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Abstract. We developed a carbon data assimilation system

to estimate surface carbon fluxes using the local ensemble

transform Kalman filter (LETKF) and atmospheric transport

model GEOS-Chem driven by the MERRA-1 reanalysis of

the meteorological field based on the Goddard Earth Ob-

serving System model, version 5 (GEOS-5). This assimila-

tion system is inspired by the method of Kang et al. (2011,

2012), who estimated the surface carbon fluxes in an observ-

ing system simulation experiment (OSSE) as evolving pa-

rameters in the assimilation of the atmospheric CO2, using a

short assimilation window of 6 h. They included the assim-

ilation of the standard meteorological variables, so that the

ensemble provided a measure of the uncertainty in the CO2

transport. After introducing new techniques such as “vari-

able localization”, and increased observation weights near

the surface, they obtained accurate surface carbon fluxes at

grid-point resolution. We developed a new version of the lo-

cal ensemble transform Kalman filter related to the “running-

in-place” (RIP) method used to accelerate the spin-up of en-

semble Kalman filter (EnKF) data assimilation (Kalnay and

Yang, 2010; Wang et al., 2013; Yang et al., 2012). Like RIP,

the new assimilation system uses the “no cost smoothing”

algorithm for the LETKF (Kalnay et al., 2007b), which al-

lows shifting the Kalman filter solution forward or backward

within an assimilation window at no cost. In the new scheme

a long “observation window” (e.g., 7 d or longer) is used to

create a LETKF ensemble at 7 d. Then, the RIP smoother

is used to obtain an accurate final analysis at 1 d. This new

approach has the advantage of being based on a short assim-

ilation window, which makes it more accurate, and of having

been exposed to the future 7 d observations, which improves

the analysis and accelerates the spin-up. The assimilation and

observation windows are then shifted forward by 1 d, and the

process is repeated. This reduces significantly the analysis er-

ror, suggesting that the newly developed assimilation method

can be used with other Earth system models, especially in or-

der to make greater use of observations in conjunction with

models.

1 Introduction

The exchange of carbon among the atmosphere, land, and

ocean contributes to changes in the Earth’s climate and is also

sensitive to climate conditions. The CO2 concentration in the

atmosphere is affected by both the natural variability of the

Earth’s planetary system and anthropogenic emissions. The

terrestrial and oceanic ecosystems absorb more than one-half

of anthropogenic CO2 emissions (Le Quéré et al., 2016). One

major scientific question is whether this rate of removal of
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CO2 from atmosphere will continue in future and if it can be

enhanced. It is thus essential to better quantify the dynamics

of Earth surface carbon fluxes (SCFs) and the variations in

carbon sources and sinks and their associated uncertainties.

A common approach for estimating SCF from atmospheric

CO2 measurements and atmospheric transport models is re-

ferred to as a “top-down” approach. The top-down methods

estimate SCF through techniques such as Bayesian synthesis

approach (Rödenbeck et al., 2003; Gurney et al., 2004; Ent-

ing, 2002; Bousquet et al., 1999), different types of ensemble

Kalman filters (EnKF) (e.g., Peters et al., 2005, 2007; Feng

et al., 2009; Zupanski et al., 2007; Lokupitiya et al., 2008),

or variational data assimilation methods (e.g., Baker et al.,

2006, 2010; Chevallier et al., 2009).

Kang et al. (2011, 2012) developed a top-down carbon

data assimilation system by coupling an atmospheric gen-

eral circulation model (AGCM), including atmospheric CO2

concentrations, with the local ensemble transform Kalman

filter (LETKF) (Hunt et al., 2007). The meteorological vari-

ables (wind, temperature, humidity, surface pressure) and

CO2 concentrations were assimilated simultaneously in or-

der to account for the uncertainties of the meteorological

field and their impact on the transport of atmospheric CO2.

They carried out observing system simulation experiments

(OSSEs), and their carbon assimilation system achieved an

accurate estimation of the evolving SCF at the model grid

resolution for the first time, without requiring any a priori in-

formation. The surface carbon fluxes were considered “unob-

served evolving parameters” by augmenting the state vector

at each column with a surface carbon flux (SCF). The local

ensemble transform Kalman filter (LETKF) then estimated

this evolving parameter from the error covariance between

the low-level atmospheric CO2 and the estimated SCF, and,

after a spin-up of about 1 month, the LETKF accurately re-

covered the “nature” run seasonal surface carbon fluxes.

Kang et al. (2011, 2012) used a short 6 h assimilation win-

dow for both atmospheric and CO2 observations because at-

mospheric observations are usually assimilated at this fre-

quency and because most ensemble Kalman filter methods

require short windows to ensure that the forecast perturbation

growth remains linear. Such a short data assimilation win-

dow, required by the LETKF, also protects the system from

becoming ill conditioned (Enting, 2002, Fig. 1.3), and as a

result it does not require additional a priori information. We

note further that the use of such a short assimilation window

differs very much from most other top-down approaches for

estimating SCFs that use long assimilation windows varying

from a few weeks to months or even years (e.g., Baker et al.,

2006, 2010; Peters et al., 2005, 2007; Michalak, 2008; Feng

et al., 2009; Liu et al., 2016).

Although the Kang et al. (2011, 2012) methodology was

successful, it is computationally expensive, requiring ensem-

ble forecasts and data assimilation, not only for the carbon

variables but also for the standard atmospheric variables, in

order to estimate the uncertainties of the CO2 atmospheric

transport process. In this study, we used an improved version

of LETKF data assimilation system with a state-of-the-art

atmospheric transport model, the GEOS-Chem (Bey et al.,

2001; Nassar et al., 2013), which is driven by the MERRA-

1 reanalysis of the Goddard Earth Observing System model,

version 5 (GEOS5). The improved data assimilation system,

unlike Kang et al. (2011, 2012), does not include an esti-

mation of transport uncertainties related to the meteorologi-

cal field.

The ultimate goal of our LETKF_C system is to estimate

the grid-point SCFs, which, as in Kang et al. (2011, 2012),

are treated as time-evolving parameters in the system. As

mentioned before, an ensemble Kalman filter requires a short

assimilation window in order to have the ensemble pertur-

bations evolve linearly and remain Gaussian. On the other

hand, it is well known that the training needed to estimate

evolving parameters through data assimilation could be quite

long, thus it benefits from having many observations. There-

fore, a short assimilation window would shorten the training

period needed for the estimation of the SCF error covariance,

and therefore lengthen the spin-up time.

To address this problem, we developed a new version of

the LETKF using the running-in-place (RIP) method to ac-

celerate the spin-up of EnKF data assimilation (Kalnay and

Yang, 2010; Wang et al., 2013; Yang et al., 2012). Like RIP,

the new assimilation system uses the “no cost smoothing”

algorithm (Kalnay et al., 2007b) that allows shifting at a neg-

ligible cost the Kalman filter solution forward or backward

within a given assimilation window. Briefly, the new scheme

works as follows: a long “observation window” (e.g., 7 d,

containing all the observations within 7 d) is used to create

a temporary LETKF ensemble analysis at 7 d. Then the RIP

smoother is used to obtain a final analysis at 1 d. This anal-

ysis has the advantage of being based on a short assimila-

tion window, which makes it more accurate, and of having

been exposed to the 7 d of observations, which accelerates

the spin-up time. The assimilation and observation windows

are then shifted forward by 1 d, and the process is repeated.

We have tested this new method (short assimilation, long ob-

servation window), achieving a significant reduction of anal-

ysis errors, and we believe that this method could be useful

in other data assimilation problems.

This paper is organized as follows: Sect. 2 briefly de-

scribes the new system used for CO2 data assimilation

(LETKF_C). Section 3 explores the effect of combining as-

similation and observation windows in an OSSE framework.

Section 4 presents results of the proposed methodology ap-

plied to CO2 data. A summary and discussion are presented

in Sect. 5.

2 LETKF_C data assimilation system

A data assimilation system includes a forecast model, ob-

servations, and a data assimilation method that optimally
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combines them. In the proposed LETKF_C data assimila-

tion system we use the GEOS-Chem as the forecast model

and LETKF as the data assimilation method. The pseudo-

observations for our OSSE experiments are created at the lo-

cations of the real carbon observations from Orbiting Carbon

Observatory-2 (OCO-2) satellite (Crisp et al., 2004).

2.1 GEOS-Chem model and the “nature” run

GEOS-Chem is a global 3-D atmospheric chemical transport

model driven by the NASA reanalysis (MERRA-1) meteoro-

logical fields from the Goddard Earth Observing System data

assimilation, version 5, by the NASA Global Modeling and

Assimilation Office (Bosilovich et al., 2015). This model has

been applied worldwide to a wide range of atmospheric com-

position and transport studies. The GEOS-Chem model used

in this study is the version 10.01 with a resolution of 4◦ × 5◦

(latitude × longitude) and 47 hybrid pressure–sigma vertical

levels for CO2 simulation (Nassar et al., 2013). GEOS-Chem

is driven by the MERRA-1 reanalysis with 72 hybrid ver-

tical levels, extending from the surface up to 0.01 hPa. The

data used in this study was provided by the GEOS-Chem

support team, based at the Harvard and Dalhousie Univer-

sities with support from the NASA Earth Science Division

and the Canadian National and Engineering Research Coun-

cil, who re-gridded the original data of spatial resolution of

0.25◦ × 0.3125◦ into the resolution of 4◦ × 5◦.

GEOS-Chem requires the SCFs as a set of parameters at

each grid point in order to simulate the CO2 concentration in

the atmosphere. It is not possible to observe the global SCFs

directly. Therefore, the SCFs are created from a “bottom-up”

approach (considered “truth” in our experiments) and used

for the simulation of atmospheric CO2 concentration with

GEOS-Chem. The bottom-up SCFs used in this study include

the three components shown in Eq. (1): (1) terrestrial carbon

fluxes (FTA), (2) air–sea carbon fluxes (FOA), and (3) anthro-

pogenic fossil fuel emissions (Ffe).

SCF = FTA + FOA + Ffe (1)

The FTA values are derived from the VEgetation Global

Atmosphere Soils (VEGAS) model (Zeng et al., 2004,

2005), forced by the real evolving weather, obtained from

the GEOS-Chem. The FOA values are from Takahashi et

al. (2002), a climatological seasonal cycle estimated for the

1990s, and the Ffe values are from the Fossil Fuel Data

Assimilation System (FFDAS) for the year 2012 (Asefi-

Najafabady et al., 2014). The air–sea carbon flux and Ffe

values were scaled using the global carbon budget data of Le

Quéré et al. (2015) in order to include interannual variations.

A nature run for atmospheric CO2 concentration simulation

is driven by the SCFs in units of (kgC (m2 yr)−1) based on all

three datasets.

In OSSEs, the nature run serves as the truth. We as-

sume that the true bottom-up carbon fluxes are not known

in our data assimilation experiments, and they will be es-

timated using the atmospheric pseudo-observations derived

from the truth, as described in more detail below. The na-

ture run obtained by coupling GEOS-Chem with VEGAS is

fairly realistic (figure not shown), so we use it to create the

pseudo-OCO-2 observations for the period of January 2015–

March 2016.

2.2 Pseudo-observations

The ultimate goal of this model–data assimilation system is

to estimate the SCFs at every grid point using real obser-

vations such as the conventional surface CO2 measurements

of GlobalViewplus (GV+) flask network provided by Coop-

erative Global Atmospheric Data Integration Project (2016)

and the observations from satellites such as the Greenhouse

Gases Observing Satellite (GOSAT) (Yokota et al., 2004),

and the Orbiting Carbon Observatory-2 (OCO-2) (Crisp et

al., 2004). Therefore, it is very beneficial to choose a realistic

observation network to generate the pseudo-observations for

testing the proposed data assimilation system. In this study,

we developed the pseudo-observations for the OSSE assim-

ilation experiments, based on a realistic OCO-2 observation

product.

The OCO-2 observations are the CO2 column-averaged

dry air mole fractions over the entire OCO-2 pixel (defined

as XCO2). The synthetic observations cover the entire globe

once every 14 d with very high spatial resolution. This in-

cludes 24 samples per second along the satellite track within

∼ 7 km span. The observations are expected to be highly cor-

related over a short length scale. Furthermore, the observa-

tion quality is greatly affected by conditions such as cloud

cover, surface type, and the solar zenith angle at the time of

measurement. The OCO-2 retrieval algorithm uses a warn-

ing level (WL) between 0 and 19 to indicate the quality of

measurements, where WL = 0 means “most likely good”,

and WL = 19 means “least likely good” observations. To

avoid highly correlated measurements being treated as in-

dependent measurements and to bring the spatial resolution

in line with the resolution of atmosphere transfer model,

David Baker provided an OCO-2 observation dataset which

averaged the synthetic XCO2 in 10 s time window using the

“good-quality” observations retrieval defined by WL <= 15

(David Baker, personal communication, April 2017).

The OCO-2 retrievals used to obtain averages are based

on the NASA Atmospheric CO2 Observations from Space

XCO2 retrieval Algorithm version 7r (O’Dell et al., 2012),

as archived at https://disc.gsfc.nasa.gov/datasets/OCO2_L2_

Lite_FP_7r/summary (last access: 23 March 2017). A two-

step averaging method has been used in order to avoid the fi-

nal average being disproportionately weighted to one part of

the averaging bin (track) with more good-quality retrievals.

In the first step, the “good-quality” retrievals, defined as

WL <= 15 and XCO2_quality_flag = 0 (another quality in-

dicator of the data), are averaged over 1 s bins, with weights

inversely proportional to the square of each retrieval’s pos-
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terior uncertainty. In the second step, all the 1 s bins with

at least one valid retrieval are averaged over a 10 s interval

to create 10 s averaged data. The OCO-2 averaging kernels

are similarly averaged to create 10 s mean averaging ker-

nels. This averaging method had been used for similar pur-

poses in the recent study by Basu et al. (2018). In this study,

we further aggregated the observations from David Baker at

the nearest GEOS-Chem output time of 00:00, 06:00, 12:00,

and 18:00 UTC for each model day. The typical 1 d cover-

age of observation of OCO-2 is shown in Fig. 1. The values

of XCO2 in the winter are significantly larger than those in

summer of the Northern Hemisphere and the OCO-2 obser-

vations are missing in the winter for midlatitude and high-

latitude regions (latitude > ∼ 30). We used the actual loca-

tion, timescales, and error scales of the OCO-2 observations

to create the pseudo-observations for our experiment. The

pseudo-observations are created by obtaining the true CO2

from the nature run using the location and time of the valid

observation, then adding random errors with due consider-

ation to the scales of the corresponding real observations.

These derived pseudo-observations used in this study are

based on the real observations associated error scales; thus,

they are much more realistic than the GOSAT observations

also used in Kang et al. (2012) because they are anchored on

the real OCO-2 observations, their quality, and their statisti-

cal representation.

2.3 The LETKF data assimilation system

The ensemble Kalman filter (EnKF) is a powerful

tool for data assimilation that was first introduced by

Evensen (1994). The key attribute of this method is to de-

rive the forecast uncertainties from an ensemble of inte-

grated model simulations. A variety of ensemble Kalman

filter assimilation methods have been proposed (Burgers et

al., 1998; Houtekamer and Mitchell, 1998; Anderson, 2001,

2003; Bishop et al., 2001; Whitaker and Hamill, 2002; Tip-

pett et al., 2003; Ott et al., 2004; Hunt et al., 2004). The lo-

cal ensemble transform Kalman filter (LETKF) introduced

by Hunt et al. (2007) is chosen for this study.

The LETKF is an extension of the local ensemble Kalman

filter (Ott et al., 2004) with the implementation of the ensem-

ble transform filter (Bishop et al., 2001; Wang and Bishop,

2003). It is widely used for data assimilation, including sev-

eral operational centers, and was also used for carbon data

assimilations by Kang et al. (2011, 2012).

As discussed earlier, we follow Kang et al. (2011) in es-

timating the SCFs as evolving parameters, augmenting the

state vector C (the prognostic variable of atmospheric CO2)

with the parameter SCF, i.e., X = [C,SCF]T . The analysis

mean X
a

and its ensemble perturbations Xa are determined

by Eq. (2.1, 2.2) at every grid point, and the ensemble analy-

sis is used as the initial conditions for the ensemble forecast

Figure 1. The 10 s average of good-quality OCO-2 XCO2 ob-

servations (warning level < = 15), obtained from David Baker for

(a) 1 January 2015 and (b) 1 July 2015.

in the next cycle.

X
a
= X

b
+ XbK̃(yo

− yb) (2)

Xa
= Xb

[(K − 1)P̃ a
]
1/2 (3)

Here, X
b

is the mean of the forecast (background) ensem-

ble members; Xb is a matrix, whose columns are the back-

ground perturbations of Xb
k − X

b
for each ensemble mem-

ber Xb
k (k = 1,..., K), where K is the ensemble size; yo

is a vector of all the observations; yb is the background

ensemble mean in observation space (yb = H(X
b
)), where

H is the observation forward operator that transforms val-

ues in the model space to those in the observation space;

P̃ a =

[(
Y b

)T
R−1Y b +

(K−1)I
r

]−1
is the analysis error co-

variance matrix in ensemble space, which is a function of

Y b = HXb , the matrix of background ensemble perturba-

tions in the observation space, R, the observation error co-
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variance (e.g., measurement error, aggregation error, repre-

sentativeness error), and of r , a multiplicative inflation pa-

rameter; and K̃ = P̃ aY bR−1. LETKF simultaneously assim-

ilates all observations within a certain distance at each anal-

ysis grid point, which defines the localization scale. Hunt et

al. (2004) introduced a four-dimensional version, and Hunt

et al. (2007) provide a detailed documentation of the 4-D

LETKF that we are using.

2.4 Choosing the long observation window (OW) and

the short assimilation window (AW)

Like other data assimilation methods, LETKF proceeds in

analysis cycles that consist of two steps, a forecast step and

an analysis step. In the analysis step, the model forecast (also

called prior or background) and the observations are opti-

mally combined to produce the analysis (also called the pos-

terior), which is the best estimate of the current state of the

system under study. In the forecast step, the model is then ad-

vanced in time with the analysis as the initial condition and

its result becomes the forecast for the next analysis cycle. All

observations within the assimilation time window are used to

constrain the state at the end of the assimilation window.

The focus of this study is on the estimation of SCFs that

are time-varying parameters in GEOS-Chem. As mentioned

earlier, a preliminary LETKF analysis, which provides the

weights for each ensemble perturbation, is performed over a

longer window (e.g., 7 d, with observations starting at time t).

Then, the “no cost” smoothing (Kalnay et al., 2007b; Kalnay

and Yang, 2010) is applied, using the same analysis weights

obtained at the end of the long observation window (e.g., 7 d)

for each ensemble member but combining the ensemble per-

turbations at the end of the corresponding short assimilation

window (e.g., 1 d). This creates the final 1 d analysis (at time

t+AW), which benefits from the information from all the ob-

servations made throughout the long OW (7 d) and from the

linearity of the perturbations in the short AW of 1 d, which is

required for accuracy. At this time the procedure is repeated

starting at t + AW, which is 1 d later.

In this new approach, we have the flexibility to combine a

short assimilation window (AW) of length m (e.g., m = 1 d)

with a long observation window (OW) of length n (e.g., n =

7 d) to improve the estimation of SCF. In the forecast step,

the model is integrated from t to t + n to produce the fore-

cast corresponding to the observations within the OW. In the

analysis step, the observations and corresponding forecasts

within the OW are used by the LETKF to estimate optimal

weights for the ensemble members. The no cost smoother

applies these optimal weights to determine the analysis of

the model state and the SCF parameter at t + m. The result-

ing analysis is then used as the initial conditions for the next

analysis cycle starting from time t + m.

2.5 Experimental setup

In our experiments we used an ensemble size of 20 mem-

bers, which was reasonable since the data assimilation only

includes one state variable (CO2 concentration) and one pa-

rameter variable (SCF). A similar experiment but with 80-

member ensemble size showed only slight improvement of

assimilation quality (figure not shown) but dramatically in-

creased the computational cost. The initial ensemble is cre-

ated by random selection of the state and flux values from the

model-based nature run for both SCF and atmospheric CO2

concentration. Therefore, the initial uncertainties of fluxes

and CO2 values are equivalent to their “natural” variability.

Based on a sensitivity analysis, we found a horizontal local-

ization radius of 15 000 km is optimal for our system. Fol-

lowing Kang el al. (2012), a vertical localization is also ap-

plied by assigning a larger weight to the CO2-updating layers

near the surface, to reflect the expected dominance of layers

near the ground in the change of the total column CO2 mea-

sured by OCO-2.

2.6 Additive inflation method

Inflation is very important for our LETKF_C data assimila-

tion system. The LETKF uses the forecast ensemble spread

to represent forecast uncertainties. All EnKFs tend to un-

derestimate the uncertainty in their state estimate because

of nonlinearities and the limited number of ensemble mem-

bers (Whitaker and Hamill, 2002). Underestimating the un-

certainty (ensemble spread) leads to overconfidence in the

background state estimate and less confidence in the obser-

vations, which will eventually lead the EnKF to ignore the

observations and result in filter divergence. This is also true

for our carbon-LETKF data assimilation system. The ensem-

ble spread of CO2 in GEOS-Chem model decreases dur-

ing model integration when the ensemble members are us-

ing the same meteorological forcing and SCF values, which

is very different from the system with prognostic meteoro-

logical fields where the ensemble spread of model state in-

creases during model integration (not shown). The ensemble

spread of SCFs also does not increase during model integra-

tion because the SCFs are predicted using persistence, and

the LETKF decreases the ensemble spreads for both SCFs

and CO2 during analysis steps. Therefore, without inflation,

the ensemble spread of the CO2 and SCFs would be continu-

ously decreasing during data assimilation, and soon would

become too small for LETKF to accept any observations,

causing filter divergence.

There are different types of inflation methods that address

the problem of overconfidence, such as multiplicative infla-

tion, relaxation to prior, and additive inflation (e.g., Anderson

and Anderson, 1999; Mitchell and Houtekamer, 2000; Zhang

et al., 2004; Whitaker et al., 2008; Miyoshi, 2011). For this

study, we chose additive inflation, which adds random fields

to the analysis before the ensemble forecast of the next anal-
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ysis cycle. Additive inflation has some advantages compared

to multiplicative inflation because it prevents the effective en-

semble dimension from collapsing toward the dominant di-

rections of error growth (Whitaker et al., 2008; Kalnay et

al., 2007a). We applied additive inflation to the ensemble of

atmospheric CO2 and SCF to increase perturbations in the

initial conditions for the next time step. It is important for an

additive inflation method to minimize the impact of model

imbalance and initial shocks generated by adding the random

fields into a model. Following Kang et al. (2012), the added

fields are selected randomly from the model nature run. Pairs

of atmospheric CO2 and surface CO2 flux fields are chosen

randomly from the model nature run within 1 year before the

analysis time; their ensemble mean is removed and their dif-

ferences are scaled to a magnitude corresponding to 30 % of

model seasonal variance to create the ensemble of random

fields for additive inflation. Therefore, each selected random

field is balanced, and when it is added into model, the bal-

ance will be essentially maintained.

3 Sensitivity analysis for AW and OW length

We tested the new version of the LETKF with short AW and

long OW, described in previous sections by conducting two

sets of experiments using the LETKF_C system in an OSSE

framework with OCO-2-like observations. The first set of ex-

periments used the regular 4-D LETKF settings (with a sin-

gle window length AW = OW) to investigate the effect of the

length of AW for estimating SCF. In the second set of exper-

iments, we investigated the optimal OW length after choos-

ing the best AW from the first set of experiments. The as-

similation period for all experiments was 1 January 2015 to

1 March 2016. The annual mean RMSE differences are cal-

culated from the simulation results by removing the spin-up

period of the first 2 months (January and February 2015). The

average period is from 1 March 2015 to the end of Febru-

ary 2016. The details of experimental settings are shown in

Table 1.

3.1 Sensitivity analysis for different assimilation

windows

The sensitivity of SCF estimates to the length of AW was

investigated based on the first set of experiments (EXP1–

EXP4) with regular 4-D LETKF settings, where the length of

OW is the same as that of the AW. All experiments used the

same observations and initial conditions. Since the tempo-

ral coverage of the OCO-2 observation network is too sparse

for our LETKF_C assimilation system to estimate the SCF

signal over short timescales, we focus on evaluating the esti-

mation of SCF for seasonal and longer timescales.

Figure 2 shows the estimated global total surface fluxes

from the first set of experiments. The true global total surface

fluxes show a clear seasonal cycle with very large carbon up-

Figure 2. (a) The global total SCF from the nature run (“truth”,

black line) and from the estimations of the first set of experiments

with different AW. (b) The difference of global total SCF between

the estimations from the experiments with different AW and the na-

ture run (truth). (c) The global average RMSE of the estimated SCFs

from the experiments with different AW.

take during the growing season of the Northern Hemisphere

(NH), from May to August, and carbon release during other

seasons, with the peak release during November. All experi-

ments reproduced the seasonal cycle of SCF fairly well.

When the AW is very short (6 h), there is large-magnitude

and high-frequency noise overlaying the seasonal cycle. The

magnitude of high-frequency errors of SCF estimation in

EXP1 is comparable with the seasonal variability of SCF

(Fig. 2a). When the AW = 7 d, the high-frequency errors of

estimation decay but the long assimilation window increases

the analysis RMSE (EXP4). The EXP2 with AW = 1 d pro-

duced the best estimation of SCF among all four experiments

with equal observation and assimilation windows (Fig. 2).
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Table 1. Lengths of assimilation windows (AWs) and observation window (OWs) and the resulting time-averaged global mean RMSEs for

different experiments. The first four experiments use a regular 4-D LETKF, with AW = OW. The last four experiments use AW = 1 d, found

to be optimal, and different OWs.

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8

AW 6 h 1 d 3 d 7 d 1 d 1 d 1 d 1 d

OW 6 h 1 d 3 d 7 d 2 d 8 d 15 d 30 d

RMSE (kgC (m2 yr)−1) 0.077 0.059 0.068 0.074 0.053 0.041 0.040 0.050

The advantage of AW = 1 d (EXP2) is clearly seen from

the smaller average global root-mean-square error (RMSE)

(Fig. 2c). The RMSE of surface carbon flux is calculated as

follows:

RMSE(t) =

√
Ex((F a (x, t) − F n (x, t))2), (4)

where x and t are space and time location; F a and F n indi-

cate the analysis and the true SCF from the nature run, re-

spectively. Ex is spatial average. The estimations from ex-

periments with long AW (3 and 7 d) have a smaller RMSE

for the first 3 months (January to March), when the truth had

very little variation because the long AWs enhance the signal

and smooth the high-frequency noise. However, the experi-

ments with long AW can miss the fine-scale signals of SCF

variation and fail to catch its variations with time. As a result,

the estimations with long AW showed large RMSE during

the period when SCF had larger variations. The estimation

with an AW of 6 h also showed very large RMSE because of

the overwhelming high-frequency noise. Thus, the estima-

tion with an AW of 1 d had the smallest RMSE among all of

the experiments with a regular 4-D LETKF.

The time-averaged RMSEs of SCFs is calculated as fol-

lows:

RMSE(x) =

√
Et ((F a (x, t) − F n (x, t))2), (5)

which shows very similar spatial patterns but different am-

plitudes for different experiments (Fig. 3). The large RMSEs

of SCF estimation located in the southeastern USA and the

southeast of both China and Russia, resembled that of the

SCF variance (not shown). The regions of higher variance

indicate more information is needed to resolve such large

variance by observations, which is hard to achieve. As ex-

pected, the SCF RMSE of 0.059 from EXP2 with an AW

of 1 d is significantly smaller than the RMSE from EXP1

with a short AW of 6 h (0.077 kgC (m2 yr)−1) and EXP3 and

EXP4 with longer AWs of 3 d (0.068kgC (m2 yr)−1) and 7 d

(0.074 kgC (m2 yr)−1), respectively.

Our results suggest that the optimal AW for estimating

SCF is about 1 d. This is distinctly different from previously

published studies that indicate that either a very short AW

(6 h) (Kang et al., 2011, 2012), or a very long AW (longer

than a few weeks) is optimal (e.g., Baker et al., 2006, 2010;

Peters et al., 2005, 2007; Michalak, 2008; Feng et al., 2009).

A short AW can better constrain the model state and there-

fore produce a better parameter estimation. However, a very

short AW of 6 h can degrade the SCF estimation with high-

frequency noise in our LETKF-C system. We postulate that

the high-frequency noise is related to the sampling errors in

the CO2–SCF covariance that has a smaller signal-to-noise

ratio compared to those in experiments with longer AWs.

The same results can be obtained from the same experi-

ments with different initial times, indicating the robustness

of our findings (figure not shown). The convergence of esti-

mated SCFs from the experiments starting from months with

big SCF variation, such as April, is slightly slower than the

experiments from the time with small SCF variation, such as

January. While the estimated SCFs converge in a few analy-

sis cycles (a few days) in our system (Fig. 2), the small dif-

ference of convergence rate does not make any significant

impact on the quality of estimated SCFs. Moreover, the cal-

culation of RMSE of estimated SCFs has excluded the spin-

up period of the first 2 months to remove the potential impact

of the initial conditions and initial time.

3.2 Sensitivity analysis for different observation

windows (OW)

The results presented earlier and associated discussion sug-

gest that parameter estimation through data assimilation ben-

efits from a long training time and having a sufficient number

of observations, implying that the length of OW is critical

for the estimation of desired parameter(s). We investigated

the effect of such sensitivity to find out the suitable length

of OW for estimating SCF in the second set of experiments

(EXP5–EXP8), all based on the optimum AW = 1 d that was

identified from the first set of experiments but using different

OW lengths.

The estimated global total SCFs in the second set of ex-

periments show a clear seasonal cycle matching the truth

(Fig. 4a). Compared with EXP2 (OW = 1), shown with the

green line in Fig. 2a, EXP5 (OW = 2 d) reduced the high-

frequency noise significantly when the OW length was in-

creased from 1 to 2 d. There is still some high-frequency

noise in the SCF estimation for EXP5 because the obser-

vations for 2 d are not sufficient to smooth out the high-

frequency noise introduced into the estimation through data

assimilation. The estimated global total SCFs for EXP6

(OW = 8 d), EXP7 (OW = 15), and EXP8 (OW = 30) are
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Figure 3. The spatial pattern of the annual mean RMSE of estimated SCF from the experiments with different AW (EXP1–4) for the average

period from 1 March 2015 to the end of February 2016. (January and February 2015 are treated as a spin-up period for our experiments).

much smoother than that of EXP5 (OW = 1 d) because of

their longer OW. However, the estimation for OW of 30 d

shows a clear time-shift compared with the truth, especially

during the transient period when the majority of ecosystems

and plants are switching from dormant phase in the winter to

the growing phase in the spring. The surface carbon fluxes

change rapidly during this period. The time-shift can also be

seen in the estimations for these experiments with an OW of

15 d, but it is less pronounced. In the proposed LETKF tech-

nique, most of observations in a long OW are introduced at

a time later than the assimilation time. Since the SCFs are

temporally evolving parameters, the information (variation)

of future surface fluxes is brought into the estimation of cur-

rent time when the future observations are included in the

OW. Therefore, the estimated SCFs with a very long OW

tend to shift towards its future value. The estimated SCFs

with moderate OW = 8 and 15 d (EXP6 and EXP7) are more

accurate than those with a short OW of 2 d (EXP5) and very

long OW of 30 d (EXP8) by avoiding the significant high-

frequency noise observed in EXP5 (OW = 2 d) and the sig-

nificant time-shift present in EXP8, with a very long obser-

vation window (OW = 30 d). The global mean RMSEs of es-

timated SCF from OW = 8 and 15 d (EXP6 and EXP7) are

significantly smaller than those from OW = 2 and 30 d, i.e.,

EXP5 and EXP8 (Fig. 4c).

The spatial pattern of time-averaged RMSE of SCF for

EXP5 (OW = 2 d; Fig. 5) is similar to those in the first set

of experiments, which had short AW = OW (Fig. 3). The

regions with large RMSE in EXP5 (OW = 2 d) disappear

with OW = 7 and 15 d in EXP6 and EXP7 because the long

OWs enhance the signals for SFC estimation. The large

RMSE in SCF estimates for EXP8 (OW = 30 d) are primar-

ily in the Northern Hemisphere midlatitudes because of the

time-shift in estimations with OW = 30 d. The mean RM-

SEs of experiments with moderate OWs of 8 and 15 d are

0.041 and 0.040kgC (m2 yr)−1, respectively, which is signif-

icantly smaller than those from experiments with OWs of 2 d

(0.053 kgC (m2 yr)−1) and 30 d (0.050 kgC (m2 yr)−1).

However, a longer OW requires a longer forecast period

for each forecast step, which results in additional computa-

tional time and cost. For example, EXP7 with an OW of 8 d

used 8 times more computational time compared to EXP2.

Furthermore, the length of the OW is also constrained by the

timescale of estimation parameters. A long OW tends to gen-

erate a time-shift for its estimation. For seasonal and longer

timescales, OW(s) in the moderate range of 8–15 d appear
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Figure 4. Same as Fig. 2, except for the second set of experiments

with different OW but the same AW of 1 d.

to be most suitable for the LETKF_C estimates of the SCF.

EXP6 and EXP7 show almost the same quality of SCF esti-

mation, but EXP6 has higher computational efficiency. The

best configuration thus appears to be EXP6 with an OW of

8 d and AW of 1 d, referred as the “benchmark” experiment

hereafter.

We note that the high-frequency noise in EXP1 with a

short AW of 6 h can be smoothed out by a long OW (i.e., 8–

15 d). We postulate that an experiment with an AW of 6 h

and OW 8 d will produce similarly realistic estimations as

the benchmark experiment; however, it would require much

more computational time.

4 Evaluating estimated fluxes from the benchmark

experiment

With the moderately long observation and short assimila-

tion windows, we obtained best estimates of surface carbon

fluxes, and their seasonal cycle. This section describes the

SCF estimates from the benchmark experiment (AW = 1 d,

OW = 8 d). Figure 6 shows a comparison of surface car-

bon fluxes based on the benchmark assimilation experiment

and the nature (truth) run for Northern Hemisphere summer

(June, July, and August) and winter seasons (December, Jan-

uary, and February). The bottom-up carbon fluxes used in

the nature run show a very strong seasonal cycle over all of

the continents except Antarctica. The Northern Hemisphere

midlatitude areas are very large carbon sinks in the summer

and carbon sources in the winter, as expected. The strong

seasonal cycle of surface fluxes is mainly related to the vari-

ability of terrestrial ecosystems that absorb a large amount

of CO2 during the growing season (spring and summer) and

release carbon back to the atmosphere during dormant sea-

sons (fall and winter). The estimated surface fluxes in the

seasonal timescale follow the truth closely. The benchmark

assimilation experiment closely reproduces the spatial pat-

tern of surface fluxes globally, for different seasons. The dif-

ference between the benchmark estimation and truth shown

in Fig. 6e, f are very small. There are some positive carbon

flux differences over Northern Hemisphere midlatitudes in

the winter, thus a positive bias in estimated atmospheric CO2

concentration is expected.

The analysis of CO2 concentrations matches the nature run

well. The error pattern also matches the CO2 seasonal cycle

and the error pattern of estimated SCF. Figure 7 shows the

comparison of surface atmospheric CO2 concentrations be-

tween the benchmark assimilation experiment and the nature

(truth) run for the Northern Hemisphere summer and winter.

The spatial pattern of assimilated CO2 matches the truth very

well. The analysis successfully reproduced the seasonal cy-

cle of CO2 over Northern Hemisphere midlatitudes, with low

CO2 concentration in summer (Fig. 7a–c) and high CO2 in

winter (Fig. 7b–d), consistent with the seasonal cycle of CO2

absorption and release from terrestrial ecosystems. There are

positive CO2 concentrations located at high latitudes of the

North American and East Asian regions during winter 2016

(Fig. 7f), due to the positive bias in estimated SCF (Fig. 6f).

The consistency of annual mean estimated SCF for both

benchmark experiment and truth is a very important feature

for our LETKF_C assimilation system (Fig. 8a). In EnKF

assimilation the ensemble spread is considered a good rep-

resentation of uncertainties associated with both parameters

and model state (e.g., Evensen, 2007; Liu et al., 2014). The

surface carbon fluxes are special parameters that vary with

time and it is very hard to quantify their uncertainty dur-

ing assimilation. When the ensemble spread of parameters

are too small to drive a model with a robust response, the

estimation fails. The additive inflation with 30 % of nature

variability is used to maintain the amplitude of parameter en-

semble spread. Although the ensemble spread of the global

total surface flux, in our experiments, is bigger than its er-

ror (Fig. 8a), we were still able to estimate the global to-

tal surface CO2 fluxes (ensemble mean) and their seasonal

variability very well. This is consistent with findings of Liu

el al. (2014) that parameter estimation can tolerate some in-
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Figure 5. Same as Fig. 3, except for the second set of experiments with different OW but similar AW of 1 d.

consistency between parameter ensemble spread and param-

eter error.

The global mean RMSE of SCF decreases from an initial

value of ∼ 0.1 to ∼ 0.04 kg C m−2 yr−1 in just a few analysis

cycles (Fig. 8b). It does not further decrease during following

assimilation cycles because the SCF values vary temporally.

The signals added by observations are mainly used to repro-

duce the temporal variation in SCF.

It is very important for a SCF estimation to reproduce the

spatial distribution of the annual mean of the SCF, since it

identifies the carbon sources and sinks in the Earth system.

Though the amplitude of annual mean SCF is much smaller

than the seasonal cycle of SCF, the estimated spatial pattern

of annual mean SCF in the benchmark experiment (Eq. 5) is

generally consistent with the truth (Fig. 9).

1F (x) = Et

(
F a (x, t)

)
− Et

(
F n (x, t)

)
(6)

In summary, we found that the OSSE experiments using

long observation windows and short assimilation windows

resulted in the best estimates of SCF.

5 Summary and discussion

We have developed a LETKF GEOS-Chem carbon data as-

similation (LETKF_C) system for estimating the surface car-

bon fluxes (SCFs). The true GEOS-Chem atmospheric trans-

port model is driven by the single realization of meteorol-

ogy fields from MERRA reanalysis. The proposed data as-

similation system captured the true SCF spatial and temporal

variability well. The system performed best with a choice of

short assimilation and long observation windows.

The LETKF requires a short assimilation window to avoid

an ill-posed condition caused by the nonlinear processes in

the forecast model with a long forecast time. The parameter

estimation favors a long training period and many observa-

tions. Based on these features, we developed a new method

to accurately estimate the SCF. The new scheme separates

the original assimilation time window into observation (OW)

and assimilation (AW) windows, allowing for the flexibility

to apply an OW that is different to the AW. Like the running-

in-place (RIP) method, the new technique takes advantage of

the no cost smoothing algorithm developed for the LETKF

by Kalnay et al. (2007b) that allows the transportation of the

Kalman filter solution forward or backward within the obser-

vation window.
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Figure 6. The SCF of the “nature” run and an estimation from the benchmark experiment (AW = 1 d, OW = 8 d) for Northern Hemisphere

summer (a, c and e), and winter (b, d, and f). Panels (a) and (b) are the “truth” from the nature run, panels (c) and (d) are the estimates from

benchmark experiment, and panels (e) and (f) are the difference between estimation and truth.

The new method was applied to the LETKF_C system

in the OSSE mode using a dataset developed based on the

OCO-2 observation characteristics. The sensitivity experi-

ments for this model assimilation system demonstrated that

the new technique, i.e., using a short AW and long OW, sig-

nificantly improves the SCF estimation as compared to a reg-

ular 4-D LETKF with identical observation and assimilation

windows. The best AW for SCF estimation is 1 d, which is

different from the typical AW of 6 h used in the meteorolog-

ical assimilations. An OW in the range of 8–15 d is required

to estimate the surface carbon fluxes for seasonal and longer

timescales. The benchmark experiment with an AW of 1 d

and the OW of 8 d successfully reproduced the mean sea-

sonal and annual SCF.

Our working hypothesis was that the optimal OW for the

estimation of SCF could be reduced with more observations.

We examined this hypothesis by using simulated OCO-2 ob-

servations and GlobalViewPlus (GV+) observations. Sim-

ilar to the OCO-2 pseudo-observations, the GV+ pseudo-

observations were also generated based on the actual loca-

tion, time, and corresponding error scale of the GV+ flask

observations. The results show that the AW and OW lengths
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Figure 7. Same as Fig. 6, except for surface concentrations of CO2. Where panels (a) and (c) share the upper left color bar; Panels (b) and

(d) use the upper right color bar.

of 1 d and 8 d, respectively, are also optimal using both the

OCO-2 and GV+ observation characteristics. We estimated

the SCF using the OCO-2 and GV+ pseudo-observations

with the identical experiment settings as the OCO-2 experi-

ments, except we replace the experiment with very long OW

of 30 d with an experiment with a short OW of 4 d to better

evaluate the impact from short OWs. Thus, the current exper-

iments settings are using OW of 2, 4, 8, and15 d.

The results from these experiments show that the AW

and OW lengths of 1 d and 8 d, respectively, are still opti-

mal for both the OCO-2 and GV+ observation character-

istics (Fig. 10). Generally, the time mean RMSE of esti-

mated SCF with OCO-2 and GV+ (Fig. 10) are smaller than

the corresponding estimates for OCO-2 only (Fig. 5). The

short OW of 2 d performs worse than the moderate OWs

of 4, 8, and 15 d. The time-averaged global mean RMSE

is 0.046 kgC (m2 yr)−1 for experiments with an OW of 2 d

(Fig. 10a). The time-averaged global mean RMSE is only

0.040, 0.037, and 0.039 kgC (m2 yr)−1 for experiments with

OWs of 4, 8, and 30 d, respectively (Fig. 10b, c and d). We

only see a slight impact of observation coverage on the op-

timal OW length. The best OW appears to be 8–15 d, which

produces the smallest RMSE when only OCO-2 observations

are assimilated. The smallest RMSE is obtained in the exper-

iment with the best OW of 8 d, when both OCO-2 and GV+

observations are assimilated into the system.
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Figure 8. (a) The global total SCF of “truth” and estimation from

the benchmark experiment: the black line is the truth, the green line

is the ensemble mean of the estimation, and the yellow shading is

the ensemble spread. (b) The global mean RMSE of the estimated

SCF from the benchmark experiment(AW = 1 d, OW = 8 d).

Two different sets of experiments (OCO-2 vs. OCO-2

and GV+) suggesting the same optimal OW of 8 d indi-

cate that the observation coverage and observation type are

not the major factor in deciding the length of optimal OW.

We speculate that the optimal OW is mainly determined by

the timescale of model response to the SCF uncertainties

because LETKF constrains parameters (SCF) based on the

mapping function of parameter-state covariance; hence, only

the model response to the parameter uncertainties provide the

signal for parameter estimation.

It is worth noting that our approach works best for estimat-

ing parameters that vary slowly over moderate timescales. It

may not be optimum for estimating SCF variation for short

timescales such as sub-daily to daily because the variations

shorter than the OWs are filtered out. Furthermore, we used a

coarse spatial resolution (4◦ × 5◦) GEOS-Chem in our study.

We postulate that the optimal AW and OW could be different

when a higher spatial resolution version of GEOS-Chem is

used with the proposed assimilation system because models

with different resolutions’ responses to the SCF may be dif-

ferent. This issue also merits further exploring in the future.

Our newly developed short AW and long OW technique is

different from both the standard 4-D variational method and

the 4-D LETKF. The 4-D Var (four-dimensional variational)

and the 4-D LETKF methods have been shown (Bonavita et

al., 2015; Hamrud et al., 2015) to have an essentially equiv-

alent performance, and their hybrid Kalman Gain combina-

tion (Penny, 2014) in a EnKF framework was comparable to

the hybrid ensemble data assimilation system currently op-

erational at ECMWF but with a lower computational cost.

The hybrid ensemble data assimilation system at ECMWF

Figure 9. (a) The annual mean of SCF (with the Ffe removed) for

the “nature” run, (b) the annual mean of estimated SCF (with the Ffe

removed) from the benchmark experiment, and (c) their differences.

uses an ensemble of 4-D Var assimilations at reduced reso-

lution to provide a flow-dependent estimate of background

errors for use in 4-D Var assimilation (Bonavita et al., 2015).

The short AW and long OW approach can be used with other

Earth system models for parameter estimation, when the pa-

rameters have slow and smooth variations in time and space

and the observations are too limited to constrain the parame-

ters well.
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Figure 10. Same as Fig. 5, except for assimilating both OCO-2 and GV+ pseudo-observations. Panels (a), (b), (c), and (d) show the results

with OWs of 2, 4, 8, and 15 d respectively.

Code and data availability. This study focused on developing a

new methodology for estimating carbon flux based on a car-

bon cycle model–data assimilation system. It does not generate
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