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Abstract

Background: Wolbachia-infected mosquitoes reduce dengue virus transmission, and city-wide releases in

Yogyakarta city, Indonesia, are showing promising entomological results. Accurate estimates of the burden of

dengue, its spatial distribution and the potential impact of Wolbachia are critical in guiding funder and government

decisions on its future wider use.

Methods: Here, we combine multiple modelling methods for burden estimation to predict national case burden

disaggregated by severity and map the distribution of burden across the country using three separate data sources.

An ensemble of transmission models then predicts the estimated reduction in dengue transmission following a

nationwide roll-out of wMel Wolbachia.

Results: We estimate that 7.8 million (95% uncertainty interval [UI] 1.8–17.7 million) symptomatic dengue cases

occurred in Indonesia in 2015 and were associated with 332,865 (UI 94,175–754,203) lost disability-adjusted life

years (DALYs). The majority of dengue’s burden was due to non-severe cases that did not seek treatment or were

challenging to diagnose in outpatient settings leading to substantial underreporting. Estimated burden was highly

concentrated in a small number of large cities with 90% of dengue cases occurring in 15.3% of land area.

Implementing a nationwide Wolbachia population replacement programme was estimated to avert 86.2% (UI 36.2–

99.9%) of cases over a long-term average.

Conclusions: These results suggest interventions targeted to the highest burden cities can have a disproportionate

impact on dengue burden. Area-wide interventions, such as Wolbachia, that are deployed based on the area

covered could protect people more efficiently than individual-based interventions, such as vaccines, in such dense

environments.
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Background
Dengue is a mosquito-borne viral disease that has one of

the world’s fastest growing burden [1]. Despite substan-

tial investments, existing vector control methods, such

as insecticides, have proved insufficient to sustainably

control dengue [2]. Novel arbovirus vector control tools

are needed, and a range of alternative approaches are

currently under development to meet this need [3, 4].

Mosquitoes infected with Wolbachia, a naturally occur-

ring bacterium, experience reduced rates of dengue virus

(DENV) infection, and female mosquitoes can pass the

bacterium on to the next generation, allowing Wolba-

chia-infected mosquitoes to replace the wild-type popu-

lation [5]. Release of male mosquitoes infected with

Wolbachia can also be used for population suppression

due to inviable mating with female wild-type mosqui-

toes. Early releases of mosquitoes infected with the

wMel Wolbachia strain have shown promising replace-

ment results, and suppression strategies with other

strains are currently being tested in different countries

around the world [6–9].

An added advantage of a population replacement strat-

egy is that Wolbachia reduces replication of other arbo-

viruses within the mosquito, including chikungunya,

yellow fever and Zika viruses [10, 11], and potentially of-

fers the better longer-term strategy. Given such replace-

ment programmes are self-sustaining, investment in a

well-coordinated and properly monitored release cam-

paign over 2 to 3 years could have many years of benefit.

Existing releases at the local and city level have proven

that Wolbachia-infected mosquitoes can replace the

wild-type Aedes aegypti population and persist for at

least 7 years’ post-release [12]. Epidemiological evidence

of effectiveness is also growing, and a cluster randomised

controlled trial is currently underway in the city of

Yogyakarta [13]. The next phase of development for

Wolbachia will be to expand from single-site operations

to coordinated sub-national roll-out.

As the most populous country in dengue-endemic South

East Asia, Indonesia is consistently estimated to be among

the three countries with the largest dengue burden [14–16].

However, due to high rates of asymptomatic infection and

symptoms which are not easily distinguishable from many

other infections, the number of dengue cases is still highly

uncertain. Accurate, contemporary estimates of the burden

of dengue in Indonesia are needed to quantify the benefits

of any scale-up in DENV control. Fully detailing how the

economic and case burden of dengue is distributed over

space, by disease severity and financial responsibility can

help inform investment in new control tools. This is par-

ticularly important for diseases such as dengue where the

burden is dominated by morbidity rather than mortality

[15]. Milder dengue cases are nearly always underreported

[17], and the costs of illness by various parties often hidden

[18]. When combined with model-based estimates of the

impact of the intervention, burden estimates can be used to

map where new interventions, such as Wolbachia, are likely

to have the biggest effect and can be used for evaluating

eventual impact.

A major challenge to understanding the impact of inter-

ventions against DENV is an accurate estimation of base-

line disease burden. Estimates of disease burden for specific

settings are often scarce due to limited availability of data

on the sub-clinical community-based burden of dengue

including asymptomatic and mildly symptomatic cases.

Efforts to estimate the burden of dengue can be categorised

into either a bottom-up approach, where the primary focus

is to estimate the total number of cases through commu-

nity-based surveys for infection [14], then divide into differ-

ent levels of severity, or top-down approach where reported

case numbers are multiplied by “expansion factors” to cor-

rect for underreporting [16]. Multiple previous studies have

estimated the burden of dengue in Indonesia [14–16, 19–

21] using a variety of data sources and methods, but it is

difficult to assess consensus among them due to the differ-

ences in data sources, methods, case definitions and as-

sumptions about transmission.

Three types of data are typically available for mapping

the spatial distribution of dengue burden: occurrence

(presence/absence), case incidence and seroprevalence

(lifetime prevalence). Seroprevalence data contain the

most information about long-term average burden in a

given location, but few such surveys have been con-

ducted, typically resulting in less information about the

geographic variation. Occurrence data, on the other

hand, is geographically ubiquitous, but many other fac-

tors determine how the presence of a disease translates

into case numbers. Existing approaches to map dengue

risk have been dominated by ecological niche modelling

using occurrence data [22–24] with a focus on mapping

the distribution rather than the burden of dengue. Maps

of reported dengue incidence at increasingly high spatial

resolution are routinely used by ministries of health but

are rarely combined with models to account for varia-

tions over time, reporting biases and quantification of

uncertainty. Some attempts have been made to map

seroprevalence data directly in areas with sufficient sur-

veys [25]. However, these contrasting approaches have

never formally been compared to identify their strengths

and weaknesses for mapping burden. There is also a lack

of consensus on how useful extrapolating from data in

other countries or transmission settings is for mapping

burden in any one given country.

In the current absence of cluster randomised control

trial results for Wolbachia, estimates of effectiveness have

been obtained by combining vector competence studies

with mathematical models of DENV transmission [26]. A

range of DENV transmission models have been published
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and, despite some fundamental differences in their struc-

tures, consensus results about the effects of interventions

can be drawn [27]. Even with the imperfect reduction of

DENV dissemination in the mosquito, substantial reduc-

tions in population-level burden can be achieved, even in

very high-transmission settings [26, 28, 29]. However, the

critical relationship between baseline transmission inten-

sity and Wolbachia effectiveness is yet to be demonstrated

in the field. Further, how control might be impacted by

the highly heterogeneous transmission intensities rou-

tinely observed across small spatial scales [30–32] remains

unknown. It is possible that if the impact on transmission

is small, this may just increase the average age of second-

ary, typically more severe, DENV infection to older more

vulnerable age groups; thus a detailed consideration of

DENV immunology is needed in such assessments.

Here, we produce the most up-to-date, detailed and

robust estimates of the burden of dengue in Indonesia;

map burden at a high spatial resolution throughout the

country; and predict the effect of a widespread Wolba-

chia programme in different locations.

Methods

Estimating national burden and breakdown by setting

Case burden

Multiple previous studies have estimated the burden of

dengue in Indonesia [14–16, 19–21] using a variety of

different data sources and independent methods, and

use case definitions that vary in disease severity. In this

analysis, we standardise (i) the case definitions across

existing estimates, (ii) the reference year and (iii) the de-

nominator population size for each estimate. We then

produce an ensemble estimate for the total burden dis-

aggregated by disease severity (Fig. 1).

We estimate burden at four levels of severity, with

each DENV infection resulting in one of these four, mu-

tually exclusive final outcomes:

1. Self-managed cases disrupt the routine of the

individual (e.g. not going to work or school) but do

not result in seeking treatment at a formal private

or public healthcare facility. Such cases may be

untreated, self-treated (e.g. using medicines from a

pharmacy) or treated in informal settings.

2. Outpatient cases are severe enough for formal

medical treatment to be sought but are managed on

an outpatient-basis, e.g. dengue (ambulatory)

clinics.

3. Hospitalised cases are severe enough to require

hospital admission and repeated observation by

trained medical staff.

4. Fatal cases whereby acute DENV infection is the

leading cause of death.

For burden estimation methods that were missing esti-

mates of burden at any of these levels of severity, new

Fig. 1 Schematic overview of the methods. Blue boxes indicate data, orange boxes modelling/analysis and green boxes outputs
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estimates were created using our own rates of care seek-

ing and hospitalisation. Care-seeking rates were obtained

from a nationally representative survey (SUSENAS [33])

that asked about treatment seeking for fever which was

assumed to be representative for dengue (Add-

itional file 1: SI1.1.). Hospitalisation rates were taken

from the control arm results of a recent dengue vaccine

trial in Indonesia [19] adjusted for age (Additional file 1:

SI1.2, Table S2).

The final breakdown of symptomatic cases is shown in

Additional file 1: Table S1. All burden estimation

methods that produced estimates of absolute “symptom-

atic” cases, i.e. disease at any level of severity, were ap-

portioned into their sub-categories using the values in

Additional file 1: Table S1. For the expansion factor-

based methods [19–21] (i.e. those that predicted the ra-

tio of true number of cases per one case reported), we

multiplied the expansion factor by the annual average

number of cases reported by the Indonesian Ministry of

Health (national branch) between 2014 and 2016 (n =

144,736, to derive an estimate for the reference year of

2015). These reported cases represent a mix of clinical

and laboratory-confirmed (NS1 antigen of IgM/IgG posi-

tive) cases in line with the SEARO-WHO case definition

[34], with a small subset tested using molecular methods

(PCR) to estimate regional serotype composition. To

standardise absolute burden estimates to this reference

year, we proportionally adjusted the estimates based on

population change over this time period using UN popu-

lation estimates [35]. The posterior distribution of the

consensus estimate was simulated using a simple ensem-

ble approach where 1000 random samples were drawn

from lognormal or normal distributions parameterised

using the mean and 2.5–97.5% uncertainty intervals

[UIs] of each of the burden estimates (with equal

weighting between studies, Additional file 1: Table S4).

DALYs

DALY estimates for hospitalised and non-hospitalised

cases were obtained from Zeng et al [36] Years of life

lost were calculated from the age-stratified case data

using life expectancies based on Indonesia health statis-

tics [37] and were not discounted.

Mapping the spatial distribution of dengue burden

Mapping data

Three different datasets on occurrence, incidence and

seroprevalence of dengue were used to estimate the spatial

variation in dengue cases. Our updated dengue occurrence

database [https://doi.org/10.6084/m9.figshare.8243168] in-

cludes 626, 3701 and 13,604 unique point and polygon

locations where dengue has previously been reported in

Indonesia, South East Asia and globally, respectively

(Additional file 1: Table S5). A corresponding database of

330, 681 and 9039 locations where Japanese encephalitis,

West Nile fever, Zika and chikungunya have been reported

were used as background points for national, South East Asia

and global analyses, respectively. These diseases share similar

clinical, epidemiological or diagnostic features to dengue,

and we assume that the occurrence of these diseases is indi-

cative of the ability to diagnose and report arboviral diseases

including dengue. We therefore assume a report of these dis-

eases is indicative of an absence of dengue at that particular

time and place. Incidence was obtained from the aforemen-

tioned official data disaggregated into 333 regencies and cit-

ies (admin 2 areas).

Age-stratified seroprevalence studies (age range 1–18)

have recently been conducted across 30 admin 2 areas in

2014 [38, 39] which were used to estimate the long-term

average force of infection using simple catalytic models

fitted with a binomial likelihood [25] (Additional file 2).

Mapping covariates

All mapping models contained covariates for (i) gross do-

mestic product (using a demographic downscaling method

described in [40]), (ii) annual cumulative precipitation (from

the intergovernmental panel on climate change general

circulation model projections [41]), (iii) minimum annual

relative humidity (using a temperature-based dewpoint cal-

culator [40, 42]), (iv) mosquito suitability for Ae. aegypti and

Ae. albopictus [43], (v) urban/rural status [40] and (vi)

temperature suitability for DENV transmission [44] all at a

5 × 5 km resolution for the year 2015 [45]. For data points

representative at the admin 2 level (incidence, seroprevalence

data and selected polygon occurrence data), population-

weighted averages of each covariate were calculated over

their corresponding region.

Mapping models

Three distinct mapping models fit relationships between

the above covariates and the three different measures

risk: (i) occurrence, (ii) incidence and (ii) force of infec-

tion calculated from seroprevalence. Within each model,

100 bootstrapped generalised boosted regression models

(GBMs) were fit to capture data uncertainty. For the

presence/absence occurrence data, boosted regression

trees (BRT) with a binary Bernoulli distribution were fit-

ted [40, 46], while incidence and force of infection

models were fit with Poisson distributed GBMs (see

Additional file 1: SI1.3. for parameter settings and code

[https://doi.org/10.6084/m9.figshare.8243168]). A sensi-

tivity analysis was also performed to assess the occur-

rence data model sensitivity to local, regional and global

data (Additional file 1: SI1.3.). Simpler generalised linear

models with automated variable selection were also fit

for incidence and seroprevalence data to assess the rela-

tive prediction improvements with more complex model

structures (Additional file 1: SI1.3.).
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The risk maps created by each of these mapping

models was multiplied by a population surface [47] then

standardised to the estimated national burden total from

the ensemble of burden models. This assumed a linear

correlation between mapped risk and burden [14, 48]. A

posterior distribution of predicted incidence for each

5 × 5 km pixel was derived from an ensemble of each

three burden maps with the probability of sampling in-

versely proportional to the within mapping model vari-

ance among the 100 sub-BRT models.

Introduction of a Wolbachia programme to reduce

dengue

Mathematical modelling

A human age-structured deterministic dynamic math-

ematical model of DENV infection was used to deter-

mine the impact of a wMel Wolbachia programme in

Indonesia (Additional file 1: SI1.4.). Individuals were as-

sumed to be born susceptible and upon exposure will

develop primary DENV infection. We assumed that

upon recovery, an individual will go through a period of

temporary cross-immunity, and afterwards, the individ-

ual is assumed to only be susceptible to heterologous se-

rotypes. Serotype-specific exposure is not modelled

explicitly, but sequential reductions in susceptibility due

to homologous immunity and a maximum of four life-

time infections allow the model to replicate multi-sero-

type behaviour assuming all four serotypes are

omnipresent (Additional file 1: SI1.4.). All individuals

that develop infection were assumed to be equally infec-

tious, and this was independent of disease severity [49].

We do not explicitly account for DENV infection within

mosquitoes but assume that human-mosquito-human

transmission is accounted for within the transmission

coefficient. For each stage of infection, the probability of

being symptomatic, hospitalised or fatal was assumed to

vary based on the different model parameterisations

from a previous dengue modelling comparison exercise

Flasche et al. [27] (Additional file 1: Table S6–S7). To

capture the uncertainty in these values, eight sub-models

were created with identical structure but different pa-

rameters for disease severity, duration of infectiousness

and duration of temporary cross-immunity.

Fitting the mathematical model to burden estimates

The model transmission coefficient was estimated by fit-

ting (using least squares) to unique values of symptom-

atic incidence as predicted by our burden and mapping

analyses for each of the eight model parameterisations.

Symptomatic cases was chosen as a fitting metric be-

cause the variation would closely align with variation in

the transmission rate, as opposed to variation in as-

sumed hospitalisation rates that vary across models. The

best-fitting transmission coefficient values were obtained

using a rejection MCMC algorithm with a 5% tolerance

on the symptomatic case incidence rates. Our analysis

aimed to quantify long-term average estimates of trans-

mission then predict the effectiveness with the disease at

equilibrium. However, dengue in Indonesia, as of 2015,

is not currently at equilibrium. Continual, urban nation-

wide transmission of dengue has only been present in

Indonesia from circa 1988 onwards [50], meaning there

is currently a higher proportion of susceptible individ-

uals and thus higher incidence rates than there will be

once the disease reaches long-term equilibrium. To en-

able our model to fit these temporarily high symptom-

atic case incidence rates, we reduced the life expectancy

to 27 (2015–1988) years by imposing 100% mortality

after the 27th year to represent the shorter period of ex-

posure during transmission coefficient fitting. For high

reported incidence where model estimates are outside of

the 5% tolerance, the nearest fitting parameter estimate

was selected as we assumed that these high incidence

values were representative of anomalous years or symp-

tomatic case rates. This only affected < 3% of values but

may underestimate transmission and thus overestimate

Wolbachia effectiveness in very high-transmission envi-

ronments. After obtaining accurate estimates of the

transmission parameter, it was applied to a model with

current-day realistic Indonesian life expectancy and age

distribution (Additional file 1: Figure S1). The ability of

this model to reconstruct accurate age-specific sero-

prevalence was assessed (Additional file 1: Figure S2),

then it was used to simulate symptomatic case incidence

with and without Wolbachia to calculate the effective-

ness at equilibrium.

Vector competence reduction

The clinical and field entomological data of vector com-

petence of wMel-infected Ae. aegypti in Carrington et al.

[51] were used to estimate the reduction in transmission

associated with a Wolbachia programme. A logistic re-

gression model of the extrinsic incubation period (EIP)

in mosquitoes was fitted to observe the reduced rate at

which DENV disseminates from the ingestion of a blood

meal to the presence in the mosquito salivary glands in

Wolbachia-infected compared to wild-type mosquitoes

(Additional file 1: SI1.5, Figure S3, Additional file 1:

Figure S4). Separate models fit for each serotype and

high- and low-viremia blood meals which were assumed

representative of hospitalised and non-hospitalised cases,

respectively.

Incorporating the impact of a Wolbachia programme

Estimates of the reduction in vectorial capacity in Wol-

bachia-infected mosquitoes (Additional file 1: SI1.5)

were used to proportionally reduce transmission coeffi-

cients in the DENV transmission model which was then
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run until endemic equilibrium was reached (100 years) with

an average life expectancy of 65 years, consistent with the

Indonesian population age distribution (Additional file 1:

Figure S1). The impact of the Wolbachia programme is es-

timated as 1- (symptomatic incidence post-Wolbachia/

symptomatic incidence pre-Wolbachia). For each model

parameterisation, this gave point estimates of efficacy for a

range of different values of baseline transmission in-

tensity (as measured by incidence of hospitalised

cases). To create a smooth, continually decreasing

function between these two variables, monotonically

decreasing thin-plate splines were fit using the “scam”

package in R (Additional file 1: Figure S7). Simulation

from a normal distribution defined by the mean and

standard error of the fit of the spline model was used

to build a distribution of effectiveness values for each

DENV model parameterisation (eight parameterisa-

tions). An ensemble prediction of effectiveness was

then derived by the sum of predictions from the indi-

vidual models (equal weighting). This relationship was

then applied to each map pixel with 1000 realisations

of burden and effectiveness to build up a predicted

distribution of burden before and after release of

Wolbachia-infected mosquitoes. All code used in

these analyses is available from the following reposi-

tory [https://doi.org/10.6084/m9.figshare.8243168].

Results

Case burden of dengue by disease severity

To obtain consensus estimates of the burden of den-

gue in Indonesia, we take a simple unweighted en-

semble of multiple previous approaches (Fig. 2). We

found that nearly all previous burden estimates had

overlapping credible intervals with Bhatt et al.,

GBD2017; Shepard et al.; and Toan et al. estimates

having the closest concordance [1, 14, 16, 20]. The

estimate by Wahyono et al. [21], which was the only

method to estimate underreporting solely using Del-

phi panel interviews of dengue experts, was consist-

ently lower than all other estimates for all disease

severities and underrepresented the degree of uncer-

tainty relative to other estimation methods. Our com-

bined ensemble captured uncertainty in both the

individual models and uncertainty about model choice

Fig. 2 Previous estimates for the burden of dengue in Indonesia adjusted for the year of 2015 (colours) and our ensemble estimate (grey

shading) at different levels of disease severity

O’Reilly et al. BMC Medicine          (2019) 17:172 Page 6 of 14

https://doi.org/10.6084/m9.figshare.8243168


and is thus broad, particularly at lower disease sever-

ity levels.

We estimate that 7.8 million (UI 1.8–17.7 million)

symptomatic dengue cases occurred in Indonesia in the

reference year 2015 (average 2014–2016) or approxi-

mately 1 in 31 people (Table 1). Among these, we esti-

mate 64% were self-managed with over the counter

medicines or other forms of informal healthcare. A fur-

ther 22% were seen as outpatients with limited oppor-

tunity for diagnosis of dengue and were never admitted.

Despite this large proportion of non-hospitalised dengue,

we still predict that 1.1 million (0.22–2.9) hospitalised

dengue cases occurred in Indonesia in 2015, among

which 3658 (1590–8240) died, equating to a hospitalised

case fatality rate of 0.33% (0.29–0.71). Only 100,347,

129,689 and 204,172 dengue cases (mostly hospitalised)

were reported to the ministry of health in the years of

2014, 2015 and 2016, respectively. Assuming only hospi-

talised cases are reported, this would suggest only 12%

(UI 7–45%) of hospitalised cases are reported.

By combining these case estimates with the reported

age distribution of dengue cases in Indonesia and sever-

ity-specific disability weights [36], we estimate a total of

332,865 (UI 94,175–754,203) DALYs are lost due to den-

gue each year in Indonesia of which 73.6% are due to

disability and 26.4% due to fatality (Table 1). This fur-

ther emphasises the contribution of non-fatal and non-

severe outcomes to dengue burden.

Mapping dengue burden

Comparing local to global data for producing national risk

maps

As occurrence data was available globally, we first per-

formed a sensitivity analysis to the geographic scope of

data. Using data just from Indonesia will maximise rep-

resentativeness of local DENV epidemiology but may fail

to capture the full range of environmental space in

which dengue can be transmitted in the country. The

opposite is true of using global datasets. We find that

using a regional dataset from across South East Asia of-

fers the best compromise between accurately predicting

occurrence data from Indonesia (mean area under the

curve [AUC] 0.95) while still maintaining a good multi-

variate environmental coverage (mean Multivariate En-

vironmental Similarity Score [MESS] > 0 for 88% of

Indonesian land area, Additional file 1: Figure S5).

Comparing occurrence, incidence and seroprevalence data

for mapping burden

We found that dengue risk maps fitted to occurrence, in-

cidence and seroprevalence datasets gave contrasting risk

maps with some areas of consensus. While more complex

GBM model structures gave a better fit for incidence data

(R2 0.171 vs 0.022, Additional file 1: Table S10), simpler

generalised linear models (GLMs) explained more vari-

ance within the smaller seroprevalence dataset (R2 0.112

vs 0.082, Additional file 1: Table S10). All maps agreed

that the highly populated urban regions of Java, West Kali-

mantan and Northern Sumatra conferred higher risk. The

map using reported case data (Fig. 3b) tended to predict

lower incidence in more remote areas than the other two

maps (e.g. Sulawesi and Timor). Generally, maps based on

seroprevalence data (Fig. 3c) predicted little geographic

heterogeneity; maps based on reported cases (Fig. 3b) esti-

mated high geographic concentration in particular areas

with maps based on occurrence (Fig. 3a) somewhere be-

tween the two. Given the strengths and limitations of each

of these different data sources, our final map consisted of

an ensemble of each of these three maps weighted by their

relative bootstrap predictive variance. While the ensemble

propagated the uncertainty around the distribution of

dengue through the rest of the analysis, a mean map of

the ensemble is given in Fig. 3d.

Spatial concentration of dengue burden

Because our maps suggest dengue is ubiquitous through-

out Indonesia, the urbanised nature of the population in

Indonesia ensures that the case burden of dengue is

highly spatially concentrated. Fifty per cent of the 7.8

million cases are concentrated in just 1.08% of the land

area and 90% of cases in just 15.26%. This spatial con-

centration of burden presents a key advantage for con-

trol strategies with costs that scale with the area (as

opposed to the number of people) such as Wolbachia

(Fig. 4).

In Indonesia, 14.7% of total dengue burden is concen-

trated in just ten cities that together make up only 0.35%

of the land area (Table 2). These cities do, however, also

make up 15.0% of the national population, implying that

the concentration of dengue burden is due to the highly

urbanised distribution of Indonesia’s population. This

Table 1 The total estimated burden of dengue in Indonesia in

2015 by case severity and disability-adjusted life years (DALYs)

Outcome Absolute number in
thousands (95% UI)

Percentage share (95% UI)

Fatal 3.658 (1.59–8.24) 0.05 (0.05–0.09)

Hospitalised 1102 (224–2883) 14.20 (12.63–16.33)

Outpatient 1675 (409–3535) 21.59 (20.02–23.00)

Self-managed 4977 (1142-11,233) 64.16 (63.61–64.28)

Total 7757 (1778-17,660) 100

YLDs 245 (56–556) 73.6 (59.5–73.7)

YLLs 88 (38–198) 26.4 (26.3–40.5)

DALYs 333 (94–753) 100

95% uncertainty intervals (UI) are shown for all predictions. UIs for percentage

share are based on the mean totals

YLD years lost to disability, YLL years of life lost
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makes dengue a good candidate for targeted interventions,

particularly for interventions that focus on immobile vec-

tor populations.

Predicted reduction in dengue burden achievable

through a Wolbachia programme

Predicting the potential reduction in dengue burden achiev-

able by a nationwide Wolbachia programme requires con-

sidering several stages in the transmission process.

Our re-analysis of the vector competence data from

[51] combined with mosquito survival rates suggested an

average 56% (95% confidence interval [CI] 54–58%) re-

duction in the probability of onward transmission from

a mosquito infected from a non-severe (low viremia)

dengue case (Additional file 1: Table S8). This percent-

age reduction was slightly higher for DENV4 (60%, CI

59–62) and considerably lower for severe (high viremia)

cases (47–50% for DENV1–3, 54% for DENV4).

A B

C D

Fig. 3 The spatial distribution of annual incidence of symptomatic dengue cases in Indonesia as predicted by models fit to the a occurrence data

b reported case data, c seroprevalence data and d the mean of an ensemble of each data type. The spatial location of the data points and

polygons for each map are also shown. Pearson correlation coefficients between pixels are as follows: a, b 0.15, a–c 0.24 and b, c 0.15 (all non-

significant). The full map ensemble (not just the mean) is used for all subsequent analyses

Fig. 4 Predicted spatial concentration in dengue burden. The minimum spatial area that contains 50% (red) then 40% (orange) of dengue

burden. The 10 cities with the highest predicted burden are also shown
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To assess what impact these reductions in trans-

mission would have on case burden at different

transmission intensities, we used an ensemble of

mathematical models with eight different parameteri-

sations (Fig. 5). There was a consensus among the

models that Wolbachia could achieve elimination in

low transmission settings (baseline incidence of

symptomatic cases < 5 per thousand). Models also

agreed on a gradual decrease in effectiveness (% re-

duction in cases after Wolbachia introduced) as

transmission intensity increased, albeit at consider-

ably different rates (Fig. 5, Additional file 1: Figure

S7). Models with parameterisations based on the

DENV models from Sanofi predicted the lowest ef-

fectiveness of Wolbachia while those from Hopkins

predicted the highest effectiveness (Fig. 5).

Finally, applying these effectiveness functions to the maps

and burden estimates allowed us to map the effectiveness

and symptomatic cases averted across Indonesia (Fig. 6).

This showed that while effectiveness is lower in the high

transmission intensity cities (Fig. 6a), if Wolbachia can be

deployed in each area for approximately equivalent cost,

the number of cases averted (and thus cost-effectiveness)

will be higher in urban areas (Fig. 6b).

Table 2 Top 10 cities in Indonesia with the highest estimated dengue burden

City Predicted cases (all severities,
thousands, 95% UI)

Percentage of national
burden (95% UI)

Cumulative percentage
of national burden

Cumulative percentage
of national population

Cumulative percentage
of national area

1. Jakarta* 515.2 (108–1439) 7.7 (6.3–9.5) 7.7 8.8 0.14

2. Kota
Bandung

79.8 (17–222) 1.2 (1.0–1.5) 8.9 9.9 0.15

3.
Surabaya

73.9 (18–231) 1.2 (1.0–1.3) 10.1 11.0 0.16

4. Medan 66.8 (15–189) 1.0 (0.9–1.1) 11.1 11.8 0.18

5.
Semarang

54.3 (12–143) 0.8 (0.6–1.0) 11.9 12.4 0.20

6. Cirebon 47.3 (10–120) 0.7 (0.6–0.8) 12.6 13.1 0.25

7.
Pekanbaru

39.8 (9–112) 0.6 (0.5–0.7) 13.2 13.5 0.31

8.
Palembang

38.6 (8–100) 0.6 (0.4–0.7) 13.8 14.1 0.32

9. Kota
Malang

30.7 (7–85) 0.5 (0.3–0.6) 14.3 14.5 0.33

10.
Denpasar

29.6 (5–87) 0.4 (0.3–0.7) 14.7 15.0 0.35

*City of Jakarta includes the satellite cities of Bekasi, Tangerang, South Tangerang, Depok and Bogor

Fig. 5 Reductions in hospitalised dengue cases at equilibrium after the introduction of Wolbachia as predicted by a mathematical model using

eight different parameterisations from previously published models. Baseline incidence is the number of hospitalised dengue cases per million

before the introduction of Wolbachia. Ensemble mean and 95% uncertainty intervals are shown in dark blue. One hundred per cent coverage

forms the baseline scenario for subsequent analyses. Vertical dotted lines show the 1, 25, 50, 75 and 99th percentiles of the estimated

symptomatic incidence in areas across Indonesia
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Overall, we predict that a national roll-out of Wolba-

chia at 100% coverage could achieve a long-term average

of 86.2% (UI 36.2–99.9%) reduction in cases of all sever-

ities, potentially averting 6.7 million symptomatic cases,

947 thousand hospitalisations and 3154 deaths a year

based on 2015 burden figures (Table 3).

Discussion

In this paper, we produce comprehensive estimates of

the burden of dengue in Indonesia and find that a large

proportion of cases self-manage their own disease (64%,

5.0 million) or are treated in outpatient departments

(22%, 1.7 million). We use multiple mapping methods

and data sources to show that the spatial distribution of

dengue risk is heterogeneous even in an endemic coun-

try such as Indonesia. The highly urbanised nature of

the population means that 14.7% of the national burden

is concentrated in just 10 cities. Finally, we show that a

nationwide Wolbachia campaign could (over the long

term) avert a significant proportion of burden (86.2%, UI

36.2–99.9%) with elimination predicted in low transmis-

sion settings.

The high spatial concentration of dengue burden in

cities, in highly urbanised countries such as Indonesia,

presents opportunities for targeted control strategies. In

particular, Wolbachia, which is deployed on a per-km2

basis, could offer major scaling advantages over vaccines,

which are deployed on a per-person basis, in areas with

high population density. The large number of people

covered by a focal Wolbachia programme has the poten-

tial to outweigh the reduced efficacy of the intervention

in these high transmission settings, and formal cost-ef-

fectiveness analysis is needed to compare the investment

cases between urban and rural areas.

This work adds to a growing body of evidence that the

majority of the burden of dengue is attributable to mor-

bidity rather than mortality [14, 15, 19, 52]. The large

number of self-limiting mild infections contributes more

to DALY burden than the small number of infections

that result in severe or fatal manifestations. Many of

these mild cases do not seek treatment, are not clinically

A

B

Fig. 6 Maps of effectiveness (a) and averted symptomatic cases per year (b) from a nationwide homogeneous Wolbachia programme with

100% coverage
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diagnosable and thus do not have any opportunity to be

reported in routine health statistics. These results can be

used to assess the hidden economic burden of the

disease and to estimate the cost-effectiveness of inter-

ventions for dengue [16, 27]. Our results also suggest

that only 12% (UI 7–45%) of hospitalised cases are re-

ported. While lower than the regional average (42%)

[17], underreporting of dengue is not unusual and may

occur for a variety of reasons including lack of reporting

in the private sector, misdiagnosis and limited coverage

of the surveillance system [53].

A key limitation of our analysis is the wide uncer-

tainty intervals for our final estimates of burden, and

thus predicted efficacy of Wolbachia. This arises due

to the limited quantity and variable quality of datasets

detailing the treatment-seeking behaviour for dengue

[17], reliability of diagnosis and underreporting of

identified cases. In this study, we chose to ensemble

different burden estimation methods with equal

weighting due to different data sources and methodo-

logical approaches challenging any formal assessment

of quality or comparativeness. Initiatives such as the

WHO burden estimation toolkit [53] aim to provide

guidance to countries on how to conduct burden esti-

mation for dengue and aim to generate more standar-

dised and internationally comparable data for dengue

burden estimation. Additionally, while using the na-

tional SUSENAS survey to estimate the treatment-

seeking rates was a great strength due to its sample

size and comprehensive design, it did require assum-

ing that treatment seeking for fever is comparable to

treatment seeking for dengue. As fever is one of the

milder symptoms of dengue [54], this may have

underestimated rates of seeking care [55].

Different data sources suggest different spatial distri-

butions of dengue risk. This is partly because each data

source has strengths and weaknesses for measuring dif-

ferent aspects of dengue’s distribution (summarised in

Additional file 1: Table S11) [23]. Occurrence data is

most informative about the extent of transmission, inci-

dence about temporal variation and seroprevalence

about long-term risk of infection. Occurrence and inci-

dence data may also be subject to spatial reporting bias,

e.g. higher probability of reporting in urban areas, which

may lead us to overestimate the concentration of risk in

high-density areas. We tried to overcome this by using

notifications of other infectious diseases (which are also

subject to the same biassed sampling frame) as

background points, and the relative influence statistics

(Additional file 1: Table S9) and covariate effects plots

(Additional file 1: Figure S6) do not suggest simple uni-

variate drivers of dengue’s distribution in Indonesia.

Disease mapping frameworks have been suggested that

would enable simultaneous joint inference of the distri-

bution and observation bias of multiple rare diseases and

could improve occurrence maps for diseases that share

similar characteristics but limited data [56]. Future work

will attempt to more formally define relationships be-

tween occurrence, incidence and seroprevalence data

and their relationship with burden to enable joint infer-

ence that accounts for the accuracies, sensitivities and

biases in each data source [57].

Our mathematical model assumed a stable prevalence

of Wolbachia in the wild Aedes population and only fo-

cussed on the long-term stable-state effectiveness. With

the high levels of herd immunity currently present in

Indonesia, it is possible that elimination would temporar-

ily be achieved even in high transmission intensity areas

and short-term impact would generally likely be higher

than predicted here [58]. Our analysis of vector compe-

tence data only compared dissemination rates to the mos-

quito salivary glands in lab-reared (not-field caught)

mosquitoes. Effectiveness may be higher in the field due

to the effect field conditions impose on the mosquito

immune system and the availability of nutritional

resources [51]. Due to the lack of available vector

competence data, we were only able to model the

reduction in transmission due to one strain of

Wolbachia (wMel) and one vector species (Ae.

aegypti). Ae. albopictus, a known secondary DENV

vector, is also present in Indonesia, although it typic-

ally has a more rural distribution and its role in sus-

taining dengue transmission in this setting remains

unclear [59]. Different Wolbachia strains also vary in

their DENV-blocking dynamics, their effects on mos-

quito longevity and can be affected by local condi-

tions, e.g. temperature [60], meaning further

reductions in DENV transmission may be possible. Fi-

nally, our modelling comparison exercise only used

the parameter estimates from each of the models, not

the model structures themselves, which may include

additional uncertainty and provide further insights

into the effectiveness of Wolbachia and its variation

across transmission intensity. Our current estimates

are in agreement with earlier work suggesting elimin-

ation is achievable in low transmission intensity but

Table 3 Predicted annual number of cases of dengue averted by a nationwide release of Wolbachia-infected mosquitoes

Self-managed Outpatient Hospitalised Fatal Total DALYs Percentage reduction

4,290,379
(413,657–11,163,893)

1,442,623
(147,587–3,567,030)

946,971
(81,545–2,909,260)

3154
(569–8118)

6,683,127
(643,358–17,648,301)

290,002
(38,604–727,567)

86.2%
(36.2–99.9%)

Numbers in brackets are 95% uncertainty intervals
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not high transmission intensity environments [26].

This raises the possibility that Wolbachia may need

to be combined with a range of other dengue control

tools in high endemicity environments. The key

strength of this analysis is that it is the most detailed

analysis of Indonesia’s dengue burden to date. We

combine multiple modelling and mapping approaches

with multiple datasets and fully propagate uncertainty

at each step through to our final results.

Future work will include pairing these burden esti-

mates and impact predictions with economic data on

the costs of dengue illness and of deploying Wolbachia

in different areas. This will allow estimates of the cost-

effectiveness of Wolbachia programmes and estimates of

how it varies throughout Indonesia that can be used to

quantify the costs and benefits of future investments in

wide-scale releases and inform different release

strategies.

Conclusion

In this paper, we use various mathematical modelling

approaches to estimate the current burden of dengue in

Indonesia. We estimate a total of 7.8 million (UI 1.8–

17.7 million) symptomatic cases occurred in 2015 with a

high proportion not seeking treatment and not being re-

ported to the national surveillance system. Despite this,

the concentration of disease burden in large cities offers

hope of targeted dengue control. Releasing Wolbachia-

infected mosquitoes is one option that we predict could

ultimately avert over three quarters of the country’s

current disease burden. Past experience with dengue in-

terventions [27] has taught us to take an optimistic but

cautious, conservative and diverse approach to such pro-

jections that considers all potential routes of failure and

their subsequent impact on cost-effectiveness. However,

given early evidence of epidemiological effectiveness [7]

and a general desire to see Wolbachia scaled up, model-

based projections have an important role to play in ad-

vising decision-makers on maximising the impact.
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