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Abstract The case fatality rate is an important indicator of the severity of a disease,
and unbiased and accurate estimates of it during an outbreak are important in the
study of epidemic diseases, including severe acute respiratory syndrome (SARS). In
this paper, estimation methods are developed using a constant cure-death hazard ratio.
A semiparametric model is presented, in which the cure-death hazard ratio is a param-
eter of interest, and a profile likelihood-based technique is proposed for estimating the
case fatality rate. An extensive simulation was carried out to investigate the perfor-
mance of this technique for small and medium sample sizes, using both summary and
individual data. The results show that the performance depends on the model validity
but is not heavily dependent on the sample size. The method was applied to summary
SARS data obtained from Hong Kong and Singapore.
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Abbreviations
SARS Severe acute respiratory syndrome
WHO World Health Organization

1 Introduction

Severe acute respiratory syndrome (SARS) emerged at the end of 2002, and of the
8437 cases reported prior to July, 2003, 813 individuals died (WHO 2003a). For a
new epidemic of such a disease, the case fatality rate is of considerable interest and
has been discussed by the World Health Organization (WHO 2003b), Donnelly et al.
(2003), Chen and Nakamura (2004), Yip et al. (2005), Ghani et al. (2005), Yu et al.
(2006), Jewell et al. (2007), Chang et al. (2007), among others.

The case fatality rate of a disease is defined as the proportion of cases, among those
who develop a disease, who then proceed to die from the disease (Rothman 2002).
This definition can only be used to compute the exact value of the case fatality rate
at the end of an epidemic. Estimates calculated during an outbreak may be subject to
bias because of future deaths that have not yet been counted. The estimation methods
are classified according to whether individual (where individual survival times are
included) or summary data are given.

For summary data (i.e., data collected daily over a given period of time, show-
ing the total number of admissions, deaths, and cures) during an outbreak of SARS,
the WHO (2003b) presented two traditional estimates: the ratio of deaths among all
reported SARS cases, and the ratio of deaths among SARS cases with a known out-
come (patients who are known to have recovered or died). Chen and Nakamura (2004)
proposed a cure-death hazard plot, a scatter plot of the cumulative hazards for recovery
versus death, based on a competing risks theory. The ultimate case fatality rate can
then be estimated by extrapolation using a regression equation. On the other hand,
Yip et al. (2005) defined a real-time SARS fatality rate as the probability of death,
conditioned on a transition to either death or recovery, but they did not estimate the
overall case fatality rate.

For individual data, Donnelly et al. (2003) assumed gamma distributions for the
individual time-delay distributions, admission-to-death, and admission-to-discharge.
In addition, they presented a nonparametric estimation technique based on the
Kaplan-Meier curve. Ghani et al. (2005) and Jewell et al. (2007) applied the Kaplan-
Meier curve to Hong Kong data collected in 2003, jointly considering two outcomes
(death and recovery). According to the results of Ghani et al. (2005), the extensional
Kaplan-Meier method gave better estimates than the parametric cure model. Chang
et al. (2007) obtained an age-specific case fatality rate for the Taiwan SARS epidemic
by applying a modified semiparametric cure model, previously used by Fine (1999),
to data collected throughout the epidemic.

In this paper, a likelihood-based method is developed that is applicable to both sum-
mary data and individual data with covariates. The next section describes the profile
likelihoods for analyzing the two types of data. In Sect. 3, numerical results are used
to compare the performance of those likelihood methods with the techniques given in
the literature. Section 4 describes summary SARS data for Hong Kong and Singapore.
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This study deals with discrete failure time models, since the survival experiences of
SARS patients were recorded daily and included a considerable number of ties for
individual data.

2 Estimation methods

Let T be a random variable that measures the time elapsed from admission to the
occurrence of a failure. Suppose that there are two competing types of failure, denoted
by J = 1 and J = 2. In this paper, the failure type J = 1 will be referred to as death
and J = 2 will be referred to as cure.

2.1 Summary data

Assume that failures occur at discrete times t1 < t2 < · · · < ti < · · · < ts < · · · <

tmax, where ts is the time when the study is carried out, and all patients experience
failure no later than tmax. Let S(t) = P(T ≥ t) denote the survivor function, h ji =
h j (ti ) = P(T = ti , J = j |T ≥ ti ) a type- j hazard at ti , for j = 1, 2 and i = 1, 2, . . . ,

respectively. The time ti will be referred to as Day i . Let π1 and π2 denote the case
fatality rate and case cure rate, respectively, with π1 + π2 = 1. Define the cure-death
hazard ratio at ti as θi = h2i/h1i . If the ratio is a constant θi ≡ θ for i = 1, 2, . . . ,

then the case fatality rate is given by π1 = (1 + θ)−1.
Let ni , di , ci , Ni , Di , and Ci denote the number of new admissions, deaths, and cures,

and the cumulative number of admissions, deaths, and cures at time ti (i = 1, 2, . . . , s),
respectively. It is assumed that no patient dies or is cured at the same time, ti , that
he/she is admitted to a hospital. Then the number of patients at risk at time ti is
ai = Ni−1−Di−1−Ci−1. Since the probability of no failures at time ti is 1−h1i −h2i ,
the contribution of the observations ci and di given ai to the log-likelihood (Betensky
and Schoenfeld 2001) is

li = di log(h1i ) + ci log(h2i ) + (ai − di − ci ) log(1 − h1i − h2i ).

The martingale argument of counting process theory (Andersen et al. 1993) then leads
to an overall log-likelihood of l = ∑s

i=1 li for the hazards, h1i and h2i , i = 1, 2, . . . , s.
Let us assume that the cure-death hazard ratio is time-independent, h2i/h1i ≡ θ .

Then the log-likelihood for θ and the h1i is

l =
s∑

i=1

{di log(h1i ) + ci log(θh1i ) + (ai − di − ci ) log(1 − h1i − θh1i )}

Solving the equation ∂l/∂h1i = 0, we have ĥ1i = (di + ci )/[ai (1 + θ)]. Assigning
ĥ1i to h1i leads to the profile log-likelihood (Murphy and Van der Vaart 2000) for θ

pl =
s∑

i=1

{

di log
di + ci

ai (1 + θ)
+ci log

θ(di + ci )

ai (1 + θ)
+(ai − di − ci ) log

(

1 − di + ci

ai

)}

.
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The maximum profile likelihood estimate and an asymptotic variance estimate based
on the profile information matrix (Tsodikov et al. 2007) are given by

θ̂ =
∑s

i=1 ci
∑s

i=1 di
and avar(θ̂) =

∑s
i=1 ci

∑s
i=1 (di + ci )

(∑s
i=1 di

)3 .

The estimate of the case fatality rate and an asymptotic variance estimate based on the
delta method are then given by

π̂1 = 1/(1 + θ̂ ) and avar(π̂1) = avar(θ̂)
(

1 + θ̂
)−4

.

2.2 Extension to individual data with covariates

If Z denotes a 1 × w vector of covariates for an individual, the survival function with
covariate Z will be denoted by S(t, Z) = Pr(T ≥ t |Z). The type- j hazard function is

λ j (t, Z) = Pr(T = t, J = j |T ≥ t, Z), j = 1, 2, (1)

and the type- j frequency function is f j (t, Z) = Pr(T = t, J = j |Z), for j = 1, 2.
Let π1(Z) and π2(Z)denote the covariate specific case fatality rate and case cure rate,
respectively. The cure-death hazard ratio given Z at t is θ(t, Z) = λ2(t, Z)/λ1(t, Z).
If the ratio is time-independent over the study period, say θ(t, Z) ≡ θ(Z), then,
π1(Z) = (1 + θ(Z))−1.

Lunn and McNeil (1995) assume a proportional hazards model for the type-specific
hazard functions in Eq. 1,

λ j (t, Z) = λ j0(t) exp
[
βT

j Z
]
, j = 1, 2,

where λ j0(t) is a baseline hazard, and β j is a 1 × w vector of regression coefficients,
for j = 1, 2. The sub-survivor function and sub-density function are, respectively,

S j (t, Z) = exp

(

−
∑

ti ≤t

λ j (ti , Z)

)

and f j (t, Z) = λ j (t, Z)S(t, Z), j = 1, 2,

where S(t, Z) = S1(t, Z)S2(t, Z) is the overall survivor function. Correspondingly,
the cure-death hazard ratio is written as θ(t, Z) = θ(t) exp[(βT

2 − βT
1 )Z], where

θ(t) = λ20(t)/λ10(t) is a baseline cure-death hazard ratio. Hereafter, we assume θ(t)
is a constant θ0 over the study period, and therefore,

λ20(t) = θ0λ10(t) and θ(Z) = θ0 exp
[(

βT
2 − βT

1

)
Z
]
.

Assume that (τk, δk, jk, Zk) is observed for each subject k, k = 1, 2, . . ., m (m is
the number of subjects), where τk denotes the time elapsed until either a failure or a

123



320 Lifetime Data Anal (2009) 15:316–329

censoring occurs, jk is an indicator ( jk = 1 for death, 2 for cure, and 0 for censoring),
and Zk is a covariate vector. Define δ1k = I[ jk = 1], δ2k = I[ jk = 2], where I[q] is 1
if q is true, and 0 otherwise. The likelihood is then given by

L =
m∏

k=1

Lk =
m∏

k=1

⎧
⎨

⎩

2∏

j=1

λ j (τk, Zk)
δ jk S1(τk, Zk)S2(τk, Zk)

⎫
⎬

⎭
.

For notational simplicity, set β0 = log θ0 and βT = (β0,β
T
1 ,βT

2 ), and change the
order of the summations. The profile log-likelihood pl(β) is then the sum of

pli (β) = −�i log

⎧
⎨

⎩

∑

k∈Ri

exp
(
βT

1 Zk

)
+
∑

k∈Ri

exp
(
β0 + βT

2 Zk

)
⎫
⎬

⎭
+
∑

k∈R1i

βT
1 Zk

+�2i β0 +
∑

k∈R2i

βT
2 Zk

for i = 1, . . . , s, where R ji = {k|τk = ti , δ jk = 1} denotes the set of individuals
who fail at ti with type- j failure, and Ri those at risk at ti , �1i and �2i are the num-
ber of deaths and cures, respectively, at ti and �i = (�1i + �2i ) (Appendix A). The

maximum profile likelihood estimate β̂
T = (β̂0, β̂

T
1 , β̂

T
2 ) and the asymptotic variance

estimate avar(β̂) are then obtained by maximizing pl(β) (Appendix B).
The estimate for the constant cure-death hazard ratio with covariate Z is,

θ̂ (Z) = θ̂0 exp
[(

β̂
T
2 − β̂

T
1

)
Z
]

= exp
[
β̂0 − β̂

T
1 Z + β̂

T
2 Z
]
.

Since log θ̂ (Z) = (1,−ZT , ZT )β̂, its asymptotic variance estimate is given by

avar [log θ̂ (Z)] = (1,−ZT , ZT )avar(β̂)(1,−ZT , ZT )T .

Then the asymptotic variance estimates (obtained from the delta method) for θ̂ (Z) and
π̂1(Z) = [1 + θ̂ (Z)]−1 are, respectively,

avar [θ̂ (Z)] = avar [log θ̂ (Z)]θ̂ (Z)2

and

avar [π̂1(Z)] = avar [θ̂ (Z)][1 + θ̂ (Z)]−4.

If Z ≡ 0 or β1 = β2, then θ(Z) and π1(Z) are θ0 and π1, respectively. In this sim-
ple case, pl(β) reduces to pl(θ0) = ∑s

i=1

{−(�1i + �2i ) log(1 + θ0) + �2i log θ0
}

and the maximum profile likelihood estimate and asymptotic variance estimate are,
respectively,
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θ̂0 =
∑s

i=1 �2i
∑s

i=1 �1i
and avar(θ̂0) =

∑s
i=1 �2i

∑s
i=1 (�1i + �2i )

(∑s
i=1 �1i

)3 .

3 Numerical results

3.1 Summary data

The first subsection assesses the performance of the profile likelihood estimates for
summary data, as presented in Sect. 2.1. Comparisons between the empirical variance
and the asymptotic variance estimate are of particular interest. A uniformly distributed
random number U in (0, 1) is generated daily for each subject at risk. The outcomes
are then death, cure, or still at risk at time (i + 1), depending on whether U ≤ h1i ,
h1i < U ≤ h1i +h2i , or h1i +h2i < U . Parameter values and sample sizes are chosen
based on actual SARS data described in Sect. 4, and 10000 independent estimates are
generated.

Data are simulated under 3 scenarios. The initial number of subjects is a1 = 200 in
scenario I, a1 = 1500 in scenario II, and a1 = 100 in scenario III. In both scenarios I
and II, there are no new admissions on any day (ni = 0 for all i). In scenario III, the
number of new daily admissions is 25 on Days 1–15, 50 on Days 16–35, and 15 on Days
36–45. The number of subjects at risk on Day i is ai = ai−1 + ni−1 − di−1 − ci−1
for i = 2, 3, . . . , s. In each scenario, the data are evaluated on Day s for s = 20,
s = 30, and s = 40. In all scenarios, the death hazard rate h1i is drawn from a normal
distribution with a mean of 0.01 and a variance of either 1 × 10−5 or 2.5 × 10−5.
The cure-death hazard ratio is θ = 4.5 and the cure hazard rate is h2i = θh1i . If the
generated value of h1i is negative, it is discarded and a new value is generated.

Table 1 shows the results. When a1 = 200 and ni = 0, the bias in θ̂ is between 1.9
and 3.4%. Otherwise, for scenarios (II) and (III), the biases in the estimates are less
than 1.5%. As for the variances, the greatest bias in avar(θ̂)1/2 is 2.9%, occurring on
Day 20, when a1 = 100 and the variance of h1 is 2.5 × 10−5. These results indicate
the approximate unbiasedness of avar(θ̂) for the sample sizes actually observed in
the Singapore data.

3.2 Individual data without covariates

This section deals with the estimates for individual data without covariates. The esti-
mates obtained from our method are compared to those obtained from a parametric
cure model that assumes a gamma distribution. The sample size is either 1500 or 200,
and 1000 independent estimates are generated at each of three different points in time,
Day (sm −7), sm and (sm +7), where Day sm denotes the average time from admission
to death.

The first sample is generated following the cure model of Donnelly et al. (2003).
Gamma or Weibull distributions are used to generate times from admission to death
and from admission to cure. The following parameter values are chosen based on
Donnelly et al. (2003). The case fatality rate is π1 = 18.18%, the mean and variance
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Table 1 Estimates of the constant cure-death hazard ratio θ when the hazards are normal random
variables

Variance of h1 Day s θ̂ SD(θ̂) avar(θ̂)1/2

I 1 × 10−5 20 4.66 1.14 1.13

30 4.63 1.00 1.00

40 4.61 0.94 0.95

2.5 × 10−5 20 4.60 1.07 1.09

30 4.59 0.99 0.98

40 4.59 0.94 0.93

II 1 × 10−5 20 4.51 0.37 0.37

30 4.50 0.33 0.34

40 4.50 0.31 0.32

2.5 × 10−5 20 4.55 0.37 0.37

30 4.55 0.34 0.34

40 4.55 0.33 0.32

III 1 × 10−5 20 4.56 0.72 0.74

30 4.52 0.50 0.50

40 4.52 0.40 0.39

2.5 × 10−5 20 4.56 0.76 0.74

30 4.53 0.50 0.50

40 4.52 0.39 0.38

True values are θ = 4.5. (I) a(1) = 200 with ni = 0; (II) a(1) = 1500 with ni = 0; (III) a(1) = 100
with varied ni

of the admission-to-death distribution are 36 and 573, respectively, and the mean and
variance of the admission-to-cure distribution are 23 and 62, respectively. The simula-
tion results are shown in Table 2. Our method yields more biased estimates, while the
parametric cure model assuming gamma distributions yields approximately unbiased
estimates on Day 44.

The second sample is generated in accordance with a nonparametric competing risks
model. For each individual, a uniform random number Ut (0, 1) is generated at each
t . The outcome at t is then death if Ut ≤ λ1(t), cure if λ1(t) < Ut ≤ λ1(t) + λ2(t),
and no failure otherwise. An individual is at risk at time (t + 1) if the outcome is no
failure at t . In this simulation, θ ≡ 4.5, π1 = 18.18%, and λ1(t) is assumed to be
0.001 × t/10 (monotone increasing) or normally distributed with either mean 0.01
and variance 2.5 × 10−5 or mean 0.005 and variance 5 × 10−6. Table 3 shows the
results. As expected, our estimates are approximately unbiased in all cases, whereas
the parametric cure model is biased.

3.3 Individual data with covariates

This section examines the performance of our method for individual data with a
covariate Z . The parameter values are chosen on the basis of observations by
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Table 2 Comparison of estimates π̂1(%) when survival times follow a parametric distribution

T † Sample size Day s Profile likelihood Cure model assuming γ distribution

π̂1 SD(π̂1) avar(π̂1)1/2 π̂1 SD(π̂1) avar(π̂1)1/2 f ††

Gamma
distribution

200 30 11.48 2.607 2.577 13.78 4.653 5.063 6

37 12.29 2.483 2.463 16.48 3.730 3.619 2

44 13.51 2.524 2.493 17.66 2.925 2.903 2

1500 30 11.42 0.957 0.942 13.48 1.644 1.896 6

37 12.27 0.930 0.901 16.56 1.435 1.373 5

44 13.50 0.935 0.912 17.75 1.113 1.054 1

Weibull
distribution

200 30 10.62 2.503 2.423 11.18 2.988 3.364 5

37 11.67 2.465 2.378 13.55 3.032 3.106 19

44 13.08 2.509 2.451 16.37 2.874 2.876 7

1500 30 10.69 0.895 0.890 11.32 1.096 1.093 27

37 11.71 0.879 0.872 13.55 1.102 1.144 14

44 13.12 0.904 0.898 16.44 1.038 1.047 29

True π1 = 18.18
† Distribution assumed for survival time
†† f denotes the number of iterations deleted due to encountering a singular information matrix in the
course of the Newton–Raphson algorithm

Leung et al. (2004). A covariate Z = 0 corresponds to an age younger than 60,
and Z = 1 to ages 60 and older. Leung et al. reported that π1(0) and π1(1) are 7%
and 54.5%, respectively, while the percentage of patients with Z = 0 and Z = 1
are approximately 80% and 20%, respectively. Next we generate λ1(t, 0) to fol-
low the normal distribution with mean 0.001 and standard deviation 0.0005, so that
θ(0)(= λ2(t, 0)/λ1(t, 0)) and θ(1)(= λ2(t, 1)/λ1(t, 1)) are approximately 13.3 and
0.8, or π1(0) = 7% and π1(1) = 54.5%, respectively. A uniform random number
Ut is generated at each time for each individual at risk. The outcome at t is death if
Ut ≤ λ1(t, Z), cure if λ1(t, Z) < Ut ≤ λ1(t, Z)+λ2(t, Z), and at risk at time (t +1)
otherwise. The sample sizes are 1500 and 200, and 1000 independent estimates are
generated for each parameter combination.

Table 4 shows the results. The bias in π̂1(0) is less than 3% on Day 30 when the
sample size is 1500. As for the standard deviation, the bias for Z = 0 and Z = 1 are
roughly 3% and 7%, respectively, when n = 200. Hence the estimates are approxi-
mately unbiased with valid variance estimates, except for n = 200 and Z = 1, with
estimated variances slightly smaller than the observed ones.

4 Application to summary SARS data

The method of Sect. 2.1 is applied to summary SARS data from Hong Kong and
Singapore. By the end of the epidemic, there were 298 fatalities among the 1755 cases
reported in Hong Kong, and 32 fatalities among the 206 cases in Singapore (WHO
2003a). The data used in this study were collected over the Internet from information
posted by the Department of Health of the Hong Kong Special Administrative Region,
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Table 3 Comparison of estimates π̂1(%) when λ1(t) is increasing with t or follows a normal distribution

λ1(t) Sample Day§ Profile Cure model assuming
size s likelihood γ distribution

π̂1 SD(π̂1) avar(π̂1)1/2 π̂1 SD(π̂1) avar(π̂1)1/2 f

0.001 × t / 10 200 46 18.07 4.164 4.045 19.23 10.65 18.84 31

53 18.17 3.811 3.676 18.93 7.688 11.07 23

60 18.09 3.530 3.402 18.35 5.815 7.306 11

1500 46 18.20 1.531 1.484 18.23 3.222 5.160 110

53 18.20 1.374 1.345 18.18 2.495 3.412 21

60 18.20 1.268 1.246 18.18 1.940 2.427 17

Normal
distribution
N(0.01,0.000025)

200 10 18.63 4.067 4.158 26.16 18.43 15.33 27

17 18.51 3.455 3.462 23.48 11.59 8.056 19

23 18.49 3.232 3.185 21.96 8.139 6.037 25

1500 11 18.16 1.474 1.455 26.07 15.41 6.719 180

18 18.15 1.223 1.237 22.91 9.439 3.634 234

24 18.16 1.141 1.148 21.35 6.285 2.602 230

Normal
distribution
N(0.005,0.000005)

200 28 18.67 3.728 3.721 25.18 14.04 16.41 32

35 18.59 3.434 3.461 23.39 10.84 9.538 26

42 18.50 3.265 3.282 21.58 8.254 8.059 29

1500 29 18.18 1.299 1.333 23.64 11.35 6.267 111

36 18.22 1.247 1.248 22.24 8.549 4.984 112

43 18.20 1.179 1.188 20.77 6.320 5.795 107

True π1 = 18.18
§ Three figures of Day s are sm − 7, sm and sm + 7 with sm = average time from admission to death as
described in Sect. 3.2

Table 4 Estimates of covariate-specific case fatality rate π1(Z)(%)

Sample size Day s Age< 60(Z = 0) Age≥ 60(Z = 1)

π̂1(0) SD[π̂1(0)] avar [π̂1(0)]1/2 π̂1(1) SD[π̂1(1)] avar [π̂1(1)]1/2

200 30 6.98 3.46 3.36 54.56 13.23 12.40

40 6.95 3.10 3.00 54.59 11.99 11.15

50 6.93 2.86 2.77 54.42 11.16 10.37

1500 30 7.08 1.27 1.24 54.66 4.61 4.54

40 7.04 1.14 1.11 54.59 4.17 4.08

50 7.03 1.04 1.02 54.56 3.81 3.79

True π1(0) = 7% and π1(1) = 54.5%

the People’s Republic of China, the Ministry of Health of Singapore, and the World
Health Organization Cumulative Number of Reported Probable Cases of SARS.

In Hong Kong, the first complete report on SARS patients was released via the Inter-
net on 19 March, 2003, with the first patient having been seen on 15 February, 2003.
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Table 5 Estimates of the case fatality rate π̂1(%) of summary SARS data by area

Study point Profile likelihood method End of epidemic

π̂1 (95% CI) π1

Hong Kong 23 Apr 16.48 (13.58–19.38) 17.10

7 May 17.03 (14.89–19.17)

21 May 16.98 (15.08–18.88)

4 Jun 17.35 (15.51–19.19)

Singapore 23 Apr 13.18 (7.34–19.02) 15.53

7 May 15.43 (10.08–20.78)

21 May 15.43 (10.29–20.57)

4 Jun 15.98 (10.83–21.13)

Beijing 21 Apr–5 May 49.13∗ (41.68–56.58) 7.62

6 May–19 May 17.09∗ (12.64–21.54)

20 May–29 May 4.30∗ (2.69–5.91)

30 May–13 Jun 1.07∗ (0.44–1.70)

* Phase-specific fatality rate. Three change time points are 5, 19 and 29 May 2003 (Chen and Nakamura
2004)

The corresponding dates for Singapore are 14 March and 25 February, 2003. Although
the data were updated daily, no information on individual patients was included. Six
summary figures were reported for each day ti , namely ni , di , ci , Ni , Di , and Ci . For
Hong Kong, t1 was 19 March, 2003, and for Singapore, t1 was 14 March, 2003. The
case fatality rates were estimated at four different points in time (23 April, 7 May, 21
May, and 4 June, 2003), using only data collected from the beginning to each point
in time. Table 5 shows that the estimates are approximately equal to the final fatality
rate, π1, in the last column, and all 95% confidence intervals π̂1 ±1.96×avar(π̂1)

1/2

include π1.

5 Discussion

As one referee pointed out, the constant cure-death hazard ratio assumption simplifies
the estimation problem. Ghani et al. (2005) declared, “To obtain an estimate, we must
make an assumption about the pattern of deaths and discharges beyond the point of
observation. A sensible assumption is that the remaining outcomes occur with the
same relative probabilities as observed up to the time of analysis.” In general, their
theory seems to apply to any prediction model, although Jewell et al. (2007) do not
explicitly mention any assumption in order for their estimate to be unbiased. In fact,
the assumption holds for the SARS data for Hong Kong and Singapore, which is to
say, the cure-death hazard ratio was constant throughout the study period (Chen and
Nakamura 2004). This observation prompted us to develop a method for estimating the
case fatality rate, assuming that the cure-death hazard ratio is constant. The assumption
provides a profile likelihood that is applicable to summary data as well as to individual
data.
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Fig. 1 Cure-death hazard plot for data assuming gamma distribution in Table 2

For individual data, the covariate-specific case fatality rate π1(Z) is written as

π1(Z) = {1 + θ(Z)}−1 = {1 + exp[β0 − βT
1 Z + βT

2 Z]}−1.

This simple form makes it possible to estimate the covariate-specific case fatality
rate with a valid variance estimate. Lunn and McNeil (1995) suggested a method for
estimating β0, β1, and β2 using the partial likelihood for the competing risks model.
They assumed λ20(t) = λ10(t) exp(β0) as in the present study, but they also made the
assumption that there are no tied failures.

The numerical results indicate that the cure model assuming gamma distributions
yields approximately unbiased estimates only when the failure times actually follow
gamma distributions and the estimation is performed after the peak of the epidemic
(Table 2). Table 2 indicates that the profile likelihood method yields estimates that
are biased toward zero. The reason for this is understood by examining Fig. 1, which
shows the cure-death hazard plot for the gamma distributions used in the simulations.
The cure-death hazards ratio is high during the early stage and gradually decreases
thereafter. Thus, the profile likelihood estimate assuming a constant hazards ratio
underestimated the true value during the early stage. To avoid such difficulties, the
cure-death hazard plot is examined before applying the profile likelihood method. A
comprehensive testing method for the constant hazards ratio between the competing
risks is discussed in Lam et al. (2008).

As regards the present application, the 95% confidence interval estimates made as
early as April 23 are still accurate for Hong Kong and Singapore, as expected from the
results shown in Table 5. Nevertheless, the application was limited to summary data
only, since the individual SARS data are not currently available to the authors. We
hope that the method developed here will be applied to individual SARS data in certain
institutions, and that the accuracy of the estimates of the age-specific fatality rate at
different points in time will be compared with those of the cure models (Donnelly
et al. 2003; Chang et al. 2007).
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Chen and Nakamura (2004) indicated a phase-specific fatality rate for Beijing SARS
data, where the cure-death hazard ratio was not constant over the period of study. On
account of this, we extended the estimation method of Sect. 2.1 to a phase-specific
model to describe how the fatality rate changes as time passes. The results (Table 5)
show a case fatality rate that decreased drastically over time.

Appendix

A. Profile likelihood for individual data with covariates in Sect. 2.2

The likelihood is

L =
m∏

k=1

Lk =
m∏

k=1

⎧
⎨

⎩

2∏

j=1

λ j (τk, Zk)
δ jk S1(τk, Zk)S2(τk, Zk)

⎫
⎬

⎭

=
m∏

k=1

⎛

⎝
2∏

j=1

λ j (τk, Zk)
δ jk

2∏

j=1

exp

{

−
∑

u≤τk

λ j (u, Zk)

}⎞

⎠

=
m∏

k=1

⎛

⎝
2∏

j=1

{
λ j0(τk) exp[βT

j Zk]
}δ jk

2∏

j=1

exp

{

−
∑

u≤τk

λ j0(u) exp[βT
j Zk]

}⎞

⎠.

Changing the order of the summations, we obtain

L =
s∏

i=1

⎛

⎝
2∏

j=1

⎧
⎨

⎩
λ j0(ti )

� j i exp

⎡

⎣
∑

k∈R ji

βT
j Zk

⎤

⎦

⎫
⎬

⎭

2∏

j=1

exp

⎧
⎨

⎩
−
∑

k∈Ri

λ j0(ti ) exp[βT
j Zk]

⎫
⎬

⎭

⎞

⎠

=
s∏

i=1

⎛

⎝
2∏

j=1

λ j0(ti )
� j i exp

⎡

⎣
∑

k∈R ji

βT
j Zk

⎤

⎦
2∏

j=1

exp

⎧
⎨

⎩
−λ j0(ti )

∑

k∈Ri

exp[βT
j Zk]

⎫
⎬

⎭

⎞

⎠,

where R ji = {k|τk = ti , δ jk = 1} denotes the set of individuals who fail at time ti
with type- j failure, and Ri those at risk at time ti . Writing λ10i = λ10(ti ),

log Li = �i log λ10i +
∑

k∈R1i

βT
1 Zk + �2i log θ0 +

∑

k∈R2i

βT
2 Zk

−λ10i

∑

k∈Ri

(
eβT

1 Zk + θ0eβT
2 Zk
)
.

The log-likelihood is l = ∑s
i=1 log Li . Solving the equation ∂l/∂λ10i = 0 yields

λ̂10i = �1i + �2i
∑

k∈Ri

[
exp(βT

1 Zk) + θ0 exp(βT
2 Zk)

] .
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Let pli (β) denote log Li with λ10i replaced by λ̂10i for all i . The profile log-likelihood
pl(β) = ∑s

i=1 pli (β) then behaves like an ordinary log-likelihood (Murphy and Van
der Vaart 2000). Ignoring a constant, we have

pli (β) = −�i log

⎧
⎨

⎩

∑

k∈Ri

exp
(
βT

1 Zk

)
+
∑

k∈Ri

exp
(
β0 + βT

2 Zk

)
⎫
⎬

⎭
+
∑

k∈R1i

βT
1 Zk

+�2i β0 +
∑

k∈R2i

βT
2 Zk

B. The asymptotic variance estimate avar(β̂) for β̂

Set S1i = ∑
k∈Ri

exp(βT
1 Zk), S2i = ∑

k∈Ri
exp(β0 + βT

2 Zk), and Si = S1i + S2i .
Then

pli (β) = −�i log Si +
∑

k∈R1i

βT
1 Zk + �2i β0 +

∑

k∈R2i

βT
2 Zk .

Moreover, set S∗
1i = ∑

k∈Ri
Zk exp(βT

1 Zk), S∗
2i = ∑

k∈Ri
Zk exp(β0 + βT

2 Zk), S∗∗
1i =

∑
k∈Ri

ZkZT
k exp(βT

1 Zk) and S∗∗
2i = ∑

k∈Ri
ZkZT

k exp(β0 + βT
2 Zk). The components

of the score vector are then obtained from their first derivatives:

∂pli
∂β0

= −�i S−1
i S2i + �2i ,

∂pli
∂β1

= −�i S−1
i S∗

1i +
∑

k∈Ri1

Zk,

∂pli
∂β2

= −�i S−1
i S∗

2i +
∑

k∈Ri2

Zk .

Finally, avar(β̂) is obtained from their second derivatives (Tsodikov et al. 2007).
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