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ABSTRACT

In this paper we describe and analyze a method based on
local least square fitting for estimating the normals at all
sample points of a point cloud data (PCD) set, in the pres-
ence of noise. We study the effects of neighborhood size,
curvature, sampling density, and noise on the normal esti-
mation when the PCD is sampled from a smooth curve in R?
or a smooth surface in R® and noise is added. The analysis
allows us to find the optimal neighborhood size using other
local information from the PCD. Experimental results are
also provided.

Categories and Subject Descriptors

1.3.5 [ Computing Methodologies ]: Computer Graph-
ics Computational Geometry and Object Modeling [Curve,
surface, solid, and object representations]

Keywords

normal estimation, noisy data, eigen analysis, neighborhood
size estimation

1. INTRODUCTION

Modern range sensing technology enables us to make de-
tailed scans of complex objects generating point cloud data
(PCD) consisting of millions of points. The data acquired
is usually distorted by noise arising out of various physi-
cal measurement processes and limitations of the acquisition
technology.

The traditional way to use PCD is to reconstruct the un-
derlying surface model represented by the PCD, for example
as a triangle mesh, and then apply well known methods on
that underlying manifold model. However, when the size of
the PCD is large, such methods may be expensive. To do
surface reconstruction on a PCD, one would first need to
filter out the noise from the PCD, usually by some smooth-
ing filter [12]. Such a process may remove sharp features,
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however, which may be undesirable. A reconstruction al-
gorithm such as those in [2, 4, 8] then computes a mesh
that approximates the noise free PCD. Both the smoothing
and the surface reconstruction processes may be computa-
tionally expensive. For certain applications like rendering
or visualization, such a computation is often unnecessary
and direct rendering of PCD has been investigated by the
graphics community [14, 16].

Alexa et al. [1] and Pauly et al. [16] have proposed to
use PCD as a new modeling primitive. Algorithms running
directly on PCD often require information about the normal
at each of the points. For example, normals are used in
rendering PCD, making visibility computation, answering
inside-outside queries, etc. Also some curve (or surface)
reconstruction algorithms, as in [6], need to have the normal
estimates as a part of the input data.

The normal estimation problem has been studied by vari-
ous communities such as computer graphics, image process-
ing, and mathematics, but mostly in the case of manifold
representations of the surface. We would like to estimate
the normal at each point in a PCD, given to us only as an
unstructured set of points sampled from a smooth curve in
R? or a smooth surface in R® and without any additional
manifold structure.

Hoppe et al. [11] proposed an algorithm where the normal
at each point is estimated as the normal to the fitting plane
obtained by applying the total least square method to the
k nearest neighbors of the point. This method is robust in
the presence of noise due to the inherent low pass filtering.
In this algorithm, the value of k is a parameter and is cho-
sen manually based on visual inspection of the computed
estimates of the normals, and different trial values of k may
be needed before a good selection of k is found. Further-
more, the same value of k is used for normal estimation at
all points in the PCD.

We note that the accuracy of the normal estimation us-
ing a total least square method depends on (1) the noise
in the PCD, (2) the curvature of the underlying manifold,
(3) the density and the distribution of the samples, and (4)
the neighborhood size used in the estimation process. In
this paper, we make precise such dependencies and study
the contribution of each of these factors on the normal esti-
mation process. This analysis allows us to find the optimal
neighborhood size to be used in the method. The neighbor-
hood size can be computed adaptively at each point based
on its local information, given some estimates about the
noise, the local sampling density, and bounds on the local
curvature. The computational complexity of estimating all



normals of a PCD with m points is only O(mlogm).

1.1 Related Work

In this section, we summarize some of the previous works
that are related to the computation of the normal vectors of
a PCD. Many current surface reconstruction algorithms [2,
4, 8] can either compute the normal as part of the recon-
struction, or the normal can be trivially computed once the
surface has been reconstructed. As the algorithms require
that the input is noise free, a raw PCD with noise needs to
go through a smoothing process before these algorithms can
be applied.

The work of Hoppe et al. [11] for surface reconstruction
suggests a method to compute the normals for the PCD.
The normal estimate at each point is done by fitting a least
square plane to its k nearest neighbors. The value of k is
selected experimentally. The same approach has also been
adopted by Pauly et al. [16] for local surface estimation.
Higher order surfaces have been used by Welch et al. [15] for
local parameterization. However, as pointed out by Amenta
et al. [3] such algorithms can fail even in cases with arbi-
trarily dense set of samples. This problem can be resolved
by assuming uniformly distributed samples which prevents
errors resulting from biased fits. As noted before, all these
algorithms work well even in presence of noise because of
the inherent filtering effect. The success of these algorithms
depends largely on selecting a suitable value for k, but usu-
ally little guidance is given on the selection of this crucial
parameter.

1.2 Paper Overview

In section 2, we study the normal estimation for PCD
which are samplings of curves in R?, and the effects of dif-
ferent parameters on the error of that estimation process.
In section 3, we derive similar results for PCD which come
from a surface in R®. In section 4, we provide some simula-
tions to illustrate the results obtained in sections 2 and 3.
We also show how to use our theoretical result on practical
data. We conclude in section 5.

2. NORMAL ESTIMATION IN r?

In this section, we consider the problem of approximating
the normals to a point cloud in R?. Given a set of points,
which are noisy samples of a smooth curve in R?, we can use
the following method to estimate the normal to the curve
at each of the sample points. For each point O, we find all
the points of the PCD inside a circle of radius r centered
at O, then compute the total least square line fitting those
points. The normal to the fitting line gives us an approx-
imation to the undirected normal of the curve at O. Note
that the orientation of the normals is a global property of
the PCD and thus cannot be computed locally. Once all the
undirected normals are computed, a standard breadth first
search algorithm [11] can be applied to obtain all the normal
directions in a consistent way. Through out this paper, we
only consider the computation of the undirected normals.

We analyze the error of the approximation when the noise
is small and the sampling density is high enough around O.
Under these assumptions, which we will make precise later,
the computed normal approximates well the true normal.
We observe that if r is large, the neighborhood of the point
cannot be well approximated by a line in the presence of
curvature in the data and we may incur large error. On the
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other hand, if 7 is small, the noise in the data can result in
significant estimation error. We aim for the optimal r that
strikes a balance between the errors caused by the noise and
the local curvature.

2.1 Modeling

Without lost of generality, we assume that O is the origin,
and the y-axis is along the normal to the curve at O. We as-
sume that the points of the PCD in a disk of radius r around
O come from a segment of the curve (a 1-D topological disk).
Under this assumption, the segment of the curve near O is
locally a graph of a smooth function y = g(z) defined over
some interval R containing the interval [—r,r]. We assume
that the curve has a bounded curvature in R, and thus there
is a constant x > 0 such that |¢"(z)] < x Vz € R.

Let p; = (x4,¥:) for 1 <4 < k be the points of the PCD
that lie inside a circle of radius r centered at O. We assume
the following probabilistic model for the points p;. Assume
that x;’s are instances of a random variable X taking values
within [—r,r], and y; = g(x;) + ns:, where the noise terms
n; are independent instances of a random variable N. X
and N are assumed to be independent. We assume that the
noise N has zero mean and standard deviation o, and takes
values in [—n, n].

Using Taylor series, there are numbers 1;, 1
such that g(xz;) = ¢ (¥i)x?/2 with || < |a4
vi = g" (1), then |yi| < k.

Note that if kr is large, even when there is no noise in the
PCD, the normal to the best fit line may not be a good ap-
proximation to the tangent as shown in Figure 1. Similarly,
if o /r is large and the noise is biased, this normal may
not be a good approximation even if the original curve is a
straight line, see Figure 2. In order to keep the normal ap-
proximation error low we assume a priori that xr and on /7
are sufficiently small.

e
- - T

<i<k
< r. Let

Figure 1: Curvature causes error in the estimated
normal

Figure 2: Noise causes error in the estimated normal

We assume that the data is evenly distributed; there is
a radius 7o > 0 (possibly dependent on O) so that any
neighborhood of size 79 in R contains at least 2 points of
the z;’s but no more than some small constant number of
them. We observe that the number of points k£ inside any
disk of radius r is bounded from above by ©(1)rp, and also
is bounded from below by another ©(1)rp, where p is the
sampling density of the point cloud. Here we use ©(1) to
denote some small positive constant, and for notational sim-
plicity, different appearances of ©(1) may denote different
constants. We note that distributions satisfying the (e, d)
sampling condition proposed by Dey et. al. [7] are evenly
distributed.



Under the above assumptions, we would like to bound the
normal estimation error and study the effects of different
parameters. The analysis involves probabilistic arguments
to account for the random nature of the noise.

2.2 Total Least Square Line

In this section, we briefly describe the well-known total
least square method. Given a set of points p;, 1 < i < k,
we would like to find the line ™z = ¢, with a”a = 1 such
that the sum of square distances from the points p;’s to
the line is minimized. Let f(a,c) = 5= Sk (@ pi—e)?
1a” (% Zlepip;‘r) a—cpla+ 3c® where p = %Elepi.
We would like to find @ and ¢ minimizing f(a,c) under the
constraint that a”a = 1.

To solve this quadratic optimization problem, we need to
solve the following system of equations:

] 1¢ _
%f(a,c):/\a = (EZpipiT>a—cp—/\a,

i=1

Qf(a,c):o = —platc=0,

dc

where A is a Lagrangian multiplier. It follows that ¢ =

iTa, (% Ele pipt —ﬁﬁT) a = Aa, and f(a,c) = % Thus

A is an eigenvalue of M = %Elepip;‘r — ppt with a as
the corresponding eigenvector. It is clear that to minimize
f(a,c), A has to be the minimum eigenvalue of M. The
corresponding eigenvector a is the normal to the total least
square line and is our normal estimate.

Note that this approach can be generalized to higher di-
mensional space. The normal to the total least square fit-
ting plane (or hyperplane) of a set of k points p;,1 <i < k
in R? for d > 2 can be obtained by computing the eigen-
vector corresponding to the smallest eigenvalue of M =
%Elepip;‘r — pp’. We observe that M can be written as
M =4 Zf:l (pi — P)(pi — p)T and thus it is always symmet-
ric positive semi-definite, and has non-negative eigenvalues
and non-negative diagonal.

2.3 Eigen-analysis of m

We can write the 2x2 symmetric matrix M, as defined
M mi2 ] Note that in ab-
miz M2z

sence of noise and curvature, mi2 = mo2 = 0 which means
0 is the smallest eigenvalue of M with [0 1]7 as the corre-
sponding eigenvector. Under our assumption that the noise
and the curvature are small, y;’s are small, and thus m2 and
mag are small. Let a = (|mi2]|+ma2)/m11. We would like to
estimate the smallest eigenvalue of M and its corresponding
eigenvector when « is small.

Using the Gershgorin Circle Theorem [9], there is an eigen-
value A1 such that |mi1 — A1| < |mai2|, and an eigenvalue A2
such that |mas — A2| < |mi2]. When « < 1/2, we have that
A1 > ma1 — |maz| > ma2 + [maz| > A2. It follows that the
two eigenvalues are distinct, and A2 is the smallest eigen-
value of M. Let [v 1] be the eigenvector corresponding to
A2, then

in the previous section, as [
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mi1 mai2 v — v
mi2 M22 1 - 2 1 ’
mi1 — A2 v — — mi2
miz maz — A2 |’
Thus
v — — (m11 — A2)maz + maz(maz — A2) (1)
(m11 = A2)? +mi, ’
W < |maz|(mi1 — A2 + |ma2])
- (m11 — A2)? ’
a(l+ a)
- (1-a)?

Thus, the estimation error, which is the angle between the
estimated normal and the true normal (which is [0 1]7 in this
case), is less than tan™'(a(1+a)/(1—)?) = a, for small a.
Note that we could write the error explicitly in closed form,
then bound it. Our approach is more complicated, though
as we will show later, it can be extended to obtain the error
bound for the 3D case. To bound the estimation error, we
need to estimate a.

2.4 Estimating Entries of m

The assumption that the sample points are evenly dis-
tributed in the interval [—r,r] implies that, given any num-
ber z in that interval, the number of points p;’s satisfy-
ing |z; — x| > r/4 is at least ©(1)k. It follows easily that
mi = %Ele (x; — %)* > ©(1)r®. The constant O(1) de-
pends only on the distribution of the random variable X.

For the entries mi2 and ma2, we use |z;| < r and |y;| <
k1% /2 +n to obtain the following trivial bound:

1 k 1 k k
szi’yi - ﬁzmlzyz
i=1 i=1 i=1

Imiz| =
< 2r(kr®/24n),
L&
2
ma2 < E;yz
< 2((kr%/2)% +n?).
Thus,
n 2 92 TL2
a < )| kr+—+KT +—
T r
n
< @(1)(m~+7). )

This bound illustrates the effects of r, kK and n on the
error. For large values of r, the error caused by the curva-
ture kr dominates, while for a small neighborhood the term
n/r is dominating. Nevertheless, the expression depends on
the absolute bound n of the noise N. This bound n can
be unnecessarily large or unbounded for many distribution
models of N. We would like to use our assumption on the
distribution of the noise N to improve our bound on « fur-
ther.



Note that

[maz|

k k
Zw@ —E e w
i=1 =1

1
= 3 ; (vix? /2 + zini)
L k
fE S a3 qaten
i=1 =1
1
S KT + sznz

+O(1)r (m"2 + =

Furthermore, under the assumption that X and N are in-
dependent, we have E[z; nl] = E[:cl]E[m] = 0 since En;] =
0 and Var(zin:) = ©(1)r?c2 since Var(n;) = o2. Let
€ > 0 be some small constant. Using the Chebyshev In-
equality [13], we can show that the following bound on |m12]
holds with probability at least 1 — e:

maz| < ©(1)mr’ +O(1 >\/’"2"%+@<1>r\/%
= o()wr®+001 1/ Hﬁ
< o()rr’ +0(1)o —

ep‘

For reasonable noise models, we also have that

<

X
F 2o20tat/aend)

@(1)/-@ r —|—@( )

2.5 Error Bound for the Estimated Normal

From the estimations of the entries of M, we obtain the
following bound on «, with probability at least 1 — e:

<

2
On Opn

a < O(1)kr +6(1)

+6(1) (4)

eprs 2

Note that this bound depends on the standard deviation
o of the noise N rather than its magnitude bound n.

For a given set of parameters K, o, p, and €, we can find
the optimal r that minimizes the right hand side of inequal-
ity 4. As this optimal value of r is not easily expressed in
closed form, let us consider a few extreme cases.

e When there is no curvature (k = 0) we can make the
bound on « arbitrarily small by increasing r. For suf-
ficiently large r, the bound is linear in o, and it de-
creases as 1

e When there is no noise, we can make the error bound
small by choosing r as small as possible, say r = ro.

e When both noise and curvature are present, the error
bound cannot be arbitrarily reduced. When the den-
sity p of the PCD is sufficiently high, oo < ©(1)xr +
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O(1)o2/r?. The error bound is minimized when r =
O(1)o*k~'/3 in which case a < ©(1)x*/302/%. The
sufficiently high density condition on p can be shown
to be p > @(1)6710;4/3H71/3.

e When there are both noise and curvature, and the den-
sity p is sufficiently low, a < O(1)kr +0O(1)on//€pr3.
The bound is smallest when r = ©(1)(c2/(epr?))*/?,
in which case, a < O(1)(k*02/(ep))*/®. The suffi-
ciently low condition on p can be expressed more specif-
ically as p < @(1)6710;4/3,‘{71/3. We would like to
point out that the constant hidden in the ©(1) nota-
tion in the “sufficiently low” condition is 3/4 of that
in the “sufficiently high” condition.

3. NORMAL ESTIMATION IN r?

We can extend the results obtained for curves in R? to
surfaces in R3. Given a point cloud obtained from a smooth
2-manifold in R® and a point O on the surface, we can esti-
mate the normal to the surface at O as follows: find all the
points of the PCD inside a sphere of radius r centered at
O, then compute the total least square plane fitting those
points. The normal vector to the fitting plane is our esti-
mate of the undirected normal at O.

Given a set of k points p;, 1 <1i < k,let M = % Zle pipT —
ppT, where p = % Zle pi. As pointed out in subsection 2.2,
the normal to the total least square plane for this set of
k points is the eigenvector corresponding to the minimum
eigenvalue of the M. We would like to bound the angle
between this eigenvector and the true normal to the surface.

3.1 Modeling

We model the PCD in a similar fashion as in the R? case.
We assume that O is the origin, the z-axis is the normal
to the surface at O, and that the points of the PCD in the
sphere of radius r around O are samples of a topological disk
on the surface. Under these assumptions, we can represent
the surface as the graph of a function z = g(x) where x =
[z,y]T. Using Taylor Theorem, we can write g(x) = %XTHX
where H is the Hessian of f at some point @ such that
[| < [x].

We assume that the surface has bounded curvature in
some neighborhood around O so that there is a k > 0 such
that the Hessian H of g satisfies ||H||2 < & in that neigh-
borhood.

Write the points p; as p; = (i, ¥s,2:) = (x;,2i). We
assume that z; = g(gi) + n;, where the n;’s are independent
instances of some random variable N with zero mean and
standard deviation o,. We similarly assume that the points
x, are evenly distributed in the xy-plane on a disk D of radius
r centered at O, i.e. there is a radius r¢ such that any disk
of size r¢ inside D contains at least 3 points among the x;’s
but no more than some small constant number of them. We
also assume that the noise and the surface curvature are
both small.

3.2 Eigen-analysis in r?

mi1 Miz M3
We write the analogous matrix M = | mi2 ma2 mas
miz Ma3 M33
Mi1 Mas . . . .
T . As pointed out in subsection 2.2, M is sym-
M13 mas3s3



metric and positive semi-definite. Under the assumptions
that the noise and the curvature are small, and that the
points x, are evenly distributed, mi1 and ma2 are the two
dominant entries in M. We assume, without lost of general-
ity, that m11 < maa. Let o = (Jmas| + |mas| +mass)/(mi1 —
|miz]). As in the R? case, we would like to bound the angle
between the computed normal and the true normal to the
point cloud in term of a.

Denote by A1 < A2 the eigenvalues of the 2 x 2 symmetric
matrix M. Using again the Gershgorin Circle Theorem, it
is easy to see that mi1 — |mi2] < A1, A2 < ma2 + |maial.

Let X be the smallest eigenvalue of M. From the Gersh-
gorin Circle Theorem we have A < |mis| + |mas| + mss =
a(mi1 —mi2) < ali. Let [gT 1]T be the eigenvector of M
corresponding with A\. Then, as with Equation 1, we have
that:

(@ = AD? b))

! f—
((M11 — M) Mz + Miz(mss — X))
—1
= (M — )2 (I + (M — AI)’lengg)
((M11 — A )Mis + Mis(mss — N)),
vl < |[(Mix — M) 72|2 %
—1
H(I + (M — AI)’2M13M£> x
2
([[(Ma1 = AD)||2|[Mas]|2 + || Mas||2|mss — Al) .
Note that
[(Mix — M) ~*Mys M) 2
< ||(Maz — AI)2[[2]| Mas||2|| M5 |2
< (A — A)iz(mi’) + m%s)
< (1—a)2a?.
Thus

—1
H (I + (M — )\I)’ZMlngTg)

2
2

< ! <z

“1-(1-a)2a? = 1-2a

It follows that

1 1—a)?
L Y 020 (e +aria)
a(l+a) A2
- 1—2a A1

When « is small, the right hand side is approximately
(A2/A1)a, and thus the angle between the computed normal
and the true normal, tan™* ||v||2, is approximately bounded
by (Az2/A)a < ((ma2 + |[mazl)/(mar — [maz]))a,

3.3 Estimation of the entries of s

As in the R? case, from the assumption that the sam-
ples are evenly distributed, we can show that ©(1)r® <
mi1, mez < r2. We can also show that mas < @(1)/{27’4 +
©(1)o2. Let p be the sampling density of the PCD at O,
then k = ©(1)pr®. Again, let ¢ > 0 be some small posi-
tive number. Using the Chebyshev inequality, we can show
that miz,mas < O()kr® + O(1)onr/Vek < O(1)wr® +
©(1)on/\/€p with probability at least 1 —e. For the term
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m12, we note that Elz;y;] = 0 and Var(ziy:) = @(1)7’47 and
so, by the Chebyshev inequality, mi2 < ©(1)r/,/ep with
probability at least 1 — e.

3.4 Error Bound for the Estimated Normal

Let 8 = mi2/mi1. We restrict our analysis to the cases
when [ is sufficiently less than 1, say 8 < 1/2. This restric-
tion simply means that the points x;’s are not degenerate,
i.e. not all of the points x,’s are lying on or near any given
line on the zy-plane. With this restriction, it is clear that
(Ra/A)a < (maz/min)((1+ 8)/(1 - B))a = O(1)a

From the estimations of the entries of M, we obtain the
following bound with probability at least 1 — e:

22,
A1

On

r2,/€p
on

r2

<

O(1)kr +0(1)

O(1)k*r? +O(1)

on

o)

r2

On
r2./ep
This is an approximate bound on the angle between the

estimated normal and the true normal. To minimize this
error bound, it is clear that we should pick

1/3
l c In + c 02
P 1\/@ 20n 5

for some constants ci1, c2. The constants ¢; and ¢z are small
and they depend only on the distribution of the PCD.

We notice that from the above result, when there is no
noise, we should pick the radius r to be as small as possible,
say r = r9. When there is no curvature, the radius r should
be as large as possible. When the sampling density is high,
the optimal value of r that minimizes the error bound is
approximately r = ©(1)(c2/k)"/%. This result is similar to
that for curves in R?, and it is not at all intuitive.

< O()wr +6(1) +

(®)

4. EXPERIMENTS

In this section, we discuss some simulations to validate
our theoretical results. We then show how to use the re-
sults in obtaining a good neighborhood size for the normal
computation with the least square method.

4.1 Validation

We considered a PCD whose points were noisy samples
of the curves (z, s sgn(x) ©2/2), for x € [~1,1] for different
values of k. We estimated the normals to the curves at the
origin by applying the least square method on their corre-
sponding PCD. As the y-axis is known to be the true normal
to the curves, the angles between the computed normals and
the y-axis gives the estimation errors.

To obtain the PCD in our experiments, we let the sam-
pling density p be 100 points per unit length, and let =
be uniformly distributed in the interval [—1,1]. The y-
components of the data were polluted with uniformly ran-
dom noise in the interval [—n,n], for some value n. The
standard deviation o, of this noise is n/ \/g

Figure 3 shows the error as a function of the neighborhood
size r when n = 0.05 for 3 different values of K, K = 0.4,0.8,
and 1.2. As predicted by Equation 4 for large value of r, the
error increases as r increases. In the experiments, it can be
seen that the error is proportional to kr for r > 0.2. Note



that the PCD we chose generates the worst case behavior of
the error.

)

—]

Error Angle
°
5

W L L L L L L L
0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1
Radius

Figure 3: The normal estimation error increases as
r increases for r > 0.2.

Figure 4 shows the estimation error as a function of the
neighborhood size r for small » when k = 1.2 for 3 different
values of n, n = 0.017,0.033, and 0.05. We observe that the
error tends to decrease as 7 increases for r < 0.08. This is
expected as from Equation 4, the bound on the error is a
decreasing function of » when r is small.

0017
0.033
— 005

Error Angle

Figure 4: The normal estimation error decreases as
n decreases and r increases for r < 0.08.

The dependency of the error on r for small values of r can
be seen more easily in Figure 5, which shows the average of
the estimation errors over 50 runs for each r.

4.2 Estimating Neighborhood Size for the Nor-
mal Computation

In this part, we used the results obtained in Section 3 to
estimate the normals of a PCD. The data points in the PCD
were assumed to be noisy samples of a smooth surface in R3.
This is the case, for example, for PCD obtained by range
scanners. To obtain the neighborhood size for the normal
computation using the least square method, we would like
to use Equation 5.

We assumed that the standard deviation o, of the noise
was given to us as part of the input. We estimated the other
local parameters in Equation 5, then computed r. Note that
this value of » minimizes the bound of the normal computa-
tion error, and there is no guarantee that this would mini-
mize the error itself. The constants ¢1 and ¢z depend on the
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Figure 5: The average error over 50 runs exhibits a
clear tendency to decrease as r increases for small 7.

Figure 6: Tangent planes on the original bunny

sampling distribution of the PCD. While we could attempt
to compute the exact values of ¢1 and c2, we simply guessed
the value ¢; and c2. The value of € was fixed at 0.1.

Given a PCD, we estimated the local sampling density
as follows. For a given point p in the PCD, we used the
approximate nearest neighbor library ANN [5] to find the
distance s from p to its k-th nearest neighbor for some small
number k, k = 15 in our experiments. The local sampling
density at p was then approximated as p = k/(ws?) samples
per unit area.

To estimate the local curvature, we used the method pro-
posed by Gumhold et al. [10]. Let p;, 1 < j < k be the k
nearest sample points around p, and let p be the average
distance from p to all the points p;. We computed the best
fit least square plane for those k points, and let d be the
distance from p to that best fit plane. The local curvature
at p can then be estimated as x = 2d/pu>.

Once all the parameters were obtained, we computed the
neighborhood size r using Equation 5. Note that the esti-
mated value of r could be used to obtain a good value for k&,
which can to be used to re-estimate the local density and the
local curvature. This suggests an iterative scheme in which
we repeatedly estimate the local density, the local curva-
ture, and the neighborhood size. In our experiments, we
found that 3 iterations were enough to obtain good values
for all the quantities.

We still have problems with obtaining good estimates for
the constants ¢; and c2. Fortunately, we only have to esti-
mate the constants once for a given PCD, and we can use
the same constants for many PCD with a similar point dis-
tribution. In our experiments, we used the same value for
both ¢1 and c¢2. This value was chosen so that the com-
puted normals on a small region of the PCD were visually
satisfactory.

Figure 6 shows the computed tangent planes for the orig-



Figure 7: Normal estimation errors for the bunny
PCD with noise added. The subfigures show the
points of the PCD using the pink color whenever
the errors are above 10°,8°, and 5° respectively.

inal Stanford bunny. The planes are drawn as small fixed
size square patches *. We noted that our computed normals
are similar to those obtained using the cocone method by
Amenta et al. [4].

Noisy PCD wused in our experiments were obtained by
adding noise to the original bunny. The z, y, and z compo-
nents of the noise were chosen independently and uniformly
random in the range [—0.0005,0.0005]. The amplitude of
this noise is comparable to the average distance between
the sample points and their nearest samples.

We computed the normals of the noisy PCD, and used the
angles between those normals and the normals of the origi-
nal PCD as estimates of the normal computation errors. In
Figure 7, we color coded the estimation errors using a con-
vention in which the color of the square patch at a point of
the PCD showed the error at that point. The color of a patch
is blue when there is no error, and it gets darker as the error
increases. When the error is larger than a certain threshold,
the patch becomes pink. Figure 7 shows the tangent planes
where the thresholds are 10°, 8°, and 5° respectively.

We ran the least square normal estimation algorithm on
the bunny with different amounts of noise added to it and
observed that the algorithm worked well. We also noted that
the normal estimation method based on cocone performed
poorly in the presence of noise.

5. CONCLUSIONS

We have analyzed the method of least square in estimating
the normals to a point cloud data derived either from a
smooth curve in R? or a smooth surface in R®, with noise
added. In both cases, we provided theoretical bound on the
maximum angle between the estimated normal and the true
normal of the underlying manifold. This theoretical study
allowed us to find an optimal neighborhood size to be used
in the least square method.
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