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Abstract

Computerized detection of clustered microcalcifications (MCs) in mammograms often suffers 

from the occurrence of false positives (FPs), which can vary greatly from case to case. We 

investigate how to apply statistical estimation to determine the number of FPs that are present in a 

detected MC lesion. First, we describe the number of true positives (TPs) by a Poisson-Binomial 

probability distribution, wherein a logistic regression model is trained to determine the probability 

for an individual detected MC to be a TP based on its detector output. Afterward, we model the 

spatial occurrence of FPs in a lesion area by a spatial point process (SPP), of which the 

distribution parameters are estimated from the detections in the lesion and its surrounding region. 

Furthermore, to improve the estimation accuracy, we incorporate the Poisson-Binomial 

distribution of the number of TPs into the SPP model by using maximum a posteriori (MAP) 

estimation. In the experiments, we demonstrated the proposed approach on the detection results 

from a set of 188 full-field digital mammography images (95 cases) by three existing MC 

detectors. The results demonstrated that there was a strong consistency between the estimated and 

the actual number of TPs (or FPs) for these detectors. When the fraction of FPs in detection was 

varied from 20% to 50%, both the mean and median values of the estimation error were within 

11% of the total number of detected MCs in a lesion. In particular, when the number of FPs 

increased to as high as 11.38 in a cluster on average, the error was 2.51 in the estimated number of 

FPs. In addition, lesions estimated to be more accurate in detection were shown to have better 

classification accuracy (for being malignant or benign) than those estimated to be less accurate.

Index Terms

Computer-aided diagnosis (CAD); clustered microcalcifications (MCs); false positives in 

detection; spatial point process; mammography

I. Introduction

Breast cancer is the most commonly diagnosed cancer, apart from skin cancer, among 

women in the US, accounting for nearly one in every three cancer cases. Breast cancer is 
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also the second leading cause of cancer deaths among women after lung cancer [1]. 

Screening mammography is one of the most widely used methods for early breast cancer 

diagnosis. It is typically performed on asymptomatic women, and is reported to double the 

number of early-stage cancer cases that are diagnosed each year in the US [2].

Studies show that clustered microcalcifications (MCs) can be a sign of non-palpable breast 

cancer [3], and are present in 30–50% of patients diagnosed at early stage [4]. MCs are tiny 

calcium deposits that appear as bright spots in mammograms (Fig. 1). Although MCs are 

often seen, they are difficult to diagnose accurately. Only 10% to 40% of biopsies for 

evaluating MCs are ultimately malignant [5]. For this reason, there are a number of studies 

to determine the potential relationship between MC features and pathology [6]–[8].

In the literature, there have been great interests in developing computerized methods to aid 

the diagnosis of MC lesions, e.g. [9], [10]. These methods are collectively known as 

computer-aided diagnosis (CAD). Generally speaking, there are two distinct tasks in a CAD 

system for MC lesions. One task is to determine whether clustered MCs are present or not in 

a mammogram under consideration (called CADe). The purpose is to alert radiologists to 

potential lesions for further evaluation. The other task is to determine whether a detected 

MC lesion is malignant or benign (called CADx). In CADx, the individual MCs in a lesion 

region are first located either by a human or by a CADe detector; afterward, the detected 

MCs are quantified by a set of image features, which is subsequently classified as malignant 

or benign by a pattern classifier. Conceivably, the detection accuracy of the individual MCs 

can directly affect the accuracy of the classification outcome, because the features extracted 

from the detected MCs will be impacted [11].

In practice, the utility of a CAD system is often compromised by the occurrence of false-

positives (FPs) in detection. MCs are typically very small, and can vary greatly in shape and 

size; they can be low contrast, and may even be hardly separable from their surrounding 

dense tissue [12]. Studies show that there can be many factors contributing to FPs in MC 

detection [13], which include MC-like noise patterns, imaging artifacts, linear structures 

such as milk ducts, etc. This has led to great efforts in developing CADe methods for 

improving the accuracy in MC detection (by increasing sensitivity and reducing FP rate) 

[12], [14]–[23].

In spite of these efforts, a major challenge facing MC detection algorithms is the great inter-

patient variability in mammogram characteristics. For example, it is more difficult to 

accurately detect MCs in dense breasts [24] or in young women [12]. In the literature, the 

detection performance of an MC detector is typically reported in terms of how accurately the 

presence of an MC cluster (instead of individual MCs therein) is correctly detected in a 

mammogram [25], [23]. This is because the aim of a CADe system is mainly to alert 

radiologists of potential lesions (i.e., a detected MC cluster) for further evaluation. As a 

result, the accuracy of individual MCs in a detected cluster is not directly assessed in a 

CADe system. Conceivably, the latter is further subject to intra-patient variability, because 

individual MCs within a lesion can even vary greatly.
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To illustrate this, in Fig. 2 we show a box-car plot of the sensitivity level achieved by an MC 

detector (the DoG detector in [16]) over a set of 200 MC lesions (Section III-D); a common 

decision threshold was used for the different lesions and the average sensitivity was 70%. 

We note that a wide range of variation in sensitivity occurred among the lesions, with 25% 

of the lesions having a sensitivity above 0.848 and 25% having a sensitivity below 0.563. 

Moreover, in Fig. 2 we also show a box-car plot of the fraction of FPs (FPF) among the 

individual detections in each detected cluster. Note that there was also a wide range of 

variation in the FPF among the lesions, with 25% of the lesions having an FPF above 0.558 

and 25% with an FPF below 0.25.

Given the large variabilities among lesions in detecting individual MCs (as observed above), 

it is expected that the accuracy of a detected lesion by a CAD system is inevitably subject to 

large case-to-case variations. Thus, it is important to determine how accurate the detections 

are in a detected MC cluster. For example, in a CADe system, knowing the level of FPs 

among the detections can provide important information on the confidence of the alert 

generated by the system. Similarly, in a CADx system, the accuracy of a CADx classifier 

can be adversely affected by the presence of high levels of FPs (as to be seen in the results in 

Section IV-D). Since the purpose of both CADe and CADx systems is to assist human 

readers, providing such information on the accuracy of detections can potentially prompt the 

reader to more closely examine the validity of the CAD output when a detected lesion is in 

question.

In this work, we aim to develop a framework to assess the level of accuracy among 

individual MCs in a detected cluster. For this purpose, we estimate the number of FPs (or, 

equivalently, the number of true positives (TPs)) in a cluster. Specifically, suppose that there 

are n objects (i.e., both FPs and TPs) detected. We want to determine among them how many 

are FPs and how many are TPs. We propose two different approaches for this problem. In 

the first approach, we use a Poisson-Binomial probability model to describe the number of 

TPs based on the probability for each detected object to be a TP (or FP); for the latter, we 

use a logistic regression model, which is based on the characteristics of the detector output 

of a detected object. In the second approach, we use a spatial point process (SPP) to 

characterize the occurrence of FPs in a lesion region, and apply statistical estimation 

(maximum likelihood (ML) or maximum a posteriori (MAP)) to determine the number of 

FPs.

The proposed framework is general and expected to be applicable to different MC detectors. 

In this study we demonstrated its performance with three existing detectors. The first two 

have been well cited in the literature: the difference of Gaussian (DoG) in [16] detector, 

which is an example of image enhancement detectors, and the support vector machine 

(SVM) detector in [22] (an example of machine learning detectors). The third detector is a 

context-sensitive MC detector published recently in [26]. As to be seen in the results 

(Section IV), these three detectors differed in terms of their detection accuracy levels. Thus, 

they serve as a good test bed for the proposed framework.

To the best of our knowledge, there is no previous work reported in the literature which 

directly deals with how to determine the detection accuracy on a case by case basis. While 
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our application is for MC detection, the proposed framework is expected to be applicable for 

other similar detection problems, such as cell detection in microscopic images [27]–[29].

The rest of the paper is organized as follows: In Section II, we present the methodology for 

determining the accuracy of a detected MC cluster and explain the different methods used 

for this purpose. In Section III, we describe the approach used for evaluating the proposed 

framework. We present our results in Section IV, and provide discussions in Section V. 

Finally, we provide conclusions in Section VI.

II. Methodology

A. Problem formulation and overview

Consider a lesion region  which contains a number of clustered MCs in a mammogram 

image. Assume that, for identifying the individual MCs, an MC detector f(·) has been 

applied to the image region such that a set of detected objects (i.e., potentially MCs) is 

obtained in . We want to estimate the number of true MCs among the set of detections. 

For convenience, let’s denote each detected object i by a feature vector x(i) (to be defined 

subsequently), i = 1, …, n, where n is the number of detected objects, and let y(i) denote its 

unknown label (1 for being a true MC, and 0 otherwise). Then, the number of true MCs 

among all the detections is given by

(1)

Our goal is to estimate the value of M.

Note that the number of false positives (FPs) among the detections is given by n − M. Thus, 

from this point on we refer to the estimation of the number of TPs indistinctly from that of 

FPs.

We considered two approaches for estimating M in (1), namely a probabilistic model 

approach, and a spatial point process (SPP) estimation approach, as outlined below:

1. Probabilistic model approach. We employed a logistic regression model [30] to 

estimate the probability for each detection x(i) being a TP or a FP (i.e., y(i) = 1 or 

0) based on the characteristics of the detector output at x(i). Afterward, the 

probability distribution (a Poisson-Binomial distribution) was derived for the 

number of TPs (i.e. M) among all detections.

2. Spatial point process (SPP) modeling approach. We modeled the occurrence of 

FPs in a lesion region by a 2D stochastic point process [31]. To account for the 

noise characteristics of each case, we made use of a reference region in the 

immediate vicinity of the lesion, in which we assumed only FPs can occur. We 

used this reference region together with the lesion region to estimate both the 

rate parameter of FPs and the number of TPs. We considered two different 

approaches for estimating these parameters: i) maximum likelihood (ML) 
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estimation, and ii) maximum a posteriori (MAP) estimation. For the latter, we 

used the Poisson-Binomial distribution approach derived above as a prior for the 

number of TPs.

B. Probabilistic model approach

Consider a detected object i in lesion region . We aim to estimate the probability for it to 

be a TP (i.e., y(i) = 1) based on the characteristics in its detector output (described by feature 

vector x(i)). In this study, we estimated this probability via a logistic regression model [30] 

as

(2)

where w and b are parameters to be determined through supervised learning (as described 

subsequently). Note that the probability for x(i) to be an FP (i.e., y(i) = 0) is given by 1 − 

p1(x(i)).

Now consider all the detections x(i), i = 1, …, n, in . With the probability specified for 

each detection as in (2), we can derive the probability distribution for the number of TPs 

among the detections, i.e., M in (1). Indeed, M follows a Poisson-Binomial distribution [32], 

which is given by

(3)

where Fk is the collection of all possible subsets formed from k distinct integers in {1, 2, …, 

n}, and Ac is the complement of A, i.e. Ac = {1, 2, …, n}\A.

With the distribution defined in (3), we can derive either a confidence interval estimate or a 

point estimate for M. In this study, we considered the latter. In particular, we used the mode 

of the distribution as an estimator for M. That is,

(4)

Alternatively, we may also estimate M by using its statistical mean, which is given by

(5)
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We note that the estimator in (5) is slightly simpler computationally than the mode estimator 

in (4), while the latter always yields an integer value. To simplify the numerical evaluation 

of the Poisson-Binomial distribution in (3), in our implementation, we used a well-known 

Poisson approximation [32] for its computation:

(6)

where n is the total number of detections and μ is given by (5).

In our experiments we found that the above two estimators could yield similar results. We 

will report results mainly for the mode estimator in (4). We note that the distribution in (3) is 

also to be used as a prior for M in the MAP estimation approach later in Section II-C2.

Finally, for characterizing the properties in the detector output of a detected object i, we used 

a small window centered around the detected object. This is out of consideration that MCs 

are typically limited in size (0.1 to 1.0 mm in diameter) [12] and that their spatial extent is 

further reduced in the domain of detector output. In our experiment, we used a 3×3 window 

in the detector output to form a 9-dimensional vector x(i) for each detected object (image 

resolution = 100 μm/pixel). Alternatively, one may consider using other features, such as 

image contrast, size, shape, etc. But such features will require segmenting the candidates, 

which will vary with the segmentation method used.

To determine the parameters w, b for the logistic regression model in (2), we used a set of 

training samples  = {(x(j), y(j)), j = 1, ⋯, m}. These training samples x(j) were obtained 

from the detections by the MC detector in use on a set of training mammograms (Section 

III-D) in which the MCs were known (for defining the labels y(j)). During the training step, 

the parameters w, b are determined through minimizing the following cost function [30]:

(7)

C. Spatial point process (SPP) model approach

A spatial point process (SPP) is used to describe the random distribution pattern of a set of 

points in a d-dimensional space (d = 2 in our application) [33]. After applying an MC 

detector to a given lesion region , neither the locations of the detected FPs nor their 

number of occurrences are known. To accommodate their random nature, we modeled the 

spatial distribution of the FPs within  by a Poisson point process [34]. Such a process is 

characterized by the following two properties: i) for a bounded spatial region B, the number 

of points contained within B follows a Poisson distribution of which the mean is 

proportional to the area of B; and ii) for two disjoint regions B1 and B2, the number of points 

within B1 is independent of that within B2.
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A challenge, however, is that for a given lesion region  both FPs and TPs can occur 

simultaneously, but neither of the two is known. To facilitate modeling the random 

occurrence of FPs in , we introduced a reference region ℛ, which is located in the 

immediate vicinity of  from the same mammogram, as illustrated in Fig. 3. This reference 

region is assumed to have the following properties: i) it does not contain any true MCs; 

hence, only FPs will be detected by the MC detector in ℛ; ii) the image noise characteristics 

in ℛ are similar to those in the lesion region ; thus, the occurrence of FPs follows a 

common random process in the two regions.

To quantify the random process of FPs, we applied the same MC detector to  and ℛ. Let 

Nr denote the number of resulting detections in ℛ. Then Nr obeys the following Poisson 

distribution:

(8)

where Ar denotes the area of ℛ, and λ denotes the rate parameter which is the expected 

number of FPs per unit area.

On the other hand, for the lesion region , let M be the number of detected MCs as in (1), 

and Nl the total number of detections. Then Nl − M is the number of FPs, and Nl obeys the 

following distribution:

(9)

where Al denotes the area of lesion region .

Given that the two regions  and ℛ are non-overlapping, the joint distribution of the 

detections in the two regions can be written as

(10)

Our goal then becomes to estimate the parameters λ (rate of FPs) and M (the number of 

TPs) in (10). Below we describe two different approaches for this estimation.

1) Maximum likelihood (ML) estimation—Given the observations Nr and Nl, we used 

maximum likelihood (ML) estimation [35] to estimate λ and M. That is,

(11)
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In our experiment, we used the interior-point algorithm [36] for the optimization problem in 

(11).

2) Maximum a posteriori (MAP) estimation—In this approach, we take advantage of 

the Poisson-Binomial distribution p(M) derived earlier in (3) on the number of TPs. For this 

purpose, we seek a solution for M based on maximum a posteriori (MAP) estimation. That 

is,

(12)

It is noted that a uniform prior is used for the rate parameter λ above.

The MAP estimate above takes into account both the spatial distribution properties of FPs 

(as in ML) and the detector output properties (as in the probabilistic model approach).

III. Performance evaluation

A. Estimation accuracy of TPs/FPs in detection

To evaluate the estimation performance, for a given lesion with n detected objects, we 

compared the estimated number of TPs (or FPs) among these n detections against the actual 

number (i.e., the marked MCs). For quantifying the estimation accuracy, we used the 

following relative error:

(13)

where M is the actual number of TPs and M ̂is the estimated number.

Note that the fraction of TPs (TPF) among the n detections is given by . Thus, the relative 

error eP simply corresponds to the difference between the actual TPF and the estimated TPF 

in the detection results of a given lesion.

Furthermore, while the relative error eP is defined in terms of the number of TPs (i.e., M) in 

(13), it can be shown that it can also be used equally for measuring the accuracy of the 

estimated number of FPs. That is, the relative error eP also corresponds to the difference 

between the actual fraction of FPs (FPF) and the estimated FPF among the detected objects.

To summarize the estimation accuracy over all the lesions in the dataset, we report several 

statistics on eP, including the mean, median, first and third quartiles.

B. Classification of cases with different estimated accuracy levels in detection

As an indirect validation on the estimated accuracy on the detections in an MC lesion, we 

applied a CADx classifier to discriminate the lesion being malignant or benign based on the 
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detected MCs (which are subject to FPs). It is reasonable to expect that a lesion with fewer 

FPs (i.e., lower FPF) is more likely to be correctly classified than one with many FPs, and its 

performance will be closer to the human marked.

To demonstrate this, we divided the lesions in the dataset into two equal sized groups based 

on the estimated FPF values in their detected MCs, with group A having the lowest FPF 

values and group B having the highest FPF values. Afterward, the CADx classifier is applied 

to the cases within each group, and the classification accuracy is calculated accordingly. To 

summarize the classification accuracy, we used the area under the receiver operating 

characteristic (ROC) curve (AUC).

For the CADx classifier, we made use of a support vector machine (SVM) classifier 

previously developed in [37]. The decision function of this classifier is given by

(14)

where sk, k = 1, ⋯, Ns are the support vectors, wk and b are the model parameters, all of 

which are determined from training.

In (14), the Gaussian radial basis function (RBF) kernel is used, i.e.,

(15)

where σ > 0 is the kernel width.

For characterizing each lesion, we used the same set of features as in [37]; these features 

were selected to have intuitive meanings that are consistent with image features interpreted 

by radiologists [38]. Specifically, they are as follows: 1) the number of MCs in the cluster; 

2) the mean effective volume (area times effective thickness) of individual MCs; 3) the area 

of the cluster; 4) the circularity of the cluster; 5) the relative standard deviation of the 

effective thickness; 6) the relative standard deviation of the effective volume; 7) the mean 

area of MCs; and 8) the second highest MC-shape-irregularity measure. The specific details 

about these features can be found in [38].

The SVM classifier in (14) was pre-trained on a dataset of 376 screen-film mammogram 

images from 222 subjects (118 benign, 104 cancer). For the SVM classifier, the following 

parameters were used: σ = 10 and C = 100 (C is a regularization parameter used to control 

the trade-off between the model complexity and empirical risk in model training).
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C. MC detectors for demonstration

To demonstrate the proposed approach for estimating the accuracy in MC detection, we 

considered three existing MC detectors, among which the first two have been well cited in 

the literature and the third one was published recently [26]. More specifically, the first 

detector is an SVM detector developed in [22], which is based on supervised learning. The 

second one is the DoG detector [16], which is of low computational complexity for MC 

detection. The third detector is a context-sensitive MC detector, which is designed to 

suppress FPs in MC detection. As an illustration, in Fig. 4 we show the output of these three 

detectors when applied to the two ROIs shown earlier in Fig. 1. As can be seen, the MCs are 

notably enhanced in the output of the detectors. However, the noise patterns are quite 

different among the detectors, and there are also numerous bright spots which would be 

falsely detected depending on the operating threshold used.

For MC detection in each lesion image, the output of the detector in use was compared 

against an operating threshold T. The detected pixels in the output were then grouped (with 

8-neighbor connection) into objects. Those objects smaller than 3 pixels in size were 

discarded in order to reduce spurious detections. A detected object was treated as a TP when 

it was less than 0.3 mm away from a marked MC or at least 40% of its area overlaped with 

that of an MC; otherwise it was counted as an FP.

To fully assess the performance of the proposed approach at different FP levels, in our 

experiments the operating threshold T was adjusted such that the sensitivity level in 

detection was varied over a wide range (from 60% to 85%). Afterward, the proposed 

approach was applied to the detection results obtained by the three detectors at different 

sensitivity levels. In view that when FPF is above 50% there are more FPs than TPs in a 

detected lesion, we tested these detectors for FPF range up to approximately 50%.

D. Mammogram dataset

For this study we made use of a set of full-field digital mammography (FFDM) images 

collected by the Department of Radiology at the University of Chicago under IRB approval. 

The image set consisted of 188 images from 95 cases (43 malignant, 52 benign), all 

containing clustered MCs. They were acquired using a Senographe 2000D FFDM system 

(General Electric Medical Systems; Milwaukee, WI) with a spatial resolution of 100 μm/

pixel. Most of the cases had both craniocaudal and mediolateral oblique views. The MCs in 

each mammogram were manually identified by a researcher with more than 15 years of 

experience in mammography research and with special training on interpreting 

mammograms. In total, there were 8,979 MCs marked in these 188 mammograms.

For the purpose of evaluating the accuracy in the detected MCs, the lesion regions of 

clustered MCs in these mammograms were marked out by a bounding circle with a diameter 

of 1 cm, 2 cm, or 3 cm (according to the lesion size), so that all the marked MCs were 

contained inside the circle; for those elongated lesions, an ellipse of equal area was used in 

place of the bounding circle. For the spatial point process model approach, a reference 

region is needed for each lesion. In our experiment, this region was set to be the immediate 
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annulus region outside the lesion of which the area is equivalent to that of a disk of 3 cm in 

diameter. For illustration, an example is shown in Fig. 3 for a lesion and its reference region.

In the probabilistic model approach, a training set is needed for the logistic regression model 

as in (2). For this purpose, we adopted a 2-fold cross validation procedure [39] in which the 

cases in the dataset were randomly divided into two subsets so that the cases were used 

independently either for training or for testing, but never both. The test results from each 

fold were aggregated together to obtain the estimation error eP [40]. The model was trained 

separately for each detector at the highest sensitivity (75% for DoG and SVM, and 85% for 

the context-sensitive detector).

IV. Results

For convenience, below the probabilistic approach is referred to as PBD (for Poisson-

Binomial distribution), and the spatial point process model approach is referred to as SPP-

ML when ML estimate is used or as SPP-MAP when MAP estimate is used. To avoid 

confusion, we present the results separately for the three MC detectors. For each detector, 

we report the estimation results at four different operating points with the fraction of FPs in 

detection ranging approximately from 20% to 50%.

A. Estimation of the number of TPs/FPs in SVM detector

In Fig. 5(a) we show a scatter plot of the estimation results obtained by the PBD method for 

all the lesions in the dataset when the detector sensitivity level is at 70%. Similarly, the 

estimation results obtained by SPP-ML and SPP-MAP are shown in Figs. 5(b) and 5(c), 

respectively. In these plots, each point corresponds to a lesion, of which the y coordinate is 

the estimated number of TPs (M̂) and the x coordinate is the actual number of TPs (M). 

Thus, a point on the 45° line represents a perfect match between M̂ and M. Note that a 

logarithmic scale is used in the plot in order to accommodate the large range in the number 

of TPs.

From Fig. 5 it is observed that there is good agreement between the actual and the estimated 

results obtained by all three methods. Quantitatively, the correlation coefficients between M ̂ 

and M were 0.9684 for PBD, 0.9467 for SPP-ML, and 0.9707 for SPP-MAP. Furthermore, a 

paired t-test comparison revealed no statistically significant difference between the mean 

values of M ̂and M, with p-value = 0.7731 for PBD, 0.8523 for SPP-ML, and 0.9731 for 

SPP-MAP. These results indicate that there is no systematic bias in the estimates by the three 

methods.

To further quantify the accuracy of the estimation results in Fig. 5, in Table I (2nd row) we 

show a summary of the estimation error eP obtained by the three methods. For each method, 

the mean, median, first and third quartiles of eP over all the lesions in the dataset are given. 

The median values of eP were 0.1007 for PBD, 0.1429 for SPP-ML, and 0.0833 for SPP-

MAP. The SPP-MAP approach is noted to be more accurate than SPP-ML (p-value < 10−4, 

bootstrapping test with 20,000 samples) and PBD (p-value=0.0185).
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We also tested the estimation methods when the MC detector was set at different sensitivity 

levels. For brevity, we summarize these results in Table I; as an indication of the FP levels, 

the corresponding mean FPF is also shown for each sensitivity level. For example, for 

sensitivity at level 65%, the mean values of eP were 0.1216, 0.1627, and 0.1053 for PBD, 

SPP-ML, and SPP-MAP, respectively. As observed above, these results indicate that SSP-

MAP is more accurate than both PDB and SPP-ML, and PDB is more accurate than SPP-

ML.

Moreover, in all three methods, the median value of eP was smaller than its corresponding 

mean value at all sensitivity levels. This indicates that the error distribution is skewed toward 

the left (i.e., lesions having smaller estimation errors).

B. Estimation of the number of TPs/FPs in DoG detector

In Table II we show a summary of the estimation results when the DoG detector was used 

for MC detection on the lesions in the dataset. As in Table I above, the mean, median, first 

and third quartiles of the estimation error eP are given for each of the three methods, namely 

PBD, SPP-ML, and SPP-MAP. In this case, given the higher FPF, the detection sensitivity 

was varied at a sensitivity range from 60% to 75%, and the estimation results are given for 

each level.

From Table II, it can been seen that at sensitivity level 60% the mean value of eP was 0.0822 

for SPP-MAP, compared to 0.0983 for PBD (p-value=0.0174) and 0.1474 for and SPP-ML 

(p-value < 10−4), respectively. Similarly, the median value of eP was 0.0526 for SPP-MAP, 

compared to 0.0714 for PBD, and 0.0952 for SPP-ML. On the other hand, at sensitivity level 

75%, the mean value of eP was 0.0925 for PBD, compared to 0.1697 for SPP-ML and 

0.0965 for SPP-MAP; a statistical comparison yielded no difference between PBD and SPP-

MAP (p-value=0.6568).

C. Estimation of the number of TPs/FPs in context-sensitive MC detector

In Table III we summarize the estimation results obtained for the context-sensitive MC 

detector. Given the much lower FPF in this detector, the sensitivity levels are shown from 

70% to 85%.

As in the results above, the results in Table III indicate that SSP-MAP is more accurate than 

both PDB and SPP-ML. For example, at sensitivity 80%, the median values of eP were 

0.1256 for PBD, 0.1408 for SPP-ML, and 0.1030 for SPP-MAP. The SPP-MAP approach is 

noted to be more accurate than SPP-ML (p-value < 10−4) and PBD (p-value=0.0033).

D. CADx accuracy vs. estimated detection accuracy

As described in Section III-B, in this experiment we tested whether the estimated detection 

accuracy of the MCs in a lesion can correlate with its classification accuracy by a CADx 

classifier. For this purpose, we divided the lesions into two equal sized groups, with group A 

having the lesions with the lowest estimated FPF values, and group B having the rest. Below 

we show the results obtained with the SPP-MAP method when detection sensitivity was set 

at 70% for the SVM and DoG detectors and 80% for the context-sensitive detector. We 
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chose these sensitivity levels in order to achieve high sensitivity in detection while keeping 

FPF below 50%. For the SVM detector, the estimated average FPFs were 0.1927 for group 

A (actual 0.2263) and 0.4470 for group B (actual 0.4316). For the DoG detector, the average 

estimated FPFs were 0.2313 for group A (actual 0.2456) and 0.5296 for group B (actual 

0.5173). For the context-sensitive detector, the average estimated FPFs were 0.1876 for 

group A (actual 0.2096) and 0.5723 for group B (actual 0.6283). While similar results could 

be obtained at other sensitivity levels and also for PBD and SPP-ML methods, they are not 

shown here in the interest of space.

In Table IV we show the classification results on the two groups when the SVM detector was 

used, where the AUC is given for each group. As reference, the AUC values are also given in 

Table IV when the human marked MCs were used by the CADx classifier. As can be seen, 

for group B the AUC of the detected MCs was notably lower than that of the human marked 

MCs, where the difference in AUC was 0.1881 (denoted by dAUCB); in comparison, for 

group A the AUC value of the detected MCs was much closer to that of the human marked, 

where the difference in AUC was 0.0243 (denoted by dAUCA). To quantify the statistical 

difference in AUC deviations between the two groups (i.e., dAUCA vs. dAUCB), we 

conducted a randomized permutation test [41], which yielded a p-value of 0.0257 for the 

observed AUC differences between the two groups. In the permutation test, all the lesions in 

group Ap were randomly permuted with those in group Bp (each lesion with probability 0.5), 

based on which the null distribution for dAUCB − dAUCA was obtained. A total of 20,000 

permutations were used.

Similarly, we show in Table V the classification results on the two groups when the DoG 

detector was used. In this case, the differences in AUC between human marked and detected 

were −0.0196 for group A and 0.2156 for group B. A permutation test yielded a p-value of 

0.0027 on such differences.

In Table VI we show similar results for the context-sensitive detector. As can be seen, for 

group B the AUC of the detected MCs are notably lower than that of the human marked 

MCs, where the difference was AUC is 0.1433; in comparison, for group A the AUC value 

of the detected MCs was much closer to that of the human marked, where the difference in 

AUC was −0.0216 (p-value = 0.0236).

V. Discussions

A. Estimation accuracy vs level of FPs

From Fig. 5, the estimation accuracy is observed to vary with the number of TPs in a lesion 

in all three methods. In particular, the estimation error tends to be larger for lesions with 

fewer TPs. This is more related to the number of detections in the cluster. To further 

examine this, we divided the lesions in the dataset into three groups: group one having 

lesions with 10 or fewer detections (76 lesions), group two having lesions with between 11 

and 30 detections (89 lesions), and group three having lesions with 31 or more detections 

(35 lesions). We then calculated the estimation error eP for the lesions in each of the three 

groups. In Fig. 6 we show a box-car plot of the distribution of eP within each group obtained 

by PBD, SPP-ML, and SPP-MAP, respectively. As can be seen, the error eP decreased from 
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group 1 to group 3. For example, for PBD, the median eP were 0.1429 in group one, 0.1062 

in group two, and 0.0889 in group three. Moreover, the within-group variations also 

decreased from group one to group three.

We believe that the above observation can be explained as follows: in both PBD and SPP-

ML we need to estimate the statistical distribution (i.e., the Poisson-Binomial distribution or 

the spatial point process) underlying each method based on the detected objects from a 

lesion area. Among the three groups above, the number of detections increased from group 1 

to group 3, and so did the number of FPs, with the average being 2.13 in group 1, 6.5 in 

group 2, and 17.65 in group 3. Thus, the estimates of the distribution parameters in both 

PBD and SPP-ML are expected to become more accurate as more detected samples become 

available from group 1 to group 3. This in turn can help improve the estimation accuracy 

even though the number of FPs increased.

The same reasoning above can also be used to explain the estimation results at different 

sensitivity levels by the three methods. Take PBD in Table I for example. The average error 

eP varied only slightly in the range between 0.1175 and 0.1284 as the sensitivity level was 

increased from 65% to 80% (FPF increased correspondingly from 0.2316 to 0.5441). For 

example, at sensitivity level of 75%, the average number of detections in a cluster is 25.51, 

among which 11.38 are FPs. The corresponding average estimation errors on the number of 

FPs (or TPs) were 2.685 by PBD and 2.515 by SPP-MAP.

B. Estimation accuracy of different methods

From the results in Tables I, and II and III it is observed that the three estimation methods 

achieved different results in performance. We believe this is due to the underlying 

differences in the information utilized by the different methods. Specifically, the PBD 

approach directly makes use of the detector output values on the individual detections. In 

contrast, the SPP-ML approach is based on only the spatial distribution of detections in a 

reference region aside from the lesion region. As a result, the latter is expected to be 

supplementary, as it does not directly make use of the detector output which reflects the 

strength of a detected signal. However, with SPP-MAP, it combines the information from 

both sources, and thus, the estimation accuracy is expected to improve over both PBD and 

SPP-ML. This improvement is noted in particular when the detection sensitivity is low (at 

which there are fewer detections). For example, in Table I, at sensitivity 65%, the average 

error eP was improved to 0.1053 in SPP-MAP, compared to 0.1216 for PBD and 0.1627 for 

SPP-ML.

C. Ground truth in evaluation

In this study we quantified the estimation accuracy by the different methods based on the 

human marked MCs. In the literature, human marked MCs are routinely used as the ground 

truth in development of MC detection algorithms (e.g. [42]–[45]). However, human marked 

MCs are inevitably subject to errors associated with inter- and intra-observer variations. As a 

result, the obtained error level eP could be affected by the errors associated with the marked 

MCs. Nevertheless, the classification results in Tables IV, V, and VI show that the human 

marked MCs consistently yielded higher AUC values than the detected in group B (which 
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were estimated to have more FPs). This indicates that the human marked MCs are more 

accurate than those detected for classifying a lesion being malignant or benign.

VI. Conclusion

In this study, we investigated how to determine the accuracy of a detected MC lesion by 

estimating the number of FPs (and TPs) present among the detected MCs. We developed two 

different approaches for this purpose: one is to derive a probability model for each detection 

to be a TP (or FP) based on the detector output; the number of TPs among the detections in a 

lesion is then described by a Poisson-Binomial distribution. The second approach is to 

model the occurrence of FPs in a lesion area by a spatial point process (SPP) for which the 

parameters are estimated based on the detections within both the lesion and its surrounding 

region. For the latter approach we also applied MAP estimation in which the Poisson-

Binomial distribution from the first approach is incorporated into the SPP model so that both 

detector output and the spatial occurrence information can be utilized. We demonstrated 

these estimation methods with three different MC detectors, namely SVM detector, DoG 

detector and context-sensitive classification model detector, on a set of 188 FFDM images 

from 95 cases. The results showed that the estimated number of FPs (or TPs) can be fairly 

accurate when compared to their actual number in each lesion in the dataset. Moreover, as a 

possible application of the accuracy estimation method we also demonstrated that the 

classification on a case being malignant or benign can be more accurate when it is estimated 

to have lower FPs. This indicates that the proposed estimation methods can be useful not 

only for assessing the accuracy of the detected MCs in a lesion when human marking is not 

available, but also for providing a confidence measure on the output of a CADx system 

based on the level of FPs present. In future work, we plan to investigate how to improve the 

classification performance of a CADx system by exploiting the estimated detection accuracy 

in a lesion.
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Fig. 1. 
Two mammogram ROIs with clustered MCs (marked by red square symbols).
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Fig. 2. 
Box-car plots of true positive fraction (TPF) and false positive fraction (FPF) in detection 

over 200 MC lesions by the DoG detector with mean sensitivity 70%.
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Fig. 3. 
Illustration of a lesion region  (diameter 1 cm) and its reference region ℛ. There are 7 

MCs in the lesion.
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Fig. 4. 
Output by SVM, DoG and contex-sensitive detectors for the two example ROIs (1 and 2) in 

Fig. 1.
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Fig. 5. 
Scatter plots of actual (x-axis) vs estimated (y-axis) number of TPs by PBD, SPP-ML, and 

SPP-MAP for the SVM detector at TPF = 70%. Malignant cases are indicated by red * 

symbols and benign cases by green square symbols.
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Fig. 6. 
Box-car plots of the relative estimation error obtained by PBD, SPP-ML, and SPP-MAP for 

all the cases with detection sensitivity = 70%. Lesions in Group 1 have 10 or fewer 

detections, those in Group 2 have detections between 11 and 30, and those in Group 3 have 

more than 30 detections.
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TABLE IV

AUC values for two groups with different estimated FPF levels with SVM detector

A B

Detected MCs 0.7270 0.5860

Marked MCs 0.7513 0.7741

dAUC 0.0243 0.1881
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TABLE V

AUC values for two groups with different estimated FPF levels with DOG detector

A B

Detected MCs 0.7447 0.5626

Marked MCs 0.7251 0.7781

dAUC −0.0196 0.2156
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TABLE VI

AUC values for two groups with different estimated FPF levels with context-sensitive detector

A B

Detected MCs 0.7944 0.6364

Marked MCs 0.7728 0.7797

dAUC −0.0216 0.1433

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.


	Abstract
	I. Introduction
	II. Methodology
	A. Problem formulation and overview
	B. Probabilistic model approach
	C. Spatial point process (SPP) model approach
	1) Maximum likelihood (ML) estimation
	2) Maximum a posteriori (MAP) estimation


	III. Performance evaluation
	A. Estimation accuracy of TPs/FPs in detection
	B. Classification of cases with different estimated accuracy levels in detection
	C. MC detectors for demonstration
	D. Mammogram dataset

	IV. Results
	A. Estimation of the number of TPs/FPs in SVM detector
	B. Estimation of the number of TPs/FPs in DoG detector
	C. Estimation of the number of TPs/FPs in context-sensitive MC detector
	D. CADx accuracy vs. estimated detection accuracy

	V. Discussions
	A. Estimation accuracy vs level of FPs
	B. Estimation accuracy of different methods
	C. Ground truth in evaluation

	VI. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI

