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Estim ating Stochastic V olatility  M odels 

through  Indirect Inference

C h ia r a  M o n fa rd in i*

E u r o p e a n  U n iv e rs ity  In s t itu te  

V i a  dei R o c e e tt in i 9

1 -5 0 0 1 6  S a n  D o m e n ic o  di F ie so le  ( F I ) -  Ita ly  

e -m a il : m o n fa r d i@ d a ta e o r n m .iu e .it  

fa x : + 3 9  55  5 9 9 8 8 7

J u n e  1 9 9 6

A b s t r a c t

W e propose as a too l for the estim ation  o f  stoch astic volatility  

m odels two Indirect Inference estim ators based on the choice o f  

an autoregressive auxiliary m odel and an A R M A  auxiliary m odel 

respectively. T hese choices make the auxiliary  param eter easy to  

estim ate and at the sam e tim e allows the derivation  o f  optim al 

procedures, leading to  m inim um  variance Indirect In ference esti

m ators. T he results o f  som e M onte C arlo experim ents provide 

evidence that the Indirect In ference estim ators perform  well in 

finite sam ple, a lthough less efficiently than B ayes and Sim ulated 

EM  algorithm s.

*1 w ould like to thank the D epartm ent de la R echerche. C R E S T -IN S E E . Paris, for 

giving me hospitality  as a visiting student. 1 am in debted  to  Prof. G rayham  M izon  

for his encouragem ent and suggestions, and to Prof. A lain  M onfort for his invaluable 

help. I also w ould like to  thank Neil Shephard for kindly  provid ing  m e w ith  the set 

o f  his results. I am alone responsib le  for any rem aining errors.
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1 I n tr o d u c t io n

In the last decade there has been a growing interest in time series m o 

dels o f changing variance, given the tim e varying volatility  exhibited by 

most financial data. In the basic m odel, the autoregressive conditional 

heteroscedasticity (A R C H ) m odel, in troduced by Engle (1982), the con 

ditional variance is assumed to be a function o f the squares o f past obser 

vations. This m odel has been extended in different directions, the most 

popular o f which, the generalized A R C H  (G A R C H ), lets the conditional 

variance depend on squared past observations and previous variances (see 

Bollerslev. 1986, and Taylor, 1986).

A nother class o f m odel is obtained by form ulating a latent stocha 

stic process for the variance. The resulting m odels are called stochastic 

volatility m odels (S V ) and have been the focus o f considerable atten 

tion in the recent years. SV  m odels present two main advantages over 

G A R C H  m odels. The first one is their solid theoretical background, as 

they can be interpreted as discretized versions o f stochastic volatility 

continuous-tim e m odels put forward from m odern finance theory (see 

Hull and W hite (1987)). The second is their ability to generalize from 

univariate to multivariate series in a more natural way, as far as their 

estimation and interpretation are concerned. O n  the other hand. SV 

m odels arc more difficult to  estim ate than the G A R C H  ones, due to the 

fact that it is not easy to derive their exact likelihood function.

For this reason, a num ber o f econom etric m ethods have been pro 

posed in the literature to solve the problem  o f  the estim ation o f SV  m o 

dels.some o f which are aim ed at achieving M axim um  Likelihood estima

tion. A n exhaustive presentation o f the different estim ation procedures 

and their properties can be found in Shephard (1996). Briefly, they in 

clude. am ong others. Generalized M ethods o f M om ents (G M M )1. Quasi-

1 See Chesney and S cott (1989), M elino and Turnbull (19 90 ), Duffle and Singleton 

(1993), A ndersen (1993), Andersen and Sorensen (1994) and Jacquier, Polsen and 

Rossi for application  o f  G M M  m ethod  to  S V  m odels.
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M axim um  Likelihood (Q M L ) m eth od2. Importance Sam pling3, Bayesian 

estim ation4, and a Sim ulated EM  algorithm  (SE M )5. The main conclusi 

ons which can be drawn from previous studies are the following. GM M  is 

inefficient relative to Q M L , although the latter is in its turn a sub-optim al 

procedure. Im portance Sam pling techniques arc very com plicated even 

for the sim plest m odel, therefore they do not seem suitable to be ge

neralized. Bayes estim ation seems to lead to large efficiency gain over 

Q M L 6, while SE M  appears to be com petitive with the Bayes estimator 

(cfr. Shephard, 1994).

A  further approach which appears to be suitable for the estimation 

o f  both  continuous-tim e and discrete-tim e stochastic volatility m odels is 

represented by  the Indirect Inference procedure proposed by Gourieroux, 

M onfort and Renault (G M R ) (1993). This approach requires the model 

on which inference is made to be easily simulated, which is the case o f SV 

m odels, while the estim ation is carried over an auxiliary m odel, carefully 

chosen for easy estim ation. G M R  indicate in their paper how the quasi

likelihood function  form ulated by Harvey, Ruiz and Shephard (1994) can 

be used as an auxiliary criterion to estimate a continuous-tim e SV m o

del, while Engle and Lee (1994) apply  the Indirect Inference m ethods to 

the same kind o f m odel using as auxiliary criterion the likelihood func

tion  o f a G A R C H  m odel. These proposals share the com m on idea of 

using discrete-tim e m odels in order to  estimate continuous-tim e models 

provided by theoretical finance.

The purpose o f  this paper is to  investigate further possibilities ope 

ned by the Indirect Inference approach into the matter o f the estimation 

o f SV m odels. Focusing on their discrete-tim e versions, and starting from 

the univariate case, two Indirect Inference methods relying on an auto 

regressive auxiliary m odel and an A R M A  m odel are proposed. In the

2T h e Q M L  p rocedu re lias been prop osed  by Harvey. Ruiz and Shephard (1994).

3D anielsson and R ich ard  (1993) and Danielsson (1994).

4See Jacquier, P oison  and Rossi (1994).

5This approach  has been  suggested by  K im  and Shephard (1994), using M aikov 

C hain  M onte C arlo.

6This result is show n by Jacquier. P oison  and Rossi (1994) and confirm ed by som e 

M onte C arlo eviden ce in Shephard (1994).
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first m ethod, the estim ator is obtained by calibration o f the estimate o f 

the auxiliary parameter. The autoregressive representation allows easy 

com pu tation  o f its pseudo- maximum likelihood (P M L ) estimates and. 

im portantly, the derivation o f an optimal procedure, leading to the mini

mum variance Indirect Inference estimator in the "class” o f the Indirect 

Inference estim ators relying on the same auxiliary model. M oreover, 

as the application  o f the Indirect Inference m ethod based on the PM L 

estim ates calibration provides an indirect test o f misspecification o f the 

estim ated m odel, a further objective o f the paper is to  study the finite 

sam ple properties o f the test associated with the proposed indirect esti

m ation  procedure. G iven the lack o f tools for testing the adequacy o f the 

SV  specification , such a by product o f the Indirect Inference m ethodo 

logy seems particularly attractive in this case. In the second approach, 

based on an A R M A  m odel, the estimator is obtained through calibration 

o f the score function , exploiting the fact that a closed form expression 

for the gradient can be derived. This way, the estimation o f the auxili

ary parameter, requiring in its turn numerical maximization, has not to 

be  repeated during the numerical estimation process. Again, the simpli 

c ity  o f  the auxiliary m odel allows the derivation of a minimum variance 

indirect estim ator.

The perform ance o f  the proposed estimators are then evaluated 

through a series o f M onte Carlo experiments in which the same process 

analysed by Shephard (1996) is used to generate the data. This makes 

it possible to perform  an empirical comparison with some of the above 

m entioned alternative techniques, in particular QM L, Bayes and SEM. 

As the latter m ethod leads to an asym ptotically efficient estimator, it will 

be  also possible to evaluate the loss o f efficiency implied by the Indirect 

Inference estim ator. In absolute terms, the good  performance o f both  

Indirect Inference m ethods proposed evidenced by our results in terms of 

finite sam ple bias and variance o f the estimates does suggest that both 

m ethods cou ld  be a useful tool for the estimation of Stochastic Volatility 

m odels. M ore particularly, the first approach based on calibration o f the 

P M L estim ate o f an A R  auxiliary model seems preferable to the second 

one. based on calibration o f the score function of an A R M A  auxiliary

3
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m odel. As far as the com parison with other methods is concerned, from 

our evidence the two Indirect Inference methodologies seem to perform 

com parably  with Q M L. while they present a loss o f efficiency with respect 

to Bayes and SEM  which is o f acceptable size when one considers that the 

Indirect Inference m ethodology is very general and can be applied in cases 

in which alternative estim ation m ethods are not feasible. Finally, we find 

that the finite sample properties o f the Indirect Test are good  for samples 

o f realistic size for financial application, confirming the possibility o f 

misspecification testing as an advantge of the Indirect Inference method 

over the alternative procedures.

T he sim plicity o f the proposed approaches seem to be promising 

for generalization to more com plicated models, including multivariate 

m odels and m odels in which the variance com ponent exhibits more com 

plicated structure than the one usually considered (e.g. autoregressive 

representation o f order one). This feature constitutes an advantage over 

the Engle and Lee suggestion and couid represent an advantage over the 

existing alternative estim ation methods.

The paper is structured as follows: Section 2 recalls the main featu 

res o f Indirect Inference and describe some details related to the particu 

lar case under scrutiny, Section 3 contains the results o f  the M onte Carlo 

experim ents, Section 4 is devoted to the analysis o f the performance of 

the m isspecification test, Scction5 concludes.

2 S to c h a st ic  V o la tility  a n d  In d ire c t In fe 

re n c e

2 .1  T h e  m o d e l

Let us introduce with general notation the m odel ob ject of inference as:

(1)

4
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where w(_2: ...... }• Notice that we limit our consideration

to the pure autoregressive case. i.e. the model does not contain exogenous 

variables. In order to particularize model 10 for univariate discrete-time 

stochastic volatility models, let wt be a bivariate vector, say (y t .h t). 

and let its probability  distribution conditional on the past, say M sv, be 

uniquely determined by the two expressions:

y , =  e x p  { \ h , } u t , u, ~  / . / .A \ ( 0 ,1)

hi =  /i +  p h t- i  +  vt , v t ~  I . I .N . ( 0 ,<72)

t =  where the two error terms, u, and vt are assumed to be inde

pendent o f one other and p is in modulus less than one to ensure stationa- 

rity. This m odel specifies the variance o f the observable variable y t to  be 

a function o f the unobservable h t. which follows a first order autoregres

sive process. Let us call the parameters o f interest 9. w ith  9' — {p . p, a 1). 

C om putation  of the likelihood function associated with m odel 2 . in order 

to achieve estimation o f 9. is difficult due to the presence o f the latent 

variables ht, as it requires computation (impossible analytically) o f a T - 

dim ensional integral o f the joint density of w j  =  {u>j,t =  1 ...T } with 

respect to h i...h r -  O n the other hand, it is easy to simulate values o f 

y T -  { y t. t — 1 ...T , }  from M 31', for a given value o f the parameter vector 

9 and a given initial condition w0 =  (yo, h0).

2 .2  T h e  m e th o d

The first step in the Indirect Inference approach (sec G ourieroux. M onfort 

and Renault. 1993) is to  choose an auxiliary criterion, Q r  (.Vr - d ). with 

3  £  B  C R q. whose maximization leads to an estimate o f 3-

3 t  =arg max Q r  ( y r ■ 3 )  ■ (3)
defl v 7

It is assumed that the criterion converges to a determ inistic limit, which is 

a function  o f the distribution defined in M sv. therefore o f 9 .as well as o f 3. 

This limit is indicated by Q x  (9, 3 )  and the value o f 3  which maximizes 

it. which in its turn depends on 9. is called the binding function:

o
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b{9) =arg  max Q x  {9 . J )
3eB

It is assumed that b (8) is injective and that the above maxim um, 6(0), 

when evaluated at the true value o f 9, 90, is unique. b(80) =  0 O is the 

pseudo-true value o f 0 , and it is the limit toward which the estim ate 0t  

converges.

The second step o f the estim ation procedure amounts to deriving an 

estim ate o f the binding function through simulation o f the observations 

y T by drawing from the distribution defined by 2. Let us denote by 

Vt h  (9 )  — [ y h(8 ), h =  1 . . .T i / j  7 a simulated vector for the y ’s, which 

can be obtained for a particular value o f the parameter 9 and a given 

initial condition h0 . After replacing the original observation with the 

simulated ones in 3, the (functional) estim ator o f  the binding function  is 

given by:

0t i i (8) =arg  max Q T [y T l{( 9 ) ,0 ]  . (4)
B

W ith  the above notation, the indirect inference estim ator o f 9 is defined

as:

9 j  =arg  min — 0t h {9)\ &t  \&t  — 0t h (8)\ (5)

i.e. it is chosen so as to make the pseudo maxim um  likelihood estimators 

0 T and 0t h {8) as close as possible. Notice that the estim ator wall be a 

function o f the weighting matrix fl-f. a positive definite m atrix converging 

to a deterministic positive definite matrix Q.

G ouricroux. M onfort and Renault show that under the assumptions 

above mentioned 8 j  is a consistent estimator o f 90 and that, under some 7

7Given the absence o f exogenous variables for ou r  m odel A /3", we in troduce here 

the second version o f  the indirect estim ator o f  G ourieroux, M onfort, Renault (1993) 

based on  a single simulated path  o f length TH , while the first version uses H simulated 

paths o f  length T . The authors show  in their appendix  the asym ptotic eqivalence o f  

the tw o approaches.
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further conditions, it is asym ptotically  norm ally distributed , when H is 

fixed and T  goes to infinity. M oreover, they provide the expression o f 

the optim al choice o f the m atrix ft. i.e. the choice which minimizes the 

asym ptotic variance-covariance m atrix o f the indirect estim ator 6 !/ . Let 

us define the following matrices:

/o =  l i f f i j { ^  [yA(0o),/?o]}

J0 = p lim  — y;3yj, [yh(O o),0o]
T —*oo  L

where V  indicates variance with respect to the true distribution o f the 
o

y 's process. Notice that the term containing the lim its o f the covariances 

between the scores vectors, usually indicated by  K o ,  is equal to  zero 

since the m odel does not contain exogenous variables8. W ith  the above 

notation, the asym ptotic variance-covariance m atrix o f  9% is given by:

W (H .C l)  =  ( l  +  ^ )  d {e o .C l)d ~ {9 o )C lJ ô lh J ^ C l ^ ( 6 o )  d (90, i l )

where:

d (9o.C l)
db_

36'

- l

so that the optim al choice o f Cl is:

ft* -  JoIo'Jo (6)

The optim al indirect estimator, say 9 j  , can b e  com puted  by substituting 

for f i j  in 5 a consistent estimator o f ft*, say ft^ . 9j  is asym ptotically 

normal w ith variance-covariance m atrix: given by:

w ; ,  =  u - ( t f . f t * )  =  ( i  +  ~ )
'Ob' , db
^ 0)J 0I 0- l J0 — (90 )

Alternatively, according to the proposal o f Gallant and Tauchcn 

(1992). it is possible to implement the indirect inference procedure by

8Cfr. G ourieroux. M oufort and R enault (1993).
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calbrating the param eter o f interest 9 through the score function, i.e. 

choosing the value o f  6 which makes the score function o f the auxiliary 

m odel as close as possible to 0:

9T =  arg m m  [y TH(0 ) ,  3 r ] t T ^  \yTI1(0 ) :  8 t \ (7)

where E f  converges to a positive definite m atrix E. G ourieroux, M onfort

and Renault show that 9T (E ) is asym ptotically  equivalent to 0% ( JqZJq), 

so that the minim um  variance estim ator is obtained when E* =

I o l -

2 .3  T h e  p ro p o s e d  a u x ilia ry  m o d e ls

As the estim ation procedure involves the numerical m inim ization o f a 

quadratic form , it is desirable that the estim ation o f the auxiliary para 

meter l3 is quite sim ple to perform , possibly w ithout resorting to further 

numerical m ethods. O n the other hand, the auxiliary m odel should be 

chosen so that it reflects at least som e features o f the original m odel. 

W ith  these considerations in m ind, notice that squaring y t in m odel 2 

and taking the logarithm ic transform ation  gives:

lny,2 =  h, +  ln u 2

where the first term o f the right hand side follows a first order autoregres

sive process, while the second is a non gaussian white noise (involving a 

transform ation o f a gaussian white noise which docs not preserve norma 

lity). or a zero order non gaussian autoregressive process. The sum o f the 

two terms is a non gaussian A R M A ( l . l )  process in the covariance sense, 

i.e. its autocovariancc function has the pattern o f an A R M A (l . l ) .  A first 

idea is to use a gaussian autoregressive representation o f a given order, 

i.e. an A R (m ). for In y f .  in order to  approxim ate its A R M A  nature. The 

second possibility is to  use d irectly  an A R M A  m odel as auxiliary.
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A first possibility  is to  consider the following auxiliary m odel:

2 .3 .1  T h e  A R ( m )  a u x ilia r y  m o d e l

In </,2 -  05+0,* In»?-,+ #  ln.V(2_2+  + # ,  Iny l m+et, et ~  /./.JV(0, r 2)

(8)

whose parameters 0* =  (0 q , 0 { , 0 2 , .... # ,)*  and 7-2 can CcLsily estim a

ted through the M axim um  Likelihood m ethod, based on the sequential 

factorization o f the density o f In t/2 given its past and conditioning on the 

first m  observations.

Let x, =  In y \, x =  (x m+ i , x m+2,  i r ) ' ,  a vector ( T - m , l ) ,  A _ m =

(1, x _ i ,x _ 2, ....x _ m) , a m atrix (T  — m . m ), whose colum ns are ! ,  a vec 

tor o f ones, and the lagged vectors x _ ; =  (x m+1_i, x m+2_ / , .... Xt - i )',1 —

1.... m . D enoting the whole auxiliary parameter, o f dimension (m  +  2 ,1 )

as 3  =  (/?*', r 2) ', the criterion function corresponding to 3 becom es the 

average conditional log likelihood function:

Qt (£ • 0) = 2 ln(27rr ) 2t *(T -  m )
( x - x _ m/ n ' ( x -

J 9 )

leading to the estim ators =  ( A l mX _ m) -1 A L m£, and f 2 =  .

w ith t  =  x - X _ m 3 *. These Pseudo M axim um  Likelihood estim ators are 

directly com putable for both  the original and the simulated observations. 

Given the sim plicity o f the evaluation o f the P M L E  in this autoregressive 

auxiliary m odel, it is convenient to com bine it with the first indirect 

inference m ethod, which involves the calibration o f the P M L E  themselves 

(see 5).

A lthough the estim ation process could, for simplicity, be im ple 

mented by  using an arbitrary positive definite m atrix as weight in the 

quadratic form 9, the auxiliary criterion in 9 allows an easy com putation  

an estim ator o f the optim al m atrix 0* , and makes it possible to obtain

9Often the identity  m atrix  is chosen, as the derivation o f  the optim al m atrix i l* can 

be quite com plicated .
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d irectly an optim al procedure. Accordingly, let us write the criterion

associated with the whole sample, Q Tl as a sum o f com ponents asso-
T

ciated with the single observations, i.e. Q t (-) =  Y  Qt, with
m (=m+l

q, =  [ln(27TT2) +  ±i (x ,  -  do -  A * / - i  - .... -  dm-ff-m)2] , and write,

consequently, /<> =^lim V  {  j t - m £  ^  If the scores associated with 

the single observations arc uncorrelated over tim e10 *, a consistent estima- 

tor o f  the above quantity is given by:V^ =  Y  IQ our

case, as the auxiliary m odel is misspecified, the scores associated w'ith the 

single observations, are likely not to be martingale differences11 and 

a consistent estim ate o f the variance matrix o f the scores o f the data, 7o, 

can be obtained using the Xew ey and West (1987) formula, which takes 

into account the correlations o f the scores over time:

I T = :  VV°+ £  (Vr‘  +  V f * ) ( l  -  t ^ t ) (10)
*=i A +  1

w'ith:

y k  _  1 9qt dqi+k

T T  — m d,3 dd'

where K  is a bandw idth  which is a function o f T  and grow's slow-ly enough 

w'ith the sample size in order to ensure consistency of the above estimator.

As far as Jo is concerned, it can be estimated, as usual, w'ith the 

em pirical second derivative m atrix , i.e. a consistent estimator o f it

is:

Jt  = <r
1 v' 

0'

,A'
i

’ 2r4

w'here 0 is a (m  +  1 .1 ) vector o f zeros. The above quantities lead to the 

consistent estim ator o f the optim al matrix :

Q't  =  Jt Tt 1Jt .

10T h is is usually  fou nd in practice, but needs to  be checked.

"  ^  *s no1, *n general, a m artingale difference w ith  respect to  the a  — f t t l d  gene

rated b y  the past j/(_ i ........efr G ourieroux and M onfort (1993).
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A  second possibility is to choose directly an A R M A ( 1,1) m odel as au

xiliary one, avoiding the approxim ation level introduced by the purely 

autoregressive representation. This amounts to postulate:

2 .3 .2  T h e  A R M A ( 1 ,1 )  a u x ilia ry  m o d e l

ln.y2 =  aj +  aj lnj/(2_j +  ujt — 1, ay ~  I . I . N ( 0 ,  v 2). (11)

Letting x t — ln y f  and a  =  ( a j ,  a*, o j ,  v 2) =  (a*', v 2), we get the 

follow ing average loglikelihood function conditional to the starting values

(* o ,  ^ ’o )  :

Q r { x , a )  =  - ^ l n 27r -  ^Ini /2 -  £  w<(a ’ )2 (12)

The sequence {o.’i , u>2, can be derived by the recursive expression:

u t =  x t -  q J -  (13)

setting the initial values equla to their expected value, i.e.: Xq — wo =

0. In order to get the PM LE 5  =  (a* ', P2) it is necessary to resort to 

numerical optim ization  o f the above conditional likelihood. This makes 

the calibration o f  the PM LE com putationally cumbersome. O n the other 

hand, it can be noticed that the gradient -!^r can be analitically derived 

by iterating on expression 13. getting:

where:

9Qt

d a

OQt
d a *

r t  i
_  1 XT"' , , dljJt

T v 2 d a *

T

1 . 1 V  -2
2i/2 +  T 2 u 4

. d v 2

dust 

d a *

O u t r

d a l - 1

d j j t

d a * — —  X t -  1

du)t . ,
d a *

t — 1

+  o
.a*-.

d a *
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Therefore, the indirect inference estimator can be obtained through the 

second m ethod outlined in the previous section, i.e. by minimization 

o f  the quadratic form in the score function 7. M oreover, the analytical 

expression o f the gradient above allows for the estimation o f  the optim al 

weighting matrix, E* =  I f 1, for which the Xewey-W est formula in 10 can 

be used.

3 M o n te  C a r lo  resu lts

3 .1  S o m e  e v id en ce  o n  th e  p e r fo rm a n c e  o f  th e  In d i 

re ct  In fere n ce  e stim a to rs

In our M onte Carlo experiment we take the same data generating process 

as Shephard (1996), in order to provide both  some evidence on the perfor 

m ance o f the Indirect Inference method, and the basis for the comparison 

w ith  Quasi M aximum  Likelihood, SEM and Bayes estimation.

The observations { y t, t =  1.... T }  are generated by the SV m odel 2

wdth $o =  {yo -P o& o)' =  (0 ,0 .9 ,0 .316)'. for T  =  1000. T  =  2000. As far as 

the sample sizes considered are concerned, it is im portant to emphasize 

that inference in stochastic volatility models is quite demanding in terms 

o f sample inform ation required, due to the presence o f a latent structure 

governing the variance o f the model. This is the reason why all applica 

tions are concerned with quite long financial series ( T  is hardly found to 

b e  inferior to 1000)12. O n the other hand, it is well known that many 

financial time scries are available with a large number o f observations. 

The scries arc simulated setting the initial value for the h t process equal 

to  its mean. i.e. we put ho =  0.

The number o f drawings H  determining the length o f the simulated 

series y m  {&) is set respectively equal to 16 for T  =  1000 and to 8 for 

T  =  2000, so that in both  cases the resulting simulated series y m  {0 ) 

is o f the same size. The minimization problem  to be solved to get the

12 For tliis reason, differently from  Shephard, the sample size T  =  500 has not been 

considered in the experim ent.
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indirect inference optim al estim ator, as described in the previous sec

tion. has been im plemented numerically using the procedure ’’ O ptm um ” 

o f Gauss 3.1. In particular, the BFGS m ethod has been used, which is 

a quasi-Newton m ethod as it exploits both first order and second order 

derivative inform ation, but relies on approxim ation o f the Hessian ma 

trix. Numerical com putation o f the derivatives o f the ob jective function 

offered by the same library has been used. As starting values for the 

algorithm, the true param etric vector 90 has been chosen throughout the 

experim ents13. These extremely good  starting values allow a considera 

ble time reduction in the length o f the experim ent, as they ensure that 

the algorithm will start from a point close enough to the minimum  o f the 

function to be minim ized14. The order m  o f the autoregressive process 

used as auxiliary model in the first case turned out to be a relevant choice 

for the performance o f the estim ation procedure. G iven the absence o f 

any theoretical criterion to help such a choice, we proceeded on em pirical 

grounds. After some experimenting, some evidence was found in favour 

o f discarding values o f m  inferior to  10, while m  =  10 appeared to be a 

satisfactory choice15

Table 3.1 and 3.2 display mean, bias and standard deviation o f the 

estimated values o f the parameters over 200 replications o f the M onte 

Carlo experiment, for T  =  1000 and H  =  16, for the two Indirect Infe 

rence estimators considered. Tables 3.3 and 3.4 contain the same infor

m ation relating to the case T  =  2000 and H  =  8.

Despite the lim ited number o f replications perform ed, the results 

displayed do indicate the good  performance o f the m ethods proposed in

13W e have perform ed som e sensitivity analysis and verified that perturbing the 

starting values to =  (0 .5 ,0 .5 ,0 .5 ) ' d id  not change the ou tcom e o f  the m inim ization 

problem .

14 Note that 90 corresponds to the m inim um  o f  the lim it o f  the criterion function  as 

T  goes to  infinity, while the indirect inference estim ator corresponds to the m inim um  

o f  a finite sample ob jective  function.

15 T h e order o f  the autoregressive process is likely to  be quite high in order to lead to 

a sufficiently good  approxim ation  to  a m odel containing a m oving  average com ponent. 

W ith  values o f  ra lower than 10 we observed a quite high frequency o f  false m axim a 

o f  the criterion  function (p  very close to  1 and a  very close to  0).
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In d . I n f . l  ( A R )

fi fi a

M e a n

0.00144 0.86856 0.33323

B ia s

0.00144 -0.03144 - 0.01700

S t . D e v .

0.01961 0.09867 0.15480

Tabic 1: T ru e  v a lu es  : po =  0, po =  0.9, <To — 0.31623. T  — 1 0 0 0 ,//  

16.

In d . I n f .2  ( A R M A )

fi fi G

M e a n

-0.00547 0.86372 0.36578

B ias

-0.00547 -0.03628 0.04955

S t . D e v .

0.02325 0.09454 0.14789

Tabic 2: T r u e  v a lu es  : p 0 — 0 ,p o =  0.9. a 0 — 0.31623. T  =  1000.H  

16.
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In d . I n f . l  ( A R )

P P G

M e a n

0.00059 0.88764 0.31917

B ias

0.00059 -0.01236 -0.00294

S t. D e v .

0.01073 0.05852 0.10891

Table 3: T r u e  v a lu e s  : fio =  0, po — 0.9, ero — 0.31623. T  — 2000, H  

8 .

In d . In f.2  ( A R M A )

P P G

M e a n

0.00207 0.88670 0.33565

B ias

0.00207 -0.01330 0.01942

S t. D e v .

0.01099 0.06864 0.10869

Table 4: T r u e  v a lu es  : / /0 =  0. po =  0.9. no =  0.31623. T  =  2 0 0 0 ./ /  

8 .
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terms o f finite sample bias and variance o f  the estim ators. M oreover, 

the results evidence in favour o f the first approach, especially as far as 

the bias is concerned. This means that the autoregressive representation, 

which is the more easiliy generalizable to the multivariate case, is a suffi

ciently g ood  auxiliary m od e l.16. N otice that the length o f  the simulated 

scries H . has been kept quite low , in order not to make the simulation 

experiment too  burdensom e. A  gain in efficiency has to  be expected for 

higher values o f it that can w ithout problem s be considered in applicati 

ons,while further experim enting on this possibility  would be o f interest, 

but very dem anding in term s o f  com putational time. The mean and the 

bias o f  the estim ated param eters over the replications show their proxi

m ity to the theoretical values for finite sample sizes which are reasonable 

ones for the m odel under analysis ( T  greater than 1000). A  remarkable 

im provement o f precision is observed in both  cases as T  is increased from 

T  =  1000 to T  =  2000.

3 .2  C o m p a r is o n  w ith  a lte rn a tiv e  e st im a tio n  m e th o d s

In Tables 3.5 to 3.8 the results obtained by Shephard for the same number 

o f replications ( 200 ) are reported  for com parison  purposes. Quasi M a 

xim um  Likelihood. Bayes and SE M 17 results are available for T  — 1000, 

while only SEM  is for T  — 2000. M oreover, available results do not 

include the estim ation o f the intercept p.

Tables 3.5-3.7 refer to  T  — 1000. and show, as evidenced by She

phard (1996), that Bayes and SEM  are com petitive and both  outperform  

Q M L as far as the efficiency o f  the estim ator is concerned. However, 

SEM  has the advantage o f  not being conditional on the selection o f a

1'’ H ow ever, the second m eth od  behaves better in com putational terms. This can be 

inferred from  the fact that w ith  the first m eth od  about the 6%  o f  the replications with 

T  =  1000 and the 2 %  w ith  T  =  2000 were discarded as convergence was not reached 

within 40 iterations o f  the m in im ization  algorithm , while with the second m ethod  we 

observed on e such case ou t o f  200 w ith  T  =  1000 and n o one w ith  T  =  2000.

11 W e report on ly  one o f  the cases for the SE M  m ethod analysed by  Shephard, i.e. 

the on e w hich  best approxim ates the exact problem , corresponding, in his notation , 

to  M  =  10.
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Q M L

P a

M e a n

0.86732 0.34809

B ia s

-0.03268 0.03186

S t . D e v .

0.09950 0.15773

Table 5: T r u e  v a lu e s  : po — O.po =  0.9, <7o =  .31623. T  — 1000.

B A Y E S

P a

M e a n

0.87866 0.33563

B ia s

-0.02134 0.0194

S t . D e v .

0.04963 0.09212

Table 6: T r u e  v a lu es  : p 0 =  O.po =  0 .9 ,(To - .31623. T  — 1000.
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S E M

P a

M e a n

0.89004 0.30328

B ia s

-0.00996 -0.01295

S t . D e v .

0.03877 0.05551

Tabic 7: T r u e  v a lu es  : fig — O-Po =  0.9, Oo =  .31623. T  — 1000.

S E M

P a

M e a n

0.89905 0.29940

B ia s

-0.00095 -0.01683

S t . D e v .

1 1 0.02405 0.03977

Table 8: T r u e  v a lu es  : fio =  O.po =  0.9, Co =  .31623. T  =  2000.
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prior distribution . Compaxing with Table 3.1, the perform ance o f  the 

indirect inference m ethod proposed appears to be satisfactory in terms 

o f  bias o f  the estimates, for which it is sligthly better than Q M L and 

com parable to Bayes and SE\1, while these two latter m ethodols axe 

more efficient than the indirect inference one. Com parison o f  Tables 3.3- 

3.4 and Table 3.6, for which T  =  2000, confirms the substantial gain 

in efficiency o f the SEM  m ethod relative to the Indirect Inference ones. 

This is not surprising from a theoretical point o f  view, as SEM  provi

des a close approxim ation to the M aximum Likelihood estim ator, and is 

therefore asym ptotically efficient. However, the loss o f efficiency o f the 

Indirect Inference estimators has the counterpart o f a greater generality 

and applicability in cases in which the alternative estimators axe difficult 

or im possible to  com pute.

3 .3  F u rth e r  M o n te  C a r lo  ev id en ce  o n  th e  p e r fo r 

m a n c e  o f  th e  e stim a to r

In order to get more extended results, some M onte Carlo experim ents 

have been perform ed using the A R  auxiliary model and generating the 

observations according to stochastic volatility m odels estim ated in the 

literature, i.e. taking as true parameter vector the estim ated parameter 

value for som e econom ic time series. This way it is hoped that the charac

teristics o f the m ethod enlightened by the Monte Carlo analysis, although 

m odel-specific, refer to ” plausible” cases encountered in practice.

W e refer therefore to an univariate model estim ated by Shephard 

(1995) for the explanation o f the following Japanese-Yen/D eutsche Mark 

exchange rate (Font: D A T A ST R E A M , 1 /1 /8 6  to l2 /0 4 /9 4 . 2160 daily 

observations). Consequently, the observations arc generated from  m odel 

2 with d0 = (  —1.14 .0 .9 67 .0 .43 )'18 . Notice that the proxim ity o f the 

generated series to the non-stationary case, due to the high value o f p0. 

makes it possible that during the numerical algorithm some inadmissible

18po and po are equal to  the values o f  the estimates obtained  through the SIEM  

algorithm , while our <r0 is the square root o f the corresponding estim ate in Shephard’s 

application.
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In d . I n f . l  ( A R )

P P a

M e a n

-1.32409 0.96167 0.43574

B ia s

-0.18409 -0.00533 0.00574

S t . D e v .

0.47676 0.01379 0.07471

Table 9: T r u e  v a lu es  : po =  — 1.14, p0 =  0.967, cr0 =  0.43 T  =  

1000, H  =  16.

region o f the parametric space is entered (p  >  1, a 2 =  0 ), and causing the 

alghorithm  to break down. Therefore, it turned out to be fundamental to 

perform a constrained minimization (im posing p <  1). The order o f the 

autoregressive auxiliary m odel, m . was set to 10, and the true parameter 

vector was fixed again as starting value for the numerical minimization.

Table 3.9 contains the results obtainted in correspondence o f T  =  

1000. H  =  16. while Table 3.10 refers to T  — 2000. H  =  8. This set 

o f experiments does confirm the good perform ance o f  the indirect infe 

rence estimator found in the previous case, in terms o f both  finite sample 

variance and standard deviation o f the estimates.

4  M iss p e c ific a tio n  te s tin g  th r o u g h  In d ire c t  

In fe ren c e

It is well known that diagnostic checking in estim ated SV models is very 

p oor  and lim ited to the Box-Ljung statistic to  check absence o f residual 

autocorrelation19. Therefore the possibility o f exploiting any additional

19This requires the application o f  som e filter ill order to  get the series o f  the 

residuals.
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In d . I n f . l  ( A R )

P P a

M e a n

-1.21663 0.96493 0.43288

B ia s

-0.07663 -0.00207 0.00288

S t . D e v .

0.33675 0.00974 0.05491

Table 10: T r u e  v a lu es  : fio =  —1.14, po =  0.967 ,00  =  0.43 T  =  

2000, H  =  8.

too l to test the appropriateness o f the stochastic volatility form ulation 

is o f particular im portance. The Indirect Inference m ethodology  opens 

some interesting possibility in this direction.

A  first possibility is to  test the estim ated SV  m odel against a 

G A R C H  m odel for the same series, through a Sim ulated Encom passing 

Test for non-nested m odels. Dhaene, G ourieroux and Scaillet (1995) 

provide the theory for the case in which one o f the m odel to be  tested 

against the other is estim ated through indirect inference. Their m ethod 

is feasible to test both  the null hypothesis that a G A R C H  m odel en 

com passes a SV  one and vice-versa, as in b o th  cases com putation  o f the 

indirect inference estimate o f the SV m odel param eter is required once. 

This com parison is interesting as SV  m odels have been introduced in the 

literature as alternative to G A R C H  models and existing com parison b e t 

ween the two are simply based on the estim ated maximum o f likelihood 

function , without any testing (efr Shepard. 1994).

A  second possibility, to  which we draw attention, is directly provi 

ded  as a by-product o f the estim ation process, as an indirect specification 

test can be based on the optim al value o f the quadratic form . M ore preci 

sely, proposition 6 of the Indirect Inference paper o f G ourieroux, M onfort 

and Renault (1993) contains the following result:
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T H

= ------— M in
1 +  H  »e©

\3t  -  J r //(# )]  [# r  _  Ì3t h (9)\

where f i j  is a consistent estim ator o f Q*, is asym ptotically  distributed 

as a x fq-p) -, where q =  d im (,3 )  and p  =  d im (O ), under the hypothesis o f 

correct specification o f the original model.

Therefore, a test statistic for the null hypothesis o f correct speci 

fication o f the stochastic volatility m odel M av can be evaluated simply 

by appropriate m ultiplication o f the optim al value o f the ob jective func 

tion o f the indirect inference procedure. R ejection  o f the null hypothesis 

based on the critical region: C = {^ r  >  \ f i -a) (9-p ) }  > lea<i s to a test o f 

asym ptotic level a.

4 .1  T h e  p e r fo rm a n c e  o f  th e  in d ire c t sp ecifica tio n  

test

As usual, when a test is based on an asym ptotic distribution, the issue 

o f evaluating its finite sample behaviour is one o f the fundam ental steps 

towards its ’’ safe” application. In order to achieve this, the stored values 

o f the objective function o f the 200 replications o f the two different M onte 

Carlo experim ents in the previous sections have been used. The critical 

values o f reference in our case are y 9 90 9 =  14.684, ,\o959 =  16.919, 

Vo 99 9 =  21.666 for a test o f asym ptotic level equal to  0.10, 0.05. 0.01 

respectively. Indicating by . r — 1...200 the (scaled) minimum  value 

o f the quadatic form in the r-th replication o f the experim ent, estimation 

o f the empirical rejection frequency P{-Q) is based on the percentage of 

values >  \ f ^ ay9.

W e found the following results concering the size o f the test:

E x p e r im e n t  1 : =  (0 .0 .9 .0 .3 1 6 )'

p(0.10) 
1 1000 = 0 .1 6 5

(0.026)

p ( 0 .0 5 )  

1 1000 = 0.100 
(0 021)

p(0 01) 
1 1000 = 0 .0 3 5

(0 013)
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6 ( 0  10) 

1  2000 =0.150
B (0 .0 5 )  

1  2000 =0.065
p ( o . o i )  

1  2000 =0.015
(0 .0 2 5 ) (0 .0 1 7 ) (0  009)

E x p e r im e n t  2 :  60 = (-1 .1 4 ,0 .9 6 7 ,0 .4 3 ) '

B ( o . i o )  

1  1000 =0.165
B ( 0 05) 

1  1000 =0.090
6 ( 0  0 1 ) . 

1  1000 =0.025
(0 .0 2 6 ) (0 .0 2 0 ) (0 .0 1 1 )

B ( o . i o )  

1  2000 =0.090
6 ( 0 .0 5 )  

1  2000 =0.060
6 ( 0  0 1) . 

1  2000 =0.025
(0  020) (0 .0 1 6 ) (0 .0 1 1 )

The standard errors in brakets are evaleuated as: s e  =

It can be noticed that while for T  =  1000 the test tends in b o th  the 

experim ents considered to over-reject the true null hypothesis o f  correct 

specification, for a sample size T  — 2000, the perform ance o f the indirect 

test is already sufficiently g ood  for it to  be  a valid base for an evaluation 

o f  the stochastic volatility  specification . M oreover, the decrease o f the 

em pirical rejection frequencies towards the theoretical sizes 0.05 and 0.01, 

when T  is increasesd from 1000 to 2000, suggests that for bigger values 

o f  the sample size (still realistic in financial applications) the test is likely 

to  reach its asym ptotic level.

P ( i - P )  
200  ’

5 C o n c lu sio n s

T he estimation o f Stochastic V olatility (S V ) m odels is an challenging 

field o f research given the difficulty which one encounters when deriving 

their exact likelihood function. W hile these m odels arc difficult to  esti

m ate, they can be very easily sim ulated, and this characteristic makes 

the Indirect Inference m ethodology  a good  candidate for their estima

tion. The crucial step o f the Indirect Inference procedure is the choice 

o f  an auxiliary m odel, which must be  easy to  estimate and in the same 

tim e should reflect some features o f the original one. The observation 

that the logarithm ic transform ation o f the square o f a SV process has an 

A R M  A  (1,1) autocovariance function  pattern is the basis for the choice o f 

cither a finite autoregressive representation or an A R M A  representation
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as auxiliary m odels. Beside the approxim ating nature for the original 

m odel, the proposed auxiliary m odels exhibit two further nice characte 

ristics. The first one can be very easily estim ated by Pseudo M aximum 

L ikelihood, and can be used to calibrate the PM L estimate, the second, 

whose estim ation requires in its turn numerical maxim ization, can be the 

basis for a score calibration  based procedure, which exploits its recursive 

structure. In both  cases, sim plicity o f the auxiliary model proposed al

lows the derivation o f  an optim al Indirect Inference Procedure, leading 

to a minim um  variance Indirect Inference estimator.

T he perform ance o f  the two Indirect Inference estimators in finite 

samples o f realistic d im ension for financial series, on which SV models 

are usually estim ated, is evaluated through some M onte Carlo experi

ments. The proposed estim ators are found to have good  properties in 

terms o f closeness o f  the estim ated parameters to the theoretical values 

and standard deviations o f the estim ates, and the first approach seems to 

outperform s the second one. A  byproduct o f our experiments is the com 

parison with Q M L, Bayes and SEM  estimators evaluated by Shephard 

(1996), leading to the conclusion  that the Indirect Inference estimator 

based on PM LE  calibration  and A R  auxiliary m odel performs slightly 

better than the Q M L  one, while it is out perform ed by Bayes and SEM 

as far as efficiency is concerned. A further possibility open by the Indi

rect Inference procedure is the derivation o f a misspecification test for 

the estim ated m odel based on the optim al value o f the objective func

tion. The finite sam ple behaviour o f such a test is found to be good  for 

samples o f 2000 observations, a size encountered in practice in financial 

applications.

O ur results suggest that the choice o f an autoregressive auxiliary 

m odel cou ld  be an useful one in the application o f the Indirect Inference 

procedure to the estim ation o f  SV  m odels on real financial scries. In 

particular, the advantage o f  the procedure is likely to be assessed for the 

estim ation o f more sophisticated SV m odels, including the assumption 

o f  a more com plicated  structure o f the process describing the variance 

com ponent a n d /o r  the multivariate case, which would im ply the choice 

o f a V A R  auxiliary m odel..
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