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ABSTRACT

Motivation: Understanding regulation of transcription is central for

elucidating cellular regulation. Several statistical and mechanistic

models have come up the last couple of years explaining gene tran-

scription levels using information of potential transcriptional regulators

as transcription factors (TFs) and information from epigenetic modifi-

cations. The activity of TFs is often inferred by their transcription levels,

promoter binding and epigenetic effects. However, in principle, these

methods do not take hard-to-measure influences such as post-tran-

scriptional modifications into account.

Results: For TFs, we present a novel concept circumventing this

problem. We estimate the regulatory activity of TFs using their cumu-

lative effects on their target genes. We established our model using

expression data of 59 cell lines from the National Cancer Institute. The

trained model was applied to an independent expression dataset of

melanoma cells yielding excellent expression predictions and eluci-

dated regulation of melanogenesis.

Availability and implementation: Using mixed-integer linear pro-

gramming, we implemented a switch-like optimization enabling a con-

strained but optimal selection of TFs and optimal model selection

estimating their effects. The method is generic and can also be applied

to further regulators of transcription.

Contact: rainer.koenig@uni-jena.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Understanding regulation mechanisms of a cell is fundamental

for biomedical research, and transcription factors (TFs) are the

central regulators of gene expression. Through identification of

TF binding, the regulatory role of TFs can be inferred. Hence,

chromatin immunoprecipitation (ChIP) techniques pulling down

DNA fragments binding to the TF were developed and scaled up

using microarrays (ChIP-chip) and sequencing techniques (ChIP-

seq). Genome-wide data have been produced from this for a

large set of TFs and several cell systems stored in larger data

repositories [e.g. (Lachmann et al., 2010)]. However the specific

cellular context under study usually does not match the experi-

mental background of the deposited data. In addition, TF

binding need not necessarily lead to a regulatory impact of the

TF, in particular if the target gene is not expressed at all. Hence,

computational approaches have been developed using these data

to apply it to gene expression data of the studied cells. For in-

stance, Cheng and co-workers (Cheng et al., 2012) used machine

learning methods and a linear model to predict regulators ex-

plaining gene expression. They used ChIP-seq/ChIP-chip data

from the ENCODE project and identified distinctive regulation

principles of generic and specific TFs, TFs binding preferentially

to CpGs and cell type specificity. Interestingly, their method was

challenged when predicting transcription levels of genes under

complex cellular control, such as cell cycle genes. ChIP data

have been used to compile position-weight matrices, which

were used to scan the genome for TF-specific binding motifs

(Dunham et al., 2012; Kranz, et al., 2011) independent of the

cellular context. However, this method comes along with high

false-positive rates. Modelling techniques were applied to filter

out such non-functional predictions. Setty et al. (2012) used a

sparse linear model explaining gene expression. Their model was

based on TF binding site predictions in promoters and miRNAs

in the 30UTR (UTR, untranslated region) aiming to predict regu-

lators leading to glioblastoma tumour formation.
Techniques were designed to elucidate regulation principles

between TFs and their putative target genes. The algorithm for

the reconstruction of accurate cellular networks [ARACNE

(Jang et al., 2013; Margolin et al., 2006)] and the context likeli-

hood of relatedness [CLR (Faith et al., 2007)] both use the tran-

scription level of a TF to estimate its activity by calculating

Pearson’s correlation or mutual information to its target genes.

ARACNE and CLR were combined and successfully applied to

identify target genes for Nrf2 in murine lungs in response to

oxidative stress (Taylor et al., 2008). However, there are many

steps between mRNA translation of a TF and the actual tran-

scriptional regulation of target genes. The TF can be post-trans-

lationally modified, i.e. it can be methylated, ubiquinated or

phosphorylated. Phosphorylations are often necessary for dimer-

ization and binding to the target gene’s promoter. It was shown

that such modifications can have a substantial impact on TFs

regulating their target genes (Filtz et al., 2014; Tootle and Rebay,

2005). The underlying concept that expression of the target genes

depends mainly on the mRNA gradients of their regulating TFs

is often violated, in particular in higher eukaryotes. It was shown*To whom correspondence should be addressed.
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that regulation of TFs on the protein level plays a substantial

role for hypoxia-inducible factors (Min et al., 2002) and p53

(Harris et al., 2010). Furthermore, TFs can interact, they can

regulate other TFs directly, if a TF binds to a promoter of an-

other regulator, or indirectly, if the expression of modifying en-

zymes such as kinases is altered. Hence, the expression level of a

TF is often not suitable to describe its activity. More suitable

readouts are the expression levels of the TF’s targets because all

these effects are integrated.
In contrast to previous attempts, we based our predictions on

the effects to the direct target genes of the TFs. We estimated the

activity of a TF using a global approach, i.e. regarding the regu-

lation of all its target genes. It is to note that this also accounts

for the fact that in different cells a TF can have a different impact

on its targets (Fig. 1).
Typically, several TFs can bind to a gene’s promoter and dif-

ferentTFsmay compete for binding sites. Tomodel this, weused a

linear approach. Similarly to previous studies (Cheng et al., 2012;

Dong et al., 2012; Setty et al., 2012), themodels were optimized by

predicting gene expression based on putative regulators (TFs) and

their predicted impact. More than a decade ago, one of the first

systems biology approaches was established using constraint-

based modelling to integrate stoichiometric equations under equi-

librium conditions (Savinell and Palsson, 1992; Schuster et al.,

1999). For this, the mathematical concept of mixed-integer

linear programming (MILP) was used. Shachar and co-workers

used MILP for calculating Steiner trees combining shortest paths

in signalling networks of yeast (Shachar et al., 2008). We used the

same mathematical concept to assemble signalling and biochem-

ical pathways for recognition of transcriptional patterns

(Schramm et al., 2010). Now, we used this technique for elabo-

rated regulation models to elucidate regulation mechanisms. In

contrast to a sparse lasso approach, MILP allowed us to (i) get

an optimized selection of TFs for a predefined number of param-

eters and to (ii) use a switching concept, which enabled the opti-

mization algorithm to decide for each TF to be modelled by its

cumulative effect on the target genes (activity) or its gene expres-

sion level (TF-gene expression). This concept allowed an unbiased

and TF-specific comparison of the two approaches.

2 MATERIALS AND METHODS

Statistical analysis and processing of the data were performed using R

version 3.0.1 (www.r-project.org). To solve the constraint-based models

for the prediction of gene expression, the Gurobi Optimizer 5.5 was used

(www.gurobi.com).

2.1 Gene expression data

We implemented and analysed our method using the gene expression

profiles of 59 cancer cell lines from the National Cancer Institute

(NCI-60 panel). The NCI-60 panel contains 60 cancer cell lines of nine

different origins, breast, central nervous system, colon, kidney, leukae-

mia, lung, melanoma, ovary and prostate (Liu et al., 2010; Shoemaker,

2006). The data were downloaded from CellMiner (Reinhold et al., 2012)

and based on an integration of five different microarray platforms (5-

Platform, Affymetrix HG-U95, HG-U133, HG-U133 Plus 2.0, GH Exon

1.0 ST and Agilent WHG) yielding a z-score for each gene of each sample

[details, see (Reinhold et al., 2012)]. Missing values were replaced by the

mean expression values of the according genes. The cell line SF 539 was

excluded from our analysis because of a large number (10 404) of not-

defined entries. As a second, independent dataset, we used gene expres-

sion data of melanoma cells from the study of Hoek et al. (2006). In brief,

melanoma cells were released from tissue sections of melanoma metas-

tases. Cells were cultured, total RNA was extracted, labelled and profiled

using Affymetrix HG-U133 plus 2.0 oligonucleotide microarrays.

The raw intensity signal was normalized using Affymetrix MAS 5.0.

Values below 0.01 were set to 0.01 and each value was divided by the

50th percentile of all values in that sample. Each expression value was

divided by the median of its values in all samples. Finally, expression

values were z-normalized for each gene. For our analysis, we used

expression data of 33 samples from the Mannheim cohort [details, see

(Hoek et al., 2006)].

2.2 Assembling predefined regulatory interactions

As a basis for inferring TF regulation, we used TF binding information

from several sources. From the database MetaCoreTM (http://thomson-

reuters.com/metacore/), human TF-target gene interactions annotated as

activation and inhibition were used, of both of the categories direct and

indirect. Further, we used z-scores of the total binding affinity (TBA),

which uses a TF binding profile for the whole promoter based on position

weight matrices (Molineris et al., 2011). Human entries of the CHIP

Enrichment Analysis (ChEA) database were used, which contained a

large set of data from high-throughput ChIP experiments (Lachmann

et al., 2010). At the date of use (July 2013), the ChEA database for

human comprised 83 TFs, 20 035 genes and 131996 total entries. In add-

ition, we used ChIP data from the ENCODE project (http:// www.

genome.gov/Encode/). We used binding information of cell lines for

which the most comprehensive set of regulation information was avail-

able (Tier 1), i.e. from the cell lines Gm12878, H1 human embryonic stem

cells, Hela3, HepG2 and K562. We yielded a binding matrix containing

values of ones if binding of a TF to a target gene was listed in Encode and

zero otherwise. If a target gene occurred more than once, the according

rows were combined to a single row containing consistent hits. If a TF

occurred more than once, the according columns were combined to one

column using the union of hits. With all these databases, we assembled

regulation information for 1120 TFs. A regulatory interaction informa-

tion between a TF and a target gene was considered to be reliable if (i)

this pair was found in Metacore with the annotation ‘direct’ or if (ii) this

pair was found in at least two of the datasets Metacore ‘indirect’, ChEA,

Encode and TBA with a value �1. For these pairs, their putative regu-

latory interaction called edge strength in the following was set to the

number of occurrences of the specific TF–gene pair of the datasets

CheA, Metacore direct activation, Metacore direct inhibition, Metacore

indirect activation and Metacore indirect inhibition. Furthermore, the

TBA value �1 was added to the edge strength. For all TF–gene pairs

not fulfilling criteria (i) or (ii), the edge strength was set to 0.

2.3 Regulation model

The basic idea was to optimize the model by minimizing the differences

between the measured gene expression values gij for genes i expressed in

Fig. 1. Concept of estimating the activity of a TF. For each sample, the

expression of all target genes for a certain TF was used to define the

actual activity of this TF
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cell line j and the predicted gene expression values ~gij, which equalled

minimizing the sum of error terms eij:

Xn

i=1

Xl

j=1

jgi;j � ~gi;jj=
Xn

i=1

Xl

j=1

ei;j ð1Þ

Optimization criterion:

min
Xn

i=1

Xl

j=1

ei;j ð2Þ

The absolute value had to be translated into inequalities for the MILP

solver yielding two constraints for each gene i and sample j:

gi;j � ~gi;j � ei;j � 0 ð3Þ

�gi;j+ ~gi;j � ei;j � 0 ð4Þ

Gene expression was predicted using the linear model

~gi;j=�0+
XT

t=1

�t � est;i � efft;j ð5Þ

in which �0 is an additive offset, T is the number of all TFs analyzed

(T=1120), �t the optimization parameter for TF t, est,i the edge strength

of TF t and gene i. efft,j is the estimated effect of TF t in sample j.

The calculation of efftj is described below. The TFs were connected to

their target genes through est,i, which is exemplarily shown in Figure 2,

and to the cell line via their effect efftj. The task of the optimization

program (Gurobi 5.5) was to calculate the �-coefficients within

the scope given by the constraints to minimize the sum of error terms.

The �-coefficients were not constrained and hence could get positive or

negative values.

2.4 Calculating the estimated effects of TFs

To model sample-specific effects of a TF, the estimated effects were

calculated. Two different definitions were tested:

efft;j=actt;j=

Xn

i=1

est;i � gi;j

Xn

i=1

est;i

ð6Þ

efft;j=gt;j ð7Þ

efft,j was the estimated effect of TF t in sample j, est,i the edge strength

between TF t and gene i, gi,j the gene expression of gene i in sample

j. Term (6) defines the activity basing on the cumulative effect of a

TF on all its target genes, normalized by the sum of all target genes to

balance TFs with high and low numbers of target genes. Term (7) defines

the effect of a TF just by the gene expression of the TF (TF-gene

expression).

2.5 The model switch

To combine the two models of activity and TF-gene expression, we put

up a switch in which the solver could choose for each TF which definition

of TF effects efft,j to use. For this, further constraints were added to the

model. Each efft,j within the sum of (5) was replaced by

efft;j=�act;t � actt;j+�g;t � gt;j ð8Þ

with �act;t; �g;t 2 0; 1f g ð9Þ

The new variables �act,t and �g,t were Boolean variables to select ac-

tivity (6) or TF-gene expression (7) for each TF in the sum of (5).

Constrains

�act;t+�g;t=1 ð10Þ

ensured that only one of the definitions was used for each TF.

3 RESULTS

3.1 Distribution of activity and TF-gene expression

Our model based on the assumption that regulatory effects of

each of the TFs in the model contribute additively, either by a

positive term (activating effect of the TF) or negative term (in-

hibiting effect). Hence, the activity definition needed to be sym-

metric and ideally Gaussian distributed. Even though a perfect

Gaussian distribution was not seen, we found our activity values

showing a rather symmetric distribution, enabling a balanced

usability for activation and inhibition (Supplementary Fig.

S1a). Similarly, the TF gene expression values were also rather

symmetrically distributed (Supplementary Fig. S1b).

3.2 Comparing the prediction performance using activity

and TF-gene expression

To get a representative gene set known to be regulated by a

larger set of TFs, which, in turn, are known to regulate several

target genes, we selected target genes with at least 10 predefined

regulatory interactions of TFs that, in turn, are known to regu-

late at least five genes. This yielded 636 target genes of 521 TFs.

For the model, the maximal number of TF coefficients unequal

to zero was set to six to avoid overfitting. Overfitting could have

occurred when all TFs were used (exemplarily shown in the

Supplementary Fig. S5). This restriction was implemented by

including further constraints (see Supplementary Method S1).

For each investigated gene, a respective regulation model was

built. Performing a cross validation (CV) (leave-one-out; leave-

one-out cross validation (LOO-CV) was used throughout the

study) yielded a distinctively better performance using our activ-

ity definition when compared with TF-gene expression for esti-

mating the effect of TFs. For the activity, an average Pearson

correlation of prediction and measured expression (from the

microarrays) of Pearson Correlation Coefficient PCC r=0.61

using LOO-CV was obtained. Similar results (PCC r=0.59)

were obtained using a 10-fold CV (with 10 reiterations). To

test whether the expression of the target genes influence the pre-

diction performance, we performed the modelling excluding the

target gene expression from the calculation of the activity. This

resulted in an average PCC of r=0.59 (10-fold CV). So the

effect of including the target gene in the calculation of the activity

did not effect the prediction performance. In comparison with
Fig. 2. Network of genes and their regulating TFs. Genes and TFs are

connected via the edge strength esij
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the models using the activity, the correlation was only PCC

r=0.41 (LOO-CV) when using TF-gene expression.

3.3 Embedding a model switch

Overall, the activity led to a better performance than just the

transcription levels of the TFs. Still, for some TFs, TF-gene ex-

pression yielded a better prediction performance than our activ-

ity definition. Therefore, we implemented a model switch as

follows. We added additional coefficients and constraints to

the regulation model. For each TF, a binary switch was included

into the model. Those switches enabled the optimizer to decide

whether to use the activity or the TF-gene expression value of a

TF (for further details, see Section 2). Note that, using such new

binary coefficients, we took advantage of the powerful solver

implementations for mixed-integer programming problems.

This improved the performance to some extent when compared

with using the activity alone (PCC r=0.63). We studied the

results in more detail (a list of all investigated genes and their

average usage of activity and TF-gene expression is given in the

Supplementary Table S1). For each gene, we counted how often

activity for each TF and how often TF-gene expression was se-

lected by the model. We found that a striking majority was

modelled using the activity definition. For �95% of all studied

TFs, the activity was preferred. Figure 3 shows the complete

distribution. Next, we wanted to characterize those TFs whose

effects could better be estimated by the optimizer using our ac-

tivity definition and those TFs for which their TF-gene expres-

sion was selected. The TFs with the highest impact (highest

number of putative target genes) and for which the activity def-

inition was more often selected when compared with TF-gene

expression are shown in Table 1.
Table 1 shows central regulators of the cell comprising regu-

lation mainly of cell cycle [MYC, E2F, STATs, RELB (NFKB),

JUN, p53, CEBBA], but also apoptosis [p53, RELB (NFKB),

differentiation (EGR1), immune response (CEBBP) and metab-

olism (HIF1A)]. Interestingly, TFs that were mainly modelled by

their gene expression were much lower connected

(Supplementary Table S1). The most connected TFs of this

group (modelled by TF-gene expression) were sex determining

region Y—box 10 (SOX10, involved in differentiation, neurogen-

esis, embryogenesis), interferon regulatory factor 3 (IRF3) and

sterol regulatory element binding transcription factor 1

(SREBF1). In summary, besides a qualitative bias for cell cycle

for the activity group of TFs, we could not see a clear overall

tendency. Hence, we performed a gene set enrichment analysis of

the target genes for TFs modelled by activity or their gene ex-

pression. Target genes representing the activity group (TOA

genes, targets of activity-modelled TFs) were selected if they

were targeted by at least one TF, which was always modelled

by its activity. Genes were discarded from this list if they were

also regulated by TFs being modelled by TF-gene expression for

at least 50% of their targets. The background was defined by all

target genes for which we had at least one entry of putative

regulation of the 521 TFs we investigated (10 331 genes). With

this we obtained a list of 1667 TOA genes. For the TF-gene

expression group (TOG genes, targets of TF-gene expression

modelled TFs), the criterion was relaxed to obtain a reasonable

number of target genes. Genes were selected if they were regu-

lated by at least one TF, which was at least for 50% of its target

modelled by its gene expression. Genes were discarded from this

list if they were also regulated by TFs being entirely modelled by

activity. This yielded 629 TOG genes, i.e. target genes represent-

ing targets of the TF-gene expression TFs (TOG genes, Targets

Of TF-gene expression modelled TFs). Employing Fisher’s exact

tests to the Kyoto Encyclopedia of Genes and Genomes (KEGG,

www.genome.jp.kegg) and Gene Ontology Biological Process

(www.geneontology.org) using DAVID (http://david.abcc.

ncifcrf.gov/home.jsp), we found 64 significantly enriched gene

groups (Benjamini–Hochberg corrected) for the TOA genes

(Supplementary Table S2). Interestingly, cell cycle (P=6.79

E-08), immune response (P=4.12 E-05) and cell growth and

death (P=1.96 E-06) appeared supporting the tendency seen

when only regarding the TFs. For the TOG genes, only three

gene groups were enriched comprising sterol, cholesterol and

lipid biosynthesis. Furthermore, we wanted to better understand

Table 1. Highly connected TFs for which the activity was chosen for

most of their targets

TF Number

of

activity

modelled

targets

Number of

TF-gene

expression

modelled

targets

Total

number

of

targets

Ratio

activity/

gene

expression

(percentage)

Average

performance

(PCC r)

SP1 82 20 102 80.4 0.60

TP53 63 7 70 90 0.60

EGR1 49 9 58 84.5 0.61

RELB 47 9 56 83.9 0.60

CEBPB 41 8 49 83.7 0.60

ESR1 40 20 60 66.7 0.64

MYC 38 16 54 70.4 0.63

SOX2 37 6 43 86.0 0.62

STAT3 36 7 43 83.7 0.57

CREB1 33 9 42 78.6 0.62

JUN 30 4 34 88.2 0.64

NR3C1 29 5 34 85.3 0.59

HIF1A 28 7 35 80.0 0.60

AR 27 9 36 75.0 0.64

ETS1 26 5 31 83.9 0.61

STAT1 25 7 32 78.1 0.59

CEBPA 24 3 27 88.9 0.60

TP63 24 4 28 85.7 0.67

E2F1 24 6 30 80 0.65

Fig. 3. Most of the TFs were modelled using the activity definition when

employing the model switch
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the TFs that chose activity for modelling. We selected gene

groups that were regulated by TFs (modelled by activity) for

which the activity and TF-gene expression were well correlated,

and TFs for which activity and TF-gene expression correlated

poor. We identified 41 TFs with good correlation (PPC r� 0.5 of

activity versus gene expression) and 215 TFs with rather poor

correlation (r� 0.1). For both groups of TFs, all putative target

genes were selected, and enrichment tests performed for genes

being targets only of well-correlating TFs (1509 target genes) and

only of poor correlating TFs (3783 target genes). For the good

correlating TFs, we did not find any enriched gene groups. We

found two gene groups being enriched for the target genes of the

TFs with poor correlation of activity versus gene expression

(transmission of nerve impulse, synaptic transmission, P=8.64

E-03, Supplementary Table S2).

3.4 Extending the investigations to a larger set of target

genes

We tested the impact of the possibility to choose the activity for a

larger gene set and relaxed the restriction definitions for the

target genes. Relaxing the selection criterion to genes with, at

least, five known TFs regulating them yielded a list of 1681

target genes. For the pure activity model, we yielded an average

prediction performance of PCC r=0.46 and for the pure TF-

gene expression model r=0.33, confirming that the activity ap-

proach led to better predictions. Using the combined strategy

(with the model switch), the average prediction performance

was r=0.48. Again, from the solved models, the coefficient

values were read out. For each gene, it was counted how often

a TF coefficient got the activity as the chosen parameter and how

often the TF’s gene expression was chosen. Similar to the smaller

gene set described above, the activity was selected for the major-

ity of TFs. Again, for �95% of all studied TFs the activity was

preferred by the optimizer. Supplementary Figure S2 in the sup-

plement shows the complete distribution.

3.5 Investigating the regulation of melanogenesis in

melanocytes and validating the predictions using a

second dataset

We applied the improved regulation model (using the model

switch) to a case study and investigated regulation of melanogen-

esis in melanocytes. The NCI-60 panel also contained 10 melan-

oma cell lines. To get distinct regulation levels of these cells,

again, the whole set of cell lines was used. A t-test was performed

to find those genes of melanogenesis (pathway definitions were

taken from KEGG) that were differentially expressed and sig-

nificantly up-regulated in melanoma cells compared with the

other cancer cells. The differentially expressed genes of this path-

way are shown in Table 2. Indeed, genes TYR and DCT, which

encode the pacemaker enzymes (Supplementary Fig. S3) of mel-

anogenesis, were significantly up-regulated. Also, the gene

coding for microphthalmia-associated transcription factor

(MITF) was highly differentially expressed. The latter is the

key regulator of melanocytes and melanoma cells and DCT

and TYR are targets of MITF (Levy et al., 2006). Endothelin

receptor type B (EDNRB) was also highly up-regulated. The

g-protein–coupled EDNRB is another central regulator of mel-

anogenesis. Activation of EDNRB activates MITF or its tran-

scription (Ho et al., 2010). To elucidate the regulation of these

four genes, the regulation models were set up based on the NCI-

60 panel. We used a 10-fold CV to estimate the prediction per-

formances, as the small number of putative regulators for DCT

and TYR could have led to overfitting using LOO-CV. We ob-

tained excellent performance results (e.g. DCT: PCC r=0.85,

MITF: PCC r=0.80, see Table 2). Next, we used the learned

models to predict gene expression of the genes from this pathway

in a new set of 33 melanoma cell lines [taken from (Hoek et al.,

2006)]. Note that this second dataset was normalized and ana-

lysed entirely independent from the first dataset (see Section 2).

Strikingly, very good prediction performances were still ob-

tained, e.g. for DCT we yielded PCC r=0.80 and for TYR

PCC r=0.60 (Table 2). The values of real and predicted gene

expression for the four used genes are illustrated in

Supplementary Figure S4. The predicted TFs for the up-regu-

lated genes of the melanogenesis pathway are mainly connected

to the key regulator MITF. For example, paired box 3 (PAX3)

activates the transcription of MITF, which promotes the expres-

sion of TYR and DCT. Subsequently, PAX3 competes with

MITF for the binding site of the DCT promoter (Harris et al.,

2010). POU domain, class 3, transcription factor 2 (POU3F2) is

another regulator of MITF. Normally, it represses the MITF

promoter. However, mutation in BRAF, which is very

common in melanoma, leads to an increased kinase activity

that provokes the transcription of MITF via POU3F2

(Wellbrock et al., 2008). Another activating regulator is the TF

one cut homeo box 2 (ONECUT2). By binding to the MITF

promoter, it stimulates the transcription (Jacquemin et al.,

2001). Overall, the transcriptional regulation of melanogenesis

consists of a complex interplay of activating and inhibiting regu-

lators. Also post-translational modifications are crucial elements,

which can also reverse the effect of a TF i.e. as it was described

Table 2. Results of up-regulated genes of melanogenesis

Gene P-valuea PCC r, validationb Putative regulators Predicted TFs PCC r test set

TYR 6.7e-19 0.50� 0.126 2 MITF, POU3F2 0.60

DCT 6.6e-18 0.85� 0.040 3 MITF, PAX3, SOX5 0.80

EDNRB 2.7e-14 0.85� 0.011 13 GATA2, HIF1A, SOX10, FOS-JUN complex, CEBP complex 0.52

MITF 6.9e-13 0.80� 0.014 19 SOX5, ONECUT2, ZEB1, POU3F2 0.77

Note: a BH corrected.
b10-fold CV (with 100 reiterations).
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for POU3F2 (Cook and Sturm, 2008; Harris et al., 2010;
Jacquemin, et al., 2001; Wellbrock, et al., 2008). In summary,
this confirmed our approach to use the cumulative TF’s target

genes expression to estimate the effect of a TF.

4 DISCUSSION

Several elaborated methods have been developed and established
the past couple of years to elucidate cellular regulation of tran-
scription. The models range from highly non-linear approaches

using e.g. Support Vector Machines and Random Forests
(Cheng et al., 2012) to mathematically rather simple linear

models (Dong et al., 2012; Setty et al., 2012). Common to
these approaches is the straightforward concept to gain a
better mechanistic understanding if the models can well predict

known transcript levels after concise selection of putative regu-
latory information. This information ranges from TFs binding at
promoters and enhancers, miRNA seeds and, now highly inves-

tigated, a large variety of epigenetic modifications of histones
and DNA. The task is challenging, as transcriptional regulation
is highly complex, and all these approaches cover only the tip of

the iceberg. Assuming that regulation principles are redundant,
they may well be modelled even if basing on data that gives
insight to only parts of this machinery. However, these investi-

gations often do not cover post-transcriptional control as this
comes along with more demanding experimental efforts, and

such control is intrinsically distinct from functional genomics
regulation. Our activity concept is one approach to circumvent
this. It integrates the underlying general influence of a single

regulator by using the information of differential expression of
all its putative targets, assuming to be e.g. highly active when
strong effects at the targets are observed. Of course, this ap-

proach is only a starting point for more elaborate models as
this, again, is based on putative regulatory interactions inferred
from other cellular contexts. A future aspect is to iteratively im-

prove the initial regulation assumptions by e.g. using Bayesian
statistics, coupled with an expectation-maximization algorithm.
Nevertheless, we obtained excellent performance results when

validating our predictions by cross validation, and even when
applying our trained machines to a completely unseen dataset
(e.g. for DCT gene: PCC r=0.8 when comparing the model

predictions to the measured gene expression). Astonishingly,
our approach was the method of choice to predict regulation

of cell cycle genes. It was mentioned previously that regulation
of cell cycle genes is difficult to model, as these genes are involved
in a complex, post-transcriptional machinery (Cheng et al.,

2012). At least to some extent, our method may approach this
challenge.
To keep the model simple, it was restricted to regions proximal

to the transcription start site (TSS). However, distal binding at
enhancers support transcriptional regulation. A future task can
be the inclusion of distal binding information provided by the

Encode project in addition to the Encode data we used for prox-
imal binding to the TSS. New coefficients could be added for
enhancers with a positively restricted �-value, due to the activat-

ing effect of enhancers, and negative �-values for silencers.
Phenotypic traits can be inferred by transcriptional gene signa-
tures. For example, Kerwin et al. used gene signatures known to

associate with defined circadian time phases to examine natural

variation of the circadian clock (Kerwin et al., 2011). In contrast
to these approaches, we rather constructed a mechanistic model
of cellular regulation. We used signatures of gene groups (target

genes of a TF) mostly basing on experimental evidence of a direct
physical interaction (ChIP) with the mediator (TF), which itself
interacts directly with the gene causing the investigated trait (its

gene expression). We used a linear approach to infer regulation
principles. Linear models are commonly applied for this [e.g.
(Setty et al., 2012)]. Dong et al. (2012) compared linear with

non-linear models (random forests, multivariate adaptive regres-
sion splines) and got similar prediction accuracies. In contrast,
Cheng and co-workers (Cheng et al., 2012) compared four dif-

ferent approaches and got better results using the non-linear
methods. As an outlook, we plan to investigate the activity ap-
proach within linear and non-linear models. Segal et al. (2008)

followed a similar modelling concept, i.e. estimating the effect of
a TF by minimizing the error term of prediction and measured
gene expression. As experimental data, they used binding site
information, concentration data of the TFs and the promoter-

sequence for the investigated target genes. Interestingly, they also
modelled co-operativity of TFs assuming that the strength of
such interactions depends on the distance between the bound

TFs. We plan to integrate such an approach in future studies.
We used the established framework of MILP. MILP facilitated
(i) the selection of TFs and (ii) the individual selection how to

optimally model them (by their cumulative effects we termed
activity or by their transcript levels). With this, the biological
diversity of gene expression’s regulation could be modulated

more precisely. But still, several assumptions were made to
keep the model simple, neglecting e.g. epigenetic modifications.
New coefficients and parameters can be added to include those

factors. But this may come along with increased complexity of
the model and may lead to wrong conclusions due to misleading
arrangements of redundant information. If the final aim was

only to predict gene expression, such an extension is straightfor-
ward. But the task of this regulation model was mainly to reveal
regulators with high impact on the regulation of the gene under

study. For example, for the genes TYR and DCT, which are the
pacemaker enzymes of melanin biosynthesis in melanocytes, a
regulation model based on a TF network was successfully gen-

erated. Using this regulation model, already well known TFs
were identified as substantial regulators, but, for DCT, also the
less prominent regulator SOX5 was found. It has been reported

that SOX5 interferes activation of DCT by SOX10, hence in-
hibiting expression of DCT (Harris et al., 2010). However, for
the cell lines in our study, we found positive terms for SOX5 in

our model (positive �-values, data not shown). Subsequent spe-
cific experimental validation may elucidate SOX5’s regulatory
role for DCT in these cell lines. MILP allowed us to introduce

several switches into our originally linear models (switches: se-
lection of TFs, selection of the models of their effects). Note that
embedding such switches lead to a non-linear and non-convex

topology of the search space for these models. This may be
compared with a piecewise linear slope (linear part of the
model) with substantial breakpoints coming from an abrupt

error reduction when switches are used. To some extent, this
compares with drastic observations in cell biology as e.g. apop-
tosis and immortalization at which smoothly (‘linear’) a point-of-

no-return is approached after which the destiny of the cell

i406

T.Schacht et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/17/i401/199907 by U
.S. D

epartm
ent of Justice user on 17 August 2022

l
,
which 
employing 
E.g.
(
)
transcription factor
employed 
mixed
integer linear programming (
)
,
transcription factor
transcription factor
to 
employed
to 
``
''


changes (apoptosis: cell death, in turn, immortalization: malig-

nancy). To our knowledge, such events have not been elaborately

described for transcriptional regulation and this would be intri-

guing research for the future.

Our approach is generic and can be employed also using other

sources of regulation information such as epigenetic modifica-

tions and miRNA regulation.
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