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Cumulative incidence has been widely used to estimate the cumulative probability of developing an event of in-

terest by a given time, in the presence of competing risks. When it is of interest to measure the total burden of re-

current events in a population, however, the cumulative incidence method is not appropriate because it considers

only the first occurrence of the event of interest for each individual in the analysis: Subsequent occurrences are not

included. Here, we discuss a straightforward and intuitive method termed “mean cumulative count,”which reflects a

summarization of all events that occur in the population by a given time, not just the first event for each subject. We

explore the mathematical relationship between mean cumulative count and cumulative incidence. Detailed calcu-

lation of mean cumulative count is described by using a simple hypothetical example, and the computation code

with an illustrative example is provided. Using follow-up data from January 1975 to August 2009 collected in the

Childhood Cancer Survivor Study, we show applications of mean cumulative count and cumulative incidence for

the outcome of subsequent neoplasms to demonstrate different but complementary information obtained from

the 2 approaches and the specific utility of the former.

cumulative incidence; disease burden; mean cumulative count; recurrent events

Abbreviations: CumI, cumulative incidence; KM, Kaplan-Meier; MCC, mean cumulative count; RT, radiation therapy.

In many clinical studies, it is of interest to estimate the cu-
mulative probability of developing an event by a given time.
The complement of a Kaplan-Meier (KM) product limit esti-
mate has been widely used to estimate this cumulative proba-
bility. However, when there are competing-risk events, which
are events that either preclude the occurrence of the event of
interest or fundamentally alter its probability of occurrence
(1), the method of cumulative incidence (CumI) should be
used. The KMmethod is not appropriate when competing-risk
events are present, because it does not distinguish competing-
risk events from censoring, which can result in inflated cumula-
tive probability estimates. The CumImethod properly removes
individuals who had a competing-risk event from the risk set
for the event of interest.
The CumI approach estimates the cumulative probability of

the first event of interest over time: Subsequent occurrences
of the event of interest are not included. When examining the

probability of event occurrencewithin subpopulations of sub-
jects defined by different treatments or other risk factors (i.e.,
etiological inference), it may be sensible for the analysis to
consider only the first occurrence of the event in each subject,
particularly if the occurrence of the first event changes the un-
derlying risk and/or biology of the subsequent event (e.g., by
treatment).
However, in many studies, the outcome variable of interest

is a recurrent event: Each individual in the study may experi-
ence the event of interest multiple times over the study period
(2). For example, survivors of childhood cancer are at risk
of subsequent neoplasms, which can reoccur (3, 4). With
the CumI method, survivors who experience recurrent sub-
sequent neoplasms are treated in the analysis the same way
as those who experience only 1 subsequent neoplasm, thus
underestimating the total burden of subsequent neoplasms
in this study population. Other examples of such outcomes
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include hospitalizations, injuries, repeated heart attacks, and
fractures in osteoporosis studies. Therefore, when it is of
interest to measure the total burden of such recurrent events
in a population, we would like a methodology that allows a
meaningful summarization of all events that occur in the pop-
ulation, not just the first event experienced by each subject
(5–7).

To fully describe the disease burden for recurrent events in
the presence of competing risks, we discuss use of a straight-
forward and intuitive method, hereafter referred to as “mean
cumulative count” (MCC), for estimating the average number
of events of interest to occur in a member of a population by a
given time. The method of MCC is not new, but it has not
been used widely in epidemiology. MCC is Nelson’s “mean
cumulative function” for the number of events (8) (therefore,
the term “mean cumulative count”), specifically acknowledg-
ing competing risks that terminate the at-risk status for the
event of interest. Cook and Lawless (9) and Ghosh and Lin
(10) discussed MCC, including a 2-sample test for comparing
MCC in the latter. Our goal here is to give an intuitive descrip-
tion of MCC and illustrate its use in a cohort study.

The organization of this paper is as follows: We will de-
scribe MCC, explore the relationship between the MCC esti-
mate and the CumI estimate for the first event, describe the
calculation method of MCC with a hypothetical study, illus-
trate the use of MCC with data from the Childhood Cancer
Survivor Study, and close with a discussion regarding some
important points that need to be considered when using MCC.

METHODS

Estimation of MCC

Our notation is consistent with that of Gooley et al. (1) who
provided an intuitive form and a clear demonstration of the
mechanics of the CumI. In contrast to CumI, which is defined
as the proportion of a closed population at risk that develops
the first occurrence of an event of interest within a given pe-
riod of time (11), theMCC proposed in this paper refers to the
average number of events of interest (first-ever or recurrent)
per individual in a population within a given period of time.
CumI includes only the first occurrence of the event of inter-
est for each individual and describes the average risk of expe-
riencing at least 1 event in a population, whereas MCC is a
summarization of all the events that occur in the population
at risk and reflects the burden of the event of interest in a
population.

To estimate MCC, we assume there are n0 individuals ini-
tially at risk in the study. Each individual could experience 3
distinct kinds of events at time tj during follow up: 1) occur-
rence of the event of interest; 2) occurrence of a competing-
risk event; and 3) censoring.

The times at which any of the 3 events occur can be or-
dered as t1 ≤ t2 ≤ . . . ≤ tn.

We further define the following:

ej: The number of events of interest occurring at time tj
(including first-ever or recurrent);

rj: The number of individuals who experience a competing-
risk event at time tj;

cj: The number of individuals who are censored at time tj;
and

nj: The number of individuals who are at risk and under
observation in the study beyond time tj.

In contrast to the usual CumI setting, whenmeasuring the total
number of events is of interest, regardless of whether first or
later occurrences, individuals can experience the event of inter-
est several times and still remain “at risk” for the event of in-
terest in the study. Thus, individuals can only experience a
competing-risk event or censoring outcome once and are re-
moved from the risk set, while those experiencing the event
of interest remain in the risk set, which means

nj ¼ n0 �
Xj

k¼1

ðrk þ ckÞ; ð1Þ

and the overall KM estimator of survival probability is ex-
pressed as

KMðtÞ ¼
Ys
j¼1

1� rj
n j�1

� �
; ð2Þ

where s is the largest j such that tj < t. This survival probability
at a given time is the conditional probability that an individual
remains at risk for the event of interest at that time. Because
individuals who experienced the event of interest are still at
risk of experiencing the event of interest again, they will not
affect this survival probability. Given equation 2 of KM(t),
the MCC by time t is defined by

MCCðtÞ ¼
Xs

j¼1

ej
n j�1

KMðtjÞ: ð3Þ

The MCC can be interpreted as the expected number of events
of interest per person by a given timewho have not experienced
a competing-risk event by that time. Therefore, the product
MCC(t) × n0 is the total expected number of events of interest
by time t, which can be a more relevant and clearly interpret-
able measure of overall disease burden in a population than
considering only the first event that occurs for each subject.

For calculating the cumulative probability of the first event
of interest at time t, CumI(t), Gooley et al. (1) gave the follow-
ing formula:

CumIðtÞ ¼
Xs

j¼1

ej
n�j�1

Yj�1

k¼1

1� ek
n�k�1

� �Yj�1

k¼1

1� rk
n�k�1

� �
; ð4Þ

where

n�j ¼ n0 �
Xj

k¼1

ðek þ rk þ ckÞ: ð5Þ

Note that the notation defined for equations 1–3 also applies
to equations 4 and 5, but the follow-up time stops after the
individual experiences the first occurrence of the event of in-
terest. Thus, ek /nk−1 and rk /nk−1 are the estimate of the hazard
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of failure from the event of interest and the competing-risk
event, respectively, at time tk. Individuals are removed from
the risk set after the first occurrence of the event of interest,
occurrence of a competing-risk event, or censoring.
Comparison of equations 3 and 4 illustrates a critical dif-

ference between MCC and CumI. For CumI, the cumulative
probability of the first event of interest depends on survival
free of both the event of interest and the competing-risk
event. After experiencing the first occurrence of the event
of interest, the individual should not remain in the risk set be-
cause continued observation of that person will not provide
any additional information about the first occurrence of the
event. For MCC, however, the survival probability depends
only on survival free of a competing-risk event. Because the
individual can remain in the risk set after experiencing the
event of interest, the number of event occurrences is no lon-
ger the same as the number of individuals who experience the
event. Therefore, MCC estimates the average number of
events per person in the population rather than the proportion
of individuals who experience the event of interest.

Relationship between MCC and CumI

If we assume that individuals can experience at most m
recurrences of the event of interest and there is no censoring
during the study, it is possible to calculate the CumI for the
first event occurrence (CumI1(t)) and also for the second event
occurrence (CumI2(t)), and so on, until the mth event occur-
rence (CumIm(t)). Thus, the total expected number of event
occurrences by time t can be calculated as

CumI1ðtÞ× n0 þCumI2ðtÞ× n0 þ � � � þCumImðtÞ× n0: ð6Þ
Therefore, the cumulative total event estimate is equivalent
to the sum of CumIs for each incremental number of events,
that is,

MCCðtÞ× n0 ¼
Xm
p¼1

CumIpðtÞ× n0: ð7Þ

Here, CumIp(t) represents the CumI for the pth (p = 1, 2, . . .,m)
occurrence of the event of interest by time t. We can simplify
equation 7 as

MCCðtÞ ¼
Xm
p¼1

CumIpðtÞ: ð8Þ

For calculating CumIp(t), we treat only the pth occurrence of
an event as the event of interest: All other aspects of calculat-
ing CumIp(t) are identical to those for calculating CumI(t).
After having the pth event, the individuals would leave the
population at risk for the pth occurrence of event.
For calculating CumIp(t), we further define the following

for the pth occurrence of the event of interest:

epj: The number of individuals who experience the pth
event of interest at time tj;

rpj: The number of individuals who experience a competing-
risk event at time tj (before experiencing p occurrences
of the event of interest); and

npj: The number of individuals who are under study beyond
time tj (i.e., have not experienced p occurrences of the
event of interest or a competing-risk event).

Because there are n0 individuals initially at risk, we have
np0 = n0 for all p. Note that ej is the number of events of in-
terest by time tj, regardless of whether it was the first occur-
rence or not. Therefore, we have ej ¼

Pm
p¼1 e pj. The proof of

equality in equation 8 is shown in the Appendix.

ILLUSTRATIVE EXAMPLE

In the following example of a recurrent event outcome, we
show step-by-step calculations of the MCC and further illus-
trate the relationship between MCC and CumI. We assume
that 5 participants were enrolled at the beginning of a study
(Figure 1). Subject 1 was alive at the end of the study and was
considered censored at t8. Subject 2 was lost to follow-up at t1
and treated as censored. Subject 3 died from a competing-risk
event at t5. Subject 4 experienced the event of interest 3 times
(at t2, t6, and t7) andwas alive at the end of the study. Subject 5
experienced the event of interest once at t3 and died at t4(t3 =
t4). While we assumed no censoring above yet have 2 cen-
sored observations in this example, these occurred at the
beginning and end of follow-up, and their presence does not
alter our conclusions.
First, we calculate the overall KM survival probability

(Table 1). Note that when the event of interest occurs, it
does not change the number of individuals at risk for the
next time interval, because these individuals are still at risk
for another occurrence of the event of interest. Next, we cal-
culate the mean cumulative count of events per person by
time tj on the basis of equation 3 (Table 2).
From Table 2, we see that MCC(t8) = 1.0, which means

that, by time t8, the mean cumulative count of events of inter-
est per person is estimated to be 1.0. In other words, because
we have 5 individuals initially at risk, if we have no censor-
ing, we would expect to see the event of interest occurring 5
times during follow-up, regardless of whether it was the first
occurrence or not. Because the event of interest was experi-
enced a maximum of 3 times in this example, we need to cal-
culate only CumI1(tj), CumI2(tj), and CumI3(tj), and we
illustrate that CumI1(tj) + CumI2(tj) + CumI3(tj) is equivalent
to MCC(tj) (Table 3).
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t2 t6 t7

t5 

t3 t4

t0 t8

Figure 1. A visual representation of a hypothetical study that has
a recurrent-event outcome. A dashed line represents the follow-up
period of each individual. A solid circle represents the occurrence of
the event of interest, an open circle represents censoring, and a cross
represents the occurrence of the competing-risk event.
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AN EXAMPLE OF USE IN PRACTICE

Study population

To illustrate the use of MCC and contrast it with the use of
CumI, we use the Childhood Cancer Survivor Study, a large
cohort study designed to investigate the long-term effects of
cancer and therapy among 5-year survivors of childhood can-
cer. The Childhood Cancer Survivor Study cohort consists of
5-year survivors of childhood cancer diagnosed before the
age of 21 years between 1970 and 1986 in one of 26 collabo-
rating pediatric oncology centers. A detailed description of the
Childhood Cancer Survivor Study design has been published
previously (4, 12). The Childhood Cancer Survivor Study was
approved by institutional review boards at the 26 participating
centers, and participants provided informed consent.

Childhood cancer survivors are at increased risk for devel-
oping subsequent neoplasms following childhood cancer,
including subsequent malignant neoplasms, nonmalignant
meningioma, and nonmelanoma skin cancers (3, 4). The oc-
currence of subsequent neoplasms affects cancer survivors’
quality of life, increases health-care service needs, and is a cen-
tral issue for aging survivors (3, 13). Radiation therapy (RT) has
been consistently reported to increase the risk of subsequent
neoplasms (3, 14, 15). TheMCCmethodology that we propose

can be used to understand the total burden of subsequent neo-
plasms among childhood cancer survivors by RT exposure.

Statistical analysis

Specifically, we report MCC and CumI estimates of any
type of subsequent neoplasm for a cohort of 12,588 survivors,
starting from their entry into the Childhood Cancer Survivor
Study cohort (5 years after the original childhood cancer diag-
nosis) and followed for a total of 244,889 person-years, with a
median of 19.9 years of follow-up time (interquartile range,
16.1–24.6 years). We stratified survivors by whether they re-
ceived RT treatment (RT group) or not (no RT group) in the
5-year period following the childhood cancer diagnosis prior
to their entry into the Childhood Cancer Survivor Study co-
hort. Death from any cause was treated as a competing-risk
event for occurrences of subsequent neoplasms, and survivors
were censored at the date of last contact.

Among 8,469 survivors who received RT treatment, 1,229
experienced at least 1 subsequent neoplasm, and a total of
2,112 occurrences of subsequent neoplasms were reported
after entry into the Childhood Cancer Survivor Study cohort
between January 1975 and August 2009. Of the 1,229 survi-
vors with subsequent neoplasms, 840 (68.3%) experienced

Table 1. Calculation of Overall Survival Probability

Time Interval
No. at
Risk,
nj − 1

No.
Censored, cj

No. of
Events of
Interest, ej

No. of
Competing-Risk

Events, rj

Survival
Probability,
1 – rj /nj − 1

Overall Survival
Probability,

KM(tj)

Time 1 Time 2 5 1 0 0 1 1

Time 2 Time 3 4 0 1 0 1 1

Time 3 Time 4 4 0 1 0 1 1

Time 4 Time 5 4 0 0 1 3/4 3/4

Time 5 Time 6 3 0 0 1 2/3 1/2

Time 6 Time 7 2 0 1 0 1 1/2

Time 7 Time 8 2 0 1 0 1 1/2

Time 8 2 2 0 0 1 1/2

Abbreviation: KM, Kaplan-Meier.

Table 2. Calculation of Mean Cumulative Count

Time Interval
No. at
Risk,
nj − 1

No. of Events
of Interest,

ej

Probability
of Event,
ej /nj − 1

Survival
up to

tj , KM(tj − 1)

Average
No. of Events,

KM(tj − 1) × (ej /nj − 1)

Mean Cumulative
Count,
MCC(tj)

Time 1 Time 2 5 0 0 1 0 0

Time 2 Time 3 4 1 1/4 1 1/4 1/4

Time 3 Time 4 4 1 1/4 1 1/4 1/2

Time 4 Time 5 4 0 0 1 0 1/2

Time 5 Time 6 3 0 0 3/4 0 1/2

Time 6 Time 7 2 1 1/2 1/2 1/4 3/4

Time 7 Time 8 2 1 1/2 1/2 1/4 1

Time 8 2 0 0 1/2 0 1

Abbreviation: KM, Kaplan-Meier.
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only 1 subsequent neoplasm, and 389 (31.7%) experienced
multiple subsequent neoplasms. Among 4,119 survivors who
did not receive RT treatment during the same time period, a
total of 221 occurrences of subsequent neoplasmswere reported
among178 individuals, ofwhom147 (82.6%) experienced only
1 subsequent neoplasm and 31 (17.4%) experienced multiple
subsequent neoplasms.
Figure 2A shows the estimated MCC curves and 95% confi-

dence intervals calculated by bootstrapping individual survivors
using the bootstrap percentile method (16). The MCC analysis
with all subsequent neoplasm occurrences reveals that, by 39
years after diagnosis, there would be an average of 0.56 subse-
quent neoplasms occurring per survivor (MCC = 0.56), or more
easily interpreted as an average of 56.0 subsequent neoplasms
occurring per 100 survivors in the RT group, compared with
16.1 subsequent neoplasms per 100 survivors in the no RT
group (MCC = 0.16). In other words, we would expect to ob-
serve more than 1 subsequent neoplasm for every 2 survivors
in the RT group compared with less than 1 subsequent neo-
plasm for every 6 survivors in the no RT group. This result sug-
gests that, 39 years after diagnosis, the number of subsequent
neoplasms experienced by survivorswho receivedRT treatment
is approximately 3.5 times higher compared with the number
experienced by survivors who did not receive RT treatment.
Figure 2B shows the estimated CumI curves and 95% confi-
dence intervals that include only the first subsequent neoplasm
occurrence for each survivor. It reveals that the probabilities of
developing at least 1 subsequent neoplasm 39 years after diag-
nosis are 0.26 in the RT and 0.10 in the no RT groups. Trans-
lated to numbers of subjects with at least 1 subsequent neoplasm
per 100 survivors, similar to the above interpretation of MCC,
we expect 26 out of 100 survivors to have at least 1 subsequent
neoplasm event among the RT-exposed group. Refer to the
Discussion section for comments on this MCC curve.

DISCUSSION

To capture the burden of recurrent events in a population
occurring within a given time in the presence of competing
risks, we discussed the use of MCC in this paper. Herein, we
mathematically prove and empirically show the equivalence
of the MCC and the sum of CumIs for the incremental num-
ber of events experienced within a population.

When analyzing datawith recurrent events on the basis of the
scientific questions of the study, one should first clearly estab-
lish whether the measure of primary interest is either 1) the per-
centage of people who experience the event of interest at least
once or 2) a summary of the total number of events occurring
within a population. For the former, CumI can be estimated; for
the latter, the proposed MCC would be useful.
An important characteristic of theMCC, which is in contrast

to the CumI, is that it is not a probability. The possible range of
values for theMCC is not from 0 to 1 (this is the range of CumI
that is a probability). Rather, it can be any positive number.
This is because we are estimating the mean count of events
per member of a certain population rather than the proportion
of the population that develops the event of interest. Also, it is
not interpretable without specification of the time period to
which it applies. This is also true for CumI. Even when applied
to the same population size, an average of 2 events per person
can reflect a dramatically different burden of disease over a
50-year time period compared with a 1-year time period. From
the illustrative example, we can see that a meaningful inter-
pretation can be given as an average of 1 event per every X in-
dividuals initially at risk, or an average of Y events per 100
individuals initially at risk. For statistical inference with
MCC, including the significance test and confidence intervals,
we have easily applied the valid method of bootstrapping indi-
viduals (16). Ghosh and Lin (10) derived a 2-sample test.
Differences between MCC and CumI become larger as the

repeated occurrence of events is more frequent. As shown in
Figure 2 of the Childhood Cancer Survivor Study example,
MCC in the no RT group led to a similar estimate as CumI,
while they differed appreciably in theRTgroup. This reflects the
more frequent repeated occurrences of subsequent neoplasms in
theRTgroup relative to thenoRTgroup,where few subjects had
more than 1 subsequent neoplasm. In addition, the discrepancy
between MCC and CumI becomes greater over time. Thus, the
CumI analysis that incorporates only the first occurrence of sub-
sequent neoplasmswould underestimate the total burden of sub-
sequent neoplasms more severely with longer follow-up time.
For quantifying the incidence of recurrent events, a tradi-

tional measure in epidemiology is a “rate” that is defined as
the total number of events divided by the total person-time at
risk for the event (2). The denominator takes into account the
number of individuals in a cohort, as well as the length of time

Table 3. Equivalence of the Sum of CumIs and MCC

Time Interval CumI1(tj) CumI2(tj) CumI3(tj)
CumI1(tj) + CumI2(tj) +

CumI3(tj)
MCC(tj)

Time 1 Time 2 0 0 0 0 0

Time 2 Time 3 1/4 0 0 1/4 1/4

Time 3 Time 4 1/2 0 0 1/2 1/2

Time 4 Time 5 1/2 0 0 1/2 1/2

Time 5 Time 6 1/2 0 0 1/2 1/2

Time 6 Time 7 1/2 1/4 0 3/4 3/4

Time 7 Time 8 1/2 1/4 1/4 1 1

Time 8 1/2 1/4 1/4 1 1

Abbreviations: CumI, cumulative incidence; MCC, mean cumulative count.
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contributed by each individual. Rate reflects the fundamental
force of all events of interest occurring in a population, and
it can rise or fall with time. This is different from the MCC in
this paper, as the denominator of MCC depends only on the
number of individuals at risk. MCC reflects the average burden
of the event of interest in a population, and it is a cumulative
measure that cannot decreasewith the length of the risk period.

For regression analysis, differentways to extendCox regression
to recurrent-event settings have been proposed. For example,
Wei et al. (17) proposed a marginal approach to multivariate
failure time data with the use of a sandwich-type estimator
of the variance-covariance matrix of regression coefficients.
Application of this method to recurrent-event settings has
been evaluated carefully with a conclusion that it is well justi-
fied (18). Refer also to the report by Therneau and Grambsch
(19) for a summary of and comparison between different ways
of extendingCox regression to recurrent-event settings, includ-
ing the approach of Wei et al.

Note thatMCC is a marginal measure (as opposed to a con-
ditional measure) of disease burden, similar to CumI, and its
interpretation is not conditional on survival free of competing-
risk events (20). Also, MCC does not assume independence
between the event of interest and the competing-risk events
(9, 10). Thus, in our example from the Childhood Cancer
Survivor Study, MCC is applicable to the situation where the
event of interest (subsequent neoplasm) and the competing-
risk event (death) are certainly correlated.

In real data analyses, censoring is common. While we as-
sumed no censoring in providing the intuitive explanation of
MCC as the sum of CumIs, it is pertinent to discuss what hap-
pens with censoring. Suppose there are 3 subjects who each
develop 1 event of interest at times t1, t2, and t3, respectively,
with no censoring. The observed average number of events
per subject by time t (>t3) is 1.0, where the average goes up
by one-third at t1, t2, and t3. This is the estimate of MCC, and
also that of CumI, at t. Now consider a different scenario
where the subject who had an event at time t1 was subse-
quently censored before time t2. The estimate ofMCCwill go
up by one-half, not one-third, at t2 because the subject with an
event at t1 has been censored (i.e., assumed to have the same
event processes as the other 2 who remained under study after
the censoring time) and 1 event occurred in the 2 subjects
under study at risk at t2. Note that CumI does not change by
censoring after an event occurrence. Thus, censoring in-
creases the height of each jump of MCC estimates at subse-
quent event occurrences.

In some cases, the sum of CumIs rather than MCC esti-
mates may be of interest. In fact, theMCC curvewe presented
in the Childhood Cancer Survivor Study above is the sum of
CumIs. The sum of CumIs distinguishes the order of events
within a person, while MCC considers all events to be ex-
changeable. Since a second cancer treatment may affect the
risk of third and subsequent cancers, we felt that the sum of
CumIs was more appropriate in the example. The sum of
CumIs does, however, take censoring into account: It does
so differently from MCC. Specifically, if a subject was cen-
sored after his/her pth event before the (p + 1)th event, this
censoring will increase the height of the jumps of MCC esti-
mates at every subsequent event occurrence byany subject, re-
gardless of the number of events that individual had already
experienced. For the sumofCumIs, however, this censoringwill
increase the jumps of CumI(p + 1), CumI(p + 2), CumI(p +
3), . . ., but not those of CumIp, CumI(p− 1), CumI(p−2) at
subsequent event occurrences. This also implies a precise
condition where a censoring event does not make MCC
and the sum of CumIs different: When a censoring event oc-
curs after all subjects have experienced their pth event but
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Figure 2. Estimated MCC curves and CumI curves based on data
from the Childhood Cancer Survivor Study (26 pediatric oncology cen-
ters in theUnitedStates and Canada), 1975–2009. A)Mean cumulative
count curves and 95% confidence intervals calculated by the bootstrap
percentile method, stratified by whether received radiation treatment
(RT group) or not (no RT group); B) cumulative incidence curves and
95% confidence intervals, stratified by RT group and no RT group.
Gray shading represents 95% confidence intervals. CumI, cumulative
incidence; MCC, mean cumulative count; RT, radiation therapy.
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before any subject experiences his/her (p + 1)th event for a
natural number p, then this censoring will cause no difference
between MCC and the sum of CumIs.
Finally, the MCC provides an additional approach for de-

scribing the occurrence of an outcome that can occur more
than once during the period of observation. We do not pro-
pose that the MCC should replace other metrics such as the
CumI, standardized incidence ratio, or absolute excess risk in
describing the occurrence of an outcome. Rather, the MCC
provides a new dimension, which reflects a total burden of the
event of interest within a population. We provide a computa-
tion code of MCC with an illustrative example at https://
ccss.stjude.org/resourcetools.
Note added in proof: After initial online publication of

this article, we noted that a key assumption pertaining to the
mathematical proof presented in the Appendix was missing.
The proof showed that the sum of cumulative incidence and
the mean cumulative count method were identical. We have
now incorporated the assumption into the proof and have
added an explanation to the text on how the 2 methods differ
and on the use of each method when the assumption is not met.
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APPENDIX

Proof of Equality in Equation 8

We assume that there are n0 individuals initially at risk in the study. Each individual could experience 3 distinct kinds of events
at time tj during follow-up: 1) occurrence of the event of interest; 2) occurrence of a competing-risk event; and 3) censoring.
However, we assume no censoring here.

The times at which any of the events occur can be ordered as t1 ≤ t2 ≤ . . . ≤ tn.
Individuals could experience the event of interest (outcome 1 above) multiple times and remain in the study. However, they can

experience outcome 2 or 3 only once. We further define the following:

ej: The number of events of interest at time tj (first ever or recurrent);
rj: The number of individuals who experience a competing-risk event at time tj; and
nj: The number of individuals who are at risk and under observation of the study beyond time tj.

If we assume that an individual can experience at most m times of the recurrent event in the study, for the pth (p = 1, 2, . . ., m)
occurrence of the event of interest:

epj: The number of individuals who experience the pth event of interest at time tj;
rpj: The number of individuals who experience a competing-risk event at time tj (before experiencing p occurrences of the event of

interest); and
npj: The number of individuals who are under study beyond time tj (i.e., have not experienced p occurrences of the event of

interest or a competing-risk event).

For calculating CumIp(t), we treat only the pth occurrence of the event as the event of interest. The population at risk for the pth
occurrence of the event would consist of those individuals who have had the (p− 1)th occurrence of the event of interest, and
after having the pth event, the individuals would leave the population at risk for the pth occurrence of the event.

Because there are n0 individuals initially at risk, we have np0 = n0. Note that ej is the number of events of interest by time
tj, regardless of whether it was the first occurrence or not; therefore, we have ej ¼

Pm
p¼1 e pj.

Now, we want to mathematically prove that the MCC at time t is equivalent to the sum of CumIp(t)s, such that

MCCðtÞ ¼
Xm
p¼1

CumIpðtÞ:

Here, CumIp(t) represents the CumI for the pth (p = 1, 2, . . ., m) occurrence of the event of interest by time t.
On the basis of the formula for calculating MCC(t) and CumI(t), we have

MCCðtÞ ¼

0 if s ¼ 0
e1
n0

if s ¼ 1;

e1
n0

þ
Xs

j¼2

ej
n j�1

Yj�1

k¼1

1� rk
nk�1

� �
if s � 2

8>>>>><
>>>>>:

and

Xm
p¼1

CumIpðtÞ ¼

0 if s ¼ 0Pm
p¼1

e p1
np0

¼ e11
n10

if s ¼ 1;

Pm
p¼1

e p1
np0

þ Pm
p¼1

Ps
j¼2

e pj
n pð j�1Þ

Yj�1

k¼1

1� r pk
n pðk�1Þ

� �Yj�1

k¼1

1� e pk
n pðk�1Þ

� �
if s � 2

8>>>>><
>>>>>:

where s is the largest j such that tj < t.
Mathematical induction is applied for the following proof.

Basis step: When s = 1, because e11 = e1 and n10 = n0, we have MCCðtÞ ¼ Pm
p¼1 CumIpðtÞ.

Inductive step: We assume that the equation holds for s = i, which means MCCðtiÞ ¼
Pm

p¼1 CumIpðtiÞ. For s = i + 1, we have

MCCðtiþ1Þ ¼ MCCðtiÞ þ eiþ1

ni

Yi
k¼1

1� rk
nk�1

� �
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Xm
p¼1

CumIðtiþ1Þ ¼
Xm
p¼1

CumIðtiÞ þ
Xm
p¼1

epðiþ1Þ
npi

Yi
k¼1

1� r pk
n pðk�1Þ

� �Yi
k¼1

1� e pk
n pðk�1Þ

� �
:

By definition,

npi ¼ ni × P ðbeing at risk for pth event at t ¼ i jbeing at risk for an event at t ¼ iÞ:

The above conditional probability can be calculated by

Qi
k¼1 ð1� r pk=npðk�1ÞÞ

Qi
k¼1 ð1� e pk=npðk�1ÞÞQi

k¼1 ð1� rk=nk�1Þ
:

Because eiþ1 ¼
Pm

p¼1 e pðiþ1Þ and MCCðtiÞ ¼
Pm

p¼1 CumIpðtiÞ, we can show that MCCðtiþ1Þ ¼
Pm

p¼1 CumIpðtiþ1Þ.
In summary, we conclude that the MCC is equivalent to the sum of the CumIs for incremental numbers of events in the

population.
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