisory Group, 2019). CIMR proposes a conically scan-

ning radiometer having a swath > 1900 km and will include

channels at 1.4 GHz (60 km), 6.9 and 10.65 GHz (< 15 km),

18.7 GHz (5–6 km), and 36.5 GHz (4–5 km) on the same plat-

form. The mission will occupy a high-inclination dawn–dusk

orbit coordinated with the MetOp-SG(B) satellite offering

opportunities for synergy with the microwave imager (MWI)

and scatterometer (SCA). CIMR would not only guaran-

tee continuity in microwave radiometer observations, but it

would also ensure continuity at the low-frequency L band

(1.4 GHz), currently provided by ESA’s Soil Moisture and

Ocean Salinity (SMOS) and NASA’s Soil Moisture Active

Passive (SMAP) satellites, and for the first time provide L-

band and higher-frequency measurements on the same plat-

form in a high-inclination orbit.

Maaß et al. (2013) demonstrate the possibility to deter-

mine snow depth from 1.4 GHz brightness temperatures mea-

sured by SMOS. The insulation of the snow cover leads to in-

creasing brightness temperatures at 1.4 GHz correlated with

snow depth. Maaß et al. (2013) find that the effect is more

pronounced at horizontal polarization. The approach works

well for thick sea ice (ice thicker than 1–1.5 m) and snow

depths of 35 cm. Also, Zhou et al. (2018) developed a com-

bined snow depth and SIT retrieval approach from a com-

bination of SMOS data with laser altimetry incorporating a

radiation model.

Yet another possibility to determine snow depth is to ex-

ploit the different scattering horizons from CryoSat (Ku-

band) and SARAL/AltiKa (Ka-band) (Guerreiro et al., 2016;
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Lawrence et al., 2018). The same concept may be applied to

the upcoming overlap of CryoSat and ICESat-2 (Lawrence

et al., 2018). ESA currently also investigates the Coperni-

cus polaR Ice and Snow Topography ALtimeter (CRISTAL;

Kern et al., 2019) as a High Priority Candidate Mission. If se-

lected, CRISTAL would uniquely offer co-temporal Ku- and

Ka-band measurements in a high-inclination orbit. In com-

parison to microwave radiometer measurements, however,

the temporal coverage would be quite low due to the small

nadir-only footprint of the altimeter, although repeat global

sampling every 10 d is anticipated.

The opportunity for synergy and inter-calibration between

multi-frequency altimetry (e.g. CRISTAL) and CIMR snow

depth retrievals over sea ice is obvious. As part of the prepa-

ration for the future CIMR mission, we explore a new ap-

proach to retrieve snow depth on sea ice from satellite mi-

crowave radiometer measurements using a neural network

approach. Neural networks provide a technique to model

any complex, non-linear relationship, including the multi-

frequency microwave signal emissions from within a snow

layer. The application of neural networks for this purpose is

still developing but a few simple attempts exist: Tedesco et al.

(2004) apply a simple neural network with one hidden layer

to derive snow depth and snow water equivalent (SWE) on

land. They use the 19 and 37 GHz brightness temperatures at

both polarizations as input.

We build a deeper, more advanced neural network to re-

trieve snow depth on sea ice from satellite microwave ra-

diometer measurements and train our network with Opera-

tion Ice Bridge (OIB) snow depths (Kurtz et al., 2013) in

the Arctic. We build on the algorithms by Markus and Cav-

alieri (1998) and Rostosky et al. (2018) using both the “tra-

ditional” 36.5/18.7 gradient ratio and the lower-frequency

18.7/6.9 gradient ratio as input together with polarization ra-

tios. We also explore the use of SMOS together with AMSR2

data as input for one of our neural networks. Our neural net-

works are applicable over both FYI and MYI ice and no ad-

ditional ice type product is needed to differentiate between

both. Once designed and trained, they are fast and easy to

use and would also work with future measurements from the

CIMR radiometer.

We verify our neural network approaches with another

part of the OIB data and compare the results to the snow

depth algorithms by Markus and Cavalieri (1998), Rostosky

et al. (2018), and Kilic et al. (2019). We also evaluate how

the different snow products influence the SIT retrieval from

CryoSat freeboard data.

In the next section we summarize the different snow depth

algorithms used for comparison, introduce our neural net-

work approach and explain the SIT calculation. In Sect. 3

we introduce the data used for training, evaluation and com-

parison. The results are then shown and discussed in Sect. 4

before we end with a conclusion.

2 Methodology

First we review a few existing algorithms for snow depth

on sea ice calculation from satellite microwave radiometer

brightness temperatures, before we introduce our own neural

network approach. The neural network somehow builds upon

the findings of these more traditional algorithms and will also

be compared to them in Sect. 4.

2.1 Snow depth from Markus and Cavalieri (1998)

Markus and Cavalieri (1998) developed the first algorithm to

retrieve snow depth hs on sea ice from passive microwave

measurements in 1998. The physical basis of their algorithm

is the fact that brightness temperature is sensitive to volume

scattering. The brightness temperature over snow on sea ice

decreases when snow depth increases or when frequency de-

creases. They found the highest correlation to Antarctic snow

depth observations with the gradient ratio between 19 and

37 GHz brightness temperatures Tb at vertical polarization V :

hs [cm] = 2.9 − 782 ·
Tbice

(37V ) − Tbice
(19V )

Tbice
(37V ) + Tbice

(19V )
. (1)

Tbice
is the brightness temperature of the ice-covered part

of the footprint. This correction is important since we are

only interested in the change of brightness temperature due

to snow cover and otherwise the open water part would dom-

inate the signal. It is calculated from

Tbice
(f,p) =

Tb(f,p) − (1 − SIC) · TbOW
(f,p)

SIC
. (2)

TbOW
(f,p) is the open-water tie point for frequency f and

polarization p and SIC is sea ice concentration. In the equa-

tions we round the frequency to the nearest integer and in-

dicate vertical linear polarization with a V and horizontal

linear polarization with an H . Originally the two linear re-

gression coefficients were derived from a fit of SSM/I bright-

ness temperatures to Antarctic in situ and ship observations.

Comiso et al. (2003) updated the algorithm coefficients to

fit the slightly different incidence angle and frequencies of

AMSR-E. The same coefficients are also applied for the Arc-

tic and their algorithm is still widely used.

The algorithm is limited to dry, cold snow, which is thin-

ner than 50 cm and should only be applied over FYI (Markus

et al., 2006). Instead of the original values, we use the coef-

ficients from Comiso et al. (2003) as given in Eq. (1), open-

water tie point values for AMSR2 from Ivanova et al. (2014)

and calculate the SIC with the NASA Team algorithm (Cav-

alieri et al., 1984). To be comparable with the other algo-

rithms, we ignore the shortcomings of the algorithm over

MYI and apply it Arctic-wide anyway. This is also an es-

sential requirement when applied in SIT retrieval.
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2.2 Snow depth from Rostosky et al. (2018)

Rostosky et al. (2018) follow a similar approach as Markus

and Cavalieri (1998) using a gradient ratio and two linear

regression coefficients. However, instead of using the gradi-

ent ratio between 18.7 and 36.5 GHz, they apply the gradi-

ent ratio of 6.9 to 18.7 GHz. The lower frequencies enable a

determination of snow depths exceeding 50 cm (due to mi-

crowave emissions emanating from deeper within the snow

at this frequency), where the 36.5 GHz channel becomes sat-

urated. Furthermore a simulation by Markus et al. (2006) and

a correlation analysis by Rostosky et al. (2018) suggest a

stronger relation of snow depth to this gradient ratio. To use

this gradient ratio, they determined a new set of regression

coefficients by fitting AMSR-E and AMSR2 brightness tem-

peratures to OIB snow depth. They exclude single years for

verification and validation work. Furthermore they extend the

approach to be applicable over both FYI and MYI, while the

approach of Markus and Cavalieri (1998) was found to de-

liver reasonable results only over FYI. The extension to MYI

is achieved by fitting a second set of parameters to the MYI-

covered part of the OIB data. We use the coefficients deter-

mined with OIB data from 2009 to 2014 since our test data

are from 2015. When applying this algorithm, the ice type

(FYI or MYI) must be known with confidence. They use the

ice type product from OSISAF – derived by a combination of

microwave radiometry and scatterometer data (Aaboe et al.,

2016) – and discard areas where the ice type is not known

with high confidence (confidence level < 4). On FYI snow

depth is calculated from

hs [cm] = 19.74 − 556.69 ·
Tbice

(19V ) − Tbice
(7V )

Tbice
(19V ) + Tbice

(7V )
, (3)

and on MYI from

hs [cm] = 18.73 − 376.32 ·
Tbice

(19V ) − Tbice
(7V )

Tbice
(19V ) + Tbice

(7V )
. (4)

Again, SIC from the NASA Team algorithm is used to cor-

rect for the open-water part within the footprint (Eq. 2).

2.3 Snow depth from Kilic et al. (2019)

Kilic et al. (2019) developed a simple multilinear regression

approach using vertically polarized brightness temperatures

at 6.9, 18.7 and 36.5 GHz. These three channels were iden-

tified as the best predictor combination in a forward selec-

tion method with the OIB data of 2013. They then derived

the multilinear regression coefficients from a fit of AMSR2

brightness temperatures with the data from four IMB buoys

(2012G, 2012H, 2012J and 2012L) to yield the following for-

mula:

hs [cm] =177.01 + 1.75 · Tb(7V )

− 2.80 · Tb(19V ) + 0.41 · Tb(37V ). (5)

They use SIC charts from the European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis Interim

(ERA-Interim) data and discard areas outside 100 % SIC. To

be consistent with the other approaches we use the OSISAF

SIC product (Lavergne et al., 2019) and discard areas with

SIC lower than 80 %.

2.4 Snow depth from our neural network approach

Artificial neural networks are a means of machine learning

inspired by the human brain to learn higher-order representa-

tions and perform diverse tasks. In contrast to other machine

learning techniques, they are designed to extract relevant fea-

tures and their weighting in the model themselves. Deep

neural networks allow us to learn higher-order representa-

tions, tackle more complex problems and outperform other

means of machine learning in terms of accuracy (Schmid-

huber, 2015). Neural networks can be viewed as a universal

system to represent any function. Instead of designing repre-

sentative features or building a complex physical model, the

challenge with neural networks is to design an appropriate

architecture.

We design our neural networks with the framework Keras

(Chollet et al., 2015), using TensorFlow (Abadi et al., 2015)

back end. Three inputs from AMSR2 are used in our neu-

ral networks: the gradient ratio between vertically polar-

ized brightness temperatures at 18.7 and 36.5 GHz, as pro-

posed by Markus and Cavalieri (1998), the gradient ratio be-

tween vertically polarized brightness temperatures at 6.9 and

18.7 GHz, as used by Rostosky et al. (2018), and the polariza-

tion ratio (PR) between vertically and horizontally polarized

brightness temperatures at 36.5 GHz:

PR(37) =
Tbice

(37V ) − Tbice
(37H)

Tbice
(37V ) + Tbice

(37H)
. (6)

This polarization ratio is also used to differentiate between

FYI and MYI by Comiso (2012), so it seems likely that this

information is not directly correlated with snow depth, but

rather with the ice type and that the neural network uses this

input in a similar manner as the approach by Rostosky et al.

(2018), which requires independent ice type information. We

also experimented with other combinations and gradient and

polarization ratios, as well as using the brightness temper-

atures directly as input. This choice yields the best results.

Just as Markus and Cavalieri (1998), we also apply a correc-

tion for the open-water part within the footprint, using Tbice

with SIC from the NASA Team algorithm in our gradient and

polarization ratios (Eq. 2).

The first (AMSR2-only) neural network consists of five

fully connected hidden layers with 15 neurons in each of the

first four hidden layers and 20 neurons in the last hidden layer

(see Fig. 1 for an illustration). The number of layers and neu-

rons was empirically found to work best for this specific set-

up. A few rules of thumb exist for the design of a good neural

network architecture, but to a large part it is subject to trying
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Figure 1. Architecture of the AMSR2-only neural network: the 37/19 gradient ratio, the 19/7 gradient ratio and the polarization ratio at

37 GHz are used as input (green circles). They are transformed by five fully connected hidden layers with 15 or 20 neurons each (yellow

circles) to finally produce snow depth as output (blue circle). Each neuron (circle) has a bias and each connection (arrow) is associated with

a different weight.

different set-ups and observing the error on the validation

dataset.

In a fully connected neural network all neurons of the pre-

vious layer are connected to each neuron of the next layer

and each connection is associated with a different weight.

Furthermore each neuron can have a different bias. The out-

put from each neuron in the first hidden layer is given by

the sum of all three weights (the arrows connected to this

neuron in Fig. 1) times the three inputs plus the bias of this

neuron. To introduce a non-linearity and enable the network

to learn non-linear relations, the output of each layer may

be transformed by a so-called activation function φ. Taking

into account all 15 outputs from the first hidden layer h we

can write this as a matrix vector multiplication, where W is a

15×3 weight matrix, x the 3×1 input vector and b a 15×1

bias vector:

h = φ(W · x + b). (7)

The hidden layers store the features or the information ex-

tracted from the input. The different weights and biases al-

low each neuron to focus on a different aspect. Usually the

features get more abstract and complex the deeper the net-

work becomes, since each subsequent layer is created from

the already transformed features of the previous layer. The

output layer consists of one neuron and represents the esti-

mated snow depth.

To allow the network to learn non-linear relationships, as

we expect them to occur in the emission and scattering of a

microwave signal in a snow layer, we apply activation func-

tions φ. After the first hidden layer we apply a sigmoid func-

tion, after all subsequent hidden layers we apply the rectified

linear unit (ReLU) activation function, and finally the output

is transformed by a hyperbolic tangent activation function.

Batch normalization (Ioeffe and Szegedy, 2015) makes a

neural network less sensitive to the random initialization of

the weights and biases and improves its generalization ca-

pabilities. The use of batch normalization is recommended

for deep neural networks and with sigmoidal non-linearities.

Therefore we include batch normalization after the first hid-

den layer.

Training a neural network means slightly changing its

weights and biases step by step to minimize a loss function.

This technique is known as stochastic gradient descent. The

Adam optimizer (Kingma and Ba, 2015) is a more elabo-

rate extension of stochastic gradient descent, which we use

to train our network in 250 epochs using a batch size of 30.

We choose the mean absolute percentage error between the

estimated snow depth and the OIB snow depth as our loss

function.

The design of the second neural network combining

AMSR2 and SMOS input is very similar to the first one. In

addition to the three AMSR2 inputs, we add the polarization

ratio between vertically and horizontally polarized brightness

temperatures at 1.4 GHz from SMOS as a fourth input node.

This is calculated analogously to Eq. (6). At 1.4 GHz, SMOS

provides a means to penetrate deeper into the snow layer. We

also tested gradient ratios between the AMSR2 and SMOS

channels and using brightness temperatures at 1.4 GHz di-

rectly. The polarization ratio gave the best results. This is

the only time we do not account for open water within the

footprint and we do not use open-water tie points to cor-

rect the SMOS brightness temperatures. We calculated some

open-water tie points at 1.4 GHz and applied Eq. (2), but this

slightly degraded the network’s performance, so we choose

not use them. Because SMOS coverage has a large hole at the

pole, we have fewer data for training, validation and testing.

Therefore we also reduce the number of parameters of the

www.the-cryosphere.net/13/2421/2019/ The Cryosphere, 13, 2421–2438, 2019
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Figure 2. Architecture of the AMSR2 + SMOS neural network: the 37/19 gradient ratio, the 19/7 gradient ratio and the polarization ratio at

37 GHz are used as input from AMSR2 (green circles) and the polarization ratio at 1.4 GHz is used as input from SMOS (light green circle).

They are transformed by four fully connected hidden layers with 15 or 20 neurons each (yellow circles) to finally produce snow depth as

output (blue circle).

neural network and delete one hidden layer with 15 neurons.

Otherwise the network is identical to the AMSR2-only net-

work. Figure 2 illustrates the design of the combined AMSR2

+ SMOS network.

2.5 Sea ice thickness

Sea ice thickness (SIT) can be calculated from the sea ice

freeboard hfb measured by CryoSat assuming hydrostatic

equilibrium:

SIT =
ρw · hfb + ρs · hs

ρw − ρi
. (8)

ρw is the density of seawater, which we set to 1025 kg m−3

(Alexandrov et al., 2010), ρi is the ice density and ρs is

the snow density. For the snow density we assume a bulk

value of 320 kg m−3, as suggested by the Warren climatol-

ogy (Warren et al., 1999) of March and April (when the

OIB data were collected). The ice density depends on the

age of the sea ice and Alexandrov et al. (2010) found a

mean value of 882 kg m−3 for MYI and 917 kg m−3 for FYI.

Both values can be weighted according to the MYI fraction

as suggested by Kwok and Cunningham (2015). However,

King et al. (2018) found that using only the MYI value of

882 kg m−3 agrees better with helicopter-borne electromag-

netic SIT sounding measurements. We observe the same in

comparison to the OIB SIT measurements, and therefore ap-

ply 882 kg m−3 everywhere.

The last – and a major – uncertainty in the calculation of

SIT is snow depth hs (Zygmuntowska et al., 2014; Giles et

al., 2007). Here we use the original Warren climatology, its

modified version where snow depth is halved over FYI, and

the algorithms from Markus and Cavalieri (1998), Rostosky

et al. (2018), and Kilic et al. (2019), our neural networks and

also the snow depth measured directly by the OIB snow radar

to see how different snow products influence SIT.

For the calculation of sea ice freeboard hfb from radar

freeboard hrfb two corrections should be applied (Kwok,

2014). The first correction δhp accounts for penetration is-

sues caused by the scattering of the Ku-band radar signal at

the air–snow interface and within the snow layer. This shifts

the retracking point closer to the satellite. The second correc-

tion δhd adjusts the radar freeboard for the slower propaga-

tion speed of the radar signal within a snow layer:

hfb = hrfb + δhp + δhd. (9)

Both corrections have opposite signs and therefore more

or less cancel out depending on the snow depth, the retracker

and the ratio between the snow–ice and snow–air interface

peaks (Kwok, 2014). It is especially hard to apply the first

correction since the ratio between the snow–ice and snow–

air interface peaks is not known. Kwok’s simulations suggest

that for snow depths of 5–30 cm (which covers a major part

of the OIB data) both corrections add up to 0.2 cm on average

and are almost independent of snow depth, when a leading

edge retracker is used. Therefore we apply a joint correction

of 0.2 cm to all CryoSat radar freeboard data.

3 Data

3.1 Operation Ice Bridge (OIB)

Operation Ice Bridge (OIB) was a flight campaign conducted

in March and April 2009–2015 by NASA (Kurtz et al.,

2013). The onboard snow radar provides snow depth mea-

surements by identifying both the air–snow and snow–ice in-

terface within the radar returns. This time difference can then

be converted to snow depth, if the snow density is known.

Furthermore, a combination of the onboard laser altimeter

(tracking the ice + snow freeboard) with snow depth al-

lows the calculation of SIT (Farrell et al., 2012). We use
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Figure 3. Flight tracks of the Operation Ice Bridge (OIB) cam-

paigns 2013, 2014 and 2015. The measured snow depth is colour-

coded. The box on the top right shows which part of the OIB data

are used as test data.

OIB data from the Round Robin Data Package (RRDP) ver-

sion 2. This dataset was developed as part of ESA’s sea ice

climate change initiative (CCI) project and can be down-

loaded from http://www.seaice.dk/RRDB-v2/ (last access:

2 November 2018). It contains the OIB snow depth and SIT

data together with collocated AMSR-E or AMSR2 data. In

this study we only use data from the years 2013–2015, where

AMSR2 data are available, to avoid the need for an AMSR-E

versus AMSR2 inter-calibration. The OIB data in this RRDP

stem from NSIDC, and OIB snow depth data are averaged

into 50 km sections for a better overlap and collocation with

AMSR (Pedersen et al., 2019).

The OIB-measured snow depth and SIT were compared

to ground-based in situ measurements along a 2 km transect

from the Danish GreenArc sea ice camp across different ice

types. Both snow depth and SIT were found to agree very

well with in situ data (mean difference 0.01 and 0.05 m re-

spectively) (Farrell et al., 2012). Also a comparison to in

situ snow depth measurements from the Bromine, Ozone,

and Mercury Experiment (BROMEX; Webster et al., 2014)

and to a reconstruction of snow depth from snowfall reanaly-

sis data and sea ice motion (Blanchard-Wrigglesworth et al.,

2018) shows good agreement. Therefore we regard the OIB

data as the best available validation dataset and use a part of

it to train our neural network and another part for evaluation.

To train the networks we temporally divide the OIB data

into a training (70 %), a validation (15 %) and a test (15 %)

dataset. This is a common splitting in machine learning and

ensures enough training data when the overall number of

data is small. We also verified that each of the splits con-

tains a similar range of snow depth values and that their his-

tograms look alike. Figure 3 shows the flight tracks and the

measured snow depths from the 2013–2015 campaigns (the

overall dataset). The top right box illustrates which parts are

used as test data and the snow depth values occurring in this

split. We end up with 755 valid snow depth measurements in

2013 and 2014 for training, 162 valid measurements in 2014

and 2015 for validation – meaning the identification of the

best network architecture – and 162 valid snow depth mea-

surements in 2015 for testing. When we train the AMSR2 +

SMOS neural network, we have to discard all areas (espe-

cially the bigger hole at the pole) where no SMOS data are

available. Again we split the remaining data into 70 % for

training and 15 % for validation and test each and confirm

similar histograms of all splits. This gives us only 299 valid

data points for training, 64 for validation and 65 for testing.

3.2 AMSR2

To train the neural networks and for all comparisons with

OIB data, we use the collocated AMSR2 brightness tem-

peratures provided in the RRDP. For all other purposes

(longer time series and maps of the whole Arctic), we

use the AMSR2 L1R brightness temperature swath data

from JAXA (available at ftp://ftp.gportal.jaxa.jp, last access:

15 August 2018). In the L1R product all frequencies are re-

sampled to the 6.9 GHz resolution and centred at the centre of

the 89 GHz (A) footprint (Maeda et al., 2016). Since CIMR

would provide the same frequencies that we are using (6.9,

18.7 and 36.5 GHz) at the same incidence angle (55◦) and

a similar L1R product, our neural network could directly be

applied to CIMR data and would provide snow depth at a

higher spatial resolution.

3.3 SMOS

We use daily L3 SMOS data from the Centre Aval de Traite-

ment des Données SMOS (CATDS), available at https://

www.catds.fr/sipad/ (last access: 7 January 2019). This prod-

uct is derived from L1C by gridding it to the 25 km global

EASE-2 grid. RFI filtering is applied and certain SMOS

L1C flags are taken into consideration. The brightness tem-

peratures are available at full linear vertical and horizontal

polarization and averaged into 5◦ incidence angle bins (Al

Bitar et al., 2017; Kerr et al., 2013). We average the ascend-

ing and descending tracks and two of those incidence angle

bins to receive brightness temperatures around a 55◦ (50–

60◦) incidence angle, as CIMR would measure them (Kilic

et al., 2018). To collocate the SMOS data with the OIB and
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AMSR2 data from the RRDP, we average SMOS measure-

ments within 25 km from the OIB position of the same date.

3.4 CryoSat

For the calculation of SIT, we use the radar freeboard data

in the Geophysical Data Record (GDR) product from the

CryoSat-2 Science server: http://science-pds.CryoSat.esa.int

(last access: 4 February 2019). Flagged freeboard data are

excluded. To compare the CryoSat-derived SIT with the OIB

SIT, we need to collocate the CryoSat freeboard with the OIB

measurements. For each OIB SIT measurement we average

all CryoSat measurements within 25 km from the OIB posi-

tion and within ±10 d of the OIB flight, assuming that SIT

does not change so quickly. In areas of mixed ice types and

fast sea ice drift this assumption might not hold, but we want

to avoid too many data gaps. Doing so, we take the mean

of on average 296 CryoSat freeboard measurements (me-

dian: 167 CryoSat measurements) and thereby account for

the much smaller footprint of CryoSat compared to the snow

depth products and the averaged OIB data in the RRDP, but

also reduce the uncertainty of a single freeboard measure-

ment.

3.5 Ancillary data

3.5.1 Ice concentration chart

All snow depth on sea ice algorithms that are investigated

here rely on a SIC chart to apply them only in areas of at

least 80 % SIC. For this we apply the SIC product from OS-

ISAF available at ftp://osisaf.met.no/reprocessed/ice/conc/

v2p0 (last access: 5 December 2018) (Lavergne et al., 2019).

Apart from Kilic et al. (2019) all algorithms also require SIC

to correct the brightness temperatures for a potential open-

water part within the footprint. For this purpose we apply

the NASA Team (Cavalieri et al., 1984) algorithm, as sug-

gested by Markus and Cavalieri (1998). This is much faster

than to map a gridded SIC chart to all swath data, but it also

misidentifies a few areas in the open ocean as sea ice. To re-

move these we use the more accurate OSISAF SIC chart at

the end.

3.5.2 Ice type product

The algorithm from Rostosky et al. (2018) requires reliable

information on the ice type to distinguish FYI from MYI.

As proposed in their paper, we also use the OSISAF ice type

product (Aaboe et al., 2016) from ftp://osisaf.met.no/archive/

ice/type (last access: 30 October 2018). The same product is

also used to modify the Warren climatology. In areas of FYI

we halve the original snow depth values.

4 Results and discussion

4.1 Results on snow depth

4.1.1 Comparison to OIB and other algorithms

In this section we measure the performance of our neural net-

works and compare the results to the algorithms proposed

by Markus and Cavalieri (1998), Rostosky et al. (2018), and

Kilic et al. (2019). For this evaluation we employ the test data

part of the OIB snow depth measurements. The performance

is evaluated using the root-mean-squared error (RMSE), the

correlation coefficient CC, the coefficient of determination

(R2) and the bias. These are defined as follows:

RMSE =

√

∑N
i=1(fi − yi)

2

N
, (10)

CC =

∑N
i=1(fi − f̄ )(yi − ȳ)

√

∑N
i=1(fi − f̄ )2 ·

∑N
i=1(yi − ȳ)2

, (11)

R2
= 1 −

∑

i(yi − fi)
2

∑

i(yi − ȳ)2
, (12)

bias =

∑N
i=1(fi − yi)

N
, (13)

with fi being the estimated values from the algorithm, yi

values from OIB and ȳ or f̄ the mean of the OIB or estimated

values respectively.

Table 1 shows the results for the different algorithms. Here

we use only those parts of the data where AMSR2, SMOS

and OIB data are available. This gives us 65 valid data points

for testing. In terms of RMSE and the coefficient of deter-

mination, the two neural networks (AMSR2-only NN and

AMSR2 + SMOS NN) yield the best results, followed by the

approach by Rostosky et al. (2018). For Markus and Cava-

lieri (1998) one should keep in mind that we include snow

depth estimates over MYI, where the algorithm is known

to have issues. Concerning the correlation the algorithms by

Rostosky et al. (2018) and Kilic et al. (2019) perform best,

giving correlation coefficients of 0.93. Last but not least, the

neural networks have essentially no bias (0.00 and −0.01 m),

while Rostosky et al. (2018) show the second smallest bias

with 0.06 m. So overall both neural networks show very

promising results and a higher agreement with OIB snow

depth than the other algorithms. Comparing both neural net-

works with each other, we can easily conclude that the ad-

dition of SMOS data further improves the neural network’s

accuracy – only the bias slightly increases.

To also exploit those parts of the OIB data where no SMOS

data are available, we now show the results on the full OIB

test dataset (162 valid data points for testing instead of 65).

Figure 3 top right corner shows the whole test dataset from

OIB. It covers a range of snow depths on both FYI and MYI.

The AMSR2 + SMOS neural network results stem from the
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Table 1. RMSE, correlation, coefficient of determination and bias

between the different snow depth retrieval algorithms and OIB-

measured snow depth for all the test data where SMOS data are

available. The best score of each category is highlighted in bold.

RMSE CC R2 Bias

Markus and Cavalieri (1998) 0.20 m 0.75 −4.37 0.18 m

Rostosky et al. (2018) 0.07 m 0.93 0.31 0.06 m

Kilic et al. (2019) 0.13 m 0.93 −1.33 0.10 m

AMSR2-only NN 0.05 m 0.84 0.63 0.00 m

AMSR2 + SMOS NN 0.04 m 0.91 0.79 −0.01 m

Table 2. RMSE, correlation, coefficient of determination, and bias

between the different snow depth retrieval algorithms and OIB-

measured snow depth for all the test data. When no SMOS data are

available, the neural network with SMOS is equal to the neural net-

work without SMOS. The best score of each category is highlighted

in bold.

RMSE CC R2 Bias

Markus and Cavalieri (1998) 0.19 m 0.77 −2.67 0.17 m

Rostosky et al. (2018) 0.07 m 0.90 0.58 0.04 m

Kilic et al. (2019) 0.16 m 0.89 −1.44 0.12 m

AMSR2-only NN 0.06 m 0.82 0.61 0.00 m

AMSR2 + SMOS NN 0.06 m 0.85 0.66 0.00 m

AMSR2 + SMOS net, if SMOS data are available and from

the AMSR2-only neural network otherwise. This ensures that

we compare the same part of the data for all approaches and

have more test data available. Combining the two networks

could also be useful in a practical application to fill the hole at

the pole and to still benefit from higher accuracies in regions

where SMOS is available. CIMR, however, would cover the

whole pole at all frequencies and therefore the AMSR2 +

SMOS neural network would produce no gaps.

Table 2 again shows the results for the different algo-

rithms over the whole test dataset. In terms of RMSE and

the coefficient of determination, the approach by Rostosky

et al. (2018) and the neural networks again yield the best re-

sults (RMSE 0.07, 0.06 and 0.06 m; R2 0.58, 0.61 and 0.66),

with the AMSR2-only neural network being slightly better

than Rostosky et al. (2018) and the combined neural network

working best. Also concerning the correlation here, the al-

gorithms by Rostosky et al. (2018) and Kilic et al. (2019)

outperform the others, giving correlation coefficients of 0.89

and 0.90. Last but not least, both neural networks have essen-

tially no bias (0.00 m), while Rostosky et al. (2018) show the

second smallest bias with 0.04 m. Overall we can conclude

that the exact excerpt of the data does not make a big differ-

ence in terms of the conclusions and here the neural networks

also perform best, with the combined neural network outper-

forming the AMSR2-only one. The difference between the

two neural networks is obviously much larger and clearer,

Figure 4. OIB-measured snow depth (test data) versus estimated

snow depth using different algorithms. Note that Markus and Cav-

alieri (1998) should only be applied over FYI, but this plot also

includes MYI.

when only those parts of the data are used where SMOS data

are available. With CIMR we expect to see the same signif-

icant improvement as demonstrated in Table 1 without the

problem of losing data for training and testing.

For a visual impression we plot the estimated snow depth

versus the snow depth measured by OIB in Fig. 4. The

black line indicates a perfect match between the algorithm

and OIB, and the grey shaded region indicates the uncer-

tainty range of the OIB snow depth measurements. In general

the neural networks (pink dots for AMSR2-only and purple

crosses for AMSR2 + SMOS) and the approach by Rostosky

et al. (2018) (green plus) are closest to OIB. For Markus and

Cavalieri (1998) (blue stars) we observe that low snow depths

fit quite well, but larger snow depths are largely overesti-

mated. We acknowledge that these high snow depths prob-

ably occur on MYI, where the algorithm is not well defined.

Most algorithms start to flatten at around 35–40 cm snow

depth. This behaviour can be explained by the saturation of

the 36.5 GHz signal around this depth. The algorithm by Ros-

tosky et al. (2018) is the only one, solely relying on lower-

frequency channels, and should not yet saturate at this depth.

Indeed their estimation stays quite close to the OIB measure-

ments, but also shows a slight decrease in slope. Anyway

this might not be significant considering the small number

of samples. For the AMSR2 + SMOS neural network, we

do not observe a flattening, but we also only have very few

samples available for high snow depth.

Figure 5 reveals the distribution of OIB snow depth in grey

and the distribution of estimated snow depth in colour. To get
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Figure 5. Distribution of OIB-measured snow depth (all data) in grey versus estimated snow depth using different algorithms in colour.

Figure 6. Deviation from OIB (estimated snow depth using different algorithms minus OIB-measured snow depth) for all OIB data. The

vertical black line indicates a perfect match between OIB and the algorithm, the left half corresponds to an underestimation and the right half

to an overestimation of snow depth compared to the OIB measurements.

a better idea of the algorithms’ characteristics and to be sta-

tistically more meaningful, we show the results for the whole

OIB dataset. For the test data the plots look similar, but less

obvious. For Markus and Cavalieri (1998) (first plot in blue),

we again observe that a lot of snow depths are highly overes-

timated – most likely due to the application of this algorithm

over MYI (where it is poorly constrained). The second plot

in green for Rostosky et al. (2018) reveals that this algorithm

only spans snow depths from around 18 to 45 cm. The over-

all agreement is quite good, but the lack of snow depth lower

than 18 cm is quite striking. The third plot in red is associ-

ated with the snow depth estimates by Kilic et al. (2019).

It reveals the widest spread of estimated snow depth values

and shows a good overall agreement with the OIB distribu-

tion, but a tendency to overestimate snow depth. The plot in

pink shows the snow depth distribution from our AMSR2-

only neural network and the purple plot shows the distribu-

tion from a combination of the two neural networks. When

SMOS data are available, we use the AMSR2 + SMOS net-

work, otherwise just the AMSR2 network. Both neural net-

works show the best agreement with OIB: they capture the

spread of OIB snow depths quite well just a few snow depths

deeper than 40 cm are missing and the modes are a little bit

shifted. A high mode at 10 cm snow depth sticks out in par-

ticular, slightly underestimating OIB snow depth and again

the combined neural network agrees a little bit better with

OIB than the AMSR2-only neural network.

Finally we also plot the distribution of the deviation from

OIB (estimated snow depth – OIB snow depth) in Fig. 6. The

vertical black line indicates zero deviation or a perfect match

between the algorithm and OIB. For clarity, we choose to use

all the OIB data since the results for the test data look similar.

The neural networks show the least bias and an almost Gaus-

sian distribution compared to OIB. Their modes are exactly

at zero, while all other algorithms tend to more or less over-

estimate snow depth compared with the OIB measurements.

4.1.2 Applicability outside the training area and period

To get a better feeling for the algorithms’ performance out-

side the areas (west Arctic) and times (spring) of the OIB

data, we apply them to the whole Arctic for a whole winter

season. Figure 7 shows the spatial distribution of snow depth

on 11 January 2013, gridded to the 25 km EASE2 grid. This

date was chosen arbitrarily in midwinter. For comparison we

also include the Warren climatology for January. While we

do not know which solution is closest to the truth, we can

see how broad the Warren climatology is compared to the

maps from satellite data. We also observe that the climatol-

ogy only covers the central Arctic. Outside the diagram (e.g.

80◦ N on the Atlantic side) snow depth can only be calcu-
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Figure 7. Map of Arctic snow depth on 11 January 2013 estimated with different algorithms.

lated by extrapolation, but is no longer supported by mea-

surements. In the plot for Markus and Cavalieri (1998) we

observe a large area of snow depths exceeding 50 cm (white)

in the MYI area, where this algorithm overestimates snow

depth and should not be applied. We note that Rostosky et

al. (2018) lack thin snow depths of less than approximately

15 cm, which seems unrealistic in areas of young ice. The

small gaps in the central Arctic and the smaller extent of the

snow depth map are due to uncertainties in the ice type prod-

uct. These parts are excluded in the algorithm. Rostosky et

al. (2018) fill them by averaging over a month. Gaps in the

AMSR2 + SMOS neural network map are due to missing

SMOS data. They could be closed using the AMSR2-only

neural network instead. In the case of CIMR, however, we

expect the AMSR2 + SMOS neural network to produce a

continuous map with no hole at the pole, which is a feature of

the CIMR coverage (i.e. there will be no hole at the pole for

all CIMR measurements). The snow depth maps from Kilic

et al. (2019) and the neural networks look reasonable, ex-

hibiting a higher snow cover on MYI in the central Arctic and

lower snow depth on FYI and in areas of new ice, as is also

recorded in the Warren climatology. Both the spatial patterns

and the average snow depth of our neural networks on MYI

agree well with the Warren climatology, which is based on in

situ snow depth measurements. On FYI our neural networks

yield lower snow depths than recorded in the climatology,

which can be explained by a strong retreat of MYI since the

period when the underlying in situ data for the climatology

were collected (1954–1991). Overall we can conclude that

the snow depth values and the spatial pattern generated by

our neural networks seem reasonable compared to both other

algorithms and the Warren climatology, which is based on

actual in situ measurements. However, a full validation is not

possible due to a lack of ground truth data.

Figure 8 shows time series of snow depth over one win-

ter season 2012/2013 at different locations in the Arctic. We

calculate snow depth using the different algorithms on a daily

basis from the AMSR2 L1R swath data. The resulting time

series have been smoothed by applying a 7 d running aver-

age to reduce noise. The first panel on the top left shows

the evolution of snow depth at 65◦ N, 80◦ W at the entrance

to Hudson Bay. As the time series reveal, a closed sea ice

area started forming here only at the end of November 2012.

The algorithm by Rostosky et al. (2018) gives no estimate

at this position since the ice type information is not certain

enough. In general all four algorithms show an overall in-

crease in snow depth with time, which is in line with our

expectation on FYI. The exact progression and the absolute
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Figure 8. Time series of snow depth over one winter season 2012/2013 at different locations in the Arctic. The different algorithms are

represented by different colours and lines. Snow depth on FYI in lower latitudes is only recorded once SIC has reached 80 %.

depth vary depending on the algorithm. Most striking is, that

in the middle of March the neural networks and the algorithm

of Markus and Cavalieri (1998) observe an increase in snow

depth, while the approach by Kilic et al. (2019) leads to a de-

crease. Unfortunately no in situ measurements are available

for comparison to verify the actual situation.

The two plots on the right show snow depth evolution on

FYI at 80◦ N, 80◦ E in the Kara Sea (lower panel) and at

80◦ N, 160◦ E very close to the MYI or minimum ice extent

edge of 2012 (upper panel). For all three FYI plots one might

expect that snow depth would start at zero, when the new ice

has just formed. In reality most algorithms start at approxi-

mately 0.10 m and snow depth estimation from Rostosky et

al. (2018) starts at 0.20 m. This can be explained by the fact

that we start calculating snow depth once SIC has reached

80 % and SIC algorithms are known to underestimate SIC

when thin sea ice is present: Ivanova et al. (2014) showed

that in the case of 100 % SIC, the NASA Team algorithm

will only reach 80 % SIC at 0.20 m SIT, so snow depth is not

calculated before the ice has grown 20 cm thick.

The plots on the bottom left at 83.3◦ N, 51.8◦ W just north

of Greenland and in the bottom centre at 85◦ N, 0◦ E show

snow depth on MYI. The left one is an example for high

snow depth all year round, while the one at the centre ex-

hibits a decrease in snow depth throughout winter. This is

likely because of less snowfall, a densification of the snow in

winter and primarily ice drift from the (north) east replacing

older ice with younger ice and thinner snow. In general, all

algorithms more or less agree on the main trends on MYI,

but snow depths by Markus and Cavalieri (1998) and Kilic

et al. (2019) are higher than snow depths by Rostosky et al.

(2018) and our neural networks. Here again we recall that the

algorithm by Markus and Cavalieri (1998) is not reliable over

MYI and tends to largely overestimate snow depth larger than

50 cm.

Even though no real validation is possible over the whole

Arctic or outside the OIB season, from the verification and

inter-comparison results we present, we can conclude that

our neural network results are similar in comparison to other

approaches. This indicates that, although only trained in a

limited area and with spring data, the neural networks may be

applied for the whole Arctic and during a full winter season.

4.1.3 Uncertainty estimation

Finally we assess the uncertainty of our neural networks to

enable usage of this snow product in models or for SIT calcu-

lation. The very complex and highly non-linear relationship

between the input and snow depth output hinders a stringent

variance propagation. Instead, to assess the uncertainty of
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our neural network approaches, we employ the Monte Carlo

method and generate an ensemble of 50 samples for each in-

put brightness temperature. We draw these samples from a

normal distribution using the observed brightness tempera-

ture as mean and 0.5 K as standard deviation for AMSR2.

For SMOS we take the standard deviation provided in the

L3 files for each observation and propagate them through

our averaging process to obtain a standard deviation for each

SMOS measurement used as input to the polarization ratio.

The mean of these standard deviations is 0.76 K for V po-

larization and 0.79 K for H polarization. Further uncertainty

arises from the tie points used both in the NASA Team al-

gorithm for SIC and to correct the open-water part of the

footprint (Eq. 2). Therefore we also create an ensemble of 50

samples for each tie point using the values from Ivanova et

al. (2014) as mean and 3 K as standard deviation. The result-

ing mean uncertainty in SIC from the NASA Team algorithm

is 4 %.

We then estimate snow depth using each ensemble mem-

ber as input to our neural networks. This yields an ensem-

ble of snow depth estimates. The standard deviation of this

ensemble is used as an uncertainty measure for the esti-

mated snow depth value. Across all OIB data the resulting

final uncertainty (mean standard deviation) is 0.05 m for the

AMSR2-only NN and 0.02 m for the AMSR2 + SMOS NN,

indicating that the AMSR2 + SMOS NN is less sensitive

to noise in the input data. The error (repeatability) of the

Monte Carlo simulation is 0.0005 and 0.0001 m respectively.

This approach however only assesses how robust the neural

networks are to uncertainty in the input data and auxiliary

parameters such as the tie points. Further uncertainty arises

from training the neural networks with OIB data, which have

their own uncertainty and limitations unlike a real ground

truth dataset.

4.2 Results on sea ice thickness

Having assessed the different snow depth algorithms, we now

investigate how they influence SIT retrieval from CryoSat

freeboard data and compare the results to OIB-measured SIT.

In addition to the algorithms discussed above, we also in-

clude the original (Warren et al., 1999) and modified (i.e.

halved over FYI; Kurtz and Farrell, 2011) Warren climatol-

ogy and the OIB-measured snow depth, which was used as

validation snow depth data before. The results are presented

in Table 3 and visualized in Fig. 9.

Using the OIB-measured snow depth yields the lowest

bias and RMSE, the highest coefficient of determination, and

the second highest correlation coefficient. Therefore using

it as validation data for snow depth seems justified. How-

ever, the difference in the snow depth algorithms is not that

large, when they are used in SIT retrieval. In terms of RMSE

our AMSR2-only neural network performs as good as the

OIB snow product and both the algorithm by Rostosky et al.

(2018) and the AMSR2+SMOS neural network are only 1 cm

Table 3. RMSE, correlation, coefficient of determination and bias

between CryoSat-derived SIT using different snow products and

OIB-measured snow (italic) for all data. The best score of each cat-

egory is highlighted in bold.

RMSE CC R2 Bias

Warren climatology (1999) 0.73 m 0.75 0.49 0.25 m

Modified Warren 0.67 m 0.77 0.57 0.16 m

Markus and Cavalieri (1998) 0.76 m 0.79 0.46 0.39 m

Rostosky et al. (2018) 0.65 m 0.79 0.62 0.08 m

Kilic et al. (2019) 0.63 m 0.81 0.62 0.13 m

OIB snow 0.62 m 0.80 0.63 –0.04 m

AMSR2-only NN 0.62 m 0.80 0.63 −0.05 m

AMSR2 + SMOS NN 0.63 m 0.79 0.63 −0.06 m

Figure 9. OIB-measured SIT (all data) versus estimated SIT using

CryoSat freeboard with different snow depth algorithms.

worse, which is not significant considering that the accuracy

of the OIB SIT is at best 5 cm. Therefore the last digit of

the bias and the RMSE should not be overrated. Concerning

the correlation coefficient, using snow depth from Kilic et al.

(2019) gives the best result, but the difference to other algo-

rithms is marginal. For the coefficient of determination, both

our neural networks are as good as the OIB snow product

closely followed by the algorithms by Rostosky et al. (2018)

and Kilic et al. (2019). Also in terms of bias, our neural net-

works show the second highest agreement with the OIB SIT,

just after the OIB-measured snow depth. For the Warren cli-

matology we observe that the modified version performs bet-

ter in all the categories, but still worse than most other algo-

rithms. The approach of Markus and Cavalieri (1998) may

perform equally well on FYI. Here we include the perfor-
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Figure 10. Distribution of OIB-measured SIT (all data) in grey versus estimated SIT using CryoSat freeboard with different snow depth

algorithms in colour.

mance over MYI, where the algorithm is not suitable, to al-

low a comparison to the other approaches over all the OIB

data.

When using our two neural networks’ snow depth in

the SIT calculation, the difference between them becomes

marginal and is smaller than the accuracy of the OIB SIT.

This is first of all because when no SMOS data are avail-

able, both have the same result, and, second, in SIT cal-

culation many other uncertainties (e.g. uncertainty in free-

board retrieval due to a varying scattering horizon within the

snowpack and radar signal delay caused by the snowpack,

the choice of the retracking algorithm, uncertainty in snow

density and ice density) overshadow the uncertainty in snow

depth itself. In the following plot we therefore only show the

AMSR2-only neural network.

In Fig. 9 differences between each of the snow depth prod-

ucts are hard to see. Most striking is that for SITs lower than

1 m all algorithms overestimate SIT. Scatter around the mea-

sured OIB SIT is evident and the uncertainty in OIB SIT is

quite large (grey shaded area).

Figure 10 shows the distribution of OIB-measured snow

depth in grey and the distribution of SIT calculated from

CryoSat freeboard using different snow products in colour.

In the SIT distribution from CryoSat freeboard using the

Warren climatology, fewer estimates of SIT below 2 m occur

compared to OIB-measured SIT. The same holds when us-

ing the modified Warren climatology or snow products from

Markus and Cavalieri (1998) and Rostosky et al. (2018), but

the effect is a lot less pronounced. Apart from this, both dis-

tributions are in quite good agreement for all the snow prod-

ucts.

Figure 11 exhibits the deviation of the calculated SIT

with CryoSat using different snow depth products from the

OIB-measured SIT. For most snow depth estimates, CryoSat-

derived SIT is higher than the OIB-measured SIT. This ef-

fect can be seen clearly for the Warren climatology and the

Markus and Cavalieri (1998) snow depth product, but the

modified Warren climatology and the algorithms by Ros-

tosky et al. (2018) and Kilic et al. (2019) also lead to a slight

overestimation of SIT. In contrast, using the OIB-measured

snow depth or the neural networks in the CryoSat SIT re-

trieval gives almost no bias compared to OIB SIT measure-

ments. The modes of the deviation are exactly at zero. Only

a minor skew in the distribution indicates a slight underesti-

mation of SIT.

Snow depth is not the only uncertainty in SIT estimation.

A large contribution to the SIT error budget is the position of

the radar scattering horizon. For CryoSat the assumption is

that most of the signal is scattered at the snow–ice interface;

however different studies suggest that in some cases (e.g.

with a saline snowpack, slush and layering) the main scat-

tering horizon is rather “somewhere within the snowpack”

(King et al., 2018; Price et al., 2015; Kwok and Kacimi,

2018). Alexandrov et al. (2010) state that the freeboard error

may be reduced by averaging. In our comparison with OIB

we take the mean of on average 296 CryoSat freeboard mea-

surements in the collocation process, so the freeboard error

should be reduced significantly, but systematic errors origi-
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Figure 11. Deviation from OIB (estimated SIT using CryoSat freeboard with different snow depth algorithms minus OIB-measured SIT) for

all OIB data. The vertical black line indicates a perfect match between OIB and the algorithm; the left half corresponds to an underestimation

and the right half to an overestimation of SIT compared to the OIB measurements.

nating from the choice of the retracker remain (Ricker et al.,

2014). Additionally we only apply a mean correction for the

combined effect of radar penetration and radar delay caused

by the snowpack. The sign and magnitude of this combined

correction, however, depend on the snow depth and primarily

the ratio between the snow–ice and snow–air interface peaks.

The lack of data for the latter add to the uncertainty budget

of SIT. Both snow and ice density change spatially and tem-

porally, but are mostly treated as a constant bulk value. This

introduces further uncertainty in the conversion of CryoSat

freeboard to SIT. Kern et al. (2015) found in their sensi-

tivity study that the uncertainties of ice density and snow

depth contribute about equally to SIT uncertainty. Accord-

ing to Zygmuntowska et al. (2014) and Giles et al. (2007)

snow depth is the biggest uncertainty. With our results we

also show that the snow depth product does play a role and

makes a difference. This implies that using a reliable snow

depth product also gives more accurate SIT. Compared with

OIB we can confirm that the neural networks give the best

results for both snow depth and using this snow depth in the

SIT calculation.

5 Conclusions

In this paper we introduce a novel neural network approach

to derive snow depth on sea ice from microwave radiome-

ter brightness temperatures. We design one neural network

that relies only on AMSR2 brightness temperatures and an-

other neural network that takes brightness temperatures from

SMOS as additional input. We evaluate the results with snow

depth measurements from the OIB snow radar and compare

them to three other more conventional microwave radiometer

algorithms.

We find that both our neural networks outperform the other

algorithms when compared to OIB snow depths. The neural

networks show the lowest RMSE, the highest coefficient of

determination and have essentially no bias. The estimated

snow depth covers the full range of measured OIB snow

depths and our approach works over both FYI and MYI with-

out requiring a map of ice types to distinguish between both.

We also demonstrate that the neural networks are applicable

outside the OIB period and time, showing reasonable results

that are in line with our expectation, the other algorithms and

the Warren climatology, which is based on in situ measure-

ments, but a true validation should be subject to future work.

From a Monte Carlo simulation we derive an uncertainty of

5 cm for the AMSR2-only and 2 cm for the AMSR2 + SMOS

NN. This and the comparison to OIB show that the addition

of SMOS further boosts the accuracy. The AMSR2-only neu-

ral network can be used to fill areas where no SMOS data are

available.

Additionally we derive SIT from CryoSat freeboard mea-

surements using different snow products including the algo-

rithms tested before, the Warren climatology and our neural

networks. In comparison to the SIT derived from laser al-

timeter measurements on board OIB, we can confirm that us-

ing the snow depth retrieved with our neural networks also
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yields the best matching SIT. This underlines the importance

of a reliable snow product and supports our neural network

approach.

The Copernicus Imaging Microwave Radiometer (CIMR)

candidate mission is now being studied at ESA. CIMR pro-

poses a conically scanning radiometer having a swath >

1900 km and will include channels at 1.4 GHz (60 km), 6.9

and 10.65 GHz (< 15 km), 18.7 GHz (5–6 km), and 36.5 GHz

(4–5 km) on the same platform in a high-inclination dawn–

dusk orbit coordinated with the MetOp-SG(B). CIMR of-

fers improved spatial resolution compared to AMSR2 with

sub-daily coverage of the polar regions above 60◦ north and

south. An adapted version of the AMSR2 + SMOS snow

depth on sea ice neural network retrieval would be extremely

valuable – especially if used in synergy with the proposed

CRISTAL dual-frequency radar altimeter dedicated to sea ice

thickness retrievals. Both missions could fly in the 2020s.

As future work we propose a more extensive inter-

comparison of our neural network approach (and other mi-

crowave radiometry retrievals) to twin-frequency altimetry

snow depth retrievals, modelling approaches and climatolo-

gies. Also, the exploration of radiative transfer techniques

using a combination of several channels could be subject to

future work. Additionally it would be interesting to examine

how the neural networks perform in Antarctica or to train a

similar neural network with Antarctic in situ data. In partic-

ular, the combined AMSR2+SMOS neural network seems

promising for the retrieval of deeper Antarctic snow depth

on sea ice since it incorporates low-frequency channels and

– in contrast to most other microwave radiometry approaches

– does not exhibit a saturation of the signal at 35–50 cm snow

depth.

Code availability. Both the AMSR2-only and the AMSR2+SMOS
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