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Abstract

Background—In 2012, the EPA enacted more stringent National Ambient Air Quality Standards 

for fine particulate matter (PM2.5). Few studies have characterized the health effects of air 

pollution levels lower than the most recent NAAQS for long-term exposure to PM2.5 (now set at 

12 μg/m3).

Methods—We construct a cohort of 32,119 Medicare beneficiaries residing in 5,138 U.S. ZIP 

codes who were interviewed as part of the Medicare Current Beneficiary Survey (MCBS) between 

2002 and 2010. We considered four outcomes: death, all-cause hospitalizations, hospitalizations 

for circulatory diseases and for respiratory diseases.

Results—We found that increasing exposure to PM2.5 from levels lower than 12 μg/m3 to levels 

higher than 12 μg/m3 causally increases all-cause admissions, and circulatory admission hazard 

rates by 7%, (95% CI 3–10%) and 6% (95% CI 2–9%). When we restrict the analysis to enrollees 
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with exposure always lower than 12 μg/m3, we found that increasing exposure from levels lower 

than 8 μg/m3 to levels higher than 8 μg/m3 would increase all-cause, circulatory and respiratory 

admission hazard rates by 15% (95% CI 8–23%), 18% (95% CI 10–27%) and 21% (95% CI 9–

34%), respectively.

Conclusions—Using a nationally representative sample of Medicare enrollees, we found that 

changes in exposure to PM2.5, even at levels always below the standards, leads to significant 

increases in hospital admissions for all-cause, cardiovascular and respiratory diseases. The 

robustness of our results to inclusion of many additional individual level potential confounders 

adds validity to studies of air pollution that rely entirely on administrative data.

INTRODUCTION

To protect public health and welfare against the dangers of air pollution, the U.S. 

Environmental Protection Agency (EPA) establishes National Ambient Air Quality 

Standards (NAAQS). In response to mounting evidence demonstrating the harmful effects of 

exposure to fine particulate matter, in 2012 the EPA enacted more stringent NAAQS for fine 

particulate matter (PM2.5). As air pollution standards decrease, regulatory actions are 

becoming increasingly expensive with the annual cost of implementation and compliance 

with the NAAQS reaching tens of billions of dollars1–2. While there are massive benefits to 

reduced air pollution levels3–4 that far exceed their costs, research examining the public 

health benefits of cleaner air will be subjected to immense scrutiny due to the potential costs 

associated with more stringent regulatory policy. Despite a substantial amount of 

epidemiological literature on the health effects of long-term exposure to air pollution,5–13 

few studies have characterized the health effects of air pollution at levels in accordance with 

or lower than the most recent NAAQS for long-term exposure to PM2.5 (now set at 12 μg/
m3). From this point forward, when we refer to the NAAQS, we will be referring to the long-

term standards for PM2.5. Recent studies14–15 have found positive associations between 

short-term exposure to air pollution and mortality, while another study16 found a protective 

effect of short-term PM2.5 on COPD exacerbation. Positive associations between long-term 

exposure to concentrations of PM2.5 mostly below 12 μg/m3 and mortality were recently 

reported in a Canadian cohort17. Additionally, there has been little scientific literature 

examining the effects of air pollution in smaller cities, towns, and rural areas and areas with 

sparse monitoring. As air pollution levels decrease, studies are needed to determine if further 

reductions will lead to substantial improvements in health.

In addition, traditional observational cohorts have modeled the outcome as a function of 

exposure and confounders. Provided that the confounder model is correctly specified 

(including no omitted confounders), such studies provide causal estimates of the effect of 

exposure, conditional on the covariates. More recent causal modeling approaches model 

exposure as a function of covariates, and conditional on the exposure model being correctly 

specified, can provide marginal estimates of the causal effects of exposure on outcome. 

Often this can be advantageous because many predictors of health (e.g. alcohol 

consumption) are not causes of air pollution, but are indirectly associated with it through a 

common cause, such as socio-economic status. It may be easier to model the effect of 
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income on exposure than the effect of alcohol on cardiovascular disease. We have applied 

one such causal modeling approach to our data.

In this study, we build upon the existing literature in several ways: 1) We use inverse 

probability weighting (IPW), enabling us to estimate: a) the “causal” effects of increasing 

PM2.5 levels from below 12 μg/m3 to above 12 μg/m3, and b) the “causal” effects of 

increasing PM2.5 from below 8 μg/m3 to above 8 μg/m3 but always below 12 μg/m3; 2) We 

use estimates of fine particulate matter (PM2.5) on a 1km by 1km grid to compute exposure 

at the ZIP code level; 3) We use open cohort data from Medicare claims data, which allows 

us to enroll new individuals each year and examine the health effects over time as air 

pollution levels continue to decline; 4) We link Medicare claims data to data from the 

Medicare Current Beneficiary Survey (MCBS),18 which provides information on an 

extensive list of individual level behavioral risk factors and allows us to control for 

important confounders such as BMI and smoking habits; 5) We assess the sensitivity of our 

estimates of causal effects with respect to several modeling assumptions including: a) 

restriction of our study population to individuals already exposed to low pollution levels (< 

12 μg/m3), and most importantly b) inclusion/exclusion of a large set of individual level 

behavioral risk factors (such as smoking and BMI) when we consider methods for 

confounding adjustment. Assessing the robustness of causal effects of air pollution to the 

lack of adjustment for these individual level behavioral risk factors is very important as these 

factors are generally hard to measure and only available from cohort studies.

METHODS

Cohort Creation

Medicare-MCBS cohort—We consider all Medicare fee-for-service enrollees who reside 

in the continental US, and participated in the Medicare Current Beneficiary Survey (MCBS) 

from 2002 to 2010. This allows us to construct an open cohort of N=32,119 Medicare 

beneficiaries residing in 5,138 unique ZIP codes. The MCBS is a representative survey of 

the Medicare population. It is designed as a rotating panel, where every MCBS participant is 

interviewed three times a year for a maximum of four consecutive years. For the purposes of 

this study, we only retain one interview per year, leading to a total of 68,789 unique patient 

years. We define the reference date to be the last interview date in a given year. Figure 2 

shows the timeline and study design.

We exclude patients not enrolled in Medicare for the entire look back period and outcome 

observation period. Specifically, we exclude patients who are not yet enrolled in Medicare or 

ones who are enrolled in a Healthcare Maintenance Organization (HMO). We also exclude 

patients who reside in US outlying territories. Details regarding inclusion/exclusion criteria 

are described in Figure 1.

Low Pollution Cohort (LPC)—We create a ‘low pollution cohort’ that only includes 

those individuals from the full cohort whose exposure to PM2.5 is lower than 12 μg/m3 

during the two-year period prior to the reference date. This reduces the number of unique 

subjects included in the cohort from 32,119 to 18,144. The purpose of constructing the ‘low 

pollution cohort’ is to assess if there is evidence of a causal effect of air pollution on health 
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outcomes even among individuals with exposure levels that are already below the annual 

NAAQS. In particular, we will use this cohort to examine if there exists a further reduction 

in risk for subjects exposed to PM2.5 less than 8 μg/m3, which has been identified by 

previous work as a level with low risk19.

Study Design

Exposure to PM2.5—To estimate daily levels of PM2.5 for the entire study period (2002–

2010) and for every ZIP code included in the study we applied a previously developed 

exposure prediction model.20 This model integrates satellite-based aerosol optical depth 

measurement, chemical transport model simulation, meteorological variables, land-use terms 

and other auxiliary variables. We trained this hybrid model to monitored PM2.5 with a neural 

network. Neural networks account for nonlinearity and interactions between variables, thus 

improving model performance. We used the trained neural network to estimate daily PM2.5 

on a 1km×1km grid for the entire continental US. We then estimate each individual’s 

exposure to PM2.5 by averaging PM2.5 levels across space (from the 1km x1km grid to ZIP 

code of residence) and across time (for the 2 years prior to the reference date). See Figure 3. 

In previous work,20 we reported a ten-fold cross-validation of R2=0.84 for daily 

measurements, at the monitoring sites, for the period 2000 to 2012, and for the entire 

continental US. This indicates high correlation between predicted and monitored PM2.5. 

This correlation is anticipated to be even higher when we aggregate these values across time 

(day to year) and across space (1kmx 1km grid cells to ZIP code). For further details of the 

exposure assessment refer to Di et al.20

Outcome Observation Period—We identify a one-year follow up period from the 

reference date to ascertain health outcomes from the claims data (MedPAR Part A). We 

consider: 1) all-cause mortality; 2) all-cause hospitalizations; 3) hospitalizations with a 

coded circulatory disease [ICD9: 390–459]; 4) hospitalizations with a coded respiratory 

disease [ICD9: 460–519]. Diagnoses, procedures and outcomes are defined according to the 

highest level of the ICD9 hierarchy.

Potential confounders

Data extracted from multiple sources (listed below) provide information on a total of 122 

potentially confounding factors. Table S1 in the supplemental material summarizes the mean 

and standard deviation of all variables and outcomes in the study, separately for exposure 

higher and lower than 12 μg/m3, respectively.

MCBS Data—For each enrollee in the MCBS-Medicare cohort, we extract an extensive list 

of potential confounders from the MCBS data that is collected at the reference date. These 

include: patients’ functional status (e.g., if they have difficulty walking), their behavioral 

risk factors (e.g., smoking status), and their detailed demographics (e.g., marital status and 

level of education) among others (p=73).

Look Back Period—We extract information from Medicare claims data on individual 

level co-morbidity during the one-year look back period. Specifically, from Medicare Part A, 

we construct several binary variables encoding the presence or absence of a number of 
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procedures during hospitalization (e.g., operations on the digestive system) (p=27). Basic 

patient demographics (e.g., age, race, gender, mailing ZIP code) are collected from the 

Master Beneficiary Summary and the Denominator files (p=9).

ZIP Code Level Data—Finally, we gather ZIP code level data including urbanization 

score as estimated by the US Department of Agriculture (USDA) (p=3), and socio economic 

variables from the US Census (p=10).21

Main Analysis

Throughout, we will be relying on three key assumptions necessary for making causal 

statements: the stable unit treatment value assumption (SUTVA), positivity, and the 

assumption of no unmeasured confounding. The SUTVA,22 assumes that the outcome of a 

given observational unit is not affected by the treatment assignment (i.e. exposure to high 

versus low pollution levels) received by another unit. Positivity states that all experimental 

units have a positive probability of receiving each level of treatment (i.e. exposure to high or 

low levels of air pollution). We will assess this assumption by looking at propensity score 

overlap in Supplementary Materials Figure S1 and find that it is reasonable. Finally, no 

unmeasured confounding implies that our full set of available covariates (p=122) is adequate 

to adjust for residual confounding. This assumption is not testable, but we argue that it is 

unlikely that there exists covariates that are uncorrelated with the p=122 observed covariates 

and that can lead to confounding bias.

We applied inverse probability weighting (IPW)23–26 to the full cohort and to the low 

pollution cohort (LPC) to estimate the causal hazard rate ratio, which can be interpreted as 

the hazard of mortality (or hospitalization) at any time t had all subjects been exposed to 

PM2.5 levels higher than 12 μg/m3 (in the LPC: higher than 8 μg/m3, but always lower than 

12 μg/m3) divided by the hazard of mortality (or hospitalization) at time t had all subjects 

had been exposed to PM2.5 levels lower than 12 μg/m3 (in the LPC: lower than 8 μg/m3). 

The estimation of causal effects using IPW involves two steps: 1) estimation of the inverse 

probability weights, denoted swi, and 2) fitting a Cox proportional hazards model26 to the 

observations weighted by swi. Specifically:

Step 1: Inverse Probability Weighting—Let Ti represent the binary exposure for 

subject i . More specifically we assume that (ti =0 when Ti <12) and (ti =1 when Ti >12) for 

the full cohort and (ti =0 when Ti <8) or (ti =1, when 8< Ti <12) in the LPC). We denote by 

Ci be the full set (p=122) of individual level and ZIP code level covariates. For each subject 

we estimate swi as:

IPW weighting should produce a weighted sample where the distribution of covariates is 

balanced with respect to Ti, and hence allow a causal estimate of the effect of Ti.
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Step 2: Cox proportional hazards model (CPHM)—We then fit to the data a Cox 

proportional hazards model where every individual observation is weighted by swi. The left 

tail and the right tail of the weights are truncated at the 10th and 90th quantiles of the 

distribution of the standardized weights, to mitigate the effect of excessively large or small 

weights.25,28 Time to event is calculated as the time from reference date until death, the first 

respiratory, circulatory or all-cause hospitalization (see Figure 2). Death dates are censored 

at the end of the one-year outcome observation period. Hospitalization dates are censored at 

the end of the one-year outcome observation period or death, whichever comes first. We 

calculate 95% confidence intervals based on robust, sandwich variance estimators29 to take 

into account within-subject correlation induced by repeated measures, the standardized 

weights, and correlation between subjects living in the same ZIP code.

To measure the potential public health impact of lowering pollution levels below 12 μg/m3, 

we will calculate the number of events attributable to a change in long-term exposure to 

PM2.5 from below 12 μg/m3 to above 12 μg/m3. We will use the formula A = N * (1 – (1/

HR)) where HR is the hazard ratio comparing exposure above and below 12 μg/m3, N is the 

number of events in the Medicare population, and A is the number of events attributable to 

an increase in PM2.5 from below to above 12 μg/m3.

Sensitivity Analyses

We conducted several sensitivity analyses, summarized in Table S2 in the supplementary 

material. First, to directly compare our results to the American Cancer Society Cohort 

(ACS) and the Harvard Six Cities Studies,5,6,30–32 we analyze the data using a standard Cox 

proportional hazards model with continuous exposure and adjustment for confounding by 

including all the available covariates as linear terms into the model (SA1 in the 

supplementary material, Figure S2 and Table S3). Second, we perform a Wald test to assess 

if there is evidence of the non-linearity of the exposure-response function (SA2 in the 

supplementary material, Table S4), and we plot the resulting nonlinear exposure-response 

curves (SA2 in the supplementary material, Figure S3). Third, we run the analyses 

restricting to subjects living in areas with long-term exposure to PM2.5 less than 12 μg/m3, 

though we use as an exposure a binary indicator of being below 10 μg/m3 instead of 8 μg/m3 

as done in the main analysis (SA3 in the supplementary material, Figure S4 and Table S5). 

Finally, we investigate the sensitivity of the results to the exclusion of the behavioral risk 

factors extracted from MCBS data (e.g. smoking, BMI, etc.) from the confounding 

adjustment.

RESULTS

Table 1 summarizes the main characteristics of the MCBS-Medicare cohort (for both the full 

and low pollution cohorts) in comparison to the characteristics of the cohorts from the two 

original landmark studies – the ACS and Six Cities studies5,6,30–32. Please note that in our 

study, the average level of PM2.5 (equal to 12 μg/m3) is substantially lower than what was 

observed in the Harvard Six Cities Study and in the ACS Cohort (16.4 and 17.7 μg/m3, 

respectively).
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Figure 3 shows the average PM2.5 exposure in the 5138 ZIP codes (1067 unique counties) 

where MCBS enrollees resided in 2002. During the 1 year follow up period from the 

reference date, 4.95% died, 22.2% had one or more hospitalizations, 19% were hospitalized 

at least once with a circulatory disease and 9.7% were hospitalized at least once for a 

respiratory disease.

Table 2 summarizes the results of IPW applied to both the full cohort and the LPC. We 

found that increasing long-term exposure to PM2.5 from levels lower than 12 μg/m3 to levels 

higher than 12 μg/m3 causally increases all-cause admissions, and circulatory admission 

hazard rates by 7% (95% CI 3–10%), and 6% (95% CI 2–9%) respectively. This implies that 

the total number of all-cause admissions and circulatory admissions from 2002 to 2010 in 

Medicare attributable to an increase in long-term average PM2.5 levels from below 12 μg/m3 

to above 12 μg/m3 is estimated to be 5,861,028 and 1,417,962, respectively. We did not find 

evidence of a statistically significant increase in mortality or respiratory admissions. We also 

found that in the LPC increasing PM2.5 levels from below 8 μg/m3 to above 8 μg/m3 (but 

always lower than 12 μg/m3) causally increases all-cause, circulatory and respiratory 

admission hazard rates by 15%, (95% CI 8–23%), 18% (95% CI 10–27%) and 21% (95% CI 

9–34%), respectively and all these effects were statistically significant. We did not find 

evidence of a statistically significant increase in mortality.

Figure 4 illustrates the sensitivity of the results summarized in Table 2 with respect to 

omission of all the MCBS variables when estimating swi. Each panel summarizes the results 

for a different outcome (all-cause hospitalization, circulatory hospitalization, death, 

respiratory hospitalization). Within each panel, we illustrate the results for both the full 

cohort and LPC. Estimates in red are obtained when we use the entire set of all the available 

potential confounders to adjust for confounding (122 potential confounders). Estimates in 

blue (claims only) are obtained when we exclude the MCBS variables (p=122–73=41) in the 

approach for confounding adjustment. The fact that blue and red estimates are highly 

overlapping, indicate that our conclusions are robust to the exclusion of the MCBS variables 

among the confounding variables used for the adjustment.

More generally, results from the sensitivity analyses (SA1, SA2, SA3) mentioned in the 

Methods section and reported in the supplementary material suggest that our estimates are 

largely robust across different statistical methodologies, model misspecification and 

confounder exclusion. Importantly, as summarized in the supplemental material, our 

analyses using a standard Cox proportional hazards model with continuous exposure also 

found significant effects for hospitalizations. The exposure response curves for all-cause, 

circulatory, and respiratory hospitalizations indicate a slightly larger effect at low levels of 

PM2.5, though only circulatory hospitalizations had a nonlinear curve that was significantly 

different than the simpler, linear association.

DISCUSSION

Samet (NEJM 2011)33 wrote: As the NAAQS have been reset at lower and lower 
concentrations, the gaps between acceptable concentrations and irreducible background 
levels have narrowed, raising the question of how much lower the limits can be pushed. […] 
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In promulgating the NAAQS for these pollutants, the administrator must weigh the public 
health burden against the uncertainty of the scientific evidence related to lower 
concentrations, keeping in mind the Clean Air Act’s requirement for an adequate margin of 
safety.

We have combined several sources of data and constructed the MCBS-Medicare cohort to 

address the following three questions: 1) Does increasing the level of PM2.5 from below 12 

μg/m3 to above 12 μg/m3 causally increase deaths and hospitalizations; 2) Among 

individuals with exposure levels below 12 μg/m3, does increasing the level of PM2.5 from 

below 8 μg/m3 to above 8 μg/m3 causally increase deaths and hospitalizations; and 3) Does 

exclusion of individual level behavioral risk factors significantly affect our estimates?

The Harvard Six Cities Study5,31 and the ACS Study6,12 are two landmark epidemiological 

cohort studies that had an enormous impact on our understanding of the health effects of air 

pollution. However, these studies have limited statistical power to detect the effects of low 

levels of air pollution, particularly because most of their subjects reside in urban areas where 

pollution levels tend to be higher. The Six Cities Study5,31 and the ACS study6,12 are also 

limited by the fact that they are “closed” cohort studies in the sense that they do not allow 

enrollment of new individuals into the cohort. As such, these studies are less able to estimate 

the health effects of recent air pollution, nor can they track health effects over time. To 

overcome this challenge, more recent epidemiological studies have leveraged “open” cohort 

data, such as Medicare claims, which permits new enrollees to enter the cohort each year. 

Our study leverages Medicare claims data combined with data on individual level behavioral 

risk factors, an important factor missing in previous studies. Including individual level 

behavioral risk factors in our analysis is very important as these factors are generally hard to 

measure and are only available from cohort studies. To our knowledge, this is the first 

epidemiological study that estimates the effects of low levels of air pollution using claims 

data augmented with individual level behavioral risk factors, thus overcoming the common 

criticism that studies that rely entirely on claims data are myopic to important potential 

confounders.

Our study uses inverse probability weighting (IPW), enabling us to estimate “causal” effects. 

The results are consistent with existing literature on the adverse health effects of long-term 

exposure to PM2.5. We found robust evidence that increasing long-term exposure to PM2.5 

(two years average) from levels lower than 12 μg/m3 to levels higher than 12 μg/m3 causally 

increases all-cause admissions and circulatory admission hazard rates; and among 

individuals with exposure levels below 12 μg/m3, exposure to PM2.5 levels above 8 μg/m3 

increases all-cause, circulatory and respiratory admission hazard rates. We also found 

evidence that the marginal benefit is increasing at lower concentrations: in the low pollution 

cohort, an increase of PM2.5 from below 8 μg/m3 to above 8 μg/m3 led to a 15% increase in 

hospitalization rate, whereas in the full cohort an increase of PM2.5 from below 12 μg/m3 to 

above 12 μg/m3 led to a 7% increase in hospitalization rate. This evidence is consistent with 

our previous work.34 Future analyses, which will include the whole Medicare population, 

will be able to rely on much larger statistical power to test this hypothesis.

Makar et al. Page 8

Epidemiology. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our study has several strengths that can be leveraged in future studies. Previous studies 

assign each subject an average exposure aggregated at the county or at the larger 

metropolitan area level, which is a coarse indicator of a subject’s exposure to air pollution 

that lends itself to exposure measurement error.35,36 For this study, we estimate exposure on 

a 1km by 1km grid to compute exposure at the ZIP code level. These estimates, obtained 

from previous work,20,37–40 allow us to directly study the effects of low levels of pollution 

with an unprecedented scale of spatial resolution. Importantly, we also investigated the 

sensitivity of the results when we exclude from the confounding adjustment all of the 

behavioral risk factors (p=73) measured in the MCBS (e.g. smoking, BMI, etc.) and found 

that the results do not change. This finding indicates that claims data combined with ZIP 

code level data on risk factors and socioeconomic data is sufficient to rigorously estimate the 

health effects of air pollution when using ZIP code level exposure data. Thus, expensive and 

potentially time consuming collection of a large set of individual level behavioral risk 

factors, although potentially useful for exploring susceptibility and effect modification, is 

not critical to adjust for confounding bias. Furthermore, the results of this analysis add 

validity to air pollution epidemiological investigations that rely entirely on administrative 

and therefore publicly available data.

Despite robustness of results, our results have certain limitations that will be important to 

address in future studies. Our study population is significantly smaller than the population 

included in the ACS study (see Table 1). To increase our sample size, we included all 

individuals that had an MCBS interview at any point during the study period 2002 to 2010, 

thus restricting the follow up period to only one year. The limited sample size and limited 

follow up period might be the reason why we did not find a significant effect for mortality, 

only 4.95% of whom died versus 22.2% who were hospitalized. Another limitation in our 

study was analyzing the data assuming that exposure is binary and time invariant. These are 

strong assumptions but allow for simple interpretation of the results and for visual inspection 

of the balance across covariates before and after stratifying on the estimated propensity 

score, thus substantially increasing the level of confidence in our results with respect to 

proper adjustment for confounding.

As more data becomes available, future studies will be able to repeat these analyses 

routinely and with a longer follow-up period. In addition, because our cohort is open in the 

sense that it allows for new enrollment every year (US elderly > 65 that enters into fee-for-

service Medicare), our findings allow for continued monitoring of the health effects as air 

pollution continues to decline. Our analyses can be repeated routinely every few years as 

new claims data becomes available to track the effectiveness of regulatory actions and 

mitigation strategies over time. Also, unlike more traditional closed cohort prospective 

studies, this study utilizes publicly available data, which permits other entities with access to 

the Medicare claims data to reproduce our results as a validity check.

Results from this study have important implications for policymakers. With data from 5,138 

unique ZIP codes, spanning 1,067 unique counties over a period of nine years and measuring 

122 potential confounders, this work provides very compelling evidence that compliance 

with the annual NAAQS and even further reductions in PM2.5 below the current NAAQS 

will continue to be beneficial. The number of cases avoided as a result of compliance is large 
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compared to most public health measures and sound policy decisions will lead to significant 

improvements in public health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Inclusion criteria and cohort creation.

Makar et al. Page 13

Epidemiology. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Data collection process for a hypothetical patient.
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Figure 3. 
Average exposure in the year 2002 for each of the 5,138 ZIP codes included in the study. 

These are estimated exposures as described in Di et. al.13
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Figure 4. 
Sensitivity to exclusion of MCBS variables: Hazard ratios and 95% confidence intervals 

based on robust, sandwich variance estimators computed including (red) and excluding 

(blue) MCBS variables.
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Table 1

Summary statistics of the MCBS-Medicare full and low pollution cohorts in comparison to other cohorts.

Characteristic MCBS-Medicare Full Cohort

MCBS-Medicare 
Low Pollution 
Cohort (Cohort with 
annual PM2.5 < 12 
μg/m3)

American Cancer 
Society Cohort (Pope 
et al 1995, 2002)6,12

Harvard Six Cities 
Study Cohort (Dockery 
et al NEJM 1993, 
Laden 2006)5,31

Number of individuals 32,119 18,144 ~293,000 ~8,000

Mean age at enrollment 72.0 72.3 58.6 49.7

Number of years of 
follow up from interview 
date

1 1 18 24

Study period 2002–2010 2002–2010 1982–2000 1974–1998

Time period where 
exposure was measured

2000–2010 2000–2010 1979–1983, 1999–2000 1979–1988, 1990–1998

Spatial resolution for 
exposure assessment

ZIP codes (N=5,138) ZIP codes (N=3,079) Counties (N=50) Cities (N=6)

PM2.5 (mean, IQR) 
during the study period 
(μg/m3)

12 (3.41) 10.18 (2.46) 17.7 (3.7) 16.4 (5.6)

No of confounders 122         122         ~50         ~40
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Table 2

Hazard ratios showing the effect of living in a high pollution versus low pollution. These are computed using 

inverse probability weighting. Table reports 95% confidence intervals based on robust, sandwich variance 

estimators.

Full cohort, Threshold = 12 μg/m3, N = 
32,119 person years = 68,789

Low pollution cohort (Cohort with annual PM2.5 < 12 
μg/m3), Threshold = 8 μg/m3 N = 18,144 person years = 
34,429

All-cause mortality 0.97 (0.90, 1.04) 1.11 (0.97, 1.28)

All-cause hospitalization 1.07 (1.03, 1.10) 1.15 (1.08, 1.23)

Circulatory hospitalization 1.06 (1.02, 1.09) 1.18 (1.10, 1.27)

Respiratory hospitalization 1.03 (0.98, 1.08) 1.21 (1.09, 1.34)
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