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Abstract. Ground-based whole-sky cameras are now exten-

sively used for the localized monitoring of clouds. They cap-

ture hemispherical images of the sky at regular intervals us-

ing a fish-eye lens. In this paper, we propose a framework for

estimating solar irradiance from pictures taken by those im-

agers. Unlike pyranometers, such sky images contain infor-

mation about cloud coverage and can be used to derive cloud

movement. An accurate estimation of solar irradiance using

solely those images is thus a first step towards the short-term

forecasting of solar energy generation based on cloud move-

ment. We derive and validate our model using pyranometers

colocated with our whole-sky imagers. We achieve a better

performance in estimating solar irradiance and in particular

its short-term variations compared to other related methods

using ground-based observations.

1 Introduction

Clouds have a significant impact on solar energy generation.

They intermittently block the sun and significantly reduce

the solar irradiance reaching solar panels. A short-term fore-

cast of solar irradiance is needed for grid operators to mit-

igate the effects of a drop in power generation. With rapid

developments in photogrammetric techniques, ground-based

sky cameras are now widely used (Dev et al., 2016d). These

cameras, known as whole-sky imagers (WSIs), are upward-

looking devices that capture images of the sky at regular

intervals of time. These images are subsequently used for

automatic cloud coverage computation, cloud tracking, and

cloud-base height estimation. In our research group, we use

these imagers to study the effects of clouds on satellite com-

munication links (Dev et al., 2017b, 2018b; Yuan et al.,

2016).

The localized and short-term forecasting of cloud move-

ments is an ongoing research topic (Shakya et al., 2017; Jiang

et al., 2017; Feng et al., 2018). Optical flow techniques can

be used to forecast images using anterior frames (Dev et al.,

2016c). Similarly, cloud motion vectors are exploited for so-

lar power prediction from satellite images (Jang et al., 2016).

Our proposed method for estimating solar irradiance is thus

a first step towards solar irradiance forecasting, as the input

data used to estimate the irradiance are the same as those

used to forecast the sky condition.

The accurate estimation and prediction of solar energy

generation is a challenging task, as clouds greatly impact the

total irradiance received on the earth’s surface. In the event

of clouds covering the sun for a short time, there is a sharp

decline in the produced solar energy. Therefore, it is impor-

tant to model the incoming solar radiation accurately. In this

paper, we attempt to measure the rapid fluctuations of solar

irradiance using ground-based sky cameras.

The analysis of clouds and several other atmospheric phe-

nomena is traditionally done using satellite images. How-

ever, satellite images have either low temporal or low spatial

resolutions. A popular instrument is the Moderate-resolution

Imaging Spectroradiometer (MODIS) (Pagano and Durham,

1993), which is onboard the Terra and Aqua satellites and

provides a large-scale view of cloud dynamics and various at-

mospheric phenomena. Data from MODIS are usually avail-

able only twice in a day for a particular location. This is

useful for a macroanalysis of cloud formation on the earth’s
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surface. Another illustrative example of such satellite data

is the HelioClim-1 database from the Global Earth Observa-

tion System of Systems (GEOSS) (Lautenbacher, 2006). It

provides hourly and daily averages of surface solar radiation

received at ground level (Lefèvre et al., 2014). Ouarda et al.

(2016) assessed the solar irradiance from six thermal chan-

nels obtained from the Spinning Enhanced Visible and In-

frared Imager (SEVIRI) instrument. However, these are tem-

poral and spatial averages. Solar energy applications require

knowledge of the solar irradiance at specific locations and

at all times throughout the day. Therefore, images obtained

from satellites are generally not conducive for continuous

analysis and prediction, especially in regions where cloud

formation is highly localized.

1.1 Related work

Several existing works analyze ground-based images with

different meteorological observations. Most of them corre-

late the cloud coverage obtained from sky images with me-

teorologist observations. Silva and Souza-Echer (2016) val-

idated cloud coverage measurements obtained from ground-

based automatic imagers and human observations for two

meteorological stations in Brazil. Huo and Lu (2012) also

performed such field experiments for three sites in China.

The computation of such cloud coverage percentage is im-

portant in solar energy generation. It can hugely impact the

amount of solar radiation arriving at a particular place.

The correct estimation of solar irradiance is particularly

important in tropical countries like Singapore, where the

amount of received solar irradiance is high. Rizwan et al.

(2012) demonstrated that tropical countries are conducive

for installing large central power stations powered by so-

lar energy because of the large amount of incident sunlight

throughout the year. Several attempts have been made to es-

timate the solar radiation from general meteorological mea-

surements via temperature, humidity, and precipitation (Har-

greaves and Samani, 1985; Donatelli and Campbell, 1998;

Bristow and Campbell, 1984; Hunt et al., 1998). These exist-

ing models aim to provide global solar radiation using differ-

ent sensors. Alsadi and Nassar (2017) demonstrated such es-

timation models from the perspective of a photovoltaic (PV)

solar field, showing that successive rows of PV panels receive

less solar radiation than the first row. They also provided an

analytical solution by including the design parameters in the

estimation model.

In addition to solar irradiance estimation, there have been

several efforts to forecast solar irradiance, with a lead time

of a few minutes. Baharin et al. (2016) proposed a machine-

learning forecast model for PV power output using Malaysia

as the case study. Similarly Chu et al. (2015) used a refore-

casting method to improve the PV power output forecasts

with a lead time of 5, 10, and 15 min. Satellite images have

also been used in the realm of solar analytics. Mueller et al.

(2004) proposed a clear-sky model that is based on radia-

tive transfer models obtained from Meteosat’s atmospheric

parameters. However, satellite data have lower temporal and

spatial resolutions.

Recently, with the development of low-cost photogram-

metric techniques, sky cameras are being deployed for

such purposes. These sky cameras have both high tempo-

ral and high spatial resolutions and are able to provide more

localized information about atmospheric events. Alonso-

Montesinos and Batlles (2015) used sky cameras to quantify

total solar radiation. Yang and Chen (2015) studied solar ir-

radiance variability using entropy and covariance. Dev et al.

(2018a) used triple exponential smoothing for analyzing the

seasonality of solar irradiance. However, these approaches do

not model the sharp short-term variations of solar radiation.

1.2 Outline

In this paper, we use images obtained from WSIs to accu-

rately model the fluctuations of solar radiation. There are

several advantages of using a WSI for this instead of a pyra-

nometer. Common weather stations generally use a solar sen-

sor that measures total solar irradiance. It is a point measure-

ment providing scalar information for a particular location

and does not provide information on clouds and their evo-

lution over time. On the other hand, the wide-angle view of

a ground-based sky camera provides us with extensive in-

formation about the sky. It allows for the tracking of clouds

over successive image frames and also the prediction of their

future location. In this paper, we attempt to model solar irra-

diance from sky images. This can also help in solar energy

forecasting, which is useful in photovoltaic systems (Lorenz

et al., 2009).

The main contributions of this paper are as follows.

– We develop a framework to accurately estimate and

track rapid fluctuations of solar irradiance.

– We propose a method for estimating solar irradiance us-

ing ground-based sky camera images.

– We conduct extensive benchmarking of our proposed

method with other solar irradiance estimation models.

The rest of the paper is organized as follows. Section 2 de-

scribes our experimental setup that captures the sky and/or

cloud images and collects other meteorological sensor data.

Our framework for estimating solar irradiance is presented in

Sect. 3. Section 4 discusses the evaluation of our approach

and its benchmarking with other existing solar estimation

models. We discuss the possible applications of our approach

in Sect. 5. We also point out a few limitations of our approach

and ways to address them. Section 6 concludes the paper.

2 Data collection

Our experimental setup consists of weather stations and

ground-based WSIs. These devices are colocated on the
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Figure 1. We use custom white balancing to correct the white bal-

ance using (a) automatic white balancing and (b) custom white bal-

ancing.

rooftop of our university building in Singapore (1.34◦ N,

103.68◦ E). They continuously capture various meteorolog-

ical data, and we archive them for subsequent analysis.

2.1 Whole-sky imager (WSI)

Commercial WSIs are available on the market. However,

those imagers have high cost, low image resolution, and

little flexibility in operation. In our research group, we

have designed and built custom low-cost high-resolution

sky imagers, which we call WAHRSIS, i.e., Wide-Angle

High-Resolution Sky Imaging System (Dev et al., 2014). A

WAHRSIS essentially consists of a high-resolution digital

single-lens reflex (DSLR) camera with a fish-eye lens and

an onboard microcomputer. The entire device is contained

inside a weatherproof box with a transparent dome for the

camera. Over the years, we have built several versions of

WAHRSIS (Dev et al., 2014, 2015). They are now deployed

at several locations around our university campus, capturing

images of the sky at regular intervals.

Our WAHRSIS camera is calibrated with respect to white

balancing, geometric distortions, and vignetting. The imag-

ing system in WAHRSIS is modified so that it captures the

near-infrared region of the spectrum. Hence, the red channel

of the captured image is more prone to saturation, which ren-

ders the captured image reddish in nature. Therefore, we em-

ploy custom white balancing in the camera such that it com-

pensates for the alteration resulting from the near-infrared

capture. Figure 1 depicts the captured images obtained from

automatic and custom white balancing.

We use the popular toolbox by Scaramuzza et al. (2006)

for the geometric calibration of WAHRSIS. This process in-

volves the computation of the intrinsic parameters of the

camera. We use a black-and-white regular checkerboard pat-

tern and position it at various points around the camera. Fig-

ure 2 illustrates a few sample positions of the checkerboard

in the calibration process. Using the corner points and the

known dimensions of the pattern, we can estimate the intrin-

sic parameters of the camera.

Finally, we apply vignetting correction to the images cap-

tured by our sky camera. Owing to the fish-eye nature of

the lens, the area around the center of the lens is brighter

than at the sides. We use an integrating sphere to correct this

variation of illumination. Figure 3 depicts an image captured

inside an integrating sphere that provides a uniform illumi-

nation distribution in all directions. We use luminance char-

acteristics from this reference image to correct the images

captured by our sky camera.

2.2 Weather station

In addition to the sky imagers, we have also installed colo-

cated weather stations. We use a Davis Instruments 7440

Weather Vantage Pro for our recordings. It measures rainfall,

total solar radiation, temperature, and pressure at intervals

of 1 min. The resolution of the tipping-bucket rain gauge is

0.2 mm per tip.

It also includes a solar pyranometer measuring the total

solar irradiance flux density (W m−2). This consists of both

direct and diffuse solar irradiance components. The solar sen-

sor integrates the solar irradiance across all angles and pro-

vides the total solar irradiance. On a clear day with no oc-

cluding clouds, the solar sensor can be approximated by a

typical cosine response, shown in Fig. 4, for varying degrees

of solar incident angle. The solar sensor reading is highest

around noon when the incident angle of sunrays is at the min-

imum, whilst the reading is low during morning and evening

hours.

The solar radiation under a clear sky can be modeled us-

ing the solar zenith angle and the earth’s eccentricity. Several

clear-sky models have been developed for various regions.

The best clear-sky model for Singapore is provided by Yang

et al. (2012). We performed a comparison of various clear-

sky models in Singapore (Dev et al., 2017a) and found that

the Yang et al. (2012) model provides a good estimate of the

clear-sky irradiance. It models clear-sky global horizontal ir-

radiance (GHI) Gc as follows:

Gc = 0.8277E0Isc(cosα)1.3644e−0.0013×(90−α), (1)

where E0 is the eccentricity correction factor for earth, Isc

is the solar irradiance constant (1366.1 Watt m−2), and α is

the solar zenith angle (measured in degrees). The factor E0

is calculated as

E0 = 1.00011 + 0.034221cos(Ŵ) + 0.001280sin(Ŵ)

+ 0.000719cos(2Ŵ) + 0.000077sin(2Ŵ),

where Ŵ = 2π(dn −1)/365 is the day angle (measured in ra-

dians) and dn is the day number of the year.

As an illustration, we show the clear-sky radiation for

1 September 2016 in Fig. 5 compared to the actual solar ir-

radiance measured by our weather station. We also show the

deviation of the measured solar radiation from the clear-sky

model. We observe that there are rapid fluctuations in the

measured readings. In our previous work (Dev et al., 2016),

we observed that these rapid fluctuations are caused by in-

coming clouds that obstruct the sun from direct view. Such

information about the cloud profile and its formation cannot
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Figure 2. We position the checkerboard at various locations for geometric camera calibration.

Figure 3. Reference image captured inside the uniformly illumi-

nated integrating sphere.

Figure 4. Response of the solar sensor on a clear day with a varying

solar incident angle.

be obtained from a point-source solar recording. Therefore,

we aim to model these rapid fluctuations in the measured

solar radiation from wide-angle images captured by our sky

cameras.

3 Modeling solar irradiance

This section presents our model for computing solar irradi-

ance from images captured by a whole-sky imager. We sam-

ple pixels using a cosine-weighted hemispheric sampling to

simulate the behavior of a pyranometer based on the fish-eye

camera lens. We then compute the relative luminance using

the image-capturing parameters after gamma correction. We

finally derive an empirical fitting function to scale the com-

puted luminance estimates to match measured irradiance val-

ues.

3.1 Cosine-weighted hemispheric sampling

The behavior of our fish-eye lens with focal length f is mod-

eled by the equisolid equation r = 2f sin(θ/2), relating the

distance (r) of any pixel from the center of the image to its in-

cident light ray elevation angle (θ ). This allows us to project a

captured image onto the unit hemisphere, as shown in Fig. 6.

Solar irradiance is composed of a direct component relat-

ing the sunlight reaching the earth without interference, as

well as diffuse and reflected components. Given the high res-

olution of our images, we consider randomly sampled pixel

locations on the hemisphere as input to the luminance com-

putation. We follow a cosine-weighted hemispheric distribu-

tion function, the center of which is at the location of the

sun. This is because clouds in the circumsolar region have

the highest impact on the total solar irradiance received on

the earth’s surface (Dev et al., 2016). We provide more em-

phasis to the clouds around the sun compared to those near

the horizon. In our previous work (Dev et al., 2016), we used

a cloud mask around the sun to estimate the solar irradiance.

However, this requires the additional step of optimizing the

size of the cropped image for the best results. Therefore, we

adopt the strategy of cosine-weighted hemispheric sampling.

The first step is to compute the sampled locations from

the top of the unit hemispheric dome. Each of the locations

is computed as follows using two random floating points R1

and R2 as input, where (0 ≤ R1,R2 ≤ 1).

φ = 2πR1, θ = arccos(
√

R2)





x

y

z



 =





sin(θ) · cos(φ)

sin(θ) · sin(φ)

cos(θ).



 (2)

This is represented in Fig. 6.

The second step is to detect the location of the sun using a

thresholding method. This is needed to align the center of the

previously computed distribution (i.e., the top of the hemi-

spheric dome) to the actual sun location in the unit sphere.

We choose a threshold of 240 in the red channel R of the red–

green–blue (RGB) captured image and compute the centroid

of the largest area above the threshold (Savoy et al., 2016).

We then compute the rotation matrix transforming the z axis

unit vector to the unit vector pointing towards the sky. We ap-

ply this rotation to all the sampled points, resulting in Fig. 6.

This means that the number of sampled points in a region of
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Figure 5. Solar irradiance measurements on 1 September 2016. We plot the (a) measured solar irradiance along with the clear-sky model and

the (b) percentage of deviation of solar irradiance from the clear-sky data. Note the rapid fluctuations of high magnitude in the measurements.

the hemisphere is proportional to the cosine of the angle be-

tween the sun direction and the direction to that region. We

experimentally concluded that this achieves a good balance

between all irradiance components. We consider the pixel

values of a total of 5000 points sampled using this method

as input for the irradiance estimation.

3.2 Relative luminance calculation

For each of the i sampled pixels in the RGB image, we

compute its luminance value using the following formula.

The formula is proposed in SMPTE Recommended Practice

177 (SMPTE, 1993) to compute the luminance of an image

from the R, G, and B values of the RGB image.

Yi = 0.2126 · Ri + 0.7152 · Gi + 0.0722 · Bi

The JPEG compression format encodes images after apply-

ing a gamma correction. This nonlinearity mimics the be-

havior of the human eye. This needs to be reversed in or-

der to compute the irradiance. We use a gamma correction

factor of 2.2, which is most commonly used in imaging sys-

tems (Poynton, 2003). We thus apply the following formula,

assuming pixel values normalized between 0 and 255:

Y ′

i = 255(Yi/255)2.2.

We then average the pixel values across all the i sampled

points in the image and denote it by N = (1/n)
∑n

i=1Y
′

i , the

average luminance value of the sampled points from the im-

age.

However, each image of the sky camera is captured with

varying camera parameters such as ISO, F number, and shut-

ter speed. These camera parameters can be read from the im-

age metadata and are useful to estimate the scene luminance.

The amount of brightness of the sampled points N is pro-

portional to the number of photons hitting the camera sensor.

This relationship between scene luminance and pixel bright-

ness is linear (Hiscocks and Eng, 2011) and can be modeled

using the camera parameters:

N = Kc
et · S

f 2
s

Ls,

where N is the pixel value, Kc is a calibration constant, et

the exposure time in seconds, fs the aperture number, S the

ISO sensitivity, and Ls the luminance of the scene.

We can thus compute the relative luminance Lr as follows:

Lr = N
f 2

s

et
· .

3.3 Modeling irradiance from luminance values

Using our hemispheric sampling and relative luminance

computation, we have one relative luminance value Lr per

image. We use this relative luminance value to estimate the

solar radiation. The usual sunrise time in Singapore is be-

tween 06:40 and 07:05, and sunset time is approximately be-

tween 18:50 and 19:10 local time. This information is ob-

tained from the National Weather Agency of Singapore, the

National Environment Agency (2019). Therefore, we con-

sider images captured in the time interval of 07:00 until

19:00.

We use our ground-based whole-sky images captured dur-

ing the period January 2016 to August 2016 to model the

solar radiation. The solar irradiance is computed as the flux

of radiant energy per unit area normal to the direction of flow.

The first step in estimating irradiance from the luminance is

thus to cosine-weight it according to its direction of flow. We

weight our measurements according to the solar zenith angle

α. This is based on empirical evidence from our experiments

on solar irradiance estimation. The modeled luminance L is

expressed as

L = Lr(cosα).

Let us assume that the actual solar radiation recorded by

the weather station is S. We check the nearest weather sta-

tion measurement for all the images captured by WAHRSIS

between April 2016 and December 2016. Figure 7 shows the

scatter plot between the image luminance and solar radiation.

The majority of the data follow a linear relationship between

the two. However, they deviate from linearity for higher val-

ues of luminance. This is mainly because of the fact that the

mapping between scene luminance and the obtained pixel

value in the camera sensor becomes nonlinear for large lu-

minances. A more detailed discussion on this is provided in

Sect. 5.

We attempt to fit a linear model and other higher-order

polynomial regressors to model the relationship between im-

age luminance from sky camera images and the measured
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Figure 6. Cosine-weighted hemispheric sampling process. We plot the following: (a) a projection of the original image on a hemisphere,

(b) cosine hemispheric sampling with the origin at the top, (c) a rotation matrix applied to the center at the sun location, (d) the original

image with the detected sun location in red, (e) a projection of the sampled points onto the image, and (f) a projection of the rotated sampled

points onto the image.

Figure 7. Empirical fit between solar irradiance and image luminance computed with our proposed framework using (a) a linear model, (b) a

quadratic model, and (c) a cubic model. We observe that it deviates from linearity at higher luminance values. Higher-order polynomials are

ill-conditioned.

solar radiation. Figure 7 shows the best-fit curve for several

orders of polynomial function. In order to provide an ob-

jective evaluation of the different models, we also compute

the root mean square error (RMSE) value between the actual

and regressed values. Table 1 summarizes the performance

of the different order polynomials. We observe that lower-

order polynomials of degree 1 and 2 perform slightly inferior

to those of higher-order polynomials. However, higher-order

polynomial models are ill-conditioned. Therefore, we choose

the cubic model to model the measured solar radiation S

from the image luminance L. This is based on the assumption

that the mapping from scene luminance to pixel values in the

captured image is linear for lower luminance values, and it

behaves in a nonlinear fashion for higher luminance values.

We use this selected model in all our subsequent discussions

and evaluations.

Table 1. Performance evaluation of various polynomial order re-

gressors. We measure the RMSE value for each of the models.

Proposed models RMSE (W m2)

Linear (◦1) 178.27

Quadratic (◦2) 178.26

Cubic (◦3) 176.57

Quartic (◦4) 176.52

Quintic (◦5) 176.49

We model solar radiation as S = a3 ×L3
+ a2 ×L2

+

a1 ×L+ a0, with a3 = −4.25e − 12, a2 = 3.96e − 07, a1 =

0.00397, and a0 = 7.954 for our data. This model is de-

rived specifically for equatorial regions like Singapore, and

the regression constants are based on our WAHRSIS sky

imaging system. They would have to be fine-tuned for other

Atmos. Meas. Tech., 12, 5417–5429, 2019 www.atmos-meas-tech.net/12/5417/2019/
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Figure 8. Measured weather station data (in red) vs. clear-sky radiation (in black) on 1 September 2016. The sampling interval between two

measurements is 2 min.

regions and different imaging systems using our method-

ology. To facilitate this, we make the source code of all

the simulations in this paper available online at https://

github.com/Soumyabrata/estimate-solar-irradiance (last ac-

cess: 23 September 2019).

4 Experimental validation

In this section, we evaluate the accuracy of our proposed ap-

proach. It is derived based on WAHRSIS images captured

from January to August 2016. We also use these images to

evaluate the accuracy of our proposed model. Furthermore,

we benchmark our algorithm with other existing solar radia-

tion estimation models.

4.1 Evaluation

One of the main advantages of our approach is that all rapid

fluctuations of solar radiation can be accurately tracked from

the image luminance. We illustrate this by providing the mea-

sured solar readings of 1 September 2016 in Fig. 8. The clear-

sky model follows a cosine response and is shown in black,

while the measured solar recordings are shown in red. We

normalize our computed luminance in such a manner that it

matches the measured solar readings. We multiply each data

point with a conversion factor such that the distance between

corresponding inter-samples of luminance and weather sta-

tion recordings is minimized (see Appendix A for details).

We use this normalization factor in order to map the com-

puted image luminance to a similar scale as the cosine clear-

sky model. We observe that our computed luminances from

the whole-sky image and the measured solar radiation closely

follow each other. We emphasize here that it is important to

accurately track the rapid solar fluctuations. Unlike other so-

lar estimation models based on meteorological sensor data,

our proposed model can successfully estimate the peaks and

troughs of solar readings.

Using our proposed methodology, we compute the lumi-

nance of all the captured images. Subsequently, using our

proposed cubic model, we estimate the corresponding solar

radiation values. The estimated solar irradiance values are

compared with the actual irradiance values obtained from the

solar sensors in the colocated weather station, which serve

Figure 9. Histogram of differences between estimated and actual

solar irradiance.

as the ground-truth measurements. Figure 9 shows the his-

togram of differences between the estimated and actual so-

lar radiation. We observe that the estimates do not deviate

much from the actual solar radiation. Nearly half (47.9 %) of

the data points are concentrated in the range [−100,+100]

W m−2.

4.2 Benchmarking

We benchmark our proposed approach with other existing so-

lar estimation models. To the best of our knowledge, there are

no proposed models to estimate short-term fluctuations of so-

lar irradiance from ground-based images. However, most re-

searchers have been using other meteorological sensor data,

e.g., temperature, humidity, rainfall, and dew-point temper-

ature, to estimate daily solar irradiance. One of the pioneer

works was done by Hargreaves and Samani (1985), who pro-

posed a model based on daily temperature variations. Do-

natelli and Campbell (1998) improved the model by includ-

ing clear-sky transitivity as one of the factors. On the other

hand, Bristow and Campbell (1984) proposed a model of so-

lar radiation estimation by including the atmospheric trans-

mission coefficient. Subsequently, Hunt et al. (1998) showed

that the solar estimation model can be further improved by

incorporating precipitation data in the model. We benchmark

our proposed approach with these different existing models.

We illustrate the various benchmarking models in Fig. 10.

www.atmos-meas-tech.net/12/5417/2019/ Atmos. Meas. Tech., 12, 5417–5429, 2019
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Figure 10. Comparison amongst different benchmarking solar estimation models, along with the clear-sky model and measured solar irradi-

ance on 1 September 2016. Most of the existing algorithms fail to capture the rapid fluctuations of the measured solar irradiance.

Figure 11. Effect of the percentage of training images on RMSE

values. We plot the (a) performance on the training set and the

(b) performance on the test set. The lower and upper end of each

box represents the 25th and 75th percentiles of the data, and the red

line represents the median. Each experiment is conducted 100 times

with a random choice of training and test sets.

Unfortunately, most of these other approaches fail to capture

the short-term variations of solar radiation.

We calculate the root mean square error (RMSE) of the es-

timated solar radiation and Spearman’s rank correlation co-

efficient as evaluation metrics. The RMSE of an estimation

algorithm represents the standard deviation of the actual and

estimated solar radiation values. Spearman correlation is a

nonparametric measure to characterize the relationship be-

tween measured and estimated solar radiation, which does

not assume that the underlying datasets are derived from

a normal distribution. We report both metrics in Table 2.

Our proposed approach achieves the best results amongst all

methods. Note that the training and testing set of images are

identical, and all images are considered for benchmarking

purposes.

Furthermore, we check if our proposed model generalizes

well with random samples of our captured sky camera im-

ages. We choose a random selection of images as the training

set and fit our linear regressor on these selected training im-

ages. The RMSE values are then calculated on these training

images. We perform this analysis for varying percentages of

training images. Each experiment is performed 100 times to

remove any selection bias.

Figure 11a shows the results on training images. We ob-

serve that the variation of the RMSE values gradually de-

Table 2. Benchmarking of our proposed approach with other solar

radiation estimation models. The best performance is indicated in

bold font.

Methods RMSE (W m−2) Correlation

Proposed approach 178.27 0.86

Hargreaves and Samani (1985) 982.35 0.67

Donatelli and Campbell (1998) 324.48 0.67

Bristow and Campbell (1984) 318.07 0.68

Hunt et al. (1998) 922.66 0.65

creases as we increase the number of training images. More-

over, we check the variation of RMSE values when the test

images are not identical to the training images. Once we

choose a random selection of images as a training set, the

remaining images are considered the test set. We show the

RMSE on such images in Fig. 11b. As expected, the vari-

ation of RMSE values increases with a higher percentage

of training images. The linear regressor model overfits the

data and provides higher variation in the error when tested

on fewer test images. However, the average RMSE does not

vary much in all cases. Therefore, we conclude that our pro-

posed model is free from selection bias and generalizes well

with a random selection of training and testing images.

We show the scatter plot between the measured solar ra-

diation and estimated solar radiation for the different bench-

marking algorithms in Fig. 12. We observe that there is no

strong correlation for most of these existing algorithms. This

is because meteorological sensor data alone, with no cloud

information, cannot determine the sharp fluctuations of so-

lar radiation. This is an important limitation of these models,

which we have attempted to address in this paper. Our model

based on sky images has additional information about cloud

movement and its evolution, which is the fundamental fac-

tor behind rapid solar radiation fluctuations. In our proposed

model, most of these short-term variations are captured (see

Fig. 8).
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Figure 12. Scatter plot between measured solar irradiance and estimated solar irradiance for the benchmarking algorithms. (a) Hargreaves

and Samani (1985). (b) Donatelli and Campbell (1998). (c) Bristow and Campbell (1984). (d) Hunt et al. (1998).

Figure 13. Horizontal and vertical translation of pixels between two

successive frames computed using optical flow. We plot the (a) hor-

izontal translation and (b) vertical translation of pixels.

Figure 14. Prediction of sky–cloud image using the optical flow

technique.

5 Discussion

5.1 Short-term forecasts

Our proposed approach can estimate solar radiation accu-

rately with the smallest RMSE compared to other models.

The main advantage of our approach is that it can be used

on predicted images as well, opening the potential for short-

term solar irradiance forecasting, which is needed in the so-

lar energy field. As an initial case study, we have exploited

optical flow techniques to estimate the direction and flow of

cloud motion vectors between two successive image frames.

We use the (B −R)/(B +R) ratio channel of the sky and/or

cloud image, where B and R are the blue and red channels,

respectively. We implement an optical flow technique (Opti-

Figure 15. Distribution of F numbers of the WAHRSIS images used

to derive the proposed model.

cal Flow MATLAB, 2019) that uses a simpler conjugate gra-

dient solver to obtain the flow field. Figure 13 illustrates the

estimated flow field.

Using the images captured at t and t − 2 min, we estimate

the horizontal and vertical translation. Under the assumption

that the flow of cloud motion vectors for the successive t +

2 min is similar to that of previous frames, we estimate the

future t +2 min frame and subsequently the t +4 min frame.

Figure 14 illustrates this. We obtain a forecast accuracy of

70 % for a prediction lead time up to 6 min.

In future work, we plan to use our proposed methodology

for estimating solar irradiance on this predicted sky–cloud

image. This will enable us to provide more stable and reliable

forecasts of solar irradiance.

5.2 Scope for improvement

There is still scope for improvement in our approach. First,

we use JPEG images instead of uncompressed RAW images

for the computation of scene luminance. The JPEG compres-

sion algorithm introduces nonlinearities in the pixel values,

which affects the process of estimating solar irradiance. We

can generate more consistent results by using only RAW

format images. Nevertheless, we still use JPEG images, as

they have a significantly smaller size, which is more prac-

tical from an operational point of view. In contrast, uncom-

pressed RAW images are much larger in size, which makes

it impossible to capture and store RAW images at short inter-
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vals due to the processing requirements. In our future work,

we intend to explore the use of RAW format images for the

computation of solar irradiance values from sky cameras.

Secondly, our captured images have a wide range of cam-

era settings with varying shutter speed, ISO, and aperture

values. This is disadvantageous because the relationship be-

tween the pixel value and camera aperture value becomes

nonlinear for larger F numbers. The relationship deviates

from linearity for F numbers above 4.0 (Hiscocks and Eng,

2011). Figure 15 depicts the wide range of F numbers in the

captured images used in deriving our proposed model. We

observe that a significant percentage of images have large

F numbers, whereby the nonlinearity sets in. This can be

solved by using the aperture priority mode of the sky camera,

whereby the F number is fixed and the exposure time varies

dynamically to match the lighting conditions of the scene.

6 Conclusions and future work

We presented a method for estimating the rapid fluctuations

of solar irradiance using the luminance of images taken by

a whole-sky imager. We are able to estimate the rapid short-

term variations, which significantly improves on the state of

the art. This approach is of interest for solar energy genera-

tion because these variations cause a sudden decrease in the

electricity output from solar panels. Short-term predictions

of such ramp-downs are needed to maintain the stability of a

power grid.

Combining our solar irradiance estimation approach with

cloud movement tracking in the input images could ulti-

mately lead to better irradiance predictions. Such informa-

tion on rapid fluctuations of solar irradiance can assist in es-

tablishing a high-reliability solar energy generation system.

We also plan to explore methodologies from time series mod-

eling (Dev et al., 2018a) to predict solar irradiance.

Code availability. The source code of all simulations in

this paper is available at https://github.com/Soumyabrata/

estimate-solar-irradiance (Dev et al., 2019).
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Appendix A: Derivation of normalization factor

Let a1,a2, . . .,at be the weather station records for t num-

ber of time stamps. The luminance values computed for each

of the corresponding weather station points are represented

by b1,b2, . . .,bt . We attempt to estimate the conversion fac-

tor x such that the objective function f (x) representing the

inter-sample distances between the weather station and the

computed luminance value is minimized. We represent the

objective function f (x) as

f (x) =

t
∑

i=1

(xbi − ai)
2.

We compute the derivative f ′(x) and equate it to 0 to find

the normalization factor x as

x =

∑t
i=1aibi

∑t
i=1b

2
i

.
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