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ABSTRACT

We propose an algorithm (SCS-FRI) to estimate multipath channels

with Sparse Common Support (SCS) based on Finite Rate of Inno-

vation (FRI) sampling. In this setup, theoretical lower-bounds are

derived, and simulation in a Rayleigh fading environment shows that

SCS-FRI gets very close to these bounds. We show how to apply

SCS-FRI to OFDM and CDMA downlinks. Recovery of a sparse

common support is, among other, especially relevant for channel es-

timation in a multiple output system or beam-forming from multiple

input. The present algorithm is based on a multi-output extension of

the Cadzow denoising/annihilating filter method [1, 2].

Index Terms— Channel estimation, MIMO, OFDM, CDMA,

Finite Rate of Innovation

1. INTRODUCTION

We consider the problem of estimating P multipath channels with

common support, which we call Sparse Common Support (SCS)

channels. SCS channels have a small number of paths (i.e. they

are sparse) with the same time of arrival (ToA) across the different

channels, up to a delay ±ε as shown in Figure 1. The idealized case,
ε = 0, is called exact SCS channel.

This paper considers the use of sparse common support for chan-

nel estimation with multiple receive antennas. Multiple receive an-

tennas can be used for either spatial diversity [3] or spatial multi-

plexing, but generally require separate channel estimates for each

transmit-receive antenna pair. Most receivers estimate these channels

separately. However, using sparse common support, the total number

of parameters to be estimated can be reduced, thereby improving the

estimate or reducing the pilot overhead.

The common support assumption is physically relevant [4, 5] if

the receiver’s antennas are separated by a fraction of the distance an

electromagnetic wave travels in a time corresponding to the inverse-

bandwidth of the channel — e.g. Table 1. Under this assumption, the

channels’ supports differ only by a quantity ε unresolvable in prac-
tical operating conditions. Discrete-time SCS signals were studied

in [6, 7] within the compressed sensing framework. The key differ-

ence with our approach is the discrete nature of the model and the

randomization of the measurements instead of uniform sampling.

We will first define the SCS channel model and outline the theory

behind the proposed algorithm. It uses an annihilating filter shared

among all channels and denoises the measurements with a blocked

extension of Cadzow’s algorithm [2]. It can be seen as the common
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Table 1. Channel bandwidth in popular wireless systems

System (downlink) Code Bandwidth B Resolvable distance c/B

DVB-T [11] DFT 5–8MHz 38–60 m

IS-95 [12] WHT 1.25MHz 240 m

3GPP LTE [13] DFT 1.4–20MHz 15–215 m

UWB — > 500MHz < 60 cm
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Fig. 1. (a) Transmission over a medium with two scatterers and P
receiving antennas. (b) The P channels contain two paths arriving at
the same time up to ±ε. The amplitudes of paths from a scatterer are
(possibly correlated) Rayleigh variates [9].

support generalization of classical FRI sampling [1, 8]. To assess the

performance of said algorithm, we compute the Cramér-Rao bounds

(CRB) on the support parameters [2, 9, 10] and perform simulation in

a Rayleigh fading environment. Finally, it is shown that SCS-FRI is

directly applicable to pilots uniformly laid out in the DFT domain

(OFDM scenario), and more surprisingly in the Walsh-Hadamard

Transform (WHT) domain as well (CDMA scenario). Those two

cases cover many of todays wireless communication systems.

2. PROBLEM FORMULATION

Let h = [h1 · · ·hP ]
T be a vector of P exact SCS channels shaped

by a function ϕ, the complex baseband equivalent channels are

hp(t) =
K∑

k=1

ck,pϕ(t− tk) , ck,p ∈ C, tk ∈ [0 τ [. (1)

The paths coefficients ck,p are treated as complex random variables.
N measurements yp[n] are acquired at a rate 1/T = N/τ (with τ
the signal period) and corrupted by AWGN

yp[n] = hp[n] + qp[n] n ∈ {0, . . . , N − 1}, (2)
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Algorithm 1 Block-Cadzow denoising

Require: A block-Toeplitz matrixH(L) and a target rankK.
Ensure: A block-Toeplitz matrixH(L) with rank ≤ K.
1: repeat

2: ReduceH(L) to rank K by a truncated SVD.

3: MakeH
(L)
p p = 1 . . . P , Toeplitz by averaging diagonals.

4: until convergence

where qp ∼ NC(0, σ
2
I). In the DFT domain, the received signal is:

ŷp[m] = ϕ̂[m] ·
K∑

k=1

ck,pW
mtk + q̂p[m]. (3)

whereW = e−2πj/τ . The goal is to estimate the support {tk}k=1...K

and the paths amplitudes {ck,p}k=1...K,p=1...P from the NP sam-

ples collected in (2). Once the support is known, estimation of the

path amplitudes is simple linear algebra as seen in (3).

3. SPARSE COMMON SUPPORT FRI (SCS-FRI)

We start from (3). Assuming the spectral mask ϕ̂ is flat in the base-
band region |m| ≤ M , the DFT samples ŷp[m] in this region are the
DFT coefficients of the channel corrupted by some Gaussian noise.

The coefficients ŷp[m]maybe arranged in a tall block-toeplitz matrix

H(L) =
[
H

(L)
1 ; H

(L)
2 ; · · · ; H(L)

P

]T
such that

H
(L)
p =

⎡

⎢⎢⎢⎢⎣

ŷp,L−M−1 ŷp,L−M−2 · · · ŷp,−M

ŷp,L−M ŷp,L−M−1 · · · ŷp,1−M

...
...

. . .
...

ŷp,M ŷp,M−1 · · · ŷp,M−L+1

⎤

⎥⎥⎥⎥⎦
, (4)

where ŷi,j = ŷi[j]. The matrixH
(L) is made of P Toeplitz blocks

of size (2M + 2 − L) × L, with both block dimensions ≥ K. It
posses interesting algebraic properties. The first property is called

the annihilating filter property [14, 15], and allows us to retrieve the

channel support as the solution of a linear system of equations:

Proposition 1. In the absence of noise, a set of exact SCS channels

withK distinct paths verifies

H
(K+1)

f = 0, (5)

where f = [1 f1 · · · fK ]T are the annihilating filter coefficients

such that the polynomial pf(z) = 1 +
∑K

k=1 fkz
k has K roots

{e−2πjtk/τ}k=1...K . The matrix H
(K+1) is built with blocks as in

(4) (with L = K + 1).

The second property is on the rank ofH(L) and is useful to de-

noise the measurements:

Proposition 2. For a set of exact SCS channels withK distinct paths

and in the absence of noise,H(L) satisfies

rankH
(L) = K.

For the proofs of Propositions 1 and 2 see [2]. Proposition 2 used

together with the block-toeplitz structure property yields the “lift-

and-project” denoising Algorithm 1, which we call Block-Cadzow

denoising [2]. Using the same argument as in [16], the block-Cadzow

algorithm provably converges. The processing chain at the receiver is

listed in Algorithm 2.

Algorithm 2 SCS-FRI channel estimation

Require: An estimate on the number of effective paths Kest, 2M +
1 (M ≥ K) noisy channel DFT coefficients ŷp[m] =∑K

k=1 ck,pW
mtk
N + q̂p[m] for |m| ≤ M , p = 1 . . . P .

Ensure: Support estimate {testk }k=1...Kest

1: BuildH(M) according to (4).

2: H(M) ← Block-Cadzow(H(M),Kest).
3: Update ŷp[m] with the first row and column of the denoised

blockH
(M)
p .

4: BuildH(Kest+1) according to (4).

5: Solve the annihilating filter equation (5) to get f .

6: {testk }k=1...Kest ← − τ
2π

∠ roots(f).
7: Estimate {ck,p} solving P linear Vandermonde systems (3).

4. APPLICATION TO OFDM AND CDMA DOWNLINK

4.1. SCS-FRI with uniformly scattered DFT pilots (OFDM)

The theory in Section 3 is developed for contiguous DFT coefficients.

In OFDM communications, pilots are often uniformly laid out in fre-

quency (ETSI DVB-T [11], 3GPP LTE [13],. . . ). The period of pilot

insertion D is upper-bounded by Δ the delay-spread of the channel

impulse response (CIR):D < τ/Δ. If not, the CIR cannot be unam-
biguously recovered from the pilots because of aliasing. For a fixed

number of pilots, D is chosen as large as possible (D = ⌊τ/Δ⌋), as
interpolation of the CIR spectrum is more robust than extrapolation.

SCS-FRI can take advantage of uniformly scattered pilot layouts

[17, 9]. For ϕ̂ flat in {−MD, . . . ,MD}, equation (3) becomes:

ŷp[mD] =

K∑

k=1

ck,pW
mDtk
N + q̂p[mD], (6)

which corresponds to a dilation byD of the support parameters {tk}.
By definition 0 ≤ tk < Δ, and so the bound on D prohibits aliasing

ofDtk . Therefore, SCS-FRI is applicable without other modification
than division of the recovered support parameters byD.

4.2. Extension to Walsh-Hadamard coded schemes (CDMA)

Numerous applications use the 2n-WHT to code the channel into 2n

subchannels (N = 2n). Among others, IS-95 uses a 64-WHT to code
the downlink channel. The straightforward way to insert pilots is to

use one of these subchannels as a pilot itself and use correlation based

channel estimation methods as the Rake-receiver for example [18].

The SCS-FRI algorithm works in the DFT domain but can neverthe-

less be applied in the WHT domain with pilots uniformly scattered

by D a power of 2. This is consequence of the 2n-WHT being itself
the Fourier transform on the finite group (Z/2Z)n instead of Z/2nZ
for the classical 2n-points DFT [9, 19].

Proposition 3. Let F n andW n be respectively the 2
n-points DFT

and WHT matrix obtained by Sylvester’s construction:

W 1 =

[
1 1

1 −1

]

, W i+1 = W 1 ⊗W i.

Then, for l ∈ {1, . . . , n − 1} the set of W n’s columns with in-

dices in
{
2l + i

}
i=1...2l

and the set of F n’s columns with indices

in
{
(i− 1/2) · 2n−l + 1

}
i=1...2l

span the same subspace.

For a proof see [9]. Proposition 3 states that one can choose

2l contiguous Walsh-Hadamard codeword for pilots and get 2l uni-
formly spread DFT pilots with layout gapD = 2n−l.
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5. CRAMÉR-RAO BOUNDS WITH SCS-FRI

MEASUREMENTS

We derive bounds on the support estimation accuracy with measure-

ments taken according to (2).

The paths coefficients ck,p are assumed to be jointly Gaussian,

and modeled as the product of ak,p = E
[
ck,pc

∗
k,p

]1/2
by a standard

normal random variable Zk,p having the following properties, con-

sistent with the well-known Rayleigh-fading model:

• Zk,p ∼ NC(0,
√

1/2I).

• Independence between paths: E
[
Zk,pZ

∗
k′,p′

]
= 0, k 
= k′.

• The random vector Zk = [Zk,1 · · ·Zk,P ]
T is defined as

Zk = Lkr, where Lk is the Cholesky factor of the covari-

ance matrix Rk and r is a vector of iid standard complex

Gaussian random variables.

The Rayleigh-fading case can be seen as deterministic if conditioned

on the path amplitudes. Thus, the Cramér-Rao bounds for random

paths coefficients are random variables for which we can compute

statistics. Expectation and standard deviation will respectively give

the expected accuracy of the estimator and its volatility. For a single

path, and a symmetric or antisymmetric ϕ, the Crámer-Rao bound
has a concise closed form formula:

Proposition 4. With measurements according to (2),K = 1, andZ1

be a random Gaussian vector , then

E
[
(t1 − test1 )2/τ 2] =

E
[
(Z∗

1Z1)
−1

]

2N · dSNR , (7)

where dSNR = |a1|2‖ϕ′(nT−t1)‖2/(Nσ2) is the differential SNR.
Let P > 1 and {λp}p=1,...,P be the eigenvalues ofR1 = L∗

1L1:

• Uncorrelated paths coefficients, λ1 = · · · = λP = 1:

E

[
(Z∗

1Z1)
−1

]
= (P − 1)−1.

• Correlated path coefficients, such that λ1 
= · · · 
= λP :

E

[
(Z∗

1Z1)
−1

]
=

P∑

p=1

(−λp)
P−1 lnλp

λp

∏

p′ �=p

(λp′ − λp)
−1 .

Proof. See [9]. The uncorrelated case is found in various statistical

handbook as the moments of an inverse-χ2 distributed random vari-

able. For the correlated case, see [20].

This expression is a suitable approximation for multipaths sce-

nario with distant paths (separated by more than twice the inverse

bandwidth [2]). It gives an important insight on the evolution of the

estimation performance when uncorrelated antennas are added to the

system. Namely, the RMSE decays as 1/
√
P − 1.

In general, multiple paths are interacting with each other and the

information matrix cannot be considered diagonal, in this case Yau

and Bresler derived the following expression:

Proposition 5. [10] Let Φ and Φ′ be N ×K matrices such that

Φn,k = ϕ((n− 1)T − tk) , Φ′
n,k = ϕ′((n− 1)T − tk),

n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}. Given the stochastic matrix

C = diag(a1, . . . , aK)

(
P∑

p=1

Z
′
pZ

′∗
p

)

diag(a∗
1, . . . , a

∗
K),

Table 2. Simulation parameters

Sim System param. Channel parameters (∆ = 1.6μs)

1 T = 50ns,

B = 20MHz,

fc = 2.6GHz,

τ = 25.55μs,

Nframe = 511,

N = 31,

P = 4,

D = 16

K = 1, a1 = 1, t1 = 39.22μs,R1 = I, ε = var.

2
K = 2, a1 = 1, t1 = 39.22μs, ε = 0,

a2 = var., t2 = var.,R1 = R2 = I

3

K = 4, a = [.86 1.13 − 1.85 0.81]T ,

t = [22.9 72.5 354.1 470.2]T , ε = 0,

R1 = toeplitz(1, .47-.69j, -.19-.45j, -.19-.03j),

R2 = toeplitz(1, -.53+.77j, -.27-.72j, .52+.13j),

R3 = toeplitz(1, .6-.75j, -.2-.83j, -.64-.3j),

R4 = toeplitz(1, -.62+.73j, -.14-.83j, .58+.34j)

withZ′
p = [Z1,p · · ·ZK,p]

T , the Fisher information matrix J condi-

tionned on the path amplitudes is given by

J = 2σ−2
Φ

′∗PkerΦΦ
′ ⊙C. (8)

such that PkerΦ = I −ΦΦ
† is the projection into the nullspace ofΦ

and “⊙” denotes the entrywise matrix product.
See [10] for the proof. The Cramér-Rao bounds for the estima-

tion of the normalized times of arrival are on the diagonal of the ex-

pectation of J−1 an inverse complex Wishart matrix. Computing its

moments analytically is hard, so we turn to Monte-Carlo simulations.

6. NUMERICAL RESULTS

The SCS-FRI algorithm is tested in three different Rayleigh fading

channel scenarios listed in Table 2. Simulations are performed in an

OFDM-like setup withNframe = 511 samples per frames andN = 31
uniformly laid out DFT pilots. The receiver has 4 antennas.

Simulation 1 (Figure 2.a) shows that the effect of mismatched

ToA between antennas limits accuracy on the order of ε as intuitively
expected. The quantity ε is related to the maximum distance between
antennas, which we chose to be about 1 meter.

Simulation 2 (Figure 2.b) shows that SCS-FRI is able to dis-

criminate paths (with equal power) distant by less than the inverse-

bandwidth, which is problematic for algorithms estimating ToAs se-

quentially. Also, it shows that joint estimation with SCS-FRI per-

forms significantly better than independent estimations with the same

core algorithm and a sensibly chosen statistics1 for selection. The

SNR is measured with respect to one path.

Simulation 3 (Figure 3) synthetize previous results in a more re-

alistic setup. The multipath channel and antennas correlation figures

use a physically motivated model [9] based on [21]. We compare

SCS-FRI to lowpass interpolation of the spectrum, which is a widely

used technique for channel estimation from scattered DFT pilots. We

used MATLAB signal toolbox function interp. The input SNR is

the ratio between the total expected signal power (all paths and all

channels) and the total expected noise power (all channels).

The studied channels have three main properties: the CIR is

smaller than the signal period τ , it is sparse and they share a common
support. The first property is assumed as soon as pilots are uniformly

laid out in frequency. Taking into account this property only, low-

pass interpolation is energy-wise optimal since it is the orthogonal

projection into the signal space. If sparsity is additionally taken into

account, independent estimations with FRI are a good choice since

they estimate efficiently the ToAs. With the addition of common

support, SCS-FRI is the proper tool. It is shown in [9] that sparsity

alone (i.e. independent FRI) provides approximately 2/3 of the SNR
gain reported in Figure 3 for SCS-FRI, i.e. compared to the gain

obtained with addition of the common support assumption.

1The median was picked as the best performing statistics among the mean

and selection of antenna experiencing the least fading.
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Fig. 2. Figure (a), verifies that the algorithm behaves stably on non-exact SCS channels: as expected, the estimation error stalls at a magnitude

similar to ε. In (b), two paths of unit average amplitudes are separated by one sampling step which is equal to the inverse bandwidth of the
channel. SCS-FRI is able to discriminate the two paths near optimally. The improved performance of SCS-FRI compared to independent FRI

followed by selection of the median ToA indicates that joint estimation of the ToA is crucial.
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Fig. 3. SCS-FRI provides a SNR gain of 6–8dB compared to conventional lowpass interpolation. The medium contains four scatterers (upper-
left panel) labeled A, B, C and D. Their positions and widths relative to the receiver’s (Rx) antenna array (4 aligned antennas spaced by 30cm)
correlates the paths’ amplitudes as listed in Table 2. The expected CIR (same for all four antennas) is shown on the bottom-left.

7. CONCLUSIONS AND FUTUREWORK

We outlined the SCS-FRI algorithm, and showed its adequacy to

tackle the multipath channel estimation problem with a multiple out-

put receiver. The assumed SCS channel model is particularly rele-

vant for medium-band communications, and SCS-FRI may be used

on DFT or WHT multiplexed channels as in OFDM or CDMA down-

links. Future work is necessary to study how transmit spatial diversity

may be taken advantage of as well.
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