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Abstract:Managingdisasters causedbynatural events, especially volcanic crises, requiresa rangeofapproaches,
including riskmodelling and analysis. Riskmodelling is commonly conducted at the community/regional scale
using GIS. However, people and objects move in response to a crisis, so static approaches cannot capture the
dynamics of the risk properly, as they do not accommodate objects’ movements within time and space. The
emergence of Agent-Based Modelling makes it possible to model the risk at an individual level as it evolves
over space and time. We propose a new approach of Spatio-Temporal Dynamics Model of Risk (STDMR) by inte-
gratingmulti-criteria evaluation (MCE)within a georeferenced agent-basedmodel, usingMt. Merapi, Indonesia,
as a case study. The model makes it possible to simulate the spatio-temporal dynamics of those at risk during
a volcanic crisis. Importantly, individual vulnerability is heterogeneous and depends on the characteristics of
the individuals concerned. The risk for the individuals is dynamic and changes along with the hazard and their
location. The model is able to highlight a small number of high-risk spatio-temporal positions where, due to
the behaviour of individuals who are evacuating the volcano and the dynamics of the hazard itself, the overall
risk in those times and places is extremely high. These outcomes are extremely relevant for the stakeholders,
and the work of coupling an ABM, MCE, and dynamic volcanic hazard is both novel and contextually relevant.
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Introduction

1.1 During natural disasters, the level of hazard varies over space and time, due to various factors. During vol-
canic eruptions, for example, the spatial extent of the impact is controlled by the contrasting nature of the vol-
canic sources, the type and magnitude of the explosive eruptions, and the local topography (Lirer et al. 2010).
Likewise, with regards to floods, the specific hazard can vary depending on hydro-meteorological aspects and
drainage basin topography (Merz et al. 2006; Yan et al. 2015). Such spatio-temporal variability of hazardsmeans
that the associated risks can be dynamic over time and space. This is especially true during volcanic crises,
where the time and location are critical in defining the risk to human populations; ‘being in the wrong place at
the wrong time’ can lead to fatalities. Under certain conditions, those residing in the vicinity of a volcano may
need to evacuate hazardous areas quickly. This is o�en the only way to reduce the risk from a volcanic impact
because it is almost impossible to survive the hazardousmaterial emissions that occur during an eruption, such
as pyroclastic flows and toxic gases (d’Albe 1979).

1.2 The combination of themobile nature of people togetherwith the spatio-temporal variability of hazardsmeans
that risks are dynamic. Better spatio-temporal modelling is required to estimate these dynamics rather than
relying on a static risk map (Alcorn et al. 2013). Risk modelling is important in understanding the potential
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impact of certain hazards, and so is important for disaster management. This is traditionally conducted at the
community/regional scale using GIS. For example, Biass et al. (2012) successfully analysed risk, focusing on the
impact of tephra fallout from the Cotopaxi volcano, and produced several thematic maps that included the
social risk level.

1.3 Meanwhile, Alcorn et al. (2013)more comprehensively analysed the volcanic risk of Valles Caldera, NewMexico,
focusingon testinganddemonstratingaGIS-basedMulti-CriteriaEvaluation (MCE) for riskassessment. Both the
hazard and vulnerability were combined based on several criteria using MCE. Similarly, Scaini et al. (2014) used
spatial overlay analysis of the hazard and vulnerability maps in GIS to generate risk maps for Tenerife, Spain.
Although both Alcorn et al. (2013) and Scaini et al. (2014) present more comprehensive analyses regarding the
hazards than Biass et al. (2012), they share a similar limitation with respect to their accounting of the dynamic
risks posed to mobile individuals.

1.4 Such GIS-based overlay analyses face difficulties inmodelling dynamic aspects due to the GIS’ inability to han-
dle both space and time appropriately. While static risk analyses can provide spatial risk information that is
suitable for assessing the risk to fixed elements, such as buildings, infrastructure, and economic units, they are
less appropriate for modelling the risk to those with the ability to move during an emergency in response to
unfolding events. Therefore, models that can represent the dynamics of individual risk over time and space are
required. Agent-basedModels (ABMs), which are able to simulate agent behaviour in non-linear systems (Clarke
2014; Malleson et al. 2014; Srbljinović & Škunca 2003), provide a new approach to risk analysis that focuses on
the individuals who are ultimately at risk. However, the concept of individual risk in the typical ABMs of evacu-
ation is less well-developed. Therefore, this paper proposes to use MCE to model individual risks that involve
multiple attributes to address this issue.

1.5 In an ABM, people are represented as agents who have heterogeneous characteristics and behaviour (Crooks &
Castle 2012) and are able to navigate their environment and interact with other agents. Furthermore, hetero-
geneity can be introduced into the population of agents, which allows the modelling of individual variations
with regards to vulnerability andmobility. The coupling of an ABMwith a dynamic hazardmodel therefore pro-
vides an ideal framework through which to represent the dynamic risk to individuals during a volcanic emer-
gency.

1.6 ABMs have been used to simulate emergency situations but are limited in terms of taking into account the dy-
namics of associated risks. The spatial scale of the emergencies aswell as the typeof hazard vary frombuildings
(e.g. fire; Shi et al. (2009)) to regions (e.g. earthquake, Bernardini et al. (2014); wildfire, Wise (2014); hurricanes,
Zhang et al. (2009) and tsunami, Mas et al. (2012)). The dynamics of hazard has been commonly implemented;
for instance, Mas et al. (2012) used numericalmodels to simulate inundation due to a tsunamiwhileWise (2014)
used cellular automata to simulate wildfire propagation. However, the dynamic nature of risk includes the in-
teraction of hazards with the elements at risk, especially people, and this was inadequately incorporated into
the models used in these examples.

1.7 In this paper, we propose a new approach of the Spatio-temporal Dynamics Model of Risk (STDMR) and provide
a case study using a pre-developed agent-based evacuation model for Mt. Merapi (Jumadi et al. 2018, 2017).
This approach first creates an individual-level (synthetic) population of agents who live in the area surround-
ing a volcano. Each agent has a unique vulnerability and, since vulnerability comprises several factors (Cutter
et al. 2003), MCE is used to create a single social vulnerability index for each individual based on his/her place
of residence. This is coupled with a dynamic hazard model to capture the dynamics of risk as applied to the
individual. The model is able to highlight a small number of high-risk spatio-temporal positions where, due
to the behaviour of the individuals evacuating the volcano and the dynamics of the hazard itself, the overall
risk at those times and in those places is extremely high. The outcomes are interesting and extremely relevant
for the stakeholders, and the work of coupling an ABM, MCE, and dynamic volcanic hazard is both novel and
contextually relevant. The paper is organised as follows: in Section 2, we describe the background concept of
the approach; Section 3 then presents the methodology for applying the model and case study; Section 4 pro-
vides the results of the experimentation and the spatiotemporal analysis of the results; and, lastly, Section 5
discusses the outcomes and overall conclusion.

Background: Modelling the Dynamics of Risk

2.1 The previous section discussed the importance of incorporating the spatio-temporal dynamic of a hazard into
the modelling of human risk. This section provides the background concept of the approach through the inte-
gration of Multi-Criteria Evaluation (MCE) into an ABM. The vulnerability of people to a volcanic hazard ismulti-
faceted, so MCE is a useful technique that can be used to quantify this value (Armas & Gavris 2013). Meanwhile,
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ABM is used here to account for the nature of the social processes in an emergency situation, which are complex
(Dash & Gladwin 2007). Representing human behaviour in such a situation is extremely challenging due to the
difficulties associated with modelling human behaviour. Specifically, the responses and behaviour of people
during a disaster will vary according to their socioeconomic and demographic characteristics (Christia 2012;
Donovan 2010; Dove 2008; Lavigne et al. 2008; Rianto 2009). This integration is conceptually able tomodel the
dynamics of human risk to natural hazards in a spatio-temporal manner.

2.2 The risk is considered here to be the probability of harmful consequences or expected losses that result from
the interaction between hazards and vulnerable people or objects (Blaikie et al. 2014; UNISDR 2004). Risk is
estimated to be a function of hazard and vulnerability using Equation 1 (Sar et al. 2015; UNISDR 2004). Conse-
quently, when the value of the hazard changes, the risk will change as well. For example, consider a population
with a degree of vulnerability arising from living in the certain hazard zone (Figure 1). During a volcanic emer-
gency, the magnitude and intensity of the hazards vary with respect to the proximity to the summit, as well as
the topographical conditions that determine the direction of the flow of volcanic material. As the population
may bemoving during the crisis, their hazard level will vary over time (t1 to t2). Simultaneously, the hazard will
vary due to the changing intensity of the volcanic activity. Therefore, the degree of risk varies in both cases. The
aforementioned concept of risk with regards to themobile nature of people and the dynamics of hazard can be
used to formulate the spatio-temporal risk model on an individual basis.

Risk = Hazard ∗ Vulnerability (1)

Figure 1: Illustration of moving people and the dynamics of hazard over time and space.

2.3 Individual risk (Newhall &Hoblitt 2002) is the probability that a particular individual, at known coordinates, will
be killed or injured by the volcano within a specified period. In this research, we specify the hazard as a poten-
tially damaging eruption that may cause loss of life, injury, and social disruption (UNISDR 2004). A map of the
hazard can consist of several elements. Specifically, in the case of volcanic hazards, these elements include the
types of hazardousmaterial that are emitted during the eruption, such as the Pyroclastic Density Current (PDC),
lava flow, and tephra fallout (Alcorn et al. 2013). In the study area, the historical records have been compiled to
form a single hazard map (BNPB 2011). Meanwhile, we describe vulnerability as the characteristics of a person
or group that influence their capacity to anticipate, cope with, resist, and recover from the consequences of a
natural hazard (Blaikie et al. 2014). Vulnerability is multidimensional in nature and can be measured using a
combination of many different variables (Lummen & Yamada 2014). Here, we quantify vulnerability using the
Social Vulnerability Index (SoVI) (Cutter et al. 2003). The SoVI has been developed based on several attributes;
namely, socioeconomic status (income, political power, prestige), gender, race and ethnicity, age, commercial
and industrial development, employment loss, rural/urban, residential property, infrastructure and lifelines,
renters, occupation, family structure, education, population growth, medical services, social dependence, and
special needs populations (Cutter et al. 2003). This index has been widely used to measure social vulnerability
regarding environmental hazards in various regions (Armas&Gavris 2013; Chakraborty et al. 2005; Garbutt et al.
2015; Letsie & Grab 2015; Schmidtlein et al. 2008; Tapsell et al. 2010; Yoon 2012).

2.4 Individual risk assessment has different criteria from risk assessment for the community/region. A risk assess-
ment on a regional scale, using a community or group of people as the assessment unit, uses criteria based on
the characteristics of the community and the region where the population lives, although there is no literature
describing risk assessment on an individual basis. Therefore, in this research, we define several characteris-
tics of individuals (or ‘agents’) to generate the SoVI and assess the hazard degree of their specific location to
provide the value of the hazard at a particular time. The concept used here to define individual risk consists
of three parts: defining the socio-economic parameters for individual vulnerability; defining the hazard at the
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individual location; and measuring the risk. There are several socioeconomic parameters that are used in the
vulnerability assessment through the application of an MCE. Meanwhile, the hazard is assessed based on the
person’s locationwithin the given hazard zone. The risk is defined based on themeasured vulnerability and the
hazard level (Figure 2).

Figure 2: Individual risk concept using Multi-Criteria Evaluation (MCE) based on physical (hazard) and social
(person attribute) variables.

2.5 MCEplays amajor role in defining individual risk. In the individual riskmodel, MCE is used to evaluate both SoVI
and the risk as the final result, based on the criteria provided. MCE, also called Multi-Criteria Analysis (MCA),
was originally a technique used to make a decision based onmultiple criteria and conflicting priorities (Voogd
1983). Later, this concept was widely used to analyse problems or assess values that consist of multiple criteria
or attributes (Abella & VanWesten 2007; Armas &Gavris 2013; Labadie & Prodhon 2014). Thus, MCE is o�en used
to analyse the compromises which exist betweenmultiple choice alternatives, while GIS provides the ability to
analyse complex spatial problems from several layers of spatial data. MCE analysis starts with the construction
of anevaluationmatrix that contains elements that reflect the characteristics of the set of alternatives, basedon
a specific set of criteria. Each element can beweighted based on its contribution to the goal using several tech-
niques; namely, ranking, rating, pairwise comparison (AHP), and trade-off (Malczewski 1999). Commonly, two
techniques are employed to aggregate this element so that the final result can be achieved through aweighted
linear combination (WLC) and Boolean overlay (Eastman 1999; Malczewski 2000).

2.6 Finally, those concepts need to be implemented in an ABM to simulate the dynamics. Although potentially
powerful, and successfully integrated intoGIS (Carver 1991), the integrationofMCEandABM is rare. Bishopet al.
(2009) discussed the potential use of MCE in exploring the various outcomes of decision-making processes by
human agents with different preferences, while (Gao & Hailu 2012) applied MCE in an Agent-based Simulation
as a Decision Support System regarding the selection of fisheries management strategies. However, we found
no articles using such an approach for disaster risk modelling. ABM has emerged as a valuable alternative to
the traditional aggregate mathematical modelling, as it can accommodate the complexity of a system through
its ability to capture the interactions between agents on the same or different scales (Gilbert & Troitzsch 2005).
While an ABM consists of discrete ‘agents’ that can interact within an environment (Gilbert 2008) and has the
ability to incorporate the complex, multiple attributes of individuals, it lacks a method for evaluating those
attributes into a single decision/value. MCE, on the other hand, appears promising with regard to solving this
problem, and so has the potential to be integrated into the model.

Materials and Method

3.1 Thebasic conceptsof integratingmulti-criteriaevaluation (MCE) intoAgent-basedModelling (ABM) for theSpatio-
temporal Dynamics Model of Risk (STDMR) were theoretically discussed in the previous section. In this section,
we provide an overview of the application of STDMR. It starts with an introduction to the study area, an out-
line of the process of collecting data from this area for use in the model, and the integration of STDMR to the
ABM of evacuation. This ABM is developed based on the spatio-temporal volcanic evacuation model frame-
work (Jumadi et al. 2017) that has been improvedwith the individual evacuation decisionmodel and subjected
to validation using real data (Jumadi et al. 2018). An overview on how the ABMworks and integrates the STDMR
is provided below.
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Study area

3.2 Merapi Volcano is located on Java Island, Indonesia, and poses a potential hazard to the surrounding com-
munities. Recent work suggests that the potential for Merapi erupting is far higher now than has been found
historically (Andreastuti et al. 2000; Camus et al. 2000). These risks were confirmed by the most recent event,
that occurred in 2010. This potential eruption style varies between either Sub-Plinian or Plinian. In disaster
studies, volcanic explosivity indices (VEI) are o�en used to describe the potential destructiveness of an erup-
tion. The VEI ranges from 0 (least destructive) to 8 (most destructive) (Newhall & Self 1982). The VEI of Merapi’s
eruptions ranged from 1-3 but unexpectedly increased to 4 in 2010 (Surono et al. 2012). As a consequence of the
VEI 4 eruption in 2010, the area surrounding Merapi suffered the worst disaster of the last century.

3.3 Eruption activities commonly produce diverse hazardous events, and Merapi has unique hazard types. Nue’es
ardentes (Bardintzeff 1984) and lahars (Lavigne & Thouret 2003) are two particular hazards that are harmful to
the communities besides the explosion (Thouret et al. 2000) and the slight impact of ash (Damby et al. 2013).
Nue’es ardentes is produced by gravitational dome collapse, whereby the impact’s extent is commonly con-
trolled by its topographical character (Kelfoun et al. 2000). It can travel up to 3.5 km from only a few individual
events (Abdurachman et al. 2000), whereas lahars events are usually initiated by high rainfall intensity (Lav-
igne & Thouret 2003). Lahars are the overbank flows of pyroclastic material coupled with rainwater and are
considered themost dangerous part of thematerial flow system in Merapi (Charbonnier & Gertisser 2008). The
direction of this flow is strongly influenced by the initial flow direction and the topography, that affect the sub-
sequent spatial extent of the hazard (Itoh et al. 2000).

3.4 The eruption in 2010 strongly affected the geomorphological structure (Saepuloh et al. 2013) and geological
character (Gertisser et al. 2012) ofMerapi, which has implications for the spatial extent of the hazardmap (BNPB
2011, 2008). Also, the eruption changed the potential direction of the pyroclastic or lahar flows. It can be pre-
dicted that the southern flank of Merapi will probably bemore heavily impacted by the next eruption than else-
where (Figure 4). Based on this, we use the Sleman Regency, an administrative region located on the southern
flank of Merapi, as a case study. Sleman (Figure 3) is geographically located between 107◦15’ 03" and 107◦29’
30" east longitude, and 7◦34’ 51" and 7◦47’ 30" South latitude. Sleman covers 57,482 hectares/574.82 km2) or
about 18% of Yogyakarta Province. Administratively, this region consists of 17 districts, 86 villages, and 1,212
hamlets.

Figure 3: Study area.

Data collection

3.5 The data used here are collected from primary and secondary sources. The secondary data consist of admin-
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istrative boundaries, volcanic hazard zones, shelter locations, land use, census microdata, and road networks.
The primary data are drawn from an extensive questionnaire survey undertaken in 2016. The survey data were
used to complete the variables of the censusmicrodata (Center 2015) in order to create thepopulationof human
agents as well as develop the evacuation decision-making process (Jumadi et al. 2018).

3.6 The questionnaire was developed to gather information regarding the mechanisms used in decision-making
and the interaction of people during eruption crises in theMt. Merapi region. A literature reviewwas conducted
to explore the variables that influence the decision-making and interaction. Five primary variables were as-
sessed via thequestionnaire survey; namely, socio-demographic characteristics, perceptionof volcanic hazard,
decision-making behaviour, interaction during a crisis, andwillingness to accept and act on an alert. The ques-
tion list was developed based on these variables. The demographic characteristics are used in this research
to characterize each agent as well as identify its social vulnerability. Meanwhile, the decision-making process
takes place when people start to evacuate. It explores the variability of the population in terms ofmaking deci-
sions during a crisis. Themain indicator of this behaviour is the start time, related to the onset of the enhanced
activity of the volcano. The questionnaire explores the factors that might motivate or demotivate people when
making decisions about whether or not to evacuate. The interaction is also taken into account on the ques-
tionnaire. In this case, data on the probability that people will forward their information about alerts and the
associated impacts on their decisions are needed.

3.7 In order to collect these variables, stratified random sampling was applied. Household member samples, rep-
resented as building units, were selected randomly for each building block (dusun). This area segmentation is
based on the fact that each dusun has one village chief whomobilises people (Rukun Tangga) and, commonly,
in the rural areas of Indonesia, has homogenous social characteristics. Twelve villages were selected within a
radius of 20 km. Several ring buffers with distance ranges of 5 km were created to define the sampling areas,
with three villages selected from each range. Furthermore, ten participants from each village were selected
randomly, resulting in 120 participants in total.

3.8 The results of the survey were statistically analysed to develop the evacuation decision model (Jumadi et al.
2018, see). The data from the survey were tabulated and analysed using SPSS. The result of the regression
analysis is used to develop the driving forces governing the decision to evacuate or stay that is implemented as
the decision-making rule of the agent in the ABM.

Agent-based STDMR of volcanic evacuation

General framework

3.9 The ABM of the volcanic evacuation simulation was developed based on the relationship model between the
volcano and the surrounding population. The basic model and its complete documentation is provided in a
previous publication (Jumadi et al. 2017). Thismodelmarries the physical environment and social interactions
to generate the value of risk (Cova 1999; Pons et al. 2014; Sengupta & Bennett 2003), as presented in Figure 4.
The physical variables are generated from the characteristics of the volcano and its hazard zone, including the
VEI, activity length, activity level, and the spatial extent of the hazard (Figure 4). The VEI can also be used to
estimate the spatial extent of the impact, and is generated based on the eruption record of the volcano. The
probability distribution of the VEI is used to define the VEI in the simulation. Eruption records can also be used
to estimate the length of the crisis (activity length). Considering that volcanic activity fluctuateswithin a period
of crisis, the activity level from the rest condition (i.e. period of inactivity) to the climax of the event can be
estimated. This activity level is also related to the hazard.

JASSS, 23(2) 2, 2020 http://jasss.soc.surrey.ac.uk/23/2/2.html Doi: 10.18564/jasss.4241



Figure 4: General Framework of the ABM. The le�-hand box (Physical Variables) illustrates how the VEI and
activity level are used to estimate the spatial extent of the volcanic hazard. The VEI and the length of the activity
are the physical characteristics of the volcano as recorded in the literature. These feed into the socioeconomic
variables (right-hand box) that are the attributes of the human-agents and are used to assess the overall risk.
The hazard (which varies spatially and temporally) is used to estimate the exposure to the population and,
subsequently, the overall risk. The activity length is used to estimate the evacuation time (the period during
which the risk changes dynamically as a result of people’s movement) and, subsequently, the spatiotemporal
risk dynamic which quantifies the risk at every time period (t).

Synthetic population generation

3.10 To create human-agents, census microdata (Center 2015) and a separate survey of 120 households are used.
We use conditional probability (Monte Carlo Simulation) to generate the synthetic population of agents (Hep-
penstall et al. 2011; Moeckel et al. 2003), a complete description of which is provided elsewhere (Jumadi et al.
2018). In this model, human-agents are generated for each sub-district of Sleman in individual units, grouped
as households. It would be advantageous to create an agent to represent every person, but the AnyLogic PLE
limits the total number of agents to 50,000. Therefore, approximately 50,000 (6% of the total population of
study area) representative agents were created. The characteristics of the people are used in order to calculate
the SoVI variables; they, together with the other variables, influence the decisions of the agents (for further de-
tails on this, see Jumadi et al. 2018). Each agent is initialisedwith characteristics that are randomly drawn from
probability distributions generated from the census microdata and survey data.

Model Description

4.1 Themodel is documentedusingOverview, theDesignConcept, Detail (ODDprotocol) (Grimmet al. 2006; Polhill
2010), as presented in the following sub-sections. Further details are provided at: https://tinyurl.com/
stdmr.

Overview

Purpose

4.2 This model is designed to demonstrate how the risk varies over a spatio-temporal range of volcanic activity.
Here, the risk dynamically changes alongwith the changes of hazarddue to thedifferent volcanic activity levels.

Entities, state variables, scales, and environment

4.3 The model consists of three agents, namely, the volcano, stakeholder, and people (population), that interact
within the geographical environment (Jumadi et al. 2017). The volcano acts as an agent, which initiates the
hazardous situation and influences the environment as a potential threat to the surrounding population. The
other agents in the interactionsare the stakeholder and thepopulation. The stakeholder, in this case theauthor-
ities (government), plays a role in observing and analysing the activities of the volcano and in issuing warnings
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Entity Attribute name Attribute type Description

Volcano Latitude Double Latitude of the volcano location
Longitude Double Longitude of the volcano location
Activity length Integer The duration of the crisis
Activity level Double This represents the level of volcanic activity expressed qualitatively from

low (1) to high (4)
VEI Volcanic Explosivity Index
Activity Scenarios List<double> Contains a list of the scenarios of activity length of each level (low to high)

People District ID Integer Number of districts where people live
Latitude Double Latitude of current location
Longitude Double Longitude of current location
Home latitude Double Latitude of home location
Home longitude Double Longitude of home location
Movement speed Double Speed of movement (km/h)
Hazard level Integer The hazard level of the agent location
Destination Shelter The selected destination for evacuation
Links List<People> List of people generated randomly to express agents’ relationship
Age Integer Age of person generated from custom distribution based on census data
Education Integer Education level of person generated from custom distribution based on

census data
Sex Integer Gender (male = 1, female = 2) of person generated from custom distribution

based on census data
PersonalIntension (PI) Integer The degree of peoples motivation to evacuate by themselves (taken from

survey).
ProtectProperty (PP) Integer The degree of people’s motivation to stay to protect their property (taken

from survey).
SeeTheExplosion (SE) Boolean Whether the agent saw the volcano erupt or not.
Perception Integer This value describes how a good agent perceives the hazard.
CulturalBelief (CB) Integer Thedegreeofpeople’smotivation to staydue to their belief (estimated from

literature, only assigned to the aged and low educated people).
GovernmentAlert (GA) Integer The degree of people’s motivation to evacuate when they receive an alert

from the stakeholder (taken from survey).
FeelingDanger (FD) Integer Quantification of feeling in danger.
FeelingSafe (FS) Integer Quantification of feeling safe. This will be deduced when FD increases.
NotKnowTheDestination (ND) Integer The degree of people’s motivation to stay because they do not where to go

(taken from survey).
TransportConcern (TC) Integer The degree of people’s motivation to stay because they have problem with

transportation (taken from survey).
SocialInfluence (SI) Integer The degree of people’s motivation to evacuate due to their social relation

decision (taken from survey).
Income Integer The level of income/wage of the person generated from the probability dis-

tribution (from themicro data statistics).
Disability Integer Express whether the person has disability attributes or not.
Experience Integer Express whether the person has experience of a past disaster or not.
Vulnerability Integer Degree of Social Vulnerability Index (SoVI).
Risk Integer Degree of risk of person in accordancewith the hazard level and vulnerabil-

ity.
Stakeholder Alert level Integer Alert level as a result of volcanic activity observation

Links List<People> List of random people who directly receive the alert
Environment Districts List<Polygon> The boundaries of districts (polygon)

Hazard zone List<Polygon> The hazard zones (see Figure 1)
Shelters List<Point> Location of shelters as evacuation destinations
Routes List<Object> Routes where people are moving, loaded from Open Street Map (OSM)

Table 1: Overview of the entities and attributes

to the population. In the ABM simulation, each agent displays specific behaviour andmechanisms when inter-
acting with others as well as with the environment. The environment is represented through spatial data with
dynamic hazard properties. An overview of the attributes of the model is provided in Table 1 (extended from
Jumadi et al. 2018).

Process overview and scheduling

4.4 The human agents in this model are the focus of the observation. They should act to protect themselves from
danger in a crisis. Therefore, the human-agents utilise a decision mechanism that allows them to take the de-
cision to evacuate in dangerous conditions. This evacution decision is based on the Normal – Investigating –
Evacuating statemodel that is provided elsewhere (Jumadi et al. 2018). Conceptually, this evacuation decision
is influenced by several factors, including: (1) risk communication and warning; (2) perception of risk; (3) com-
munity and social network influence; and (4) disaster likelihood, environmental cues, and natural signal (Ahsan
et al. 2016; Dash & Gladwin 2007; Lim et al. 2016). Themechanism of the individual decision during evacuation,
based on the literature review, is provided in Figure 5. The transition between the different states is based on
threshold-based rules (Kennedy 2012; Robinson et al. 2011) that evaluate the strength of the force to evacuate
based on various factors.
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Figure 5: Main agent (people) characteristics.

4.5 The risk to individuals is evaluated based on the hazard and vulnerability variables. The hazard level is mea-
sured by the environmental properties in the agent’s location, whereas the vulnerability of individuals is based
on the SoVI, which is itself evaluated based on its socio-demographic character. The following subsection elab-
orates on this risk model in detail. The risk to the individual might change a�er the decision to move is made
since their location changes. When people move during an evacuation process, the hazard of their environ-
ment will change, resulting in the risk changing also. Therefore, the value of the risk is dynamic over time as an
individual moves.

Design concepts

4.6 The following concepts will be used in this model:

1. Emergence: the population risk patterns emerge from the behaviour of individuals in making the deci-
sion whether to evacuate or not. The individual risk is analysed using the SoVI attributes (Chakraborty
et al. 2005; Cutter et al. 2003) and the individual’s environmental hazard susceptibility (BNPB 2011).

2. Sensing: Every individual in the population understands its position which they use to analyse the haz-
ard.

3. Interaction: there are various interactions in the model:

(a) interaction between the VEI with the spatial extent of the hazard;

(b) interaction between the hazard and the people;

(c) interaction between the volcanic activity and the alert level of the stakeholder (the alert level will
increase with increasing volcanic activity).

4. Stochasticity: the characteristics of the volcano, such as its VEI, type of hazard and spatial extent of haz-
ard zone are summed up based on the literature.

5. Observation: the spatial pattern of risk of people will be recorded at the end of each experiment. These
data will be further used in spatial analysis using GIS.

Details

4.7 Basedon the concept of the individual riskmodel (Section 2), risk comprises twomain components: hazard and
vulnerability. Here, we provide a calculation procedure based on MCE to implement this into the ABM of evac-
uation. Consequently, Java functions are designed based on this concept and implemented into the previous
model (see Appendix A) (Jumadi et al. 2018).
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VEI Haz-

ard Zone

1 2 3 4

VAL L M H L M H L M H L M H

III (H) L M M L M M M H H M H H
II (M) L M M L M M M M H M M H
I (L) L L M L L M L M M L M M

Table 2: Matrix relation of VEI, VAL and the hazard level within the hazard zones. Notes: L: Low hazard level, M:
Medium hazard level, H: High hazard level

Hazard

4.8 We implement a dual hazard model to set up the environment of the agent-based evacuation model (Figure
6). The first hazard model (a) is the actual spatial extent of the hazard for Merapi, based on several historical
records of eruptions, including the one that occurred in 2010 (actual hazard) (BNPB 2011). The distribution of
hazards in this map is strongly based on the physical record present in volcanic material deposits, while the
second hazard model (b) is the one used by the government to alert the population at risk during the 2010
eruption (perceived hazard) (Mei et al. 2013). This hazard model is a rough estimation based on the distance
from the volcano, as well as being closely related to the administrative boundaries. This makes it easier for the
authorities when delivering the evacuation command or for practical purposes. For example, it will be easier
for people to remember that “people at a distance up to 10 km are in danger” (hazard model b) rather than
“people in amediumhazard zone are in danger” (hazardmodel a). The first hazardmodelwill be used to define
the individual risk, while the second hazard model will be used for the decision-making regarding evacuation.
This is based on the assumption that using the second hazard model will result in fewer errors compared to
using the first hazard model (Jumadi et al. 2018), while the second hazard model does not directly mean the
actual hazard, and so is inappropriate for assessing the true risk. Therefore, we implement a dual hazard in
order to obtain a better outcome for the evacuation decision while retaining the precision of the risk.

Figure 6: Dual hazard model implementation: (a) actual hazard map (BNPB 2011), (b) perceived hazard map
based on that used for the evacuation order during the 2010 eruption (Mei et al. 2013).

4.9 The hazard is classified into three zones (Figure 7). The hazard level of each zone will dynamically change over
the course of the simulation as the volcanic activity changes. The rules governinghazard levels are basedon the
function of several variables concerning the characteristics of the volcano. The VEI and Volcanic Activity Level
(VAL) are provided in Table 2 (Jumadi et al. 2017). The changing hazard levels within those zones are illustrated
in Figure 7. Finally, the hazard level in the agent’s location (based on its coordinates) is classified and scored
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Criteria Theme of attributes Description Pairwise comparison index (H)

Hazard level
High Highly hazardous 0.723
Medium Hazardous 0.216
Low Less Hazardous 0.061

Table 3: Hazard level classification and scoring

based on Table 3. The hazard value is then used in the risk calculation.

Figure7: Hazarddynamics scenarios. Impactof theVEI scenarioandVALon the spatial distributionof thehazard
level: (a) LowVALonVEI 1-2, (b)MediumVALonVEI 1-2, (c)HighVALonVEI 1-2, (d) LowVALonVEI 3-4, (e)Medium
VAL on VEI 3-4, (f) High VAL on VEI 3-4.

Vulnerability

4.10 The vulnerability index used in the model is based on the Social Vulnerability Index (SoVI) from Cutter et al.
(2003). The attributes of the agent (person) are scored and the score for each attribute is defined using a pair-
wise comparison weighting based on local knowledge and a literature review (Saaty 2008). Each theme of the
attribute is ranked based on the vulnerability level (Cutter et al. 2003). The result of the pairwise comparison
analysis is shown in Table 4. In the absence of detailed data indicating otherwise, the classification used by
Cutter et al. (2003) is interpreted as a simple binary value of “vulnerable” or “less vulnerable”. This gives rise
to values in the Pairwise Comparison Index of 0.75 and 0.25, respectively. While this may simplify the SoVI, as
a demonstration of the utility of this approach this is deemed sufficient for the purposes of this paper. Finally,
we aggregate the social attributes using Equation 2 to calculate the SoVI (Chakraborty et al. 2005).

SoV I =

∑
n

i=1
Ii

n
(2)

Risk

4.11 The calculation of the individual risk is based on the risk concept proposed by UNISDR (2004) and Sar et al.
(2015), as previously explained in Section 2. We express the individual risk as a certain quantification that can
be classified. The formula for providing the value is presented in Equation 3 with a weighting rule based on
Table 5. This equation generates the risk of individuals as a risk index (Ri) using a weighted linear combination
(WLC) (Malczewski 2000). Once the index has been obtained, it is classified into three classes, based on Table
6.

Ri = (Hwh)(SoV Iwv) (3)
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Criteria Theme of attributes Description Pairwise comparison index (I)

Age
Elderly and Child (>75 years and <14 years) Vulnerable 0.75
Adult (15-75 year) Less Vulnerable 0.25

Sex
Female Vulnerable 0.75
Male Less Vulnerable 0.25

Education
Basic Education Vulnerable 0.75
High Education Less Vulnerable 0.25

Income
Live in Poverty Vulnerable 0.75
Standard Living Less Vulnerable 0.25

Disability
Disable Vulnerable 0.75
Non-Disabled Less Vulnerable 0.25

Experience
No Experience Vulnerable 0.75
Experience of Previous Eruption Less Vulnerable 0.25

Table 4: Variables classification and scoring to determine the social vulnerability index (SoVI)

Classification Description Weight (w)

Hazard (h) Important 0.75
SoVI (v) Less important 0.25

Table 5: Weight of the hazard and SoVI in defining risk.

Ri range Classification Description

0.18 < Low Less Risky
0.18 - 0.33 Medium Slightly Less Risky
> 0.33 High Risky

Table 6: Weight of the hazard and SoVI in defining risk.

Implementation, experimentation and analysis

4.12 Themodel is implementedusingAnyLogic, amultimethod (Agent-based, SystemDynamics, andDiscreteEvent)
simulation modelling tool developed by the AnyLogic Company (Borschev 2013). An overview of the agents’
statechart to express the behavioural rules of the agents is provided using UnifiedModelling Language (UML) in
Figure 8, while detailed documentation of the ABM application is provided at the OpenABM repository (https:
//tinyurl.com/stdmr). These statecharts show the implementation of the model in AnyLogic (Jumadi et al.
2017, see) for the conceptual design and OpenABM repository (https://tinyurl.com/stdmr) for the code).
A statechart is typically a state transition diagram used to define event- and time-driven behaviour in AnyLogic
(Grigoriev 2015). There are three main statecharts for human-agents (Figure 8a), including observing the haz-
ard, evacuation decisions, and alerting the community. The ‘observing hazard’ statechart enables the human-
agents to sense the hazard in their location and classify its level, based on Table 1. The ‘evacuation decision’
statechart is used by the agents to decide whether or not they need to evacuate (see Section 3.9 and Jumadi
et al. 2018 for details on the evacuation decision model). When the human-agent feels in danger, decisions are
made by the individual regarding whether to evacuate or to stay where they are. Meanwhile, the volcano and
stakeholder agent have only one statechart each. The volcano is utilised with the statechart of volcanic activity
generator, thereby giving the stakeholder agent the ability to make decisions based on the volcanic activity.
The stakeholders will alert people when the volcano displays a high level of activity.
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Figure 8: UML overview of the Agents’ Statecharts expressing the Agents’ Behaviour.

4.13 Using the developed model, experiments can be used to show how the spatio-temporal dynamics of risk vary
with themagnitudeof the hazard (VEI) and the crisis length. Here, we explore the eruptive activity via a scenario
using VEI 4 and a Crisis Length of 102 days to mimic the eruption that occurred in 2010 (Mei et al. 2013; Surono
et al. 2012). The results, presentedas the coordinatesof people and their associated risk level, are thenanalysed
using kernel density analysis to identify the risk hotspots (Lin et al. 2011; Thakali et al. 2015). To produce the final
risk hotspot, we run the experiment 30 times to provide sufficient samples for statistical analysis based on the
central limit theorem (Ghasemi & Zahediasl 2012; Haneberg 2004) and spatially average the results.

Verification and validation

4.14 In implementing the model structure discussed above, we need to ensure that the model works in regard to
the overall concept (verification) as well as ensuring a close fit to the real world (validation). Verification was
conducted throughvisualisation (Haweet al. 2012), bymeansof graphical outputmonitoringand inspecting the
statecharts. For validation, we used a retrodiction approach among various other validation techniques (Hawe
et al. 2012). This approach focuses on measuring the replicative validity of the model — i.e. the ability of the
simulation to generate output that matches the real data (Troitzsch 2004). We compare the spatial pattern of
risk in the predictedmaximum level of hazard intensity with the real spatial pattern of casualties that occurred
in 2010. For this purpose, we used a qualitative approach to provide the comparison of both real data and
the simulation outputs (Crooks & Hailegiorgis 2014) in which the plausibility of the output was judged by the
authors.

Results

5.1 Section 3 provided a technical overview of themodel; we nowdescribe the simulation experiments and spatio-
temporal analysis of the results, and discuss the outcome with reference to related works, highlighting the po-
tential implementation with regard to supporting emergency management.
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The STDMR

5.2 The purpose of the experiment is to highlight the veracity of the approach (coupling an ABM with a physical
hazardmodel and anMCE to determine individual vulnerability and, consequently, individual risk) and to show
that the overall outcomes are valuable for practical emergency management. The outcome of the experiment
can be saved for further analysis as well as directly reviewed during the simulation (e.g. Figure 9). Figure 9
shows the result, illustrating the spatial distribution of the people at risk aswell as the dynamic of the risk level.
Subfigures a–d illustrate the changing level of risk as the emergency develops. Initially, most individuals have
low (or negligible) risk (see Figure 9a) but, as the hazard spreads, the risk becomes far greater (see Figure 9b
and c). In Figure 9d, few people at risk remain due to themass evacuations whenmost peoplemove away from
the hazard zone during a high level of volcanic activity. The remaining people are considered reluctant tomove
as a consequence of the variability of individuals’ decisions (see Jumadi et al. 2018).

Figure 9: Spatio-temporal risk dynamic simulation model displays, showing (a) the initial conditions before
the volcanic activity starts; most individuals have low or negligible risk; (b) the growing individual risk level
due to the increasing volcanic activity; (c) the number of people moving a�er the government issues an alert;
and (d) the reluctant people who remain in the hazard zone during the crisis. There are four graphs in the
interface: these show, from top to the bottom: the volcanic activity level andprogress of the simulation; the risk
composition of the individuals; the percentage of evacuees; and the distribution of evacuation in the shelters.
See the animated image at https://goo.gl/QYqihw.

5.3 The saved output from the simulations is used to provide the spatio-temporal densities of those at risk by
demonstrating the dynamic responses of the agents to the changing hazard levels. The Kernel density maps
provide a better approximation of the spatial distribution of those at risk compared to the distribution of points
(Figure 9), because the agent population is distributed randomly using theMonteCarlo approach (Section 3.10).
Therefore, using thepointdistributionof thoseat riskdirectly tounderstand the risk canbemisleading. Weused
GIS (seeSections4.1-4.2) to explore thedynamic riskover timebyanalysing individuals’ locationsandattributes
(risk level attribute). Figure 10presents the results of the varyingdensity of the individuals at risk at various time
points in the simulation. From these results, we can see that the level of risk to humans can change dynamically
depending on the state of the volcano agent. The risk values not only depend on the level of hazard but also
the number of people at risk. This model can show the impact of the evacuation procesess on the outcome of
disaster risk reduction responses. This result confirms the importance of providing risk assessments through a
dynamic rather than static model.

JASSS, 23(2) 2, 2020 http://jasss.soc.surrey.ac.uk/23/2/2.html Doi: 10.18564/jasss.4241

https://goo.gl/QYqihw


Figure 10: The STDRM Analysis. The densities of people at risk (a) are applied to the people at risk’s distribution
graph (b), the simulated temporal volcanic activities graph (c) and the temporal curve of the percentage of the
evacuees’ accumulation (d).

The risk hotspots

5.4 In this study, we use the term ‘risk hotspots’ to indicate the geographical locations regarding people at risk
who are reluctant to evacuate during the simulated crisis. Hotspots are defined as relatively high-risk locations
(Thakali et al. 2015). To create a hotspot, we analyse the density of the individuals (using kernel density anal-
ysis) who are at risk as the volcanic activity increases. A risk hotspot is, therefore, a place with a substantial
concentration of people who are at risk and reluctant to leave at a timewhen the activity of the volcano is high.
We captured the distribution of individuals who remain in their location until the end of the volcano’s high-
activity period (see Figure 10). The Risk Hotspots are provided in Figure 11. From the figure, it is clear that the
risk hotspots are mainly located in three areas. The first is in Cangkringan District, the second around Ngaglik
District, and the third around Tempel District. These are in the high and medium hazard zones, where individ-
uals are at risk of direct volcanic events, such as toxic gases, nue’es ardentes, and PDC, especially where these
hazards are concentrated lower down the volcano slopes through topographic channelling effects long river
valleys.
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Figure 11: The risk hotspots.

Validation of results

5.5 The most striking result of the simulation is that we can now highlight the risk hotspots as an emerging result
of the evacuation decisions of individuals during a crisis, that has a similar spatial pattern as the real casualties’
distribution data. This can improve the decisions of disaster managers in focusing resources to mobilise and
facilitate evacuation processes in hotspot areas. These hotspots can also be used to identify the areas thatmay
attract potentially high casualties when disasters occur.

5.6 A qualitative comparison between the risk hotspots and the distribution of casualties in the 2010 eruption re-
veals close similarities (Figure 12). This map was derived from casualty data provided by the local government
of Sleman (Pemkab Sleman 2010). The distribution of casualties map also shows a relatively high percentage
of casualties in Cangkringan District, but there are discrepancies in Pakem and Turi Districts.

Figure 12: The risk hotspots (a) and distribution of casualties in the 2010 eruption (b). Source: (a) Simulations,
(b) Casualties Data (Pemkab Sleman 2010).

Discussion and Conclusions

6.1 In this paper, a newapproach of Spatio-temporal DynamicsModel of Risk (STDMR) is proposed and a case study
using a pre-developed agent-based evacuationmodel of Mt. Merapi is provided (Jumadi et al. 2018, 2017). This
approach first creates an individual-level population (synthetic population) of agents who live in the area sur-
rounding a volcano. Each agent has a unique vulnerability and, since vulnerability comprises several factors
(Cutter et al. 2003), MCE is used to create a single social vulnerability index for each individual. This is coupled
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with a dynamic hazard model to capture the dynamics of risk. The model is able to highlight a small number
of high-risk spatio-temporal positions where, due to the behaviour of individuals evacuating the volcano and
the dynamics of the hazard itself, the overall risk at those times and in those places is extremely high. Never-
theless, the outcomes are interesting and extremely relevant for the stakeholders, and the work of coupling an
ABM, MCE, and dynamic volcanic hazard is both novel and relevant for decision-makers and disaster manage-
ment experts alike.

6.2 The STDMR integrates theMCE-based individual riskmodel into an ABM simulation, and can show the impact of
the evacuationprocesess on thedisaster risk reduction outcome. This canbeused tomeasure the effectiveness
of evacuation plans in reducing risk. For instance, this can to be used to compare how well a staged evacua-
tion strategy works compared to a simultaneous evacuation strategy (Jumadi et al. 2019). The staged strategy
has been proven to be a better strategy compared to the simultaneous strategy in reducing clearance times by
minimising the potential traffic congestion (Chen 2012; Chen & Zhan 2008), whereas the effectiveness of this
strategy, considering various groups of risk, has been demonstrated by Jumadi et al. (2019) using the STDMR
approach.

6.3 Moreover, this approach can improve the existing static GIS-based risk analyses that are commonly conducted
in hazardous areas/regions (Alcorn et al. 2013; Martins et al. 2012). It achieves this in twoways. Firstly, enabling
the population at risk tomove during the crisis themodel creates a considerablymore realistic spatial distribu-
tion of the population. Secondly, accounting for the individual risk to people as well as the dynamic volcanic
activity makes the resulting pattern of risk far more realistic. This model can provide an individual-level of risk
that can produce a more detailed spatial pattern of risk compared to regional-level risk analysis.

6.4 The integration of MCE-ABM for STDMR has been successfully presented in this paper to illustrate the dynamic
changes in volcanic risk in a spatio-temporal manner. The ability of the model to demonstrate the effect of
the evacuation processes on the risk reduction outcome can be used to measure the effectiveness of various
evacuation plans to reduce the risk. Moreover, from the simulation, we present the risk hotspots that reflect the
concentration of those at risk at particular sites as the outcome of the evacuation decision of individuals. This
simulation can potentially be used to increase the decision-making processes regarding evacuation. Knowing
the hotspots can help the decision-makers to allocatemore resources towardsmanaging andmobilising these
areas.

6.5 However, there some limitations that canbeaddressed for future research. These include theweightingmethod,
general applicability, and further improvement of the model rules. For the weighting method, we suggest
adding more discrimination to the Social Vulnerability Index (SoVI) beyond a binary classification where de-
tailed data are available. In addition, this model needs further analysis of its robustness by testing how the
approachmight be applied in the context of either other volcanoes or different hazard types, such as flooding,
etc. where there is a strong spatio-temporal component. Moreover, this model can be improved in terms of
the decision-making rules of the agents and the agent interactions. For example, the destination choice rule
should be improved, as this has not yet been calibrated or validated. It is important to compare the distribu-
tion of evacuees with the real data as this reflects the validity of the destination choice rule of the agent. In
2010, the populations within the danger zone in Merapi evacuated to temporary shelters (evacuation centres)
distributed outside the danger zone. These shelters were commonly public facilities such as stadiums, schools,
mosques/churches, etc. Moreover, theprobabilityof unsuccessful contact following theagent interactionmight
affect an outcome that is ignored in this model. This model assumed that all agents always successfully make
contact with their connections and always follow the commands given. Also, it is possible for people to ignore
the evacuation order altogether.
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Appendix: Example of risk classification in Java

Figure 13:
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