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Abstract. During ascent and at other times during flight, the lifting gas of a high
altitude balloon is compressed and only able to partially inflate the balloon. In this
condition the surface of the balloon will sag to form folds and wrinkles which are difficult
to analyze. Previous numerical work to analyze these types of balloons was based on
minimizing extrema of potential energy of balloon shapes that included an explicit rep-
resentation of excess material as folds. These models used the conventional strain energy
for linear isotropic membranes and permitted compressive states to enter the solutions.
This paper explores the application of the energy relaxation method to the earlier models
to produce solutions free of compressive states. Numerical results computed using the
relaxed energy are presented and compared with results computed using the standard
strain energy for a membrane.

1. Introduction. Early work to model scientific research balloons was done by re-
searchers at the University of Minnesota. Their work focused on fully inflated, inexten-
sible, axisymmetric balloons. More recently, work has been done using finite element
methods to treat axisymmetric solutions, see [Sou94], and non-axisymmetric elastic bal-
loons at float altitude, see [Sch91] and [Sch97]. Each of these previous efforts have
assumed that the balloon is fully inflated and that the balloon's surface is smooth.

Efforts to study partially inflated balloons mathematically were carried out in [Bag96]
and [BR95] using minimization methods to find extrema of the potential energy for the
balloon. The models described in these papers handled excess material by introducing an
explicit representation of folds forming in the balloon's surface. Both models ignored in-
ternal forces in the balloon membrane and included only the weight of components of the
balloon and the hydrostatic pressure of the lifting gas. In [BC98], the models in [Bag96]
and [BR95] were extended to represent the balloon fabric as an elastic membrane and
included elastic cable-like reinforcing elements. This model was revised in [BB98], using
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a different representation of the folded excess material. In the elastic models, [BC98] and
[BB98], the balloon's membrane surface was approximated by a collection of triangular
planar membranes using the theory of planar elastic membranes. In these models, com-
pressive states developed locally in individual triangles. However, the folds permitted the
balloon's surface to sag and relieve, but not eliminate, much of the compressive stress.
More precisely, stress resultants averaged across horizontal strips of the balloon's surface
were shown to be essentially nonnegative.

In the papers, [Pip86], [Pip94], and [HS94], a theory of membranes has been developed
in the context of energy relaxation, as described in [Dac89], that is valid under large
deformations. The recent paper, [AS98], expands the application of relaxed energy to
coupled problems of elastic membranes with elastic boundaries. The goal of the present
work is to apply these relaxed energy theories to the balloon models put forward in
[BC98] and [BB98] with the purpose of producing models free of compressive states in
partially inflated balloons without the need for calculating stress averages. It has been
observed that using energy relaxation methods for treating membranes is closely related
to the tension field theory of membranes (see [Pip86] and [Ste91b]). The work by Schur,
[Sch97], applied tension field methods to analyzing scientific balloons but did not treat
under-inflated cases.

After describing the problem, expressions for the potential energy and relaxed poten-
tial energy of a balloon are derived. Then the models presented in [BC98] and [BB98] are
summarized along with a scheme for discretizing the energy equations. The effectiveness
of this approach is demonstrated by the results of numerical experiments. These exper-
iments produce approximate shapes that are free of compressive states. The numerical
results also point out how some of the assumptions made in [BC98] and [BB98] impact
the solutions.

2. Formulation.
2.1. Problem description. Before trying to develop a mathematical model, a physical

description of the scientific balloons under study will help to focus the problem. Scientific
balloons are constructed from long tapered panels, called gores, cut from a thin film. Each
gore has the same shape and may be over 600 feet long and up to 8 feet wide. The gores
are joined together along their edges to form a single enclosure. Often the balloon is
outfitted with other structural elements, such as reinforcing tapes along the seams, extra
layers of balloon film to reinforce heavily stressed areas, and a top fitting. The balloon
assembly becomes a surface in space when inflated with a lifting gas. The shape of the
surface is determined by the taper of the gore, the volume of the lifting gas, and the
loads acting on the balloon.

The gores are usually tapered to produce a balloon shape with sufficient volume for
the buoyant force of the lifting gas to support the balloon and its payload, floating at
some determined altitude in the atmosphere. When the lifting gas is compressed into a
volume smaller than the intended float volume, the problem is complicated because the
entire surface of the balloon film cannot be supported and wrinkles and folds develop.
This condition of partial inflation occurs while the balloon is on the ground before launch
and during the balloon's ascent after launch. The volume of lifting gas might also be
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Fig. 1. Fold developing at mid-gore.

reduced while the balloon is near float because of changes in the density of the lifting
gas relative to the atmosphere, due to temperature fluctuations during the night and day
cycle.

As the volume of lifting gas is reduced, the balloon grows in height and shrinks in
girth. Near the apex of the balloon, the gas bubble supports the balloon film with biaxial
tension. Below some distance from the apex, the girth of the gas bubble is less than the
combined width of all gores at that station. It is unrealistic, in this case, to expect the
balloon's film to compress along its circumferential direction in order to meet the girth
of the gas bubble, because such a thin film cannot support compression. Instead, the
balloon film folds and wrinkles to remove the excess. As a result, the balloon's surface is
slack in the circumferential direction and all tension is along the meridian. Even at float
altitude, the balloon can be stretched along its vertical axis to create a similar condition.
The shape of the under-inflated balloons are often suggestive of dihedral symmetry when
viewed directly from above. Observations of real balloons show that for a wide range of
volume, most of the excess material gathers by self contact to form a deep fold along a
plane of reflectional symmetry at the middle of the gore (see Fig. 1).

The task of modeling the balloon under these conditions is formidable but can be
simplified with several assumptions. The material from which a gore is cut is assumed
to be linearly elastic and very thin so that the stress normal to the surface is negligible.
The reinforcing tapes are represented as linearly elastic cables. The assumptions of linear
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elasticity are reasonable because the stress considered safe for balloon operations is within
the linear part of the stress-strain relationship. The balloon is always assumed to be at
rest and in static equilibrium. The issue of how this reflects actual stresses in balloons
during flight is ignored. The balloon is also assumed to have dihedral symmetry and
generated by half of a single gore with half of the reinforcing cable along its outer edge.

The only external forces considered are the hydrostatic pressure of the lifting gas
acting on the balloon's surface and the weight of the balloon's membrane, reinforcing
cables, and a top fitting. The weight of the payload enters the problem implicitly as the
force required to balance the buoyant force and maintain the system in equilibrium with
the base of the balloon fixed in space.

2.2. Notation and terminology. In order to describe the problem mathematically, some
notation must be developed. The standard inner product 011 R3 is denoted by u ■ v where
u, v e R3 and the usual norm is \u\ = (u ■ u)?. I denotes the 2x2 identity matrix. The
inner product for 2 x 2 matrices is A : B — tr(AB), where tr denotes the trace. For a
2x2 matrix

_ an a\2
P 21 a22]

the cofactor matrix, Cof(A), is defined to be

Cof(A) =

that

0-22 —a 21

—0-12 On

A Cof(A)T = det(A)I
(see [Cia88], page 4).

Let Dn denote the dihedral group of symmetries of a regular n-gon. The action of Dn
on the plane is denoted by \p for \ £ Dn and p = (X, Z) £ R2. This action is extended
to isometries of R' by xr = (XPiz)i P £ R-2 and z G R- If T is a subset of R3 and
X € £>„, then \T denotes the set {xf\^ G T}.

The surface of the balloon is denoted by P. Based on the assumptions stated in Sec.
2.1, the possible shapes of P are narrowed to those symmetric with respect to Dn where
n is the number of gores used to construct the balloon. The complete surface is generated
by a section, Pg C P, acted upon by Dn, where Pg is a half-gore. It is assumed that the
planes

111 = {{x,y,z) | y = 0},

112 = {(x,V,z) I xsin(7r/n) - ycos(7r/n) = 0},

are planes of reflectional symmetry for P that bound Pg. The group Dn is generated by
two elements, {xo, Xz}> where xo is the reflection through ITi and Xz is a rotation about
the 2 axis through an angle of n/n. A whole gore is given by Q = Pg U xo Pg and the
whole balloon surface is P = Uj=o XiQ- Then, rij intersects P along the edge of Pg
corresponding to the centerline of Q, and IT intersects P along the edge of Pg with the
cable reinforcement.

The reference configuration for the generator of the balloon's surface is a flat unstressed
half-gore, C R2. The set, is situated in the plane so that the mid-gore edge lies
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along the Z axis and the bottom vertex coincides with the origin. The deformation
mapping is given by

<t>: n -> R3,
and Pg is the image of under </>.

Let T be the boundary of SI and K be the boundary of Pg. The curves T and K can
be broken into two pieces by taking Kt = II,; Hi K and Tj = ), respectively. The
curve Ti is a segment of the Z axis and r2 is a simple plane curve. Each curve, F,, has
arc length, Li. Likewise, each Kt is a simple plane curve embedded in 11;. The curves, Ti
and K\, correspond to the centerline of the gore while the curves, F2 and K2, correspond
to the cable running along the edge of the gore. It will be necessary to represent A"2
parametrically,

7 ; [0, Lz] —> R3,
in terms of arc length, s, along r2.

2.3. Energy formulation and equations for equilibrium. In this section, a formulation
of the balloon problem is presented, using the notation given in Sec. 2.2, as an energy
minimization problem.

The thickness of the material in the reference configuration is described by a simple
function that is constant over most of the surface and only varies in regions near the top
where the membrane is reinforced by multiple layers of material, called caps. Each layer
has thickness r. The first cap covers the region of SI consisting of all points

{(X,Z) I Zx <Z<LX},
where Z\ satisfies 0 < Z\ < L\. The second cap is applied on top of the first cap and
covers the points

{(X,Z) I Z2<Z<Lx},
with Z2 satisfying Z\ < Z2 < L\. It follows that the thickness of a reference half-gore is
given by

{t :0<Z < Zu
2t:Z1<Z < Z2,

3t : Z2 < Z ^ L\
for each (X, Z) 6 SI.

The symmetry required for the balloon shape imposes some geometrical constraints
on the deformation mapping. The unit normals to IT and n2 are denoted by

N! = [0,1,0]t,

N2 = [sin(7r/n), — cos(7r/n), 0]r.

A deformation, </>: SI —> R3, is admissible if it satisfies

0 < <f> ■ Nj, * = 1,2, (2.1)
<j>(Ti) C H, i=l,2. (2.2)

Since the base of the balloon is fixed, a deformation, 0, will also be required to satisfy

0(0) = 0. (2.3)
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The class of admissible deformation functions, satisfying the conditions in Equations
(2.1), (2.2), and (2.3), is denoted V. Without Eq. (2.1), the balloon's surface would be
able to penetrate itself upon reconstructing the whole surface from Pg. The conditions
in Eq. (2.2) are required by symmetry. Later, in Sec. 3, the requirements of Eq. (2.1)
will be eased to accommodate the model in [BB98].

In order to describe a partially-inflated balloon with precision, a parameter u>o is
introduced to specify the volume occupied by the lifting gas. The class of admissible
functions is then restricted further to allow only surfaces that enclose a given volume u>q.
The class of functions in V that satisfy the volume constraint

2 n dhj = to o
J D

is denoted by Vwo, where D denotes the three dimensional region bounded by ni,n2,
and Pg and dui is used for volume measure on R®. At times it is easier to refer to the
volume relative to a reference value, u>d, for the volume of a fully inflated balloon and
describe the volume of the lifting gas as a percentage of U£>.

Conditions in Eq. (2.1) introduce inequality constraints into the problem. Let Hi be
the half-space

Hi = {r E R3 | r ■ Nj > 0},

for i — 1,2. It is clear that the inequalities in Eq. (2.1) require that 0(fi) C Hi, for
i = 1,2. Writing

WO^iOO + WO-NONi,
where £j(V) E IT, the condition,

• Nj = 0 (2.4)

for some V in the interior of S7 and some for i — 1 or 2, shows that 4>{V) E II;. Because
of reflectional symmetry, the reflection of (j>{V) through the plane IT must coincide with
<f>(V). Thus Eq. (2.4) implies self-contact of the balloon surface in the plane IT.

When i = 1, the contact is near the middle of the gore and one usually sees inward
folds such as depicted in Fig. 1. In this case, the contact is on the outer face of the
balloon's film. The set </>-1(IIi) is denoted by fIf and is the set of all points in the
reference configuration that will be mapped into the fold. For i = 2, the self-contact
occurs in the plane II2. What one sees in these cases is not a fold, but material from
adjacent gores sucked together and contacting on the inner face of the balloon material.
This condition only occurs in lower portions of the balloon. Fig. 2 illustrates the inner
self-contact.

The deformation gradient of <fi is the 3x2 matrix, F = V(f>. There is a decomposition
for F similar to the spectral decomposition for the 3x3 deformation gradients of three
dimension elasticity. The Cauchy strain tensor is the 2x2 matrix C = FTF. Since C
is symmetric and positive-definite, it has a square root U such that C = U2. It is then
possible to decompose F as

F = UQ,
where Q = FU-1. The 3x2 matrix Q has the orthogonality property QrQ = I.
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Fig. 2. Contact on face of gore.

The Green's strain tensor is given by

G = i(C —I).

Let Aj,A2 be the eigenvalues of C so that U has eigenvalues Ai,A2. The eigenvalues,
Ai,A2, are called the principal stretches of F and are positive. It follows that G has
eigenvalues

* = ~ !)• (2-5)

Because linear elasticity, isotropy, and zero normal stress for the membrane are as-
sumed, the stress is given by the 2x2 matrix,

S = -^(G + t/Co^G)7).
i — v

T denotes Young's modulus of elasticity and u denotes Poisson's ratio. Writing S in
terms of G and Cof(G) will prove useful in keeping expressions succinct. The strain
energy of the membrane is given by the expression

WS{G) = : G, (2.6)

which is invariant under the action of Dn on P.
As an expression in terms of the eigenvalues of G, Eq. (2.6) becomes

Wf(ei, e2) = (ei + e2 + 2i/eie2). (2.7)
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Substituting the expression in Eq. (2.5) into Eq. (2.7) allows Wf to be written as a
function of Ai, A2,

Wf(\ 1, A2) = ^ {"^1 + ^2 ~ (! + 2;y)(^i + ^2)

+ 2^Af A| + (1 + 2^)}. (2.8)
In the appendix, it is shown that Wf is convex as a function of £1,62; however, Wf is
not convex in terms of Ai,A2- In fact, Wf is not convex separately, in either argument,
therefore it cannot be rank-one convex and hence not quasiconvex (see [Dac89]).

Straining of the cable is measured by |7|. The internal energy density function, Wc,
of the cable reinforcement is given in terms of |7| by the expression

^c(|7l) = |(l7|2-!)2,

where k is the modulus of elasticity for the cable. Wc is also invariant with respect to
the action of Dn on P.

The gravitational forces are easily seen to be conservative and have a potential func-
tion, ^(0), depending only 011 </>,

= / HfzdA+ / nczds + WtZt, (2-9)
Jpg Jk2

where /j,f is the weight density of the balloon film, dA is surface area measure on Pg, /ic
is one-half the weight density of the cable, ds is arc length along A'2, wt is the weight of
the top fitting, and zt is the 2 coordinate of the apex of the balloon. The force due to a
pointwise pressure distribution, p, in a region D C R3 is also conservative (see [Fis88],
[Ste91a]), and the potential is

<!> = I pduj. (2-10)
Jd

For hydrostatic pressure,
p(v) = bz

for each v = (x,y,z) 6 R3. The real number b is the buoyancy constant for the lifting
gas, chosen so that for a given volume, ujq, the magnitude of the buoyant force, bco0, is
equal to the combined weight of the balloon and its payload. It will be shown in Sec. 2.4
that $ depends on 0 and V<f>. Both the weight functional and the pressure functional
<£, for hydrostatic pressure, are invariant under the action of Dn on P.

The total energy for a half-gore is then given by the expression

Eg(0,V4>)= / Wf(G)tdZ+ [ Wc{\>y\)Cds
Jn J r2
+ $(0,V<^) + «f(0).

In this expression, denotes area measure on and C denotes one-half the cross
sectional area of a cable. Because the terms in the expression for Eg are invariant with
respect to Dn, it follows that the energy for the whole balloon is

E{(j>, Vcfi) = 2nEg((f>,'V(f)). (2.11)
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Since all of the forces are conservative, equilibrium is achieved at minima of the energy
functional, E, over the class of functions VUo.

Summarizing the result of this section, the equilibrium shape of the balloon sought
after in [BC98] and [BB98] is a solution, if such a solution exists, to the following problem:

Problem 1 (Minimization Problem). Find 0 e VUo such that

< E(£,VZ),

for all ( £ VWo.
The difference between the model presented in [BC98] and that presented in [BB98]

is the exact representation of the fold. This is explained in more detail in Sec. 3.2.
2.4. Relaxed energy. Since Wf is not quasiconvex and Wc is not convex, the energy

function in Eq. (2.11) is not weakly lower semicontinuous, making it unclear whether
solutions to Problem 1 exist. It has been shown ([Pip86], [Pip94], [HS94]) that for prob-
lems similar to the balloon problem, the associated problem, obtained by replacing the
energy densities with their relaxed counterparts, produces solutions that are physically
meaningful. The relaxation of Wf is its quasiconvexification, the largest quasiconvex
function, Wf, not exceeding Wf. Similarly, the relaxation of Wc is its convexification,
W*, which is the largest convex function not exceeding Wc. In this section, the idea of
energy relaxation is adapted to the balloon problem.

The paper, [AS98], discusses relaxation for problems involving coupling between a thin
membrane and an elastic boundary which is applicable to the current problem given the
assumptions on the cable reinforcements and their coupling to the balloon film. Following
their example, the relaxed energy functional has the form

E*g{4>,v<t>)= [ wj{G)tdi:+ [ w;(\j\)Cds
J o J r2
+ $(<£, V</>) + <£(</>). (2.12)

The functions $ and in Eq. (2.12) are the hydrostatic pressure and weight potentials,
respectively, which are the same as Equations (2.9) and (2.10). The weight potential,
is linear in 0 so that this term does not require relaxation. Although the term for the
hydrostatic pressure does depend nonlinearly on V</>, it will be shown that this term is
already quasiconvex.

In [Pip86] and [Pip94], methods that pertain to WJ are presented for determining the
relaxed energy density. These methods lead to a simple characterization of W} and the
further result that W^ is not only quasiconvex but is also a convex and increasing function
of V(p. By increasing, it is meant that Wf (G + J) > Wj(G) for all positive semidefinite
square matrices, J. The expression for Wj depends on decomposing the membrane
surface of the balloon into three parts, characterized by the state of the membrane. The
membrane state is described in terms of the principal values of strain, stress, and their
principal directions. The strain and stress tensors are

G = exrii ® ni + 62^2 ® n2,

S = crini (g> m + a2n2 0 n2,
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where e^ are the principal strains, 0\ = ex + and c2 = £2 + vei are the principal
stresses. Since the balloon material is assumed to be isotropic, G and S share the same
principal directions 7ix and n2. With this notation Pg is decomposed into three sets:

S = {x | ex < 0 and e2 < 0},

T = {x | a 1 > 0 and er2 >0},

U = {x | x T and x £ 5}.

The set U can be broken down further:

U=UX UU2,

where U\ — {x | ex > 0, <r2 < 0} and U2 = {x | e2 > 0, ffx < 0}. On S, the membrane is
slack, T is where the membrane is taut, and U is a region where wrinkling is expected.
Although S is admitted as a possibility, in all cases considered in this paper, S is empty
because the entire balloon is under tension in the meridional direction.

The appendix of this paper outlines a derivation of Wf, based on [Pip94], completely
in terms of the principal values and principal directions of G. Where the membrane is
taut (i.e., x e T), WJ is given by Eq. (2.7). When the membrane is slack (i.e., x € S),
WJ is 0. For the case where i£W, there exists a matrix, G*, such that

W}{G) = Wf{ G*), (2.13)
S*(G) = S(G*). (2.14)

The matrix G* can be written as

G* = G + P2n (g) n, (2.15)

where P is a real number and n is a unit vector in R2. Pipkin refers to — /32n 0n as the
wrinkling strain and G* as the elastic strain. The significance of the wrinkling strain
is that it modifies the strain to compensate for the slackening of the membrane in the
direction of n. The elastic strain is thought to represent the strain of some "averaged",
unwrinkled surface and leads to uniaxial stress on U,

S*=at® t, (2-16)

where a > 0 and t is a unit vector orthogonal to n. The expression for WJ is then

0:ie5
T
— t\ : x G Wx

Tf2 (2.17)
— e2 : x G U2

-(ef + e2 + 2i^exe2) : x G T.

Wf

2(1 - v2)

The stress function, S*, can be derived from Equations (2.14) and (2.15),

S*(G) = A(G* +i/CofG*T), (2.18)

or by differentiation,
r\

-—Wf.dG* f
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In terms of principal values and principal directions, the stress function is

0 : x £ S
TeiTlx ®ni \ x GU\

(2.19)Te2n2 ®n2--x eU-2

CiTli <g> Til + C2712 0 712 : X 6 T.

For the cable energy density function, the relaxation of Wc is given by the convexifi-
cation,

f 0 : |7| < 1
<2'20)

The tension in the cable is then given by

f 0 : |i| < 1T=W-1):W>1. (2'2,)

To show that $ is quasiconvex, let (f>ti — d(f>/dX and 0j2 = dcft/dZ. Since bz can
be written as the divergence of |z2k, where k is the unit vector along the z axis, the
divergence theorem gives the hydrostatic potential term as

$(</>, V0) = \ [ z2k- n\<j>ti x <pt2\dT,z Jn

z2k ■ (f>ti x cf>t2 dY,. (2.22)
in

Eq. (2.22) shows how P depends on </> and V0. Define the function

f(u, A) = ^u\k ■ adj2 A,

for all u £ R3 and all 3 x 2 matrices, A. In the last expression the notation adj2 A
denotes the matrix of determinants of the 2x2 minors of A. Then / is polyafhne in A
(see [Dac89], Theorem 1.5), and thus quasiconvex with respect to A.

Now Problem 1 can be reformulated in terms of the relaxed energy. Just as in Sec.
2.3, the energy density functions, Wjf and W*, are invariant under the action of Dn on
P, so the total energy is

£*(</>,V0) = 2n£s*(0,V</>), (2.23)
where E* is the energy for a half-gore. Then, in view of Eq. (2.12), E* is the functional
given by

£;*(&V0) = 2n( [ W}(G)tdY,+ [ W*(\j\)C'ds
I in Jr2

+$(<£, V^) + tf(0)}. (2.24)
This new energy function, E*, is quasiconvex with respect to V0 and convex in |7|. The
problem now becomes

Problem 2 (Relaxed Minimization Problem). Find <f> G VWo, such that

£T(&V0) <£*(£, V£),
for all ( £ VUo.

"/2Jn
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3. Discretization. The two numerical models for partially inflated balloons dis-
cussed in [BC98] and [BB98] are discretizations of Minimization Problem 1. This section
summarizes the discretization schemes and their application to Problem 2. The key step
is approximating the balloon surface with a complex of triangular facets.

Because of the constraints in Eq. (2.1), a portion, flp, of the reference surface is
expected to satisfy 4>(VLp)-Nj = 0, while the remaining portion, fio, satisfies <fr(Qo)-Nx >
0. The set, Up, is an unknown of the problem and is assumed to be a region that meets
SIq along a simple plane curve, IV In the rest of the discussion, the image of P3 in the
deformed configuration is denoted by

k3 = 0(r3).

The schemes in [BC98] and [BB98] both determine fip by adjusting nodes on the
discrete reference surface that lie along I?3, but differ in the way the folds associated
with the constraints of Eq. (2.1) are handled in the deformed configuration. The method
presented in [BC98] models the condition in Eq. (2.4) explicitly by mapping the fold
material, ftp, into 111. The fold is directed inward by assumption and for this reason it is
called the interior fold model. In [BB98], ftp is mapped into half-space, {(x,y,z)\y < 0},
but is no longer subject to the force of pressure from the lifting gas. Here, the essential
role of the fold as a mechanism for removing excess material from the balloon's surface
is maintained but no attempt is made to represent the fold realistically. Because this
model only represents the fold in essence, it is called the virtual fold model.

3.1. The discrete reference configuration. In this section, a discretization of Q is pre-
sented that includes a subregion ftp that will be mapped onto a fold in the deformed
surface.

The discretization of the reference configuration, 0, is the same for both [BC98] and
[BB98]. Referring to Fig. 3(a), there are N + 1 vertices, Vi.t = (0, Zj), along the Z axis.
These vertices are numbered so that

0 = Z^ < Z\ < Z2 <C • ■ • < Zj^j ~ L\.

For i = 1,..., N — 1, there are vertices along the right boundary, T2, of Q, given by
Vrj = Zrii) with Zr^ = Zi. Let Vr$ = V;i0 and Vr,N = V^n- There is still another
set of vertices in Q represented by Vm,,, where i = 0,..., Ar. Each Vm^ lies at the
intersection of r3 with the line segment between V^i and Vrj and is specified by a single
parameter Ai according to

Vm,i = (1 - KWl.r + XiVr<i. (3.1)
The Ai lie in the interval [0,1] and specify how much material is committed to the fold.
Notice that when Aj equals zero, then Vm^ — V;and there is no fold, while A,; equal to
one implies that the entire width of the half-gore is folded at that station. The values of
the Xi are unknown; their determination is part of the solution process.

With the vertices of the triangulation of Q now specified, Fig. 3(a) shows how the
triangles are layed out 011 f2. The set ftp is represented by the shaded region of Fig.
3(a). The vertices of the triangles in rip belong to the set {V/ ;|« = 0,..., N} U {Vm^\i —
0,... ,N}. When VTn i = V;^ for two consecutive values of i, there are no triangles in £1 p
for that segment of the gore. This condition is ordinarily found in the upper portion of
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(a)

Fig. 3. Discretization of a section of the balloon, (a) Reference
configuration Q, (b) Interior-fold deformation (c) Virtual-fold
deformation <f>(Cl) ■

the balloon which is occupied by the gas bubble. The unshaded portion of Q is f^o- The
vertices of triangles in f2o are in the set {Vm^\i = 0,..., N} U {Vrii\i = 0,..., N}.

The mesh appears to be rather coarse across the gore's width. In reality, the gore
is much longer than it is wide so that the mesh is actually coarser along its length for
typical values of N. This quality of the mesh becomes acute at the tapered ends. The
mesh in Fig. 3 is presented to illustrate the concepts; details of the actual mesh used in
the numerical computations are given in Table 1.

3.2. Discretization of the deformation. In this section, two different schemes are pre-
sented for discretizing the deformed balloon surface corresponding to the different models
[BC98] and [BB98].

Let £ be the set of all triangles in the mesh. For each e £ £, let V®, V2e, Vf be
the vertices of e in the reference gore and v\,v2,v^ the corresponding vertices of the
deformed triangle. The discrete deformation mapping is expressed by interpolation on
the triangles. If V € Q is in triangle e, then

i=1

where each Mf is a linear function which satisfies M£{V?) = 1 if i = j and 0 otherwise.
As already mentioned, the interior fold model maps Q,f into IIi. Since the nodes of

triangles in Qp belong to {Vi^\i = 1,..., N} U {Vm^\i = 1,..., iV}, the fold is modeled
by constraining viti,vm^ G III, i — 1,..., N — 1. In order to reduce the number of
computations and speed up the process of calculating the energy, the position of vi^ is
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Table 1. Parameter Values

Parameter

Young's Modulus
Poisson's Ratio
Balloon Thickness
Cable Bulk Modulus x
Cable Cross Sectional Area
Number of Gores
Number of Caps
Z\

Li
maximum width for
half-gore
N
Film Weight Density, /if
Cable Weight Density /ic
Top Fitting Weight
Total Payload
lod

Value
36000 lbs /in
0.82
0.0008 in

5900 lbs

159

419 ft
434 ft
592 ft

4.2 ft
20
2.6667 x 10"5 lbs/in2
5.9667 x 10-4 lbs/in2
30 lbs
2364 lbs
5.0776 x 1010 in'i

approximated by

2^771,2
(3.2)

||^m,i+l ~f~ Vm,i— 1

reducing the description of viti to the single parameter a^. The right hand side of Eq.
(3.2) approximates the normal to the plane curve K2.

The virtual fold model retains the constraint, vm^ € III for i = 1,..., N — 1, but then
ignores Inequality (2.1) and allows the nodes vi^ to project through the xz plane along
the ray vr^vrn^ so that

  . vm.i ~ Vri to a\
Vl,i Vm,i ~t~ Tj n"- (3-4)

11 ^TTij Vri ||

This method is motivated by arguing that, because no energy is required to bend the
balloon film, the energy functional in Eq. (2.11) should be the same independent of
how the material is actually folded. The shaded triangles are now interpreted as excess
material that has been folded away in some undetermined way.

In both the interior fold model and the virtual fold model, is interpreted as the
depth of the fold. Since Qf is unknown, the mesh for the reference configuration has to be
adjusted, by varying the A; during the solution process, to determine how much material
should be mapped into the fold. Ideally, both the a,; and the Ai would be independent
variables. However, another compromise in the numerical procedure was made to reduce
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the number of computations by making each Aj a function of Qj,

Ai= Q'_ r. (3.5)
&i "i" |^r,i Vm,i \

Some experiments were performed to compare solutions using the approximation in Eq.
(3.5) with solutions that treated the variables A;, i = — 1, as independent
variables and the differences were not significant.

3.3. Discretization of the energy functional. In this section, expressions are evaluated
for the various terms in the relaxed energy functional. In order to avoid a large unwieldy
expression, the energy functional is broken into components.

Strain Energy of the Membrane. For each triangle, e € S, Ve and ve can be
interpolated by

ve{t) = vf + z1v1e + z2vf,
*>*(£) = Vo + fl«l + &«!>

where 0 < £1, £2 < 1, £1 + £2 = 1- The Green strain tensor is given by

Ge = i(FeTFe - I).

Fe is the deformation gradient, V<0, evaluated on triangle e and is given by

Fe = Dve[DVe]~\

where Dv = [||-] and DV = The 3x2 matrix Dve has columns vf — Vq and
v2 ~~~ vo an<^ the 2x2 matrix DVe has columns Vf — Vq and Vf — Vq. The stress is given
by

Se = A(Ge + z/CofGeT).

The strain, Ge, and stress, Se, are constant on each triangle and thus each triangle is in
exactly one of the states <S, T, or U everywhere on that triangle. Let ef and af,i= 1,2,
denote the principal values of Ge and Se, respectively. Then, WJ, after being computed
as a function of the ef and erf, using Eq. (2.17), has a constant value on e, denoted by
ew;.

The strain energy for the membrane surface of the balloon is

[ Wf(V<t>)tdE = V [ eWftd£,
Jn e Jw

= J2eteW}^e, (3.6)
e

where £e is the area of triangle e. Eq. (3.6) is based on the assumption that the mesh
was constructed so that t is a constant value et on each triangle.

Strain Energy of the Edge Reinforcement. Each segment in the discretization
of T2 is assigned a label, a. Let Vq and V" denote the endpoints of a. The segment a
and its deformed image can be interpolated according to

Va(o = v0a + C(v1a-V0a),

v°«) = «o+CW-Vo)»
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where £ £ [0,1]. The relative stretch of the cable, |-y|, is approximated by

K-^I/K-KTI- (3-7)
Substituting Eq. (3.7) into Eq. (2.20), the quantity \{\^\2 — 1) on segment a is approxi-
mated by

1 K -v%\2 - \Vf - V0a|2
2 Wf=K\2

and the strain energy of the load tape is

va_va\/\Va_va\^h

/ W:mds = Y,*C(ea)2\V1a-V0a\.

As a matter of practicality, neither k nor C is known individually but the value of the
product, kC, has been determined experimentally for the edge cable.

Hydrostatic Pressure Potential. To compute the potential energy due to the
hydrostatic pressure, let V? = (Xf, Yf)T and vf = (xf, yf, zf)T, for i = 1,2,3. Suppose
D is the region of R'5 bounded by IIi,n2, and Pg. Equation (2.22) then becomes

<3> = - f z2k ■ ndA2 JPg

= b - f z2k-nedA
^ 2 Jpe

e 9

= b^(42 + 42 + *l2 + 44 + 44 + 44) Ae-
e

In the last expression Ae denotes the area of the triangle on the deformed configuration
with vertices vf,v2,v%, i.e.,

Ae = ±\(vZ-vf)x(vZ-vf)\.

Potential Energy Due to Dead Weight. The terms of the potential for the weight
of the various components, using the same notation developed in previous sections, are:

I

fifzdA = ^^fj,f / zdA
e Pg

= y^M/o(zi+4+4)Ae
e

Hczds = ^^[ic / zdA
I pa
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The combined potential, Eq. (2.9), is then given by

* = f + 4 + zZ)Ae
3

: 2+ Ev4(z? + z2)lv2a-Kl

+ Wtzt.

Volume Functional. The volume of the region, D, enclosed by the discrete surface
is calculated by summing up the volumes of the tetrahedral subregions. Let Eq denote
the set of triangles in f2o- Then for each e £ Eo, a tetrahedron is formed with vertices
{po,vf,v%,vl},

Dp0,vf,v%,v§ = {f | f = PoPo + + /?2^2 + /?3u3) A) + Pi + @2 + /?3 = !}•

The common base point, po, for the tetrahedra is a point on the z axis. Triangles in the
fold, do not contribute to the volume of D. Each DPOtVltV2,V3 has volume

uj(vi,v2,v3) = vi -p0) ■ {{v2~Po) x (V3 ~ Po)}-

Summing the individual volumes and multiplying by the number of half-gores, 2n, gives
the total volume,

uj(D) = 2u(vf,vi,vi).
eE^o

Discretized Minimization Problem. Now that each of the components of the
energy functional are determined, they can be summed to obtain an approximation of
E* defined in Eq. (2.23). Let

V (^771,11 • • ' t .N — \ i Vr, 1; - - ■ ̂  Vr,N ) 5

a (o!x, • . • , Q!JV—1) ,

and let
^ = {(v,a)l*Vi e nbi;rii € n2,a, > 0,i = 1,...,N}.

(Note that and vm^ are not included in v because vm}0 = ur,o = 0 and
vm,N = vr,N-) Then E* = E*(v, a) and to = w(v).

Problem 3 (Discretized Minimization Problem). Find (v,a) G V such that

£*(v,a) <E*(u,b),

w(v) - w0 = 0,

for all (u, b) G V.

4. Results and discussion. Numerical solutions to Problem 3 were found by en-
coding E* and m — wo in the MATLAB programming language and using the MAT-
LAB Optimization Toolbox function CONSTR to determine the minimum of E* as a
constrained optimization problem. Solutions were found for a balloon at one hundred
percent, ninety percent, and fifty percent of the design volume. The parameters used in
these demonstrations are listed in Table 1.
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To obtain solutions at 90 percent and 50 percent of the float volume, it was necessary
to begin solving the problem at the float volume and then work down to the desired
volume by small decrements. For values near float volume, the numerical procedure was
sensitive to changes in the target volume parameter and decrements had to be set to 0.01
percent of the float volume. It appeared that the configuration calculated by the first
iteration of CONSTR went too far toward satisfying the volume constraint, producing a
severly strained surface for the balloon film. As a result, the strain energy for the first
iterate was very large and CONSTR required many iterations before converging to a
solution. To work around this problem, families of solutions were calculated by varying
the volume parameter slightly and using previous solutions in the family to extrapolate
an initial guess for the next solution. As the volume was reduced the volume decrements
were increased to values as large as 0.5 percent of float volume.

4.1. Relaxed energy results. As the volume of gas inflating the balloon is compressed,
one expects the gas bubble to rise to the top of the balloon, producing biaxial stresses
in this region of the balloon film. The lower portion of the balloon should have excess
material in the circumferential direction and zero hoop stresses in that vicinity. The
results reported in this section confirm these expectations, but the stresses are presented
in terms of stress resultants, which are the product of stress and thickness. In Fig. 4,
the principal stress resultants for solutions using relaxed energy are presented. Fig. 5
is provided to help correlate the arc length with positions on the balloon. The profiles
displayed correspond to the A'3 curve. The principal directions of the stress resultants
are very closely aligned with the circumferential and meridional direction vectors so they
have been labeled accordingly. There is uniaxial stress in the lower portion of the balloon
with positive stress along the meridional direction. In addition, folds form in the region
where there is uniaxial stress. Fig. 6(a) illustrates the depth of the fold for the 50 percent
case.

Near the top of the balloon, there is a transition to biaxial stress. The transition for
triangles that share an edge with the left boundary of S7q occurs lower on the balloon
than for triangles sharing an edge with the cable reinforcement. The location of the
transition from uniaxial to biaxial stress moves upward as the volume decreases. It is
clear that the stress is greater for triangles on the left side of flo in the upper portion of
the balloon.

The difference in behavior of the fold depth, in Fig. 6(a), between the interior fold
solution and the virtual fold solution can be traced back to the approximations in Equa-
tions (3.3) and (3.4). This same effect is present in the 100 percent and 90 percent cases.
The interior fold method moves the Viti nodes inward along the approximate normal to
the discretized plane curve, A"3, at the node vm^. Change of the direction of the nor-
mal vector introduces shearing strains. This means the strain energy in the interior fold
method is affected by the curvature of A3. The curvature is approximated by

ai _ lJj+1 tfj-1
— —̂

2 — 1
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0.5

600 0 200 400 600

600 0 200 400 600

200 400 600 0 200 400 600

Stress resultants in left triangles, virtual fold
Stress resultants in right triangles, virtual fold
Stress resultants in left triangles, internal fold
Stress resultants in right triangles, internal fold

Fig. 4. Principal stress resultants for the relaxed energy solutions
(lbs/in) vs arc length (ft), (a) Circumferential stress at l.Oujp, (b)
Meridional stress at l.Ow/j, (c) Circumferential stress at 0.9ujd, (d)
Meridional stress at 0.9ojjj< (e) Circumferential stress at 0.5tujy, (f)
Meridional stress at 0.5u>£>.

where i = 1,... ,N — 1. The angles, ?9j, are defined by

cos di
0

sin i9i

where 6mti is the approximate normal vector given in Eq. (3.2) and s denotes arc length
along the mid-gore curve. Fig. 6(a) together with Fig. 6(b) shows a definite relationship
between the curvature of the balloon and the fold depth for the interior fold model
solutions. Notice that wherever the curvature exceeds 2 x 10-4, in absolute value, the
fold depth is reduced for the interior fold model. The Virtual Fold Model shows more
regular behavior in forming a fold, especially as the folds become deeper.

4.2. Comparative results. In this section the numerical results obtained by using en-
ergy relaxation are compared with those obtained using the conventional strain energy.



36 WILLIAM G. COLLIER, JR.

400

350 -

300 -

250 -

200

150

100 -

-200 -100 0 100

Fig. 5. Balloon profiles (ft). Arc length is marked at 100 ft. incre-
ments, starting from the base of the balloon. Peak is indicated with a
star. Circles mark the I.Oud profile, squares mark the 0.9oj£) profile,
and diamonds mark the 0.5cj£> profile.

(a)

20

15

10

5h 9 / \ V
0&-

50% full volume, interior fold.
500/o full volume, virtual fold.

O

A * Q

° /\

300 400 500

(b)

8   1— 50% full volume, interior fold.
50% full volume, virtual fold.

6*

4h
21- O

-6 A /\ y
S O vr _ ^ ' 0 . ■ ■ ° /

V/ ° AO O/ ° N /
 . + - +  l I l 

100 200 300 400 500

Fig. 6. Fold Depth (in) and Curvature of the outer balloon surface vs
arc length (ft) for a volume of 0.5W£>. (a) Fold Depth, (b) Curvature
of Fold.
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Since solutions using the standard strain energy exhibit negative values for the cir-
cumferential stress resultants, the averages of the principal values of the stress resultants
were reported in [BC98] and [BB98]. These averages were essentially nonnegative for the
virtual fold model. The averages were calculated according to the following scheme. For
each i = 1,N — 1, there are adjacent triangles in tto, A', and A£. A' has vertices
{Vm,i-1-1, V^j+i, Vm^i} and has an edge along the mid-gore boundary, F3. A[ has vertices
{Vr,i, Vrj+i, Vmii} and shares an edge with the cable boundary, T2- Let R[ and denote
the stress resultants on A' and A[, respectively. Then the averaged stress resultants are

R^^Rl + Rl)
for i = 1,..., N — 1. Define R0 and R^ to be the stress resultants of the triangles in flo
containing Vo and Vjv so that Ri is defined for all i = 0,..., N. The principal values of
Ri are denoted by 6™ and Sf. The principal directions associated with the 5™ are found
to be aligned close to the meridional direction and the principal directions associated
with the Sf are close to the circumferential direction.

Figures 7 and 8 show the principal values of Ri for the relaxed energy solutions super-
posed on the values for the conventional strain energy solutions. Fig. 7 shows that the
stress resultants for the conventional energy solutions become more irregular and differ
from the relaxed strain energy solutions as the volume is decreased in the interior fold
model. There is much better agreement between the relaxed energy solutions and the
conventional strain energy solutions for the virtual fold model shown in Fig. 8. There
is some minor disagreement in the meridional stress resultants in the interval [200,450],
but the circumferential stress resultants are in very good agreement.

5. Concluding remarks. Energy relaxation was applied to two models of partially-
inflated balloons that were formulated from the conventional membrane strain energy.
Through numerical experiments, the relaxed models were shown to exhibit some of the
most important qualitative features observed in real balloons: regions of excess material
in the balloon's surface, absence of compressions, uniaxial stress in regions of excess
material, and biaxial stress at the top of the balloon. The models using conventional
strain energy handled excess material by "folding" it away. The models with relaxed
energy retained these features and developed significant folds even though the solutions
were not required to fold. Models that used energy relaxation showed themselves to be
much less sensitive to the details of how excess material was modeled in the balloons
than the previous models that relied on conventional expressions for strain energy in a
membrane.

Appendix: Equations for wrinkle strain. In this appendix, the expressions given
in Sec. 2.4 for the relaxed strain and stress associated with linear isotropic material are
verified. The notation presented in Sections 2.3 and 2.4 for the stress and strain tensors
and their components is assumed. As before, cr^e,, (i = 1,2) are the principal stresses
and strains, respectively, and rij, {i = 1,2) are the corresponding normalized principal
directions.
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• • • • Stress resultant averages in the conventional energy solution
  Stress resultant averages in the relaxed energy solution

Fig. 7. Superposition of stress resultants (lbs/in) vs arc length (ft).
Calculated for internal fold method, (a) Circumferential stress at
1.0u>d, (b) Meridional stress at I.Ocjd, (c) Circumferential stress at
0.9ujp, (d) Meridional stress at 0.9ajp, (e) Circumferential stress at
0.5u)£i' (f) Meridional stress at 0.5oJp.

From the expression for W/ given by Eq. (2.7), it follows that the convexity of Wf as
a function of and e2 is equivalent to convexity of the function ^(x,y) = x2 + y2 + 2vxy.
After some manipulation, ^(x,^) can be shown to satisfy

tf(axi + 0x2,ayi + (3y2) = 2/1) 4-/3V(x2,y2)

af3{{x2 - xi)2 + (2/2 - yi)2 + 2v(x2 - x1)(y2 - 2/1)}, (A.l)

where a+(3 = 1, a, (3 > 0, and 0 < v < 1. Since 2v(x2—x\)(y2—yi) < 2|x2—xi| \y2—yi\ <
(X2 — xi)2 + (2/2 — 2/1 )2, the bracketed expression on the right hand side of Eq. (A.l) is
positive. It follows that ^ is convex.

The following two expressions, conclusions of Eq. (2.16), are useful for determining

W*f:
n ■ S*n = 0, (A.2)

n ■ S*t = 0. (A.3)

Equation (A.2) is required to assure uniaxial stress in the t direction, while (A.3) is true
because n and t are principal directions for S*.

The key step in determining (32 and n is using Eq. (2.18) to arrive at an expression
for S*. Let

K = \(n <g> n + 2i/Cof(n (g> n)T);
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<•> (t»

Stress resultant averages in the conventional energy solution
Stress resultant averages in the relaxed energy solution

Fig. 8. Superposition of stress resultants (lbs/in) vs arc length (ft).
Calculated for virtual fold method, (a) Circumferential Stress at
I.Oljd, (b) Meridional Stress at 1.0(c) Circumferential Stress at
0.9cj£), (d) Meridional Stress at 0.9a;£>, (e) Circumferential Stress at
.05ujdi (f) Meridional Stress at 0.5ljd.

then, by Equations (2.15) and (2.18),

S* = S + (32K. (A.4)

After some algebra, the following identities are obtained:

Cof(n ® n)T = t®t,

K = An (g) n + 2v\t (g> t,

K n = An, (A.5)
K t = 2v\t. (A.6)

Equations (A.5) and (A.6) can be combined with Equations (A.2), (A.3), and (A.4)
to show that

/?2 = -^(n-Sn). (A.7)

If x 6 {e2 > 0, <Ti < 0}, then one must take t — ri2 and n = ni. It follows that /32 =
— (ei + ^£2). If x £ {ej > 0,1J2 < 0}, then one has t = n\,n = ri2, and /32 = + ^£i)-
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The conclusion is
0 : x G S

£2(^2 ® v-2 - vni <g> ni) : x G {e2 > 0, o\ < 0}
G* = , x , (A.8)ei (rii <E> ni — vn2 <E> n2) : x G {ei > 0, a2 < 0}

eini <g> ni + £2^2 ®n2:x€T.

From Eq. (A.8) it follows that the principal strains for G* are

{0, 0} if x G S;
{e2, -^2} if x G {e2 > 0,cri < 0};

{ei, — ve\} if x G {ei > 0, a2 < 0}; and

{ei,e2} if x G T.

Eq. (2.17) comes by evaluating Eq. (2.13) and making use of Eq. (2.7) or by evaluating
Eq. (2.14). Eq. (2.19) is obtained by differentiating Eq. (2.17).
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George Washington University.
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