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S U M M A R Y

Reverberations of teleseismic compressional (P-) waves within a glacier or ice sheet may mask

signals associated with crustal structure beneath the ice. We remove the signal associated with

the ice from teleseismic P-waves using a wavefield downward continuation and decomposi-

tion technique that depends on known ice layer properties such as ice thickness, velocity, and

attenuation. We test the method using data from nine stations in Antarctica and one station in

Greenland. We deconvolve the downward-continued seismic wave vectors to create P-wave

receiver functions that minimize the ice-layer reverberations in order to better measure signals

from deeper structures. The subsurface P-wave receiver functions have similar sensitivities to

crustal structure as those calculated from stations installed on bedrock. Synthetic experiments

indicate subsurface P-wave receiver functions can constrain crustal structure more tightly than

surface P-wave receiver functions when ice layer properties are known. We model the sub-

surface P-wave receiver functions using a Markov chain Monte Carlo inversion and constrain

the product of crustal thickness and the column-average crustal-slowness beneath the stations.

Our subglacial shear speed and thickness estimates are consistent with previous investigations

at most stations. At station SUMG in south-central Greenland, our results suggest a thicker

crust than from previous estimates.

Key words: Antarctica; Arctic region; Waveform inversion; Crustal imaging; Wave propa-

gation.

1 I N T RO D U C T I O N

Polar glacier acceleration and melt have contributed to recent sea

level rise and are projected to dominate melt processes in the com-

ing decades to centuries (Huybrechts & de Wolde 1999; Thomas

et al. 2004; Gregory & Huybrechts 2006). Two critical parame-

ters needed by numerical models of ice sheet flow are heat flow

at the base of glaciers and ice sheets and the material properties

of the substrate directly beneath the ice (Schoof & Hewitt 2013).

Improved estimates of the subglacial seismic structure can reduce

uncertainties in ice flow modelling, which in turn can improve the

accuracy of sea level prediction. As described below, both active

and passive seismic investigations have been performed to better

constrain subglacial seismic structure and to provide insight into

crustal and upper mantle structure as well as mechanical properties

near the ice-basement interface.

The geology and tectonic history beneath Antarctica and Green-

land are not well known due to their thick ice cover and remoteness.

Early geophysical investigations noted that West Antarctica is more

active than the old stable East Antarctica (Behrendt 1999) and as-

sociated much of West Antarctica with a rift system that has been

undergoing crustal thinning since the Cretaceous (e.g. Behrendt

et al. 1991). On the other hand, East Antarctica and the central part

of Greenland are considered to be stable consisting of Precambrian

cratons (e.g. Moores 1991; Henriksen et al. 2009). Though these

general geologic features are well accepted, details of the geolog-

ical composition and crustal properties beneath polar ice sheets

remain unknown. More recent studies (Dahl-Jensen et al. 2003;

Winberry & Anandakrishnan 2004; Lawrence et al. 2006; Hansen

et al. 2009, 2010; Chaput et al. 2014; Ramirez et al. 2016; Luthra

et al. 2016) have provided initial information of subglacial crustal

structure, but significant differences between these previous results

indicate that more work is needed before our picture of the subsur-

face is robust.

Polar ice sheets pose a challenge to crustal structure imaging.

The kilometres-thick ice sheets that mask most of Antarctica and

Greenland (Fig. 1) prevent direct observation of geologic features.

In addition, seismic waves reverberate strongly within the ice col-

umn due to the large acoustic impedance contrast at the base. Those

reverberated signals mask the arrivals from crustal structure (e.g.

Anandakrishnan & Winberry 2004; Winberry & Anandakrishnan

2004; Wilson & Aster 2005; Heeszel et al. 2016). The teleseismic

P-wave receiver function (PRF) techniques used commonly for data

from stations installed on bedrock (Vinnik 1977; Langston 1979)

yield poor results for data from stations installed on thick ice cover.

The strong interference makes construction and assessment of the

subice structure using PRFs difficult, leading to large uncertainties

(Julià et al. 2004; Hansen et al. 2009). S-wave receiver functions
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Figure 1. Station locations (black triangles) and ice thickness maps in Antarctica (left) and Greenland (right). The colours on land show ice thickness variations.

In oceans, the colours indicate the bathymetry. Station codes are listed adjacent to the corresponding location triangles.

(SRFs) have been used in Antarctica for subsurface structure es-

timation because the Moho converted phase arrives before the di-

rect S-wave arrival and before the ice-layer reverberations (Hansen

et al. 2009, 2010, 2016; Ramirez et al. 2016). However, teleseismic

S-wave receiver functions are often noisier than their P-wave coun-

terparts. Methods to improve P-wave PRFs in ice-covered regions

can help us better constrain subice crustal structure.

Ice thickness is well-known in much of Antarctica and Green-

land from ice-penetrating radar and reflection seismic measure-

ments (Lythe & Vaughan 2001; Fretwell et al. 2013). The elastic

properties of ice have been measured in the laboratory (Thiel &

Ostenso 1961), and in situ with active source surveys (Robin-

son 1968) and passive seismic surveys (Wittlinger & Farra 2015).

The result of these efforts is a reasonably accurate and well-

established model of the ice sheet’s elastic properties. As shown

below, this knowledge we have about ice sheets is sufficient to

remove the effects of the ice from the teleseismic signals and

to isolate the deeper responses using wavefield continuation and

decomposition (WCD) techniques. WCD techniques were devel-

oped to remove large amplitude signals generated by near-surface

sedimentary structure in order to extract seismic responses from

deeper structure (Langston 2011). Using deconvolution, the down-

ward continued signals can be transformed into transfer functions

(Langston 2011) and subsurface PRFs (Tao et al. 2014) that are

less-contaminated by the reverberations in the shallow structure.

The transfer functions or subsurface PRFs can be analysed using

modest modifications to the standard receiver function (RF) analysis

procedures. Stacking (e.g. Zhu 2000; Zhu & Kanamori 2000), grid

search, linearized and stochastic inversion (e.g. Owens et al. 1984;

Ammon et al. 1990; Mosegaard & Tarantola 1995; Levin &

Park 1997; Sambridge 1999a,b; Nicholson et al. 2005; Shen

et al. 2013) have been applied to infer structural information from

RF waveforms. Stacking-based techniques use a portion of the

waveform and assume simple reference velocity model parametriza-

tions. The exponential increase in the number of simulations needed

for each new parameter limits the usage of grid search methods for

RF data for complicated models. Linearized inversions that use

only the RF data suffer from the possibility that their solution could

be trapped in a local minimum (Ammon et al. 1990). Stochastic

inversions are gaining in popularity because of improved and less-

expensive computational resources. All methods that depend solely

on using the receiver functions for the structure inversions suffer

from a trade-off between depth and slowness that is difficult to

resolve with the range of horizontal slownesses available for tele-

seismic analyses (Langston 1979; Ammon et al. 1990). With prior

information on wave speed, the crustal thickness can be estimated;

even with the limitations imposed by the trade-off, the first-order

information provided by RFs indicate differences in the subsurface

structure among the stations studied.

We use data from stations of the Polar Earth Observing Net-

work (POLENET), the Transantarctic Mountains Seismic Exper-

iment (TAMSEIS), the Gamburtsev Mountains Seismic Experi-

ment (GAMSEIS), the Global Seismographic Network (GSN) in

Antarctica and the international Greenland Icesheet Seismic Net-

work (GLISN) network in Greenland. These large-scale field ex-

periments have collected data that provide an opportunity to image

structure in regions that have heretofore had poor crustal struc-

ture estimates. However, in order to fully benefit from these data,

new approaches that account for ice-reverberation interference are

needed. In the following we apply a subsurface PRF technique

(Reading et al. 2003; Langston 2011; Tao et al. 2014) to those data

and develop a simplified waveform inversion technique to provide

a first-order interpretation of subsurface PRFs. By coupling known

ice-layer properties and wave propagation theory, the effects of large

amplitude shallow reflections and refractions can be minimized in

the teleseismic P-wave signals. We illustrate the procedure using

nine stations in Antarctica and one from Greenland. For each, we

first compute subsurface PRFs and measure effective subglacial

shear velocities. Then we invert the PRFs for first-order crustal

structure using a stochastic Markov chain Monte Carlo (McMC)

approach. Our goal is to illustrate the procedure and to define a sim-

ple inversion tool to guide subsurface PRF interpretation. A sensible

longer-term strategy is to combine the subsurface PRFs with com-

plementary information contained in surface-wave dispersion (e.g.

Özalaybey et al. 1997; Julià et al. 2000; Chai et al. 2015), S-wave

RFs (e.g. Farra & Vinnik 2000; Yuan et al. 2006; Hansen et al. 2009),
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1066 C. Chai et al.

Table 1. Ice–crust–mantle test model.

Description Vs (km s−1) Vp (km s−1) Vp/Vs Thickness (km)

Ice 1.9 3.8 2.00 2.0

Crust 3.5 6.0 1.71 35.0

Mantle 4.6 8.0 1.74 –

and Rayleigh wave ellipticity (e.g. Tanimoto & Rivera 2008; Lin

et al. 2012).

2 S U B S U R FA C E R E C E I V E R F U N C T I O N S

As described above, near-surface layers with low seismic velocities

such as glacial ice and sediments cause large amplitude reverber-

ations. The PRFs calculated from those data have poor resolution

of deeper structure. We begin with a numerical illustration of the

problem and our solution, comparing the responses of an ice–crust–

mantle model and a crust–mantle model to explore this issue. The

model parameters are listed in Table 1. The crust–mantle model is

the same as the ice–crust–mantle model but with the ice-cover re-

moved. The ice–crust–mantle model has a large ice-bedrock prop-

erty contrast, in order to illustrate the methodology. The surface

and the subsurface PRFs are shown in Fig. 2. As expected, the 2 km

thick ice layer produces substantial ice-layer reverberations (see

grey curves in Fig. 2a for example ray paths) that complicate and

dominate the surface PRFs (waveforms 1 and 2 in Fig. 2b). The

dashed lines show the arrival time of the crust–mantle boundary

P-to-S conversion (Ps). The converted phase from the crust–mantle

boundary (see the dashed line in Fig. 2a for ray path) and multi-

ples from the Moho discontinuity are difficult to identify in both

narrowband (Gaussian filter parameter width of 1.0, corresponding

to a pulse width of 1.67 s at half the maximum) and broad-band

(Gaussian filter parameter width of 5.0, corresponding to a pulse

width of 0.75 s at half the maximum) surface PRFs (waveforms

1 and 2 in Fig. 2b). To compute subsurface PRFs from surface

seismograms, we downward continue and decompose the vertical

and radial motions to obtain upgoing P, downgoing P, upgoing S,

and downgoing S wavevectors in the subsurface. Subsurface PRFs

are computed by deconvolving the upgoing P wavevector from the

upgoing S wavevector using time domain iterative deconvolution

(Ligorrı́a & Ammon 1999). The synthetic subsurface PRFs com-

puted using WCD (waveforms 3 and 4 in Fig. 2b) show a clear

converted phase and accurate low-frequency multiples from the

crust and mantle transition. The Ps arrival time in the subsurface

PRFs is the same as that in a surface PRF that is simulated using

the model without the ice layer. The test shows that the approach

works well for converted phases but that the responses later in the

signal (the multiples) include the effects of the ice (multiples are

produced at the ice base and at Earth’s surface). This complication

is not a problem if the observations and predictions are computed

with the same approach and the model includes the relatively well-

constrained ice layer. An intuitive view of the procedure is that a

virtual station is constructed at the base of the ice layer (the black

triangle in Fig. 2a) by downward continuation of the waveforms

recorded at the surface (the grey triangle in Fig. 2a).

To illustrate the robustness of subsurface PRFs, synthetic surface

and subsurface PRFs computed using a series of crust-mantle mod-

els and ice–crust–mantle models with varying thickness are shown

in Fig. 3. The simple linear arrival-time moveout (dashed lines)

expected for changing crustal thickness (Fig. 3b) cannot be seen

in surface PRFs for the ice–crust–mantle models (Fig. 3a). Such

observable data patterns are valuable for assessing seismic mod-

els. Converted phases on the subsurface PRFs recover the expected

arrival-time moveout (Figs 3c and d). The ice layer complicates

Moho multiples in subsurface PRFs (Fig. 3d, also noted by Tao

et al. 2014), but the subsurface PRFs are much simpler than surface

PRFs. Considering the synthetic PRFs computed for two different

crustal thicknesses (35 km and 40 km) shown in Figs 4(a) and (b),

reducing the ice contribution in a PRF increases the importance of

signals from the deeper structure and thus enhances sensitivity to

the deeper structure. In Fig. 4(c), we illustrate the improved sensitiv-

ity using a measure of changes in the PRFs induced by a change in

Figure 2. Ray paths and synthetic waveforms using the ice–crust–mantle model and the crust–mantle model. (a) Ray paths of the direct P-wave (the thin

black line), the converted phase from Moho (the dashed line), and ice-layer reverberations (grey lines) using the ice–crust–mantle model. Thick black lines

identify layer boundaries. The grey and black triangles indicate the depth of corresponding waveforms in (b). (b) Synthetic waveforms computed using the

ice–crust–mantle model (1)–(4) and the crust–mantle model (5). The waveforms represent (1) narrowband (Gaussian 1.0) surface PRFs; (2) broad-band

(Gaussian 5.0) surface PRFs; (3) narrowband subsurface PRFs at the base of the ice layer; (4) broad-band subsurface RFs at the base of the glacier; (5) surface

PRFs. Narrowband waveforms (1) and (3) are amplified by 2.8 times to adjust for amplitude differences caused by the Gaussian filters. The two dashed lines

indicate the expected arrival time of Moho converted phase at the surface (right line) and at the base of the ice layer (left line).
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Figure 3. Comparison of surface and subsurface PRF synthetic waveforms for a range of crustal thickness. (a) Narrowband surface PRFs computed using

ice–crust–mantle models. The amplitude of all narrowband waveforms is multiplied by 2.8 to account for the Gaussian filter differences. The dashed line shows

the expected arrival time for the converted phase from the crust–mantle boundary (we account for the extra traveltime in the ice layer). (b) Broad-band surface

PRFs simulated using crust–mantle models. The dashed lines indicate the expected arrival time at the surface of crust–mantle models for the Moho converted

phase and multiples. (c) Narrowband subsurface PRFs calculated from ice–crust–mantle models. The amplitude for these narrowband subsurface PRFs is

amplified by 2.8 times. (d) Broad-band subsurface PRFs computed from ice–crust–mantle models. The dashed lines in (c) and (d) indicate the expected arrival

time at the base of the ice layer of ice–crust–mantle models for the Moho converted phase and multiples.

crustal thickness. The vertical axis shows the integral of the squared

difference of the PRFs corresponding to a change in crustal thick-

ness. The subsurface PRFs are more sensitive to a crustal thickness

perturbation. Wittlinger & Farra (2012, 2015) suggested that first-

order variations can exist within the ice, which we have assumed

uniform. We investigated two-layer isotopic and anisotropic models

based on the work of Wittlinger & Farra (2012, 2015). Details (using

isotropic and anisotropic models) are available in the supplement.

The calculations suggest that strong variations within the ice will

affect the WCD, but we see no evidence (artefacts in the subsurface

PRFs) in our subsurface PRFs similar to those that were observed

in synthetic PRFs, when an incorrect ice model was used.

We performed numerous additional tests using the approach with

more complicated (but still known) models. The experiments show

that responses caused by the sediments may dominate the subsurface

PRFs when shallow interfaces such as thick, low-velocity sediments

exist beneath the ice layer. This is no different to computing surface

receiver functions using data recorded on a thick, low-speed sedi-

mentary basin. Like the surface receiver functions, the signals can

be downward continued through the sedimentary material if that

structure is known. But resolving the sedimentary structure using

only receiver functions is at least as difficult as it is on a non-ice

covered sedimentary basin.

2.1 Application to ice-sheet observations

The synthetic tests show that for one-dimensional layered models,

WCD allows us to remove shallow P-wave reverberations caused by

structure above a reference depth if the seismic structure from the

surface to the reference depth is known. To do so, the elastic proper-

ties (P-wave and S-wave speeds and density) and layer thickness of

all the layers above the reference depth as well as elastic properties

just beneath the reference depth are required. For this study, we set

the reference depth at the base of the ice layer. Though multiple

layers can be included above the reference depth (Supporting Infor-

mation Fig. S1), a constant-velocity layer is used to represent the

ice for simplicity. According to laboratory measurements (Thiel &

Ostenso 1961) and active source surveys (Robinson 1968), repre-

sentative P-wave and S-wave speeds of ice are 3.8 and 1.9 km s−1,

respectively. The ice thickness beneath a station is extracted from

the BEDMAP2 model (Fretwell et al. 2013) for Antarctic and the

ETOPO1 global relief model for Greenland.

We also need the average speed at the reference depth for the anal-

ysis, which in our case is in the crystalline basement (below the ice

and beneath any substantial sedimentary material beneath it). This

average basement speed itself has great value for investigating ice-

stream or ice sheet basal friction (e.g. Anandakrishnan et al. 1998;
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1068 C. Chai et al.

Figure 4. Synthetic waveform comparison of a 35 km (black lines) and a 45 km (grey lines) crust for surface PRFs (a) and subsurface PRFs (b). (c) Signals

differences (per cent difference between a 35 km crust PRF and a PRF computed for a variation in crust thickness normalized by the 35 km crust PRF signal

power) as a function of crustal thickness difference respect to 35 km for both surface PRFs and subsurface PRFs. The narrower quadratic for subsurface PRFs

indicates the subsurface signals are more sensitivity to crustal thickness changes than surface PRFs.

Anandakrishnan & Winberry 2004; Leeman et al. 2016). We es-

timate the average upper-crustal subglacial speed beneath the ice

sheet using a grid search for each station (details will be described

in following sections). The ice density is fixed at 900 kg m−3.

The basement (including sediments if exist) and mantle densities

are estimated with empirical relationships from Brocher (2005).

Then using standard plane-wave propagator-matrix theory (e.g.

Thomson 1950; Haskell 1953) and the expressions in Appendix A,

the teleseismic P-waveforms observed on top of the ice are back

propagated to the reference depth and the signals are split into up-

going and downgoing P- and S-wave contributions. Basic theory

of wavefield downward continuation is reviewed in Appendix A.

Our interest is in the wavefield travelling upwards from the deeper

structure.

A standard P-wave receiver function is the result of the deconvo-

lution of the vertical from the radial component. We compute a sub-

surface receiver function by deconvolving the upgoing P wavevector

from the upgoing S wavevector using time domain iterative decon-

volution (Ligorrı́a & Ammon 1999), which is similar to the surface

approach (e.g. Langston 1979) that isolates the local response from

near source effects. Synthetic subsurface PRFs are computed in the

same way but using predicted displacements in place of observed

ground motion records. Tao et al. (2014) performed a similar con-

tinuation and decomposition and called the results subsurface PRFs

and used the PRFs in a multi-stage two-layer H-β searching proce-

dure. We invert the subsurface PRF waveforms instead of searching

for minimized upgoing S energy. Waveform inversion works for

multiple layers, which can be laborious for the multi-stage H-β

stacking.

2.2 Estimating effective subglacial shear wave speed

Computing subsurface PRFs require the elastic properties of both

the ice layer and the material beneath. Using our estimates of the

subsurface PRFs, we are able to measure the shear velocities be-

neath ice sheets (also referred to as the effective subglacial shear

wave velocity). Experiments with one-dimensional numerical mod-

els showed that the early part of the subsurface PRF has zero am-

plitude when the near-true subglacial shear wave speed is used;

a positive initial amplitude corresponds to an overestimate of the

shear wave speed; and a negative initial amplitude corresponds to

an underestimate of the subglacial shear wave speed (Fig. 5a). The

same pattern is observed with real data and is illustrated in Fig. 5(b)

using observations recorded at seismic station BYRD. We found that

we could measure the effect using the energy in the subsurface PRF

waveforms prior to 0 s (the Gaussian used in the deconvolution is

acausal). This early arrival energy is minimum at the true subglacial

shear velocity (Fig. 5c). In Fig. 5(d), the minimum early arrival

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
9
/2

/1
0
6
4
/3

0
5
1
6
6
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Subsurface P-wave receiver functions 1069

Figure 5. Subsurface PRFs computed using different subglacial shear velocities and the corresponding early arrival energy measurements for a synthetic

model and observations from station BYRD. The model true subglacial shear velocity is 3.4 km s−1. (a) Stacked subsurface PRFs processed using a group

of subglacial shear velocities. Each subsurface PRF waveform was averaged with eight subsurface synthetic PRFs using different ray parameters. (b) Stacked

subsurface PRFs computed using a set of subglacial shear velocities. Each subsurface PRF was averaged with all the acceptable signals from the analysis of

station BYRD. (c) Normalized early arrival (before 0 s) energy measured from waveforms in (a) for different subglacial shear velocities. The early arrival

energy is normalized by the maximum energy of the curve; you can see the relative amount of energy in the raw signals. (d) Similar to (c) but using real data

from station BYRD. Each sample in (d) was computed from 74 waveforms.

energy suggests an effective subglacial shear speed of 3.4 km s−1 at

station BYRD by measuring early arrival energy of waveforms in

Fig. 5(b).

The use of the energy in the early part of the PRF helps attack the

pragmatic problem of downward continuation. In addition, because

the material properties of the layers beneath the ice are also of great

interest to ice sheet modellers and those interested in glaciation,

we explored our ability to extract information on the structure from

the representative values. Unfortunately, heterogeneity (vertical and

lateral) in the near surface and the limited signal bandwidth compli-

cates a direct interpretation of our estimated subglacial shear wave

speed. Numerical experiments (see the supplement) suggest that

the measured subglacial shear wave speed using a signal bandwidth

shaped by a Gaussian filter with a width parameter of 1.0 relate to

the structure of a varying thickness (up to 10 km beneath the ice)

and may represent an average of rock, ice, and sediments (if exist).

The exact nature of the average depends on the upper-crustal struc-

ture. Using broader-band PRFs can increase resolution, but adds

sensitivity to ice structure and lateral variations in the subsurface.

Not surprisingly, interpretation of the shallowest structure has to be

evaluated on a case-by-case basis. Despite this limitation, the esti-

mated effective subglacial shear velocities are useful for extracting

signals originated below the upper crust.

2.3 Results

We estimated the subglacial average shear wave speed for the ten

stations with thick ice cover. Numerical experiments show that early

arrival energy measurements are not sensitive to P-wave speed be-

neath the ice. We used an empirical relationship (Brocher 2005)

between S-wave and P-wave speed to estimate subglacial P-wave

velocity. The assumed ice thicknesses and estimated effect on the

shear wave speeds are listed in Table 2 and early arrival energy

curves are shown in (Fig. 6). Each point in the curves is computed

from a few tens to over one hundred P-waveforms. For example,

every energy value for station BYRD in Fig. 6 is measured from

74 subsurface PRFs. All early arrival energy curves show a roughly

quadratic shape as a function of shear wave speed. Most of the re-

sults produce reasonable upper crustal shear wave speeds between

3.0–3.4 km s−1. The subglacial shear speeds are in the range of 3.2–

3.6 km s−1 for station BRYD, SUMG, GM02, GM05, N140, N215,

and P061. Since these values are comparable to typical upper-crustal
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Table 2. Summary of results obtained and comparison with previous studies. The Moho Depths listed are 95 per cent confidence

intervals and referenced to the base of ice sheets. The quality labels for each station are based on waveform complexity and waveform

fits. ∗Ice thicknesses are from BEDMAP2 (Fretwell et al. 2013). ∗∗a. Ramirez et al. (2016); b. Chaput et al. (2014); c. Hansen et al.

(2009, 2010); d. Kumar et al. (2007); e. Lawrence et al. (2006); f. Winberry & Anandakrishnan (2004); g. Dahl-Jensen et al. (2003).

Station Latitude Longitude Ice∗ Subglacial Moho Previous studies∗∗ No. of PRFs Quality

(km) Vs; Vp depth Moho depth surface; signal;

(km s−1) (km) (km) subsurface result

BYRD − 80.02 − 119.47 2.2 3.4; 5.8 28 ± 2 24 ± 2b; 27f 85; 74 A; A

QSPA − 89.93 144.44 2.9 2.9; 4.8 36 ± 4 34f 195; 192 A; A

SUMG 72.57 − 38.46 3.1 3.3; 5.6 48 ± 4 39d; 49g 132; 113 B; B

GM02 − 79.43 97.58 2.8 3.3; 5.5 52 ± 3 42 ± 5a; 39 ± 1c 50; 46 B; C

GM05 − 81.18 51.16 3.5 3.3; 5.5 57 ± 5 49 ± 6a; 47 ± 2c 33; 24 C; C

N140 − 82.01 96.77 2.8 3.3; 5.6 49 ± 4 46 ± 4a; 46 ± 1c 135; 97 B; C

N215 − 78.90 59.99 3.5 3.5; 5.9 41 ± 3 49 ± 6a; 45 ± 2c 71; 68 C; C

P061 − 84.50 77.22 3.2 3.3; 5.6 44 ± 4 43 ± 5a; 43 ± 1c 84; 71 B; B

SIPL − 81.64 − 148.96 1.0 1.8; 3.3 22 ± 3 27 ± 10b 77; 77 B; C

E028 − 76.31 154.04 1.6 3.1; 5.2 44 ± 20 45 ± 4a; 44 ± 2c; 37e 16; 13 B; D

Figure 6. Normalized early arrival energy as a function of subglacial shear

velocity for all the stations examined in this study. To facilitate comparison,

the arrival energy values were normalized using the maximum energy of

each curve (the value differs from curve to curve in the range of 0.007–

0.016 s−2 in which station GM02 is the smallest). Each data point in a curve

was computed from a minimum of dozens to a maximum of more than one

hundred signals.

speeds (Christensen & Mooney 1995), we infer that these stations

are underlain by layers of low-speed material of thickness that is

less than a few kilometres. Given our bandwidth and because of

the trade-off between ice thickness and near-surface speed we can-

not provide better resolution or precision. In contrast, low effec-

tive subglacial shear velocities were measured at the South Pole

(QSPA) and station E028, (2.9 km s−1 and 3.0 km s−1 respectively),

which suggests the existence of relatively thick sediments beneath

these sites. Our results compare well with those of Winberry &

Anandakrishnan (2004) who imaged a sedimentary layer beneath

the ice sheet at the South Pole (station SPA) but no sediments at

station BYRD. Station E028 is located above the Wilkes Subglacial

Basin (Pyle et al. 2010). Airborne gravity measurements suggest

the presence of over 1 km thick sediments across most of the Wilkes

Basin (Frederick et al. 2016), which agrees with our subglacial shear

speed estimate for the material beneath station E028. The very low

effective subglacial shear speed at station SIPL is consistent with the

previous investigation by Chaput et al. (2014) and implies signifi-

cant low-speed material beneath the site. Our estimates of effective

subglacial shear speed are consistent with averaged upper crustal

speeds from Chaput et al. (2014) for stations BYRD and SIPL with

uncertainties on the order of 0.2 km s−1. We did not find reliable

upper crustal speeds beneath other stations from previous studies.

3 S U B S U R FA C E R E C E I V E R F U N C T I O N

A NA LY S I S

Based on experience on processing surface PRFs from the Earth-

Scope Transportable Array (e.g. Chai et al. 2015), a large number

of receiver functions obtained even from high-quality stations are

quite noisy and some that fit the convolutional model may actually

be mostly noise. Waveform selection criteria are necessary to sepa-

rate signals from noise. We screen the data using surface PRFs. We

excluded P-waveforms with a signal-to-noise ratio below ten and

surface PRFs with convolution misfits less than 85 per cent of the

radial component signal power. Nevertheless, some noisy or con-

taminated signals may pass through these selection criteria. With a

dense network, spatial smoothing can be used to minimize the ef-

fects of noisy RFs (Chai et al. 2015). Since the stations in this study

were widely separated, we used a clustering analysis to identify and

to exclude abnormal waveforms. The clustering analysis arranges

surface PRFs into signal-defined groups based on the Euclidean dis-

tance between the observed signals. For each station, we selected

the largest group for further analysis. Smaller PRF groups usually

corresponded to azimuths with few observations. Similar to surface

PRF analyses (e.g. Chai et al. 2015), we observe azimuthal depen-

dence in the subsurface PRFs and note that a single ice thickness may

not work for groups from different azimuths. However, most of the

signals could be used to estimate subsurface PRFs when reasonable

estimates of the shallow structure are available or can be calculated.

Teleseismic seismograms surviving the surface-PRF screening pro-

cess were downward continued, decomposed, and deconvolved to

estimate subsurface PRFs. Only subsurface PRFs with convolution

misfits better than 85 per cent of the upgoing S component signal

power were used in further analyses. With one exception, surface

and subsurface PRFs were stacked into three ray-parameter bins

(0.04–0.05, 0.05–0.06, and 0.06–0.08 s km−1) to further improve

the signal-to-noise ratio. Fewer events were available for station

E028 due to its relatively short deployment time, so for that station

the surface and subsurface PRFs were averaged into single surface

and subsurface PRFs. Surface PRFs and subsurface PRFs processed

for station BYRD are shown in Figs 7(a) and (b) as a function of ray

parameter. This case is particularly interesting since at first look, the

surface receiver functions do not look that complicated. However,
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Figure 7. Surface and subsurface PRFs at station BYRD as a function of ray parameter (steeper incidence angles at the bottom). Grey solid lines are PRFs

computed from individual teleseismic events; the black solid lines are averaged PRFs within ray-parameter ranges: 0.06–0.08 s km−1 for the upper black line,

0.05–0.06 s km−1 for the central black line, and 0.04–0.05 s km−1 for the bottom black line. Dashed lines show expected arrival time of different phases using

the one-layer velocity model from Winberry & Anandakrishnan (2004). (a) Surface PRFs at station BYRD. Black dashed lines show the arrival times of Ps,

PpPs and PpSs+PsPs phases at the surface. Grey dashed lines are for reference. (b) Subsurface PRFs at station BYRD. Black dashed lines show the arrival

times of Ps, PpPs and PpSs+PsPs phases at the base of the ice layer.

what one might construe as a Ps conversion from the crust–mantle

boundary delayed 5 s, is in fact an interference of ice reverbera-

tions. A more likely converted phase is apparent near 2.5–3 s in the

subsurface receiver functions.

3.1 Monte Carlo Markov chain inversion

Interpretations of RFs are non-unique (e.g. Langston 1979;

Ammon et al. 1990; Ammon 1991), but first order information

suitable for regional and global comparisons can be extracted us-

ing a simple crustal model parametrizations and constraints on the

crustal seismic wave speeds (e.g. Zandt & Ammon 1995; Zhu &

Kanamori 2000). A range of velocity models could explain PRF ob-

servations almost equally well. Formalizing uncertainties for sim-

ple models leads naturally to stochastic approaches. We use McMC

searches (e.g. Gregory 2010) to quantify the range of seismic struc-

tural parameters consistent with the subsurface PRFs and simple

one- two-, or three-layer crustal models. As always, the uncertainty

estimates are linked to the model parametrization and using only a

few layers in the crustal models can lead to subtle differences com-

pared with models including realistic gradients and smooth layer

transitions. Uncertainty estimates are derived from the posterior

probability distribution, which is computed from the prior informa-

tion on model parameters and the likelihood function according to

Bayes’ theorem.

Model parameter priors are truncated to exclude unrealistic mod-

els based on global results of active-seismic surveys (Christensen

& Mooney 1995) and laboratory measurements (Brocher 2005).

Specifically, we remain conservative and restrict crustal shear ve-

locities to the range 2.0–4.5 km s−1 and we also exclude models

with crustal P-wave speeds larger than 9.0 km s−1 or smaller than

3.3 km s−1 (these are average speeds in relatively thick crustal lay-

ers). Mantle P-wave and S-wave speeds are limited to the range

of 7.2–9.6 km s−1 and 4.3–4.8 km s−1, respectively. Based on

Brocher’s (2005) compilation, Vp/Vs ratios are limited between

1.53 and 2.00. The crust’s thickness may range between 10 and

75 km. Since we include only a few layers (up to three) in the crust,

seismic speeds are forced to increase with depth.

We start each search with a simple starting model and then ran-

domly perturb the seismic wave speeds and thickness of up to three

crustal layers by sampling from truncated Gaussian prior distribu-

tions. Once a perturbed model is generated, subsurface PRFs are

computed for both the initial model and the perturbed model. The

McMC chain is constructed using a standard Metropolis–Hasting al-

gorithm using a squared-misfit-based likelihood function including

a data-derived covariance matrix accounting for correlated noise

(e.g. Sambridge 1999a; Agostinetti & Malinverno 2010; Bodin

et al. 2012). Details on the likelihood function and the covariance

matrix can be found in Appendix B. The choice of the covari-

ance matrix affects the estimated model uncertainty. We compared

three types of widely used covariance matrix forms (uniform di-

agonal, nonuniform diagonal and full matrix) in Appendix B. Not

surprisingly, numerical experiments (see Appendix B) suggest that

a full covariance matrix can simulate errors in stacked subsurface

(and surface) PRFs better than diagonal covariance matrices. Using

uniform variance or uncorrelated variances may result in underesti-

mated model parameter uncertainties. Our experiments suggest the

uncertainties estimated using a diagonal matrix can be as small as

50 per cent of the uncertainties estimated using more realistic noise

statistics (see Appendix B). Full covariance matrix was used in our

analysis.

For each McMC search, we compute the probability of accepting

the newly generated model as the ratio of the likelihood between

the new model and the previous model. If the ratio is higher than 1

(i.e. the likelihood of the new model is higher than the likelihood

of the previous model), the new model is always accepted. If the

ratio is between 0 and 1, the new model will be accepted with such

probability (i.e. Lnew/Lpervious). The next perturbation starts with the

accepted model. The processes is repeated and the accepted models

form a chain. Constructing multiple (5–10) chains with hundreds of

thousands of sampled models (about two million models in total for

each station) provides a suite of reasonably well-fitting models and

an importance sampling of the model-parameter posterior (under the

assumption of the model parametrization—no more than three lay-

ers and no seismic wave speed inversions). We can marginalize the

posterior to estimate the posterior distributions for crustal thickness

and average crustal shear speed using the data derived covariance
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Figure 8. McMC search results using synthetic surface PRFs and subsurface PRFs using data-derived covariances compute for station BYRD. The velocity

model can be found in Table S4 in the electronic supplement to this article. Model parameters of the ice layer were fixed. (a) Crustal thickness of all the

velocity models constrained by surface PRFs as a function of averaged crust shear wave speed, Vs. Dashed lines indicate true values. The ellipses are error

ellipses represent 95 per cent confidence interval (outer) and 68 per cent confidence interval (inner). (b) same as (a), but the velocity models were constrained

by subsurface PRFs. (c) Prior and marginal distributions of crustal thickness. (d) Prior and marginal distributions of average crust shear wave speed. The prior

distributions in (c) and (d) extend beyond the plot limits. Dashed lines indicate true values.

matrix to account for data noise. We summarize the marginal distri-

butions using confidence ellipses calculated using algorithms from

Hoover & Rockville (1984).

Fig. 8 is a comparison of the McMC search results using synthetic

surface and subsurface PRFs. Covariance matrices used in the test

surface PRFs and subsurface PRFs were derived from observations

at station BYRD. We fixed ice-layer properties in both searches to

assure a fair comparison. We can directly compare McMC results

of surface PRFs with those from subsurface PRFs. Both poste-

rior distributions are centred on the synthetic target model average

speed and crustal thickness. The centre of error ellipses for both

surface PRFs and subsurface PRFs are very close to the true val-

ues. However, error ellipses for subsurface PRFs are smaller and

the marginals for crustal thickness (Fig. 8c) and average crust shear

wave speed (Fig. 8d) are narrower for subsurface PRFs. Formally,

since uncertainties caused by incorrect ice-layer properties are not

included in the McMC calculation, the uncertainties computed from

McMC do not include the effects of ice property uncertainty. We

used synthetic tests to explore the impact of using incorrect ice-layer

properties to compute subsurface PRFs (see Supporting Information

Fig. S7). For modest variations in the ice properties (a 5 per cent,

0.1 km error in ice thickness or a 5 per cent, 0.1 km s−1 error in

ice shear velocity) the McMC results converge to the correct range

of model parameters. Incorrect ice-layer properties shift the error

ellipses a distance smaller than the original estimated uncertainties.

Large errors in the assumed ice structure produce notable artefacts

in the PRFs and thus can be identified as part of the data processing.

3.2 Results

We show waveforms and velocity models estimated using the ob-

servations from station BYRD in Fig. 9 as an example (complete

results for the other nine stations are documented in the electronic

supplement). For BYRD, better fitting models (higher probability,

darker dots in Fig. 9a) show that average crustal shear wave speed

correlates negatively with crustal thickness, which is a pattern ob-

served for all other stations. This observation can be attributed to

the velocity-thickness trade-off intrinsic to receiver functions with

a limited ray-parameter range. Sample predicted waveforms associ-

ated with the average of all models in the McMC chain are shown in

Fig. 9(b). Since the model-data relationship is nonlinear, averaging

models is not guaranteed to produce a good-fitting model, but in this

case, the model fits comparably to the better fitting models in the

chain. To account for layer thickness differences, the models were

sampled at 1 km intervals during averaging. The result (Fig. 9c) is a
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Figure 9. McMC search results for signals from station BYRD. (a) Crustal thickness of all the velocity models as a function of averaged crust shear wave

speed, Vs. The ellipses are error ellipses represent 95 per cent confidence interval (outer) and 68 per cent confidence interval (inner). Each dot represents

one velocity model. Darker dots have larger likelihood than lighter ones. Top and right panels show the marginal distributions. (b) Predicted subsurface PRFs

(black lines) of the McMC-averaged model in (c) and stacked subsurface PRF observations (grey lines, same as in Fig. 7a). (c) The Shear velocities profile of

the McMC-averaged model is shown with the black line. Grey lines indicate two standard derivations (95 per cent confidence interval). (d) Predicted surface

PRFs (black lines) of the McMC-averaged model and stacked surface PRF observations (grey lines, same as in Fig. 7b) (surface PRFs were not used in the

McMC analysis).

higher-dimensional model than those included in the search, but the

consistency of the better fitting models in the chain reduces com-

plexity associate with this mapping. The average model includes

a mid-crust transition and a relative sharp crust-mantle transition.

Although surface PRFs were not included in the inversion, we com-

puted synthetic surface PRFs using the averaged model (Fig. 9d) as

an additional consistency check. The predicted surface PRF wave-

forms agree well with the stacked surface PRFs. The same is not

true at all stations.

For the station E028, synthetic surface PRFs do not agree with

the surface PRF observations well and we suspect that the differ-

ences are caused by sedimentary layers that are not well modelled

using thick layers and subsurface PRFs (see Supporting Informa-

tion Fig. S16). The waveform fits for both surface and subsurface

PRFs are also not optimal at station SIPL suggesting significant

heterogeneity in the crust and possibly in the mantle as well (see

Supporting Information Fig. S15). At station SIPL, we observed

secondary peaks in marginal distribution that are possibly caused

by cycle skipping that correspond to unlikely models (extreme aver-

age speeds and thicknesses) and are easy to eliminate on a geologic

basis. Crustal thickness and related uncertainties are listed in Ta-

ble 2. In general, our results compare well with those results from

other studies, including independent S-wave receiver function anal-

yses. At station SUMG, we estimate a crust–mantle transition depth

between 44 and 52 km, which is typical for a stable Precambrian

shield. The result agrees well with the estimate from Dahl-Jensen

et al. (2003), but is thicker than the value of Kumar et al. (2007).

For the stations GM02 and GM05, our estimates of Moho depths

are deeper than previous studies. The crustal thickness estimates for

most of the stations have relatively large uncertainties (∼±4 km)

due to the correlation (trade-off) between the layer’s seismic veloc-

ity and layer thickness. A exception is station E028, the uncertainty

in Moho depth is 20 km due to limited data.

4 D I S C U S S I O N A N D C O N C LU S I O N S

Our primary goal in this work is to explore and to demonstrate

the potential for subsurface receiver function analysis in regions of

thick ice cover. Using ten examples we have shown how subsurface
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PRF analysis can isolate the response from the lower crust and

upper mantle while removing the large-amplitude reverberations

from shallow low-velocity ice layers. Subsurface PRF arrival times

of converted phase and multiples are the same as those of a surface

PRF recorded at a virtual station located at the reference depth.

Although the amplitude of the subsurface PRF is different from

the surface PRF, the subsurface PRF is affected by the structural

parameters in the same manner as that of the surface PRF. In general,

a subsurface PRF can be treated as a scaled surface PRF recorded

at a virtual station at a reference depth with initial P-wave removed

and some added complexity associated with the ice cover in the

multiples.

The effective subglacial shear velocity measured by minimiz-

ing early arrival energy on subsurface PRFs is an indicator of

subglacial upper-crustal structure and can identify stations with

thick near-surface sedimentary structures. Our effective subglacial

shear velocity measurements agree with previous estimates at the

same locales. Unfortunately, but not surprisingly, due to limited

bandwidth, subsurface PRFs alone cannot uniquely determine de-

tailed structure of subglacial sediments (the same is true for sur-

face observations without ice). However, our numerical experi-

ments and the examples from ten seismic stations located on ice

sheets suggest the effective subglacial shear velocity measurement

contribute some useful information on the subglacial near-surface

structure.

We used a simple McMC search using subsurface PRFs to con-

strain simple models of the crust and to quantify the associated

uncertainties. Although using a few constant-velocity layers is a

rough approximation of the often-complex subsurface geology, the

structural estimations derived from subsurface PRFs beneath ice-

covered stations provide first-order information on subglacial struc-

ture. Most of our estimates from the ten example stations corrobo-

rate previous findings in this regard. Integration of the subsurface

PRFs with complementary information such as surface PRFs, shear

wave receiver functions, surface-wave dispersion observation and

ellipticity measurements can reduce uncertainties in structural in-

vestigations. With no new information added to the process, careful

investigations of the subsurface structure using a fixed ice layer

have been able to resolve some of the subsurface features (e.g.

Anandakrishnan & Winberry 2004). Isolating the response of the

deeper structure with a subsurface PRF allows the analyst to see

the signals that constrain the deeper structure and better assess the

appropriateness of a particular model of the deeper structure. There-

fore, the approach has the potential to greatly ease the analysis of

many well-recorded P-wave observations that have been difficult to

interpret using standard surface-receiver functions approaches.
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We used seismic data from the Global Seismographic

Network (doi:10.7914/SN/IU), IPY POLENET-Antarctica

(doi:10.7914/SN/YT_2007), a broad-band seismic experiment

to image the lithosphere beneath the Ganburtsev Mountains

(doi:10.7914/SN/ZM_2007), a broad-band seismic investigation

of deep continental structure across the East-West Antarctic

Boundary (TAMSEIS, doi:10.7914/SN/XP_2000), and the

GEOFON network (doi:10.14470/TR560404). The ETOPO1

Global Relief Model (https://www.ngdc.noaa.gov, doi:10.7289/

V5C8276M, last accessed October 2012) was used to extract

ice thicknesses in Greenland. Ice thicknesses in Antarctica were

extracted using the Bedmap2 Toolbox for Matlab version 4.2

(http://www.mathworks.com/matlabcentral/fileexchange/42353

-bedmap2-toolbox-for-matlab, last accessed September 2015) and

the Bedmap2 ice thickness model (https://www.bas.ac.uk/project/

bedmap-2, (Fretwell et al. 2013)). Some plots were made using the

Generic Mapping Tools version 5.2.1 (http://gmt.soest.hawaii.edu,

Wessel et al. 2013) and Matplotlib version 1.5.1 (Hunter 2007).

Obspy version 1.0 (Beyreuther et al. 2010) and Numpy version

1.10.4 (van der Walt et al. 2011) were used to process data.

The h5py version 2.5.0 was used to store models and data

(http://www.h5py.org, last accessed May 2016). RFSYN package

was used to compute synthetic waveforms for anisotropic models

(Levin & Park 1998).
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJIRAS online.

Figure S1. Synthetic waveforms of subsurface PRF processed using

incorrect ice thicknesses (a) and incorrect ice shear velocities (b) in

the reference model. The Vp/Vs ratio is fixed for (b). The velocity

models are perturbed based on the Ice-Crust-Mantle model (Table 1)

in the paper. Results for the correct ice model are shown as the

middle trace in each panel.

Figure S2. Comparison of surface and subsurface PRF synthetic

waveforms for a range of crustal thickness using two layers in the

ice. (a) Surface PRFs computed using the model S1 in Table S1.

(b) Subsurface PRFs downward continued to the base of the first

layer of the ice using the model S1. (c) Subsurface PRFs downward

continued to the base of the second layer of the ice using the model

S1. (d) Same as (c) but using the model S2 in Table S2 for downward

continuation.

Figure S3. Comparison of surface (a, b) and subsurface (c, d)

PRF synthetic waveforms for isotropic (model S1) and anisotropic

ice models (model S1 with 4 per cent Vp anisotropy and −6 per

cent Vs anisotropy in the second ice layer with the c-axis in the

vertical direction) using two bandwidths Gaussian 1.0 (a, c) and

Gaussian 5.0 (b, d). The anisotropic subsurface PRFs used synthetic

waveforms from the anisotropic ice model but downward continued

with the isotropic model S1.

Figure S4. Effective subglacial shear velocities measured from syn-

thetic waveforms using model S3 in Table S3 with a series of dif-

ferent upper crust thickness (a) and shear velocity (b). A Gaussian

filter with a width parameter of 1.0 was used. Numbers adjacent to

curves in (a) represent upper crust layer thickness of the true model.

Numbers adjacent to curves in (b) show upper crust shear velocity

of the true model. Gray lines indicate the effective subglacial shear

velocities that have minimum early arrival energy. The upper crust

shear velocity is fixed at 2.8 km s−1 in (a). The upper crust layer

thickness in (b) is fixed at 10 km. The estimated speed depends

on the shallow structure, but represents a vertical average of the

material properties.

Figure S5. Similar to S3, but use Gaussian filter with a width

parameter of 5.0. The upper crust shear velocity is fixed at 2.8 km

s−1 in (a). The upper crust layer thickness in (b) is fixed at 3 km.

Figure S6. Prior distributions of crustal thickness and average crust

shear-wave velocity. Gray dots show crustal thickness of all the

sampled velocity models as a function of averaged crust shear-wave

speed. Top and right panels show the prior distributions.

Figure S7. McMC search results processed using incorrect ice-

layer properties. The velocity models are changed based on Model

S4 (Table S4). The format of the figure is similar to Fig. 8(b). (a)

The reference model has an ice thickness of 0.1 km smaller than

the correct value. (b) The reference model has an ice thickness of

0.1 km larger than the correct value. (c) The reference model has an

ice shear-wave speed of 0.1 km s−1 smaller than the correct value.

(d) The reference model has an ice shear-wave speed of 0.1 km s−1

larger than the correct value. Ice thickness uncertainty estimates are

often less than 0.1 km.

Figure S8. McMC search results for signals from station QSPA. See

supplement introduction for layout description. We consider these

results quality A. The predictions are slightly higher frequency than

the observations because of the limited number of model parame-

ters, but generally fit the main features in the observations well. The

models are relatively consistent and the surface receiver function

fits are acceptable.

Figure S9. McMC search results for signals from station SUMG.

We consider these results quality B primarily because the subsur-

face receiver functions are relatively featureless. The signals sug-

gest minimal sharp seismic boundaries beneath the site including

a gradual crust-mantle transition. The surface receiver function fits

are quite good, but the signals come from almost all ice.

Figure S10. McMC search results for signals from station GM02.

See supplement introduction for layout description. We consider

these results quality C since our fit to the subsurface receiver func-

tions is poor for the initial part of the signal. The data may require

more detailed modeling of the ice-basement transition. The fit to

the surface receiver functions is not bad, but degrades with time

this suggests lateral variation in the near-surface structure (ice or

shallow subglacial basement).

Figure S11. McMC search results for signals from station GM05.

See supplement introduction for layout description. We consider

these results quality C since our fit to the subsurface receiver func-

tions is marginal. The data may require more detailed modeling of

the ice-basement transition. The fit to the surface receiver functions

is not bad the difference in frequency content suggests our shallow,

sharp boundaries overestimate the abruptness of the near-surface

material property changes.

Figure S12. McMC search results for signals from station N140.

See supplement introduction for layout description. We consider

these results quality C. We do not fit the subsurface PRFs very well.

The fit to the surface receiver functions is reasonable.

Figure S13. McMC search results for signals from station N215. See

supplement introduction for layout description. We consider these

results quality C since our fit to the subsurface receiver functions

fails to match the large amplitude signals. The fit to the surface
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receiver functions is not bad the difference in frequency content

suggests our shallow, sharp boundaries overestimate the abruptness

of the near-surface material property changes.

Figure S14. McMC search results for signals from station P061. See

supplement introduction for layout description. We consider these

results quality B. The subsurface receiver functions are small, but the

major features are matched and the McMC constraints reasonably

tight. The fit to the surface receiver functions is good, but the signals

come almost exclusively from the ice.

Figure S15. McMC search results for signals from station SIPL.

See supplement introduction for layout description. We consider

these results quality C because the subsurface receiver functions

are complex and the fits to the surface receiver functions are not

very good. Still, the long-period features are matched and the large

amplitude signals require a strong contrast between the glacial and

subglacial domains. The deeper parts of the model are less well

constrained.

Figure S16. McMC search results for signals from station E028. See

supplement introduction for layout description. We consider these

results quality D because of the limited data available and large un-

certainties in model parameters. The subsurface receiver functions

are well matched, but the fit to the surface receiver functions is not

very good.

Table S1. Model S1, the model parameters are from Wittlinger &

Farra (2015).

Table S2. Model S2, the model parameters are from Wittlinger &

Farra (2015).

Table S3. Model S3.

Table S4. Model S4.

Please note: Oxford University Press is not responsible for the con-

tent or functionality of any supporting materials supplied by the

authors. Any queries (other than missing material) should be di-

rected to the corresponding author for the paper.

A P P E N D I X A : WAV E F I E L D D OW N WA R D

C O N T I N UAT I O N

The formulas for wavefield downward continuation have been doc-

umented elsewhere such as Langston (2011) and Tao et al. (2014).

We briefly review the equations for wavefield downward continu-

ation for completeness. Assuming a plain-layer isotropic velocity

model with m layers (layer 1, 2, 3, . . . m starting from the surface),

wavevectors at the base of layer m can be represented as a func-

tion (eq. A1) of surface displacements, horizontal phase velocity

and model parameters of the velocity model in frequency domain

(Haskell 1953).

⎡

⎢

⎢

⎢

⎣

�′
m + �′′

m

�′
m − �′′

m

�′
m − �′′

m

�′
m + �′′

m

⎤

⎥

⎥

⎥

⎦

= J

⎡

⎢

⎢

⎢

⎣

u̇0/c

ẇ0/c

0

0

⎤

⎥

⎥

⎥

⎦

(A1)

In eq. (A1), �′
m is downgoing P wavevector, �′′

m is upgoing P

wavevector, �′
m is downgoing S wavevector, �′′

m is upgoing S

wavevector, u0 is surface radial displacement, w0 is surface ver-

tical displacement, c is the horizontal phase velocity and J is a 4

by 4 matrix. The matrix J can be computed using

J = E
−1
m

am−1am−2 · · · a1 (A2)

with the explicit form of matrix E
−1
m

and am given in Haskell

(1953). Assuming a reference velocity model, all the terms on

the right side of eq. (A1) are known. P and S wavevectors

at a reference depth (base of layer m) can be calculated with

eq. (A1).

A P P E N D I X B : L I K E L I H O O D F U N C T I O N

A N D R E C E I V E R F U N C T I O N E R RO R

S TAT I S T I C S

The likelihood function L(m) is a function of misfit and the data

covariance matrix.

L(m) = A exp

(

−
1

2
(G(m) − dobs)

T
C

−1
e (G(m) − dobs)

)

(B1)

in which Ce is the data covariance matrix, A is a factor related to Ce,

G(m) is the predicted waveform for model m, dobs is the observed

waveform, and T represents vector transpose. Since only the ratio of

likelihood is used in the McMC search, we did not compute the fac-

tor A explicitly. Earlier studies (e.g. Sambridge 1999a; Agostinetti

& Malinverno 2010; Bodin et al. 2012) have suggested that errors

in surface PRFs are temporally correlated. Three types of data co-

variance matrices are commonly used including uniform-variance

diagonal, nonuniform-variance diagonal and full matrix forms. Us-

ing the uniform variance covariance matrix assumes that data noise

in PRFs is uniformly distributed with time and independent. A

uniform-variance covariance matrix equals the identity matrix mul-

tiplied by a constant estimate of the data variance (average variance

of the data). A non-uniform-diagonal covariance matrix accounts

for the temporal variation of data noise but still assumes the noise

is uncorrelated—diagonal elements equal the time-dependent data

variance. The full covariance matrix takes the temporal variation

of data variance and the temporal correlation of noise into consid-

eration. The full covariance matrix has off-diagonal elements that

are computed directly from observations. We used the Numpy func-

tion numpy.cov to estimate the covariance matrix for the suite of

PRFs—a matrix is formed with columns consisting of the PRFs and

the covariance matrix is estimated using the product of the matrix

with its transpose. To visualize differences of these three types of

covariance matrix, we compute synthetic error using all three types

of covariance matrix derived from observations at Station BYRD.

As shown in Fig. B1, synthetic error estimates computed using this

covariance matrix exhibit similar variations as the data, much better

than the diagonal approximations.

The full covariance matrix can be used to account for the noise

correlations in the likelihood calculations during the McMC search.

To compute likelihood using the full covariance matrix, the inverse

of the covariance matrix is required. Since the covariance matrix is

usually singular, we compute the inverse of the covariance matrix

using singular value decomposition (Sambridge 1999a). Eigenval-

ues that are more than 10−3 times (Sambridge 1999a) smaller than

the highest eigenvalue are truncated. We compared McMC search

results that used different types of covariance matrix (Fig. B2). The

results indicate that using uniform variance or diagonal covariance

matrix in the likelihood function underestimates the uncertainties of

model parameters. For the example shown in Fig. B2, uncertainties

obtained with uniform variance covariance matrix are only about

50 per cent of those using full covariance matrix.
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Figure B1. Comparison of synthetic data using different types of covariance matrices and real data. Thick black lines are stacked subsurface PRF observations

at station BYRD for ray parameters between 0.05 and 0.06 s km−1. Thin black lines show one standard deviation error bounds. Red lines represent synthetic

noise computed with uniform variance, nonuniform diagonal, and full covariance matrix on top of the stacked waveform for (a), (b) and (d), respectively. Red

lines in (c) show individual subsurface PRFs prior to stacking.
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Figure B2. Comparison of McMC results using different covariance matrices. Synthetic subsurface PRFs from the same model as in Fig. 8 were used. The

covariance matrices were obtained from observations at station BYRD. (a), (d) and (g) correspond to a uniform variance assumption; (b), (e) and (h) correspond

to a nonuniform, diagonal covariance matrix assumption; and (c), (f) and (i) correspond to a full covariance estimate. (a)–(c) show accepted velocity models

from McMC searches. The error ellipses represent 95 per cent confidence interval (outer) and 68 per cent confidence interval (inner). The colour scales for (a),

(b) and (c) are the same as that in Fig. 8. Marginal distributions of crustal thickness are shown in (d)–(f). Marginal distributions of average crustal shear wave

velocity are shown in (g)–(i). Dashed lines indicate true values.
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