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ABSTRACT

In many practical applications snow depth is known, but snow water equivalent (SWE) is needed as well.

Measuring SWE takes ;20 times as long as measuring depth, which in part is why depth measurements

outnumber SWEmeasurements worldwide. Here a method of estimating snow bulk density is presented and

then used to convert snow depth to SWE. The method is grounded in the fact that depth varies over a range

that is many times greater than that of bulk density. Consequently, estimates derived from measured depths

and modeled densities generally fall close to measured values of SWE. Knowledge of snow climate classes is

used to improve the accuracy of the estimation procedure. A statistical model based on a Bayesian analysis of

a set of 25 688 depth–density–SWE data collected in the United States, Canada, and Switzerland takes snow

depth, day of the year, and the climate class of snow at a selected location from which it produces a local bulk

density estimate. When converted to SWE and tested against two continental-scale datasets, 90% of the

computed SWE values fell within 68 cm of the measured values, with most estimates falling much closer.

1. Introduction

As global temperatures rise, the world’s snow resources

are predicted to change in significant ways (Hosaka et al.

2005; Christensen et al. 2007; Räisänen 2008; Deser et al.

2010). Long-term changes in global, regional, and local

snow depth (hs), snow water equivalent (SWE), and ex-

tent will ultimately have major ramifications for ecosys-

tem function, human utilization of snow resources, and

the climate itself through feedback mechanisms like snow

albedo (Barry 1996). Unfortunately, of the three snow

metrics listed above, only extent [i.e., snow cover area

(SCA)] is easily monitored using satellites. This moni-

toring, under way for several decades (Robinson 1993;

Frei and Gong 2005), has shown that global SCA has

been decreasing for the past 30 years (Lemke et al.

2007). SCA, however, is only an indirect measure of the

world’s snow water resources (Brown 2000; Brown et al.

2003). To fully understand global snow water trends, the

most fundamental metric to monitor is SWE, with depth

a close second. For monitoring these metrics, two

potential methods are available: passive microwave

remote sensing and estimations based on direct mea-

surements. Many issues make estimating snow mass

from remote sensing problematic (König et al. 2001),

leaving field and station measurements currently the

primary means of inferring critical trends in snow re-

sources.

Of the two fundamental measurements, depth is

quicker and easier to measure in the field than SWE. No

detailed estimates of the total number of depth and

SWE measurements made worldwide is available, but

what is available suggests that considerably more depths

are collected than SWE measurements. For example,

Environment Canada operates 1556 snow depth sites,

but only 27 sites where SWE is measured. In the United

States, over 700 snow pillows (Beaumont 1965; Johnson

and Schaefer 2002), chiefly operated by the National

Resource Conservation Service (NRCS), are used to

make continuous SWE measurements, but conservative

estimates (based on sales of sonic sounders) suggest that

thousands of depth-monitoring stations are in operation.
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The U.S. Weather Service as well as the Swiss Service

measure more depths than water equivalents.

The two measurements are related but not inter-

changeable. The decision to make one type of mea-

surement versus the other (or a mix of both) is often

determined as much by tradition as an objective assess-

ment of accuracy, need, and available resources. To our

knowledge, no formal cost–benefit analyses of measuring

depth versus SWE have been conducted, but a rough es-

timate can be made of the relative time effort involved in

making each type of measurement. During field cam-

paigns we try to split our available time equally between

the two. A census of records for the past decade indicates

an approximate ratio of depth to SWE measurements of

about 30 to 1. In a more objective comparison, our stan-

dard field protocol calls for 201 depth measurements and

10 SWEmeasurements at each station. These are done in

the same amount of time giving a 20:1 ratio. Part of the

reason for this disparity is that we use an efficient self-

recording depth probe (U.S. Patent No. 5864059). In the

U.S. alone approximately 6000 man hours are expended

monthly during winter and spring in the collection of

;20 000 SWE data, but based on the 20:1 ratio, the same

work effort could produce nearly half a million depth

measurements.

What if there was a reliable method of converting

depth measurements into SWE? Such a method would

allow for a significant expansion in the number of loca-

tions where SWE could be estimated without incurring

much additional expense. This would improve our ability

to assess worldwide snow water resources. Here we de-

scribe a method that uses historical station data and

knowledge of snow climate classes (Sturm et al. 1995) to

estimate the bulk density of a snowpack. The bulk density

is then used to convert depth into SWE. Specifically, us-

ing a large (n5 25 688) training set of depth, density, and

SWEmeasurements, we fit the data, including the climate

class of each datum (Sturm et al. 1995), with a nonlinear

analysis of covariance model (ANCOVA) using Bayes-

ian methods. From the analysis an equation is derived

that allows estimation of bulk density based on input of

location, snow depth, and the day of the year.We examine

the residuals to assessmodel fit and test themodel against

a large independent dataset to provide the reader with an

understanding of model accuracy.

The method opens the possibility of converting thou-

sands of depth observations that have been, or currently

are being, collected in to SWE values. For example, it

could be used to convert Environmental Technical Ap-

plications Center monthly observed global snow depth

climatologies (Foster and Davy 1988) into SWE clima-

tologies. It is also likely to become even more useful in

the future if one promising new method of measuring

snow depth becomes operational: airborne LiDAR

(Hopkinson et al. 2004; Deems and Painter 2006; Deems

et al. 2006; Minoru and Hiroshi 2006; Schaffhauser et al.

2008). Airborne LiDAR snow surveys are conducted

much like gamma ray surveys (Peck et al. 1980) with a set

of measurements made prior to the start of the snow

season subtracted from a second set made after the snow

has accumulated. Unlike gamma ray surveys, however,

LiDAR surveys produce snow depth swath maps along

the flight path that can contain literally millions of depth

data. Accuracy depends on flight altitude, terrain, and

GPSnavigation, but is typically about615 cm in absolute

terms, with considerably higher accuracy possible when

frequent benchmarks are included in the swath. Coupled

with the depth-to-SWE conversion method described

here, airborne LiDAR could greatly improve our ability

to estimate local-to-hemispheric snow resources.

2. Background

At a given point, snow depth (hs) is related to SWE by

the local bulk density (rb):

SWE5 h
s

r
b

r
w

, (1)

where depth is measured in centimeters, density in

grams per centimeters cubed, rw is the density of water

(1 g cm23), and SWE is measured in centimeters of

water. It has long been observed (e.g., Dickinson and

Whitely 1972; Steppuhn 1976) that the natural range of

hs is many times greater than the range of rb. For a

northern Alaskan dataset (n 5 5323), 95% of all bulk

density values fell between 0.12 and 0.42 g cm23 while

95% of all depths fell between 8 and 100 cm, a dynamic

range 4 times greater than that of density. For the

training dataset used in this paper the ratio is about 10:1.

Based on these ratios, estimating the more conservative

parameter (rb) while directly measuring the more dy-

namic (and easier tomeasure) parameter (hs) is themost

practical and potentially accurate method of estimating

SWE.

The form of Eq. (1), along with the large dynamic

range of hs, ensures that there will be a strong correla-

tion between SWE and depth, but it is mute about the

relationship between depth and bulk density. These two

parameters are functionally related, albeit in a complex

way. Steppuhn (1976) noted that Eq. (1) requires a co-

variance term between depth and density (C) when used

to compute mean areal values (indicted by overbars):

SWE5 h
s

r
b

r
w

1C. (2)
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The covariance between depth and bulk density, how-

ever, tends to be negligible for a snow cover less than

80 cm deep (Pomeroy and Gray 1995), and at greater

depths is only about 2.5%of SWE (data from this study).

The error in neglecting C is therefore typically smaller

than other potential error sources in Eqs. (1) or (2), so

for simplicity, C is ignored.

Despite the fact that estimating rb usingEq. (1)makes it

possible to determine SWE from depth, there have been

relatively few formal attempts to do so. A handbook for

the NRCS field surveyors (Davis et al. 1970) provides

qualitative rules for adjusting the local mean snow den-

sity upward or downward depending on wind, exposure,

thaws, and the day of the year. Wilks and McKay (1996)

developed a power-law version of Eq. (1) with the bulk

density term (their ‘‘pseudodensity’’) varyingwith climate.

More recently, estimates of rb have been produced using

snow models that solve the surface energy balance and

evolve a snowpack layer by layer (Brun et al. 1989; Liston

and Elder 2006; Lehning et al. 2006), but these models

require extensive meteorological input as well as the cal-

culation of settlement of individual snow layers. They tend

to be difficult to apply to large basins and regions because

of their heavy data and computational demands.

3. Data and modeling

a. Data

The bulk density model was developed using a training

set of 25 668 records of snow depth, density, and SWE

from three countries and two continents (Table 1). These

data span the climate classes of seasonal snow defined by

Sturm et al. (1995): alpine,maritime, prairie, tundra, taiga,

and ephemeral. The classes are defined by the general

physical attributes of a snow cover (depth, density, type of

snow layers, etc.), attributes that tend to remain rela-

tively consistent within climate zones. The set combines

research surveys done inCanada, Switzerland, andAlaska

by the authors with data from monthly agency surveys

done by the NRCS on snow courses in the westernUnited

States (Fig. 1a). Because few systematic measurements

have been made in ephemeral snow it had to be excluded

from the analysis. The data in the training set tend to be of

high quality because a high percentage were taken during

research campaigns.

At NRCS stations, data are collected on the first of the

month starting in November and continuing through

May or June each year. The Canadian and Alaskan data

were taken by the authors during over-snow traverses

conducted in March and April when conditions were

still well below freezing but the snowpack was at near-

maximum depth (Table 1). The Swiss data were taken at

TABLE 1. Sources of SWE, depth, and bulk density data for the training dataset.

Data source No. of data No. of sites Source

Alaska research studies 4977 10 traverses M. Sturm, USA-CRREL, unpublished data,

matthew.sturm@usace.army.mil

Canadian research studies 4934 4 sites, 2 traverses http://www.ccin.ca

C. Derksen, Environment Canada, unpublished data,

Chris.Derksen@ec.gc.ca

NRCS reporting stations 12 245 70 sites http://www.wcc.nrcs.usda.gov/snow/snowhist.html

Swiss research studies 3532 1 basin, various altitudes T. Jonas, SLF, Davos, unpublished data, jonas@slf.ch

Tot 25 688

FIG. 1. (a) The location of the sites in the training dataset

(Western Hemisphere only) used to develop the model. Swiss data

from a basin located at 478049N, 88439E are included in this set, and

(b) the location of the sites in the test dataset (Meteorological

Service of Canada 2000).
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Alptal, Switzerland (Staehli and Gustafsson 2006) on

a weekly and biweekly schedule betweenNovember and

April. All data used in the analysis are available online

(see http://cdp.ucar.edu/cadis).

After developing the model, we located a large depth–

density–SWE dataset from Canada (i.e., the test dataset;

Fig. 1b; n5 226 009) against which the model was tested.

This set, compiled in 2000 (Meteorological Service of

Canada 2000) and updated through 2004 by R. Brown,

comes from snow courses measured between 1935 and

2004 and is wholly different than the Canadian data used

in model development. The practices and equipment

used in collection of the large set varied widely and are

poorly documented. Considering this, and the age of the

data, they are probably not as accurate as the training set.

Additionally, the set is heavily biased toward sites clus-

tered along the U.S.–Canada border, many of which are

classified asmaritime sites despite havingmarkedly lower

depths than in the training set.

Both the training and test sets undoubtedly include

erroneous depth and SWE data (cf. Carroll 1995). SWE

measurements, in particular, are difficult to make accu-

rately. Using a corer that is either plunged or twisted into

the snow until it hits the ground, a snow core is removed

from the snowpack and weighed in the corer using

a spring balance calibrated to read out directly in SWE

units, or bagged andweighed later using a digital balance.

In either case, the measurement is gravimetric and re-

turns the bulk density of the snow; though in one case the

measurement is reported in SWE units. While the corer

is touching the ground, the depth is read off graduated

marks on the side of the corer with a nominal precision of

60.2 cm, but an accuracy that is closer to 61.0 cm.

At least four models of snow corer are in use in North

America [the Federal or Mt. Rose, the Adirondack, the

Eastern Snow Conference (ESC), and the Snow-Hydro]

and all suffer from similar problems, the most common

being a loss of snow. If the corer fails to retain a plug of

soil, vegetation, and/or ice, snow will fall out the bottom

of the corer when it is extracted from the snowpack

(Turcan and Loijens 1975). The corer can also hit an ice

layer, which will push snow out of the corer’s path, again

resulting in a light sample. We have tried to quantify the

magnitude of this undersampling by routinely comparing

core-based density values to those determined from

a density profile done in nearby snow pit. For measuring

the latter, a 3-cm high steel box cutter with a volume of

100 cm3 is used with a digital balance. By integrating the

individual layer densities measured in the pit, a bulk

density can be computed and compared to the adjacent

values obtained by coring. Our experience suggests that

the pit measurements are more reliable and accurate,

albeit more labor-intensive, than the core measurements.

The results (spanning 8 yr, 5 field programs, and 3 types

of corers: Table 2) suggest core-based bulk densities av-

erage 7.1% lower than layer-integrated values.

Our results contradict prior studies (Work et al. 1965;

Peterson and Brown 1975; Goodison 1978; Farnes et al.

1982) that found that coring results in a high SWE bias.

This happens when excess snow is forced into a core tube,

a situation that is said to happen more frequently with

smaller diameter cutters (like the Federal Sampler with

a cross-sectional area of 11 vs 30 cm2 for the ESC and

Snow-Hydro samplers), deeper, denser snow (Peterson

and Brown 1975), and poor cutter design (bad taper;

fewer and/or dull teeth). The type of snow (nature and

amount of depth hoar, number and thickness of ice layers)

also matters. SWE errors also arise when a spring balance

is used for weighing the cores (Bray 1973). Given our

findings, and those of the previous studies, we conclude

that within the training set (i) the SWE errors are small

and (ii) they are a function of the equipment used, the care

taken in collecting themeasurement, and the nature of the

snowpack (none of which is routinely recorded). They are

effectively random in nature, and therefore cannot be

corrected easily, so no correction is applied.

b. Modeling

While it would be possible to develop amodel relating

SWE directly to depth, it is more appropriate to model

bulk density (as detailed above) and use that relation-

ship to convert measured or assumed depths to SWE.

Bulk density is a complex function of snow depth (hs),

snow temperature (u), snow deposition history (t), and

the initial density of the individual snow layers (r0):

r
b
5 f (h

s
, t, u, r

0
), (3)

thus Eq. (1) can be written as

SWE5 f (h
s
, t, u, r

0
)
h
s

r
w

. (4)

TABLE 2. Difference (%) between bulk density determined by

coring and obtained by integrating individual snow-layer densities.

The average value is weighted by the number of snowpits (n).

Yr Location n Error (%)

1996 Kuparuk basin, Alaska 37 10

2000 Ivotuk to Barrow, Alaska 60 23

2000 Barrow 14 25

2002 Ivotuk to Barrow, Alaska 26 29

2004 Nome to Barrow, Alaska 39 211

2005 Manitoba, Canada 101 210

2006 Manitoba, Canada 56 28

Tot 333 27.1
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Without knowing explicitly the form of Eq. (3), it is

clear that SWE is a complex and nonlinear function

of hs.

To model the bulk density we used Bayesian statisti-

cal methods to develop a nonlinear ANCOVA model.

Bayesian methods offer versatility when modeling com-

plex systems (Congdon 2003; Gelman et al. 2004; see also

http://www.bayesian.org/ and the journal Bayesian Anal-

ysis). When rb is plotted as a function of depth, it exhibits

nonlinearity in the mean response, a skewed error struc-

ture, and a nonconstant error variance (heteroscedasticity).

These complexities can be handled using Bayesian

methods, but aremore problematic when using nonlinear

least squares. The Bayesian methods also produce useful

posterior probability distributions that define the uncer-

tainties associated with the model predictions, as well as

accounting for temporal and spatial dependencies. Three

easily obtained predictor variables: snow depth, DOY

(day of the year), and snow class, were used as input to the

model. The snow class, as discussed below, was intended

to capture environmental variables like temperature and

initial density, which are well known for impacting the

bulk density.

Many different functional forms of Eq. (3) (i.e., linear

models with and without quadratic and cubic functions of

depth and DOY; nonlinear functions) and all combina-

tions of predictor variables were tested. To choose which

form was best, as well as whether all three predictor

variables were needed, we used an objective method

of evaluation called the deviance information criterion

(DIC; Burnham and Anderson 2002; Spiegelhalter et al.

2002; Wheeler et al. 2010). DIC scores become lower (in

our case increasingly negative) as model accuracy goes

up, but if, and only if, the improvement in accuracy ex-

ceeds a penalty assessed for increasing model complex-

ity. A decrease in DIC score of 5–10 points implies a

significant improvement in model performance. The fi-

nal model that was selected had a DIC score ;1630

lower than its closest competitor, suggesting that it was

significantly better.

The variance in the bulk density data (when plotted

against snow depth, DOY, and subdivided into climate

classes) was modeled using both beta and normal distri-

butions, but in the end, a beta distribution was selected

because it could accommodate the skew in the data. In-

corporating a term to address the nonconstant variability

(heteroscedasticity) present in the training dataset im-

proved model performance (decreasing DIC by almost

2000 points) and was also incorporated into the final

model.

The software package WinBUGS (Lunn et al. 2000)

was used to run the various models and determine the

optimal result. Multiple Markov chains (using a range of

initial values) were run for more than 100 000 iterations

to simulate posterior distributions, with the first 50 000

iterations eliminated to allow for burn-in. We verified

convergence by examining run histories, autocorrelation

functions for simulated values, the Gelman–Rubin con-

vergence statistic (Gelman andRubin 1992) asmodified by

Brooks and Gelman (1998), and by performing additional

diagnostic tests using the CODA (Plummer et al. 2006)

libraries in ProgramR (RDevelopment Core Team2008).

Two potential types of errors affect the modeling. The

first relates to the use of snow climate classes as a proxy

for the physical processes that lead to the densification

of a snow cover. Snow bulk density is known to increase

with time and depth as the weight of the overlying snow

compacts underlying layers (Kojima 1966). It is also

moderated by temperature, solar radiation, the nature of

the initial snow deposit, infiltration of meltwater, and the

rate, sequence, and rapidity with which new snow layers

are added to the snow on the ground. Bilello (1969),

TABLE 3. Statistics for the training and test datasets with model errors also listed.

n

Depth

(cm)

Std dev

(cm)

Density

(g cm23)

Std dev

(g cm23)

SWE

(cm)

Std dev

(cm)

Density error

(g cm23) Std dev

SWE Error

(cm) Std dev

Training dataset

All data 25 688 108.4 111.3 0.312 0.093 38.7 48.7

Alpine 18% 130.0 82.5 0.335 0.086 46.2 35.5

Maritime 32% 176.6 149.9 0.343 0.101 68.4 67.1

Prairie 13% 88.5 72.8 0.312 0.085 30.0 31.4

Tundra 31% 43.8 24.7 0.284 0.075 12.5 8.2

Taiga 6% 59.6 22.7 0.217 0.056 12.8 6.0

Test dataset

All data 226 009 70.6 70.6 0.274 0.097 22.3 30.1 0.040 0.078 2.2 6.0

Alpine 24% 90.5 68.0 0.292 0.092 29.5 28.3 0.044 0.063 2.9 5.7

Maritime 47% 69.6 78.3 0.279 0.098 22.7 33.7 0.056 0.078 3.0 6.4

Prairie 7% 58.1 48.6 0.260 0.077 16.5 16.7 0.058 0.062 3.4 4.3

Tundra 6% 34.6 28.8 0.278 0.085 9.8 9.7 0.085 0.085 2.8 4.1

Taiga 16% 52.3 31.5 0.214 0.067 11.7 9.0 0.003 0.067 20.3 3.8

1384 JOURNAL OF HYDROMETEOROLOGY VOLUME 11

Unauthenticated | Downloaded 08/23/22 02:29 PM UTC



McKay and Findlay (1971), and McKay and Gray (1981)

first demonstrated that these differences in bulk snow

densification could be captured empirically using a cli-

mate classification; Sturm and Holmgren (1998) con-

firmed this finding. Nonetheless, the approach is general.

The alternative would be to explicitly model compaction

processes, as has been done in several physically based

snow models (cf. Anderson 1976; Koren et al. 1999;

Liston et al. 2007; see Rutter et al. 2009 for an extensive

list). The problem is that these physical models require

high-quality daily or even hourly weather and snowfall

data because they must track individual snow layer set-

tlement through time. Simpler quasi-physicalmodels have

been proposed based on time since snow deposition

(Martinec 1966; Elder et al. 1991; Sturm and Holmgren

1998), but even these models are too complex and too

computationally intensive to be used in global and re-

gional applications (cf. Anderton et al. 2004). So while

our model is general and potentially less accurate than

explicit locally applied physical models, it is far easier to

apply globally or regionally.

The second potential error is misclassification of the

snow cover. We used a 1-km by 1-km global snow class

map (G. E. Liston and M. Sturm 2010, unpublished

manuscript) for classifying both the training and test

datasets. Themap is a refinement of the 0.58 by 0.58 grid

map that appears in Sturm et al. (1995). For the training

set the classification was checked using aerial photos

(vegetation can indicate class) and satellite images, and

in many cases there was local knowledge of the snow.

Classification of the test set was based strictly on loca-

tion (latitude–longitude) and likely includes greater

classification errors.

4. Results

The training dataset (Table 3 and Fig. 2) has a mean

density (r
b
) of 0.312 g cm23 and exhibits a nearly sym-

metric distribution, while depth (mean5 108.4 cm) and

SWE (mean 5 38.8 cm) have asymmetric distributions.

Consistent with the findings of Skaugen (1999) and

Bocchiola and Rosso (2007), these distributions can be

fit using normal (density) and lognormal (depth and

SWE) functions, respectively. The similarity between

the SWE and depth distribution curves is indicative of

the fact that SWE is more closely linked to depth than

it is to bulk density, as previously discussed. A regression

line of SWE versus depth [forced through (0, 0), see

Fig. 3a] has a slope of 0.394 and an r 2 value of 0.95

(Table 3). The correlation value is high, but it should be

FIG. 2. Empirical PDFs for (a) SWE, (b) depth, and (c) bulk

density for the training dataset (filled bars) and the test dataset

(black lines).

FIG. 3. (a) SWE vs depth, (b) bulk density vs depth, and (c) SWE

vs bulk density for the training dataset (n5 25 688). In (a) and (c)

a line has been fit to the data. In (b) an exponential curve [Eq. (4)]

has been fit.
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given the nature of Eq. (1). The same equation suggests

that the slope of the regression should be equal to the

mean bulk density (0.312 g cm23), but it is not. Instead

the slope is 26% higher because the functional relation-

ship between depth and SWE is nonlinear. The regression

line is skewed upward by the greater snow densities as-

sociated with deeper snow. This problem illustrates one

of the motivations for modeling rb rather than estimating

SWE directly from depth.

A plot of bulk density (rb) versus depth (hs) [Fig. 3b; see

also Fig. 3 in Pomeroy and Gray (1995)] shows consider-

ably more scatter. There is a distinct increase in the min-

imum value of rb (the floor of the data cloud in Fig. 3b)

with increasing depth, a result that could have been an-

ticipated because with increasing depth there is greater

compaction. There is almost no increase in the maximum

bulk density (rmax) with depth; this too is consistent with

previouswork that has found that themaximumdensity of

seasonal snow (in the absence of water infiltration) ap-

proaches 0.6 g cm23 (Paterson 1981). A linear function

could be used to relate bulk density to depth, but a better

fit is achieved using a nonlinear function asymptotic to the

maximum seasonal density:

r
b
5 (r

max
� r

0
)[1� exp(�k 3 h

s
)]1 r

0
, (5)

where r0 is the initial density and k is a fitting parameter.

Unlike the SWEversus depth regression, the bulk density

fit should not be forced through (0, 0) because even a

vanishingly thin snow layer will have a nonzero density.

Within the training dataset there are distinctly different

density patterns for each class of snow (Fig. 4). Maritime

snow, for example, has the largest range (in both depth

and density) of all the classes, forming a data cloud that

has an axis oriented primarily in the horizontal direction,

reflecting the large range of snow depths this class exhibits

(Sturm et al. 1995). Deep maritime snow, always rela-

tively close to its melting point, compacts rapidly to pro-

duce high bulk densities by late winter. In contrast, the

tundra snow data cloud has a vertical axis, indicating

a large density range, but little range in depth. Tundra

snow never gets very deep, but its twomajor components,

depth hoar andwind slab, bracket the full range of density

found in seasonal snow (Benson and Sturm 1993). Vari-

ations in the relative percentages of these components can

alter the bulk density dramatically without much varia-

tion in depth.

Within each snow class shown in Fig. 4 there are further

variations in depth and density controlled by landscape,

vegetation, microtopography, and time (e.g., Adams and

Roulet 1982; Elder et al. 1991; Lapen and Martz 1996).

FIG. 4. Different density patterns by snow classes for the training dataset. Contours in the main figure are for SWE

(cm) and satisfy Eq. (1). The patterns are similar for the test dataset.
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These within-class variations are well illustrated by

the tundra snow class. In the tundra regions, locations

exposed to higher winds (in Alaska the arctic coastal re-

gion) tend to exhibit higher bulk densities and lower snow

depths than more protected places like the foothills just

north of the Brooks Range (Fig. 5: see also Bilello 1957,

1984). Here, we ignore these local, landscape-controlled

density differences, though they could be introduced into

the methodology in manner similar to that of Anderton

et al. (2004), Watson et al. (2006), and Jonas et al.

(2009).

The scatter in Figs. 3a,b suggest that in estimating the

bulk density of snow using a statistical model there is

likely to be a fairly large uncertainty. To place themodel

results in context, it is useful to look at the range of bulk

density values observers might encounter if they were to

take several accurate measurements at a single site or

within a very small basin. This natural range is the base

against which model-based estimates need to be com-

pared. Unfortunately, there has been relatively little

systematic effort to quantify it. A sense of its magnitude,

however, can be obtained by analyzing data collected at

124 sites (10 measurements per site) during 2 of the

Alaskan traverses that are included in the training set.

Each of these sites was flat and nearly featureless (cf.

Liston and Sturm 2002; Sturm and Liston 2003) limiting

local variations because of topography or vegetation.

The bulk density varied between 0.25 to 0.33 g cm23 in

2000, and between 0.23 to 0.28 g cm23 in 2002 (Fig. 6),

a range that when converted to SWE implies a 27% and

20% variation, respectively, about the mean. In a more

comprehensive survey that included five different loca-

tions and several snow types, Jonas et al. (2009) con-

cluded that the local natural variation in bulk density

ranged from 7% to 23% of the mean bulk density value,

corresponding with a variation in SWE of 13%–80%, an

amount that translates into 2.5–6 cm of SWE.

Finally, in preparation for testing the model results,

training and test datasets were compared using standard

statistical measures (Table 3). The mean values of depth,

density, and SWEwere higher for the training set by 35%,

12%, and 42%, respectively. We note that these differ-

ences are of the same order as the local variances shown

in Fig. 6. The test set was also more scattered than the

training set, probably because it is considerably larger,

older, and contains more problematic data points.

FIG. 5. Data from the tundra snow class in Alaska (Kuparuk

River basin, March 1995) showing variation in the bulk density by

landscape (upland vs coastal).

FIG. 6. Box and whisker plots for bulk density variability in

Northwest Alaska. In 2000, 49 stations were measured. In 2002, 79

stations were measured, including the same 49 measured in 2000.

At each station, 10 bulk density measurements were made from

which the rangewas computed. The shaded boxes bracket 25%and

75% of the data. The whiskers are at 90% and 10%.

TABLE 4. Model parameters by snow class.

Snow class rmax r0 k1 k2

Alpine 0.5975 0.2237 0.0012 0.0038

Maritime 0.5979 0.2578 0.0010 0.0038

Prairie 0.5940 0.2332 0.0016 0.0031

Tundra 0.3630 0.2425 0.0029 0.0049

Taiga 0.2170 0.2170 0.0000 0.0000
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5. Modeling the bulk density

The simplestmethod of converting snow depth to SWE

is to replace rb in Eq. (1) with the mean density of the

training set (Table 3; 0.312 g cm23). A refinement of this

approachwould be to first classify the sites beingmodeled

and then use the mean densities of the individual classes.

The mean density of the whole training set differs from

the whole test set by only 12%, a small error considering

other uncertainties in calculations of global snow re-

serves. The differences in snow class densities range from

1% to 19% (in all cases the training set values are higher

than the test set), still reasonably close for regional and

global modeling.

A more accurate approach, however, is to directly

include the effect of snow depth [hs in Eq. (5)], the effect

of snow aging (older snow is generally deeper and denser

than younger snow) through the use of DOY, and to

indirectly include the effects of climate (temperature

and wind) through the use of snow classes. Equation (5)

becomes

r
h
i
,DOY

i

5 (r
max

� r
0
)[1� exp(�k

1
3 h

i
� k

2
3DOY

i
)]

1 r
0
, (6)

where k1 and k2 are densification parameters for depth

andDOY, respectively; rmax, r0, k1, and k2 vary with snow

class (Table 4); and i indicates the ith observation.Because

the winter season in the Northern Hemisphere spans two

calendar years, DOY runs from292 (1 October) to1181

FIG. 7. DIC scores plotted against adjusted r2 values for various models tried during the de-

velopment of Eq. (6) and Table 4. For nonlinear models the value plotted against the y axis was

the ratio of the difference between the variation in density data and the variation in the residuals

of the model fit to the density data divided by the variation in the density data. Linear models

produced nonphysical results (negative density) even with low DIC scores (i.e., model 6) and

were ultimately not used. The arrow between models 7 and 8 suggests the impact of switching

from homo- to hetero-scedastic variance models. The arrow from models 4 to 5 suggests the

impact of changing from single to multiple slope models. The overall decrease in DIC illustrates

the impact of increasing the number of parameters utilized in the model from one to three.
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(30 June), with no 0 value. In this system, 1 February is

DOY 5 32, while 15 November is DOY 5 247.

Before we settled on Eq. (6) other functional forms

relating bulk density to depth and DOY were evaluated

using the DIC criteria. Several linear models with and

without quadratic and cubic functions of depth and

DOY produced nonphysical results and were dis-

carded. Incorporating nonconstant variability (i.e., the

heteroscedasticity exhibited in Fig. 3b) improved model

performance, decreasing DIC by almost 2000 points, but

had virtually no effect on the fitted curve and resulting

estimates of k1 and k2. The final model [Eq. (6)] included

all three predictor variables (snow depth, DOY, and snow

class) and had a DIC score that was 1630 lower than the

closest nonlinear competitor (which included only snow

class anddepth as input; Fig. 7). The chosenmodel explains

about 45% of the variability in the data. By way of com-

parison, the adjusted r2 for a linearmodel with depth as the

only input explains less than 24%of the variability (Fig. 7).

To quantify themodel fit, bulk density residuals (robs2

rmodel) for the training set were used to calculate the root

mean squared error (RMSE) as a function of snow depth:

RMSE
h
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51
(r

i,obs
� r

i,mod
)2

n
h

v

u

u

u

u

t

, (7)

where n is the number of observations falling in depth

class h1 to h2, and obs and mod indicate measured and

modeled values, respectively. As expected, the pre-

dictive power of the model for snow depths less than

30 cm is relatively poor (Fig. 8), but the error diminishes

quite rapidly as snow depth increases, quickly dropping

to levels well below those of natural local variability

(Fig. 6). For example for snow deeper than 50 cm,

modeled bulk density errors are less than 0.066 g cm23.

Application of the model over an area, region, or the

NorthernHemisphere is simple: each snow depth station

is classified using the snow class map of Sturm et al.

(1995) or the newer 1-by-1 km map developed by G. E.

Liston andM. Sturm (2010, unpublished data). Equation

(6) is applied to the station snow depth using the date of

observation and the appropriate parameters from Table

4. The resulting value of rb is multiplied by the depth to

produce the SWE for the station.

6. Testing the model

For each site and date of observation in the test dataset

Eq. (6) was applied using the appropriate values from

Table 4 based on the site classification. The estimated

bulk density was compared to the observed value and two

errors were defined:

«
i
(r

b
)5 r

hi ,DOY
i

� r
obs

i

(bulk density error) (8a)

and

«
i
(SWE)5 SWE(r

hi ,DOY
i

)2 SWE
obs

i

(SWE error).

(8b)

FIG. 8. Residual values [Eq. (7)] after applying the model to the

training dataset.

FIG. 9. PDFs for (a) the bulk density error and (b) the SWE error

as defined in Eqs. (8a) and (8b). The test dataset has a low bias in

comparison to the training dataset and the model results (see text)

that are marked on distributions by vertical dashed lines.
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Probability distribution functions for these errors are

shown in Figs. 9a,b. Ninety percent of all model-estimated

bulk densities fell within 60.13 g cm23 of the measured

density. For comparison, site-specific field surveys based

on multiple SWE cores commonly find local variations in

density of 60.07 g cm23 (Fig. 6; see also Goodison 1978

and Table 4 in Jonas et al. 2009). SWE values produced

from the model densities fell between 27 and 19 cm of

the observed SWE: locally observed variations in SWE

are on the order of half this range.

The biases between the training and test datasets listed

in Table 3 and shown in Figs. 2a–c reappear in Figs. 9a,b.

The test data are on average 0.04 g cm23 lower in density

than the training data and 2.2 cm lower in SWE (shown

by vertical dashed lines in Figs. 8a,b). There is no de-

finitive way to tell which dataset is better. However, given

the uncertain heritage of many of the datum in the test

set, we favor the training set as being more universal, in

part because it is more regional in scope, and in part

because its heritage is better known and it is known to

include data of higher quality.

The probability of error as a function of snowdepth has

been contoured in Figs. 10a–c, removing the previously

noted bias in order to focus on how the error varies with

depth. The bulk density error is nearly constant across the

entire range of depth (Fig. 10a), while the probable error

in SWE increases as depth increases (Fig. 10b). The rel-

ative error in SWE, on the other hand, decreases with

increasing depth (Fig. 10c). This is because the depth

increases faster than the error.We examined whether the

errors showed any systematic variation with other factors

besides depth (and SWE) but found none. The errors are

also of approximately the same magnitude across all lat-

itudes, longitudes, and dates in the test dataset.

In a second test, model results were compared

against data collected from three midlatitude basins in

the United States where considerable snow research has

been done. These are: Tokopah basin in the Sierra’s of

California (Maritime or Alpine snow: see Sickman et al.

2001), Green Lakes basin in the Front Range of Colo-

rado (Alpine snow; data courtesy of M. Williams), and

the Fraser and North Park basins measured during the

ColdLands Processes Experiment (CLPX) inColorado in

2001 and 2002 (Alpine and Prairie snow). The compari-

son (Table 5) shows reasonable agreement for estimated

SWE values for all areas with the exception of the very

shallow prairie snow of North Park.With the exception of

the latter, the SWE error as a percentage of the observed

value ranged from21.5% to 26%, andwas in all cases less

than the standard deviation of the observed values.

7. Discussion

The strength of the model developed here is its sim-

plicity and ease of use. It seems ideally suited for use in

sparsely populated snow-covered areas like the Arctic

and mountainous regions where access can be difficult. It

is also useful where the computational cost of physically

based modeling to estimate bulk density may not be

warranted, or where meteorological station density may

be too low to support suchmodeling. Given its simplicity,

the performance of the model is surprisingly good. The

reason the model works is because bulk density is a con-

servative value. Fully 50% of all bulk density measure-

ments for seasonal snow lie in a narrow range between

0.244 to 0.375 g cm23 (Fig. 2c); 80% lie between 0.194

and 0.435. Reasonable estimates of SWE can be derived

even using a fixed bulk density value (either 0.312 g cm23

for all snow, or the values in Table 3 for each snow class).

FIG. 10. Contours of probability density for (a) the error in bulk

density as a function of snow depth, (b) the error in SWE as a

function of depth, and (c) the relative error in SWE (error/SWE) as

a function of depth.
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This approach of deriving SWE from snow depth is not

new: NRCS instructions from the 1970s for converting

aerial marker snow depths into SWE (Davis et al. 1970)

incorporate several of the basic ideas presented here,

though in a rule-based form. What is new is our use of

snow climate classes to refine bulk density estimates,

though the work ofMcKay and Findlay (1971),Wilks and

McKay (1996), and SturmandHolmgren (1998) presaged

this part of the approach. The addition of the climate

classes broadens the area over which estimates can be

derived and improves the estimates.

The methodology applied here (using historical data to

develop statistically based methods for estimating bulk

density) has already been applied to a single snow class

(Alpine snow: see Jonas et al. 2009) where snow depth,

altitude, and DOY were used as input to a within-class

statistical model. The same principle, that bulk density is

conservative, served as the basis for this local study and

ensured that the approach worked.

The ultimate value of the method is that it could po-

tentially improve local, regional, and global estimates

of snow resources at a time when budgets for operating

traditional measurement monitoring networks have be-

come more difficult to obtain and sustain. Using the

model increases efficiency and cost effectiveness in snow

monitoring by leveraging depthmeasurements (which can

be taken 20 times as fast as SWE) into SWE. Dickinson

andWhitely (1972), Steppuhn (1976), andRovansek et al.

(1993) have all proposed schemes that in some way do

this, though here we have made the application of the

method easier. Steppuhn (1976), writing more than 30

years ago, stated that:

‘‘. . .statistically valid water equivalents [could] be de-
rived from sampling where depth measurements out-
number[ed] those for density four-fold or more.’’

We could not agree more, and put our model forward as

a potential way to do this.

8. Conclusions

Here we present a method of converting snow depths

to snow water equivalents (SWE). Using as input data

snow depth, day of year, and station location (from

which can be inferred the climate class of snow following

Sturm et al. 1995), estimates of the bulk density of the

snow are derived using a statistical model. The model

was trained on historical depth–density–SWE data from

the United States, Canada, and Switzerland, then tested

on an extensive set of independent data from Canada

and a second set from the western United States. The

method works well because there is a satisfactory sta-

tistical relationship between bulk density and snow

depth, time of year, and climate class of snow. It also

works because density is a conservative variable that in

nature is constrained between fairly narrow limits, while

snow depth varies over a much greater range. Conse-

quently, estimates of bulk density derived from histori-

cal data generally fall close to measured values. In a test

against extensive Canadian data, 90% of the model-

derived SWE estimates fell within 68 cm of measured

values, with relative errors in SWEnotmuch higher than

the range of SWE that would be encountered at a single

site due to local real variability. The model is easy to

apply and requires simple input data, making it useful in

local to global snow water resource applications.

Recent efforts using remote sensing to monitor snow

water resources have met with limited success. For ex-

ample, direct satellite remote sensing methods for de-

termining SWE are still not reliable enough (Cline et al.

1998; Mote et al. 2003) for tracking local, regional, or

global snowmass or volume.As an alternative, our ability

to measure snow extent has led to hybrid procedures

where SCA has been used with a melt model to compute

water volume (Cline et al. 1998; Molotch and Margulis

2008; Molotch 2009). In light of these limitations in our

ability tomeasure andmonitor local to global snowwater

TABLE 5. Comparison of model results with measurements from Colorado and California.

n

Depth

(cm)

Depth

std dev

(cm)

Density

(g cm23)

Density

std dev

(g cm23)

SWE

(cm)

SWE

std dev

(cm)

Density

error

(g cm23)

Density

error std

dev (g cm23)

SWE

error

(cm)

SWE

error SD

(cm)

Green Lakes Valley

Using alpine model 54 179.9 25.0 0.4196 0.0554 75.5 15.0 20.0066 0.0536 21.1 10.1

Tokopah, California

Using alpine model 262 189.5 93.7 0.508 0.088 93.2 44.5 20.091 0.085 213.1 15.3

Using maritime model 262 189.5 93.7 0.508 0.088 93.2 44.5 20.08 0.084 211.5 15.63

CLPX

All 464 104.5 81.1 0.254 0.067 30.2 26.7 0.087 0.049 7.9 7.7

Alpine 345 136.9 68.9 0.276 0.055 39.9 24.3 0.078 0.041 10.2 7.5

Prairie 119 10.8 7.8 0.190 0.057 2.2 1.9 0.115 0.060 1.0 0.9

Std dev Measured values Model results
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resources, there remains a critical need for more station

measurements of SWE. The method described here al-

lows reasonable estimates of SWE to be made from

simple observations of snow depth.
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