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SUMMARY

Even in the absence of unmeasured confounding factors or model misspecification, standard methods
for estimating the causal effect of a time-varying treatment on the mean of a repeated measures out-
come (for example, GEE regression) may be biased when there are time-dependent variables that are
simultaneously confounders of the effect of interest and are predicted by previous treatment. In contrast,
the recently developed marginal structural models (MSMs) can provide consistent estimates of causal
effects when unmeasured confounding and model misspecification are absent. We describe an MSM for
repeated measures that parameterizes the marginal means of counterfactual outcomes corresponding to
prespecified treatment regimes. The parameters of MSMs are estimated using a new class of estima-
tors — inverse-probability of treatment weighted estimators. We used an MSM to estimate the effect
of zidovudine therapy on mean CD4 count among HIV-infected men in the Multicenter AIDS Cohort
Study. We estimated a potential expected increase of 5.4 (95 per cent confidence interval —1.8,12.7)
CD4 lymphocytes/ul per additional study visit while on zidovudine therapy. We also explain the theory
and implementation of MSMs for repeated measures data and draw upon a simple example to illustrate
the basic ideas. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we use marginal structural models to estimate the causal effect of zidovudine
therapy on mean CD4 count among HIV-infected participants in the Multicenter AIDS Cohort
Study (MACS), an observational follow-up study of U.S. men [1]. We then compare our
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observational estimate of the effect of zidovudine therapy with those obtained in randomized
trials.

Marginal structural models (MSMs) are a new class of causal models [2, 3] whose param-
eters can be consistently estimated using a new class of estimators: the inverse-probability of
treatment weighted (IPTW) estimators. MSMs are an alternative to g-estimation of structural
nested models [4-6].

The standard approach to estimation of the effect of a time-varying treatment, such as
zidovudine, on the mean of a repeated measures continuous outcome, such as CD4 count, is
to model the mean of the outcome at each time as a function of past treatment. However,
Robins [7] has shown that the standard approach may be biased, whether or not one further
adjusts for past covariate and outcome history in the analysis, when:

Al — conditional on past treatment history, a time-dependent variable is a predictor of the
subsequent mean of the outcome and also a predictor of subsequent treatment;
A2 — past treatment history is an independent predictor of the time-dependent variable.

We refer to covariates satisfying Al as time-dependent confounders. For example, in the
MACS, past CD4 count is a time-dependent confounder for the effect of zidovudine on future
CD4 count since it not only predicts future CD4 count but also subsequent initiation of
zidovudine therapy [8], and past zidovudine history is an independent predictor of subsequent
CD4 count [9]. Thus, standard methods for repeated measures (for example, GEE regression
[10, 11]) that model the mean CD4 count at each time using a summary of zidovudine history
up to that time may produce biased estimates of the causal effect of zidovudine whether or
not one adjusts for past CD4 count in the analysis. Marginal structural models can eliminate
the bias of standard methods.

This paper is organized as follows. In Section 2 we give a brief summary of the MACS
and describe our notation. Section 3 reviews the standard GEE linear model, and Section 4
reviews the definitions of causal effect and confounding based on counterfactual outcomes.
In Section 5, we describe the MSM framework for repeated measures data, including IPTW
estimation, an extension to right-censored data, and practical advice on how to estimate the
weights required by the method. We present a simple worked example in Section 6 to help
clarify the theory presented in Section 5. Section 7 presents our analysis of the MACS data,
and Section 8 concludes.

2. THE MACS

Between 1984-1991, the MACS enrolled 5622 homosexual and bisexual men, with no prior
AIDS-defining illness, from the metropolitan areas of Los Angeles, Baltimore-Washington,
Pittsburgh and Chicago. Study participants were asked to return every 6 months to complete
a questionnaire, undergo physical examination and provide blood samples. The design and
methods of the MACS have been described in detail elsewhere [1, 8].

We restricted our cohort to HIV-positive men alive in the period during which zidovudine
was available for use (that is, after the study visit 5; March 1986 to March 1987). Follow-up
ended at study visit 21, October 1994, death, or first missed visit, whichever came first. Our
analysis include the 1486 men (contributing 9752 visits) that attended the first two eligible
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visits between visits 5 and 21 while HIV-positive, and that did not have an AIDS-defining
illness and were not on antiretroviral therapy before the first eligible visit.

Let Y(¢) be subject’s i CD4 count at his rth eligible visit, and 4;(¢) be one if subject i
was on zidovudine at visit ¢, zero otherwise, t =0,...,16. As in previous MACS analyses, we
assumed that subjects remained on treatment once they started. Throughout we assume that
each subject’s data are drawn independently from a distribution common to the N subjects.
We can then suppress the subject-specific notation, and we will write, for example, Y;(¢) as
Y(¢). Let V be a vector of time-independent baseline covariates measured at the first eligible
visit. In our analysis, the covariates included in V' are age, calendar year, CD4 count, CDS8
count, white blood cell count (WBC), red blood cell count (RBC), platelets, and presence of
the following symptoms: fever (temperature > 37.9°C) for 2 weeks; oral candidiasis; diarrhoea
for 2 weeks; weight loss of >4.5kg; oral hairy leukoplakia; herpes zoster. Finally, let L(#)
be the vector of the time-varying covariates recording CD4, CD8, WBC, RBC, platelets,
and presence of symptoms measured at visit . Note that L(z) includes Y(z). We adopt the
convention that variables in L(¢) are measured prior to deciding 4(¢). We use overbars to
represent a covariate history so, for example, A-(t) ={A(u);u=0,...,t} is a subject’s treatment
history through ¢. 4 =A4(16) is the subject’s treatment history through the end of the follow-up
period. We use the symbol 1T to indicate statistical independence, for example, AIIB | C means
A is conditionally independent of B given C.

3. A GEE MODEL FOR REPEATED MEASURES

In the absence of confounding, the mean CD4 count given zidovudine treatment history would
often be modelled using a GEE model [10, 11]

E[Y(t+ 1)|A] = g(A(1),y) (la)
where ¢ is a known function and y is a parameter to be estimated. For example, we will use
g(A(6).y) =70 + 71 cum[A(D)] + 72t (1b)

where 7= (70,71,72) and cum[A(¢)] = S i_oA(k). This association model states that the mean
outcome at ¢ depends linearly on time ¢ and on prior cumulative exposure cum[A4(¢)], but alter-
native specifications could be entertained. To avoid extraneous complications, until Section 6,
we will assume that there is no model misspecification.

A complete specification of the GEE requires a variance function and a correlation structure
between repeated outcomes from the same individual. For example, one could assume either a
homoscedastic variance var[Y (l‘+_1)|A-] =¢?, or a heteroscedastic variance, and the ‘exchange-
able’ structure corr[Y(#), Y(#;)|A]=p, the ‘autoregressive’ structure corr[Y(#),Y(%)|A]=
plo=nl etc., for any pair (,1,). However, even if these second moment assumptions do not
hold, the GEE estimator of y remains asymptotically unbiased [10, 11]. Upon specifying a
working covariance matrix, model (1) can be fit by generalized least-squares using standard
software (for example, ‘repeated’ statement in SAS proc genmod [12]).

Suppose model (1) is correctly specified so that our GEE estimator y, is consistent and
asymptotically normal. This still leaves open the question as to when the parameter y; from
model (1) has a causal interpretation. Before we answer this question, we need to give a
formal meaning to the causal effect of zidovudine on the mean of CD4.
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4. COUNTERFACTUAL OUTCOMES

We begin by characterizing the relevant treatment regimes. Corresponding with the 16 MACS
visits, we consider zidovudine treatment regimes a@=/[a(0),...,a(16)] where a(¢) is 1 if the
regime specifies the subject is to be on treatment at time ¢ and a(¢) represents treatment
history under regime a through visit 7. Note a(16)=a. Because in the MACS we have
assumed subjects remain on zidovudine therapy once begun, we consider 17 possible treatment
regimes: regime (0) begin zidovudine in the interval [visit O, visit 1), i.e., at 1 =0, regime
(1) begin zidovudine in the interval [visit 1, visit 2), i.e., at t=1,..., and regime (16) begin
zidovudine at or after visit 16, i.e., t>16. For our purposes, regime (16) is equivalent to
never starting zidovudine, as we do not consider outcomes measured past visit 16. In a small
abuse of notation, we denote treatment regime j as a=j.

Associated with each treatment regime a are the potential or counterfactual outcomes Yz ;(¢),
which denote subject’s i outcome Y at time ¢ had, possibly contrary to the fact, subject i
followed treatment plan a. The subject’s observed outcome Y;(¢) is the counterfactual out-
come ¥;;(¢) for the treatment regime a that the subject did indeed take. That is, Y;(¢)= Y7 (¢),
where @=A is the subject’s observed treatment history. For example, suppose =38
and @ =11. Then Y;;(16) represents subject’s i hypothetical CD4 count at visit 16 when
zidovudine is initiated at visit 8, and Yz ;(16) represents his hypothetical response when zi-
dovudine is begun three visits later. Had subject i actually initiated treatment at visit 11,
then the counterfactual outcome ¥;;(16) would have been observed, that is, ¥z ;(16) = Y;(16).
Otherwise, the counterfactual outcome ¥;;(16) would be missing.

The random variables ¥; are counterfactual variables because they represent a subject’s
outcome had, possibly contrary to fact, the subject been treated with a rather than his observed
treatment A. For each possible history @ we are assuming a subject’s response ¥; is well
defined, although generally unobserved [13]. Neyman [14] introduced counterfactual outcomes
to analyse the causal effect of time-independent treatments in randomized experiments. Rubin
[15, 16] championed Neyman’s idea and emphasized the usefulness of counterfactuals in the
analysis of the causal effects of time-independent treatments from observational data. Robins
[7, 17] proposed a formal counterfactual theory of causal inference that extended Neyman’s
[14] time-independent treatment theory to longitudinal studies with both direct and indirect
effects and sequential time-varying treatments and confounders.

We are now ready to present formal definitions of a causal effect and confounding. Treat-
ment has a causal effect on subject’s i outcome when there is a difference in his coun-
terfactual outcomes under two or more treatment plans. In other words, if zidovudine has
no effect on the CD4 count of subject i, then ¥; (¢ + 1)=Yz (¢t + 1) for all a,a’, and
t=0,...,15. Thus, the causal effect of treatment regime a on the outcome Y (¢ + 1) for a
given subject is the difference Y;(¢ + 1) — ¥5(¢ + 1) between his outcome Y;(¢ + 1) when
treated with regime 4 and his outcome Y;(¢+ 1) when never treated through time ¢. Similarly,
E[Y:(t+1)—Y3(t + D] =E[Ya(t + 1)] — E[Y5(¢ + 1)] is the average causal effect of regime a
in the population.

We say that there is no confounding when for all a

Yot + 1)1 A(t) t=0,...,15
that is, when prior treatment history is independent of the counterfactual outcome. We say
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that there is no unmeasured confounding when for all @ and >k
Yi(t + 1) ILA(k)|A(k — 1),L(k) Assumption (1)

This assumption will be true if all prognostic factors for ¥z(¢# 4+ 1) that are used by patients
and physicians to decide the administration of zidovudine at visit k are recorded in L(k) and
A(k —1). For example, since physicians tend to prescribe zidovudine to subjects experiencing
low CD4 count, assumption (1) would be suspect if L(k) did not contain history of CD4 count.
Robins” MSMs allow one to estimate causal effects when assumption (1) (no unmeasured
confounders) holds.

5. A MARGINAL STRUCTURAL MODEL FOR REPEATED MEASURES

Suppose we model the mean of the counterfactual outcomes Y;(¢) as

E[Ya(t + D]=g(a(?), ) (2a)

where ¢ is a known function and f is a parameter to be estimated. This is a marginal structural
model. It is marginal because it describes the effect of the treatment regimes a on the marginal
distributions of their corresponding counterfactual outcomes Y;, and structural because models
for counterfactual random variables are called structural in the social and economic sciences.
It is a semi-parametric model because we parameterize the mean but leave the rest of the
distribution unspecified. Robins [2, 3] gives an introduction to and a taxonomy for MSMs.
We restrict the scope of the present discussion to MSMs for repeated measures data. By
assumption, because the future cannot cause the past, Yz(¢ 4+ 1) is equal to Yz(¢r+ 1) if a and
a agree prior to time ¢ + 1. Therefore, E[Y;(¢ + 1)] can only depend on @ through time ¢.
The MSM we use to analyse the MACS data is the linear mean model

g(a(t), B) = po + pr cumfa(z)] + pat (2b)

where B=(fo,Bi,B2) and cum[a(t)]= >, a(k).

The MSM (2) resembles the standard GEE model (1). The difference between a GEE
model and an MSM is that the former models the association between observed treatments
and observed outcomes while the latter models the causal relation between treatment regimes
and their corresponding potential outcomes. The relationship of MSM (2) to GEE model (1)
can be clearly seen by expressing model (1) as

E[Yi(t + DA=a)]=g(a(t),y) (3a)

where

g(a(t),y)=7yo + yrcumla(t)] + 72t (3b)

(Because we are conditioning on 4 =4 in equation (3a), it follows that ¥ = Y;. Thus, we
can substitute ¥ for ¥; in (3) and obtain E[Y (¢ + 1)|d =a)]=g(a(t),y), which is equivalent
to (1).) From (3) we see that a regression model is a model for the conditional mean of
Ya(t + 1) given A=a.

As defined above, the average causal effect of regime @ is E[Y;(¢+1)]— E[Y;5(¢+1)], which
under our MSM (2) is f; cum[a(¢)]. Thus, the parameter f; from model (2) has a causal
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interpretation as the mean change in CD4 count caused by an additional visit of zidovudine
therapy.

pi is also of important policy interest. To see why, consider a new subject exchangeable
with (that is, drawn from the same distribution as) the N study subjects. We must decide
which treatment regime @ to administer to the new subject. We would like to provide the
treatment that maximizes the expected CD4 count at each ¢. That is, we want to find a
that maximizes E[Yz(¢)]. For example, if the parameter f; is negative, we will withhold
zidovudine treatment from our subject, since negative ff; indicates that the expected CD4 count
decreases with increasing zidovudine cumulative dose. In contrast to f5;, the parameter y; of
our association (GEE regression) model (1) may have no causal interpretation. For example,
suppose physicians preferentially started zidovudine treatment on subjects who, as indicated
by their prognostic factor history, were doing poorly and that zidovudine has no causal effect
on the mean of Y (that is, f; =0). None the less, the mean of ¥ will decrease with cumulative
zidovudine dose (since patients with poor prognostic factor history, say low previous CD4
count, will have lower CD4 counts and will have received more treatment). Thus y; will be
negative. In this setting, we say that the parameter y; of the association model (1) lacks a
causal interpretation because it is confounded by the association of the prognostic factors with
the subsequent treatment. If we made policy decisions as to the optimal zidovudine dose based
on the parameter y; rather than ff;, we may well be doing many of our patients a potentially
fatal disservice. For example, y; may be negative even if zidovudine was beneficial and thus
P was positive, if the confounding due to physicians preferentially treating subjects with low
previous CD4 counts is of greater magnitude than the true beneficial effect of zidovudine on
Y as measured by the absolute value of f3;.

The result shown by Robins [2, 3] is that, assuming we have no unmeasured confounders
and the positivity assumption

flatk — 1),1(:)]>0 = fla(k)|a(k —1),1(k)]>0 (4)

holds, we can obtain an asymptotically unbiased estimate of the causal parameter /i of MSM
(2) by simply fitting the standard GEE linear model (1) except that each subject is given the
time-specific weight

swiny= 1] —LA®ME - D]
=0 fTAGO)A(k = 1), L(k)]

where A(—1)=0 for all subjects, and f[A(k)A(k — 1),Z(k)_] is, by definition, the condi-
tional probability mass function [y je—1) zrla(k) | alk —1),/(k)] with [a(k),a(k —1),/(k)]
evaluated at the random argument [4(k),A(k — 1),L(k)]. Specifically, Robins [2] proved the
following theorem:

Theorem 1

Under assumption (1) of no unmeasured confounders and positivity condition (4) E[¥;(¢+1)]
is the unique function c[a(¢)] of a(¢) such that E{q[A()[{Y (¢t + 1) — c[A(t)]}SW(¢)} =0 for
all functions ¢[A(t)] where the expectation exists.

Informally, the denominator in each term of the weight SW(¢) is the probability that a
subject received his own observed treatment, A(k), at visit k£ given his past zidovudine and
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covariate history. Informally, the numerator is the probability that a subject received his
observed treatment conditional on his past zidovudine history, but not further adjusting for
his past covariate history. The true weights S are unknown but can be estimated from the
data, as we explain below. Once the S (¢) are estimated for each subject, standard software
packages for GEE linear regression will allow the user to specify the weight SW(z) (for
example, option ‘weight’ in SAS proc genmod [12]).

Hence, if the vector of covariates recorded in L(¢) constitutes all relevant time-dependent
confounders, then the weighted GEE linear regression estimator of y; will converge to the
parameter f; that represents the causal effect of zidovudine on the mean of CD4 count [2, 3].
In contrast, when there exists confounding due to L(¢), the usual unweighted GEE regression
estimator will still converge to y;, but now y,; will have no causal interpretation. The weighted
regression estimator, which we will refer to as an inverse-probability of treatment weighted
(IPTW) estimator, is an extension to longitudinal causal inference models of estimators pro-
posed by Horvitz and Thompson [18], Kalbfleisch and Lawless [19], Flanders and Greenland
[20], Rosenbaum [21] and Robins and Rotnitzky [22] for missing data models.

As discussed above, including the variables L(¢) as additional regressors in model (1) fails
to appropriately adjust for confounding when some variables in L(¢) meet conditions Al and
A2. The MSM approach correctly adjusts for the time-dependent covariates L(¢), not by adding
them to the model as regressors, but by using them to calculate subject-specific weights for
a weighted GEE analysis.

We can generalize our MSM (2) slightly and model the marginal distribution of ¥; within
levels of a subset V' of the pretreatment (baseline) covariates L(0). Then, our marginal struc-
tural linear mean model (2) could be modified to

E[Yi(t+ )| V1=g(a(t), )= Po + P cum[a(t)] + Bot + B5V (%)

where B, is a parameter vector. An IPTW estimator of the parameter 5 can be obtained as
above except now the GEE linear model includes the variables in V' as additional regressors,
and SW(t) is redefined to be

SW(t)= ﬁ STA(k) \_A_(k —1).7]
=0 f[A(k) | A(k — 1),L(k)]

Note V is already included in the denominator, since V' is a subset of the variables in L(0).

(6)

5.1. Details of estimation

The inverse probability of treatment weighted estimator described in the last section is the
solution to the weighted GEE estimating equation Y =(Y;,...,Y;s)". The above estimating
equation is in fact a member of the general class of inverse probability of treatment weighted
estimating equations. We next discuss the estimation of f under three different designs:
(1) randomization at baseline, (ii) sequential randomization based on time-dependent covari-
ates, (iil) non-randomized assignment, as in an observational study. These settings cover most
practical applications.

5.1.1. Randomization at baseline. When individuals are independently randomized at baseline
to treatment with 4, with probabilities depending only on the baseline covariates V', the as-

signed course of treatment A is guaranteed to be independent of the potential outcomes Y;(¢+1),
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t=0,...,15 for all a, conditional on the baseline covariates V. Under these conditions,
STA(R)|A(k—1), V] = flA(k)|A(k —1),L(k)] for all k, SW(t)=1 for all person-visits, and the
parameter f of MSM (5) can be estimated using the usual unweighted GEE regression.

5.1.2. Sequential randomization based on time-dependent covariates. Intermediate between
a simple randomized trial and an observational study is a sequentially randomized trial, where
treatment at time k is randomly assigned with the randomization probabilities possibly de-
pending on covariate history L(k) and past treatment A(k — 1). Thus, the (randomization)
probabilities f [A(k)|/f(k —1),L(k)] are known for all k& because they are under the control of
the investigator. Assumption (1) automatically holds for sequentially randomized trials.

An IPTW estimator f§ solves

N
;D/(ﬁ)EFISVZ(Kfui(ﬂ)FO (7)

where Y= (X(1),...,Y(K + 1)), Di(B)=0uw(B)/0B, w(B)=(9(4:(0),V,p),...,9(4(K),
Vi, B)), K+1 is the time when the last measure of Y is obtained, ¥; is a (possibly estimated)
working covariance matrix, and SW; is the diagonal matrix of weights SW(z), t=0,...,K. To
analyse the MACS data, we used the IPTW estimator (7) with ¥; =Y;(c)= ¢, where I is
the identity matrix of dimension K + 1. We estimate robust standard errors with a ‘sandwich’
estimator [10, 11].

The name ‘inverse probability of treatment’ stems from the denominator of (6). Robins
[2, 3] has shown that if we replace SW; in (7) by the diagonal matrix W; of terms W(t)
representing the ‘inverse probability of treatment’ for subject i through visit ¢:

o 1
T Lo fTAR)| ik — 1), Li(k)]

then our estimator of f will remain consistent and asymptotically normal. However, when the
numerator of (6) assigns uneven probabilities of treatment conditional on ¥, the weights in
W; will vary much more than those in S#;. Using such unstable weights can lead to estima-
tors with large variance because they may be dominated by a small number of observations
carrying limited information about f. The weights SW; are typically more stable than their
counterparts in W;; accordingly, we refer to elements of SW; as stabilized weights, and to
elements of W; as non-stabilized weights.

The class of IPTW estimating equations for f, introduced by Robins [2, 3], generalizes to
the set of estimating equations of the form

Wi(1)

N

> DH(BYBI(Y; — 1u(B)) + (A(K), L(K)) =0

i=1

where D () is a dim(f8) x K +1 matrix whose zth column consists of user-supplied functions
of (4i(¢),Vi,B), B is a diagonal matrix whose terms B;(¢) are user-supplied functions of
(Al(t)a I/l)n and

PAK),L(K)) = tf% $i(A(), L(1)) — E[(A(2), L(1)|A(z — 1), L(1)]

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1689-1709
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with the ¢, any user-supplied functions. Note in particular that ¢ =0 is acceptable. Robins
[3] shows that E[DT(B)BW (Y — u(B))|A(¢),L(¢)] is the most efficient choice for ¢p(A(¢),L(t)).

5.1.3. Non-randomized assignment as in an observational study. In an observational study,
we cannot guarantee assumption (1) no matter how many covariates are represented by L(z).
The primary goal of epidemiologists conducting an observational study is to collect data on
a sufficient number of covariates to ensure that assumption (1) will be at least approximately
true. However, in an observational study, whether assumption (1) is true is not subject to
empirical test.

Despite these epistemological constraints, causal evidence is often sought from observational
data, especially when there are no viable alternatives, as when ethical concerns preclude
randomization. We will proceed as if assumption (1) holds and thus treat the observational
study as a sequentially randomized study, except that the probabilities f[a(k)|a(k — 1), (k)]
are now unknown and thus must be modelled and estimated from the data.

5.2. Estimation with censored data

Only minor modifications are necessary to accommodate right censoring due to loss-to-follow-
up. Let C(¢) =0 if a subject remains in the study beyond time ¢, 1 otherwise. Then the outcome
Y(t+ 1) is observed if and only if C(¢)=0. In the MACS, we censored subjects at their
first visit missed. By viewing the censoring process as an additional treatment process, where
‘treatment’ corresponds to a patient’s removal from the study, it is straightforward to show
that if censoring is sequentially ignorable, that is, if

Yi(t + D) I C(t 4+ 1)|C()=0,L(1), A(t)

and assumption (1) holds with C(1)=0 added to the conditioning event, then the discussion
in the previous section can be generalized to show that a weighted GEE analysis using the
weights SW(t) x SW1(t) leads to an asymptotically unbiased estimate of the causal parameter
B, where SW1(¢t) is the random variable corresponding to

s — 7 PICG+ 1)_: O|C(k)_: 0,4(k), V]
i—o Pr[C(k + 1)=0|C(k)=0,A(k),L(k)]

and we modify our definition of SW(¢) to add C(k)=0 to the conditioning events both in
the numerator and the denominator. In general, the weights SW(t) x SW(¢) are unknown and
have to be estimated from the data.

5.3. Estimation of the weights

We now describe how to estimate the unknown weights SW(¢) and SW1(¢) in the MACS. We
need to estimate the denominator and numerator of SW(¢) for each subject and visit. Since
any subject starting zidovudine was assumed to remain on it thereafter, we can regard the
time to starting zidovudine as a failure time variable and model the probability of starting
zidovudine through a pooled logistic model that treats each person-visit as an observation and
allows for a time-dependent intercept. As an example, we fit the model

logit Pr[A(k)=0]d(k — 1)=0,L(k),C(k — 1)=0] = a(k) + &V + abL(k)
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and obtained estimates for the unknown parameters &= (do(k),4&;,&,). It is only necessary to
fit the model for subjects who had yet to begin zidovudine (that is, the 6775 person-visits in
the MACS with A(k — 1)=0). Note this particular model assumes that only the most recent
covariate values L(k) are useful for predicting A(k).

The estimated predicted values p,(k)= expit[Go(k)+ &) Vi +8&,L:(k)] from this model are the
estimated probabilities of subject i not starting zidovudine at visit k£ given that zidovudine had
not been started by visit k£ — 1, where expit(x)=e*/(1+e*). Our estimate of the denominator
of SW(t) for person i at visit ¢ is the product p(¢)= H;ZO Ppi(u) if subject i did not start
zidovudine up to visit ¢, and is p,(t)=[1 — p(k)][]-Zs A(u) if subject i started zidovudine
at visit £ for k<t. In calculating ﬁi(t) we have used our assumption that no subject stops
zidovudine once begun. Similarly, we estimate the numerator of SW(¢) by fitting the above
logistic model except with the covariates L(k) removed from the model.

In order to correct for censoring, we estimate SW f(¢) in a manner analogous to the estima-
tion of SW (t) except with A(k) replaced by C(k) as the outcome variable, with 4(k) added
as an additional regressor, and not conditioning on A(k — 1)=0.

Robins [3] proved our IPTW estimator of f will be consistent if the models for treatment
initiation and censoring that are used in estimating the denominators of SW(t) and SWT(t)
are correctly specified, regardless of whether or not the numerator models are misspecified.
Interestingly, when the denominator models are correctly specified, the results of Pierce [23]
and Robins et al. [24] can be used to show that estimating the weights increases the efficiency
of the IPTW estimator. In other words, to increase efficiency one should estimate the weights
even when the assignment mechanism is known from the study design, as would be the case
in a sequentially randomized trial.

There is one further detail we have yet to discuss. Under the asymptotic theory that mo-
tivated our estimation procedure, the IPTW estimator of B will be n'/>-consistent only if our
estimate of SW(t) converges at a rate of n'/* or better [3]. The practical implication of this
result is that for our IPTW estimator of f to perform well in moderate sized samples, our
estimate SIW (t) of SW(t) cannot be exceedingly variable. To ensure this, we reduced the
number of free parameters in the logistic model for p(k) by not fitting a separate intercept
op(k) for each visit k. Rather, we modelled (k) using a linear term for visit. Intermedi-
ate modelling strategies such as using natural cubic splines with five knots yielded similar
estimates.

6. A SIMPLE EXAMPLE

It is helpful to work through a simple example with a univariate response ¥ measured at the
end of follow-up. We consider a hypothetical sequentially randomized trial in which N =200
patients are randomly assigned at time =0 to zidovudine (4(0)=1) with probability 1/2
and to placebo (4(0)=0) otherwise. Patients continue on zidovudine or placebo until their
next visit to clinic at time ¢=1, whereupon the attending physician measures CD4 count.
Irrespective of previous treatment history, patients with high CD4 count (L(1)=1) are again
randomized with probability 1/2 to zidovudine (4(1)=1) and to placebo otherwise (4(1)=0).
Because it is hoped that treatment with zidovudine will improve CD4 count, patients having
low CD4 counts at time t=1 (L(1)=0) are randomized with probabilities 9/10 and 1/10 to
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A1) =1 (15)

A(1) =0 (15)

A(0) =1 (100)

A1) =1 (63)

9
L(1) =0 (70) <
N (200) ! AN =0
5 A(l) =1 (5)
L(1) =1 (10) <
o A1) =0 (5)
A(0) = 0 (100)
A(1) =1 (81)

9
L(1) =0 (90) <
1

Figure 1. Probability tree diagram for the example of Section 6. Values in parentheses summarize
the number of patients at each node. N represents the total number of patients in the study.

Table 1. Data corresponding to the example in Section 6*.

(A4(0), L(1),4(1)) No E[Y|4,L] w Nw STAD)]A(0)] fT4(0)] Sw Nsw
(1,1,1) 15 100 4 15 0.39 156 234
(1,1,0) 15 100 4 15 0.11 0.44 6.6
(1,0,1) 63 90 2.22 35 0.39 087 546
(1,0,0) 7 90 20 35 0.11 2.20 15.4
0,1,1) 5 100 4 5 0.43 1.72 8.6
(0,1,0) 5 100 4 5 0.07 0.28 1.4
(0,0,1) 81 90 2.22 45 0.43 095 774
(0,0,0) 9 90 20 45 0.07 1.40 12.6
1 STA()|4(0)]fTA0)]

*

= S
g STADL(1), 4(0)] f[4(0)]° d JTAMIL(D), A(0)1/T4(0)]

treatment and placebo at time = 1. The probability tree diagram in Figure 1 summarizes the
progression of the trial through time #=1.

At time t=2, the patients return to clinic for a final evaluation and their absolute CD4
count Y is measured. Table I summarizes the full data set. The first column defines eight
strata of patients according to the observed treatment and covariate histories (A4(0),L(1),A4(1)).
Columns 2 and 3 provide, respectively, the number of patients in each stratum and their
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average CD4 counts at time 2. In this much simplified data set, the inverse probability
of treatment W, given in column 4, can be estimated non-parametrically. As an example,
for subjects with (4(0),L(1),4(1))=(1,1,1), we first read from the probability tree that
Pr[A(1)=1]|L(1)=1,4(0)=1]=0.5 and Pr[4(0)=1]=0.5. The inverse probability of treat-
ment is then computed as W =1/(0.5x0.5) =4. Column 5 gives the adjusted population counts
when the non-stabilized inverse probabilities W are used as weights. These counts have been
renormalized by multiplying each by the same constant so that the total number of patients
remains fixed at 200. Columns 6 to 8 present the numerator of the stabilized weights SW, the
stabilized weights SW, and the resulting adjusted population counts. Notice that the ratio of
the largest to smallest stabilized weight is 2.2/0.28 = 7.86, whereas that for the non-stabilized
weights is 20/2.2=9.1. We will find in the MACS analysis that this difference can be much
more pronounced.
Suppose we are interested in estimating the causal effect

E[Y; — Yz ]

where a represents treatment with (a(0),a(1))=(1,1) and & represents treatment with
(a(0),a(1))=(0,0). The data in the first and third rows of Table I represent subjects treated
with zidovudine for the duration of the trial for whom we observe Yz the sixth and eighth
rows represent observations on Yz in the untreated subjects. To estimate E[Y;], we can com-
bine the data from the first and third rows in a variety of ways. A standard approach weights
the two averages by the observed Ng, giving

(15 x 100 4+ 63 x 90)/(15 4+ 63)=91.92
The analogous estimate of E[Yz] is
(5x 10049 x90)/(5+9)=93.57

and thus the corresponding estimate of our causal effect is 91.92 — 93.57=-1.65.
However, this result is likely to be biased because L(1) is a confounder for the effect of 4(1)
on Y.

On the other hand, we can combine rows to obtain a causally valid answer using the MSM
approach with either the non-stabilized or the stabilized weights. We see that both methods
produce the same result:

15><100—1—35><9O_23.4><1004—54.6><9O_93 @)
15+ 35 N 23.4+54.6 N

E[Y;] =

5% 1004+45%90  14x100+12.6x90

Ela] 5145 14+ 126

91 9)
= Causal effect =2.0

The non-stabilized and stabilized answers are the same because the stabilizing factor
fTA(1)|4(0)]fTA(0)] does not depend on L(1); therefore, (23.4,54.6) is a scalar multiple
of (15,35) and (1.4,12.6) is a scalar multiple of (5,45). Note that our IPTW estimate 2.0
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<+
&
"""""""" weighted (causally valid*)
—— weighted and stabilized (causally valid*)
[ I
o
> &
5 —
o stratified, L1=0 (causally invalid)
Q A -
T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
*assuming no unmeasured confounders cum(A)

Figure 2. Four regressions.

is the estimate of f; + f, + f3 in the saturated MSM E[Y;]=fo + fiao + Prai + Bzapa.
Indeed, it can be shown that the non-stabilized and stabilized estimates will be the same in
any saturated model.

The four consistent estimates for E[¥;] from the saturated model for a equal to (0,0),
(0,1), (1,0) and (1,1) are 91, 91, 93 and 93, respectively. They are classified by cum(4) and
depicted by diamond-shaped points on the graph in Figure 2. Note in our trial cum(4) has
three possible values:

cum(4) (4(0),4(1))
0 (0,0)
1 (0,1) or (1,0)
2 (1, 1)

Next to each point is a number representing how many different actual patients contributed
information to the estimated causal effect. For instance, the ‘14’ next to the point correspond-
ing to cum(4)=0 represents 5 patients with (A4(0),L(1),4(1))=(0,1,0) and 9 patients with
(A4(0),L(1),A4(1))=(0,0,0). We next discuss the four regression lines shown in Figure 2.

When the causal effects are summarized by the unsaturated linear MSM model E[Y;] = fo+
pi cum(a), the stabilized and non-stabilized weighted estimates of E[Y ) — Yo,)] differ, even
if the unsaturated model is correctly specified. This difference will only be due to sampling
variability. (On the other hand, if model (5) were misspecified, this difference would persist
asymptotically and the estimated causal effects would be inconsistent regardless of whether
we use stabilized or non-stabilized weights.) Figure 2 graphs results from four regressions of
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CD4 count on cumulative exposure cum(4) to zidovudine. They were computed using data
from Table I, summarized as follows:

No Nw Nsw L(1) cum(4) E[Y|A4,L]
63 35 54.6 0 2 90

7 35 15.4 0 1 90
81 45 77.4 0 1 90

9 45 12.6 0 0 90
15 15 234 1 2 100
15 15 6.6 1 1 100

5 5 8.6 1 1 100

5 5 1.4 1 0 100

The two causally invalid lines result from unweighted regressions where we either collapse
over or stratify by the time-dependent confounder L(1). In both cases, we weight individual
subjects equally; this amounts to fitting regression lines to the eight points above with weights
determined by the observed Ny and with the response equal to E[Y|4] or E[Y|A4,L]. The
collapsed analysis amounts to fitting the regression

E[Y|cum(A)] = 0 + 71 cum(A) (10)

which neglects to include, that is, collapses over, L(1). The stratified analysis includes L(1)
as a covariate:

E[Y|cum(A4),L(1)]=yo + y1 cum(4) + y,L(1)

In the table above, it is readily observed that the least-squares estimates for the parameters
70, 71 and y, of the stratified analysis will be 90, 0 and 10, respectively. The horizontal line
labelled ‘stratified” in Figure 2 is the regression line for subjects with L(1)=0 and hence has
an intercept of 90.

We next investigate the difference between the non-stabilized and stabilized MSM ap-
proaches. Both fit the regression model (10) to the 8 rows of the table above with row
specific weights being Ny and Nsw, respectively. The non-stabilized MSM regression is al-
gebraically equivalent to the unweighted least-squares fit of (10) to the four diamond-shaped
points (0,91), (1,91), (1,93) and (2,93). The stabilized MSM regression is algebraically equiv-
alent to a weighted least-squares fit to the same four points with weights equal to 14, 86,
22 and 78, respectively. Thus, the points (cum(4),Y)=(1,91) and (cum(A4),Y)=(2,93) have
more leverage in the stabilized regression than they do in the non-stabilized analysis. The in-
creased leverage improves efficiency because the two points represent 164 of the 200 patients
in the study.

In summary, the simple example demonstrates how the MSM approach can reverse the con-
clusions of standard regression analyses. Both the stabilized and non-stabilized MSM analyses
uncovered a positive effect of zidovudine on CD4 count. On the other hand, the two standard
analyses, where we either stratify by or collapse over the time-dependent confounder, falsely
suggest a negative or neutral effect.
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Table II. Inverse-probability of treatment weighted causal estimates of the causal effect
of zidovudine therapy on mean CD4 count in the Multicenter AIDS Cohort Study.

Unweighted estimates™ Parameter 95 per cent CI
Unadjusted —39.62 —46.69, —32.56
Only baseline covariates —17.66 —23.44, —11.89
Weighted estimates’ Parameter 95 per cent conservative CI
Stabilized weights 5.44 —1.77, 12.66
Non-stabilized weights 6.26 —1.39, 1391

* Non-causal models shown for comparison purposes only. The unadjusted model includes only visit and zidovudine
use (yes, no). The model with baseline covariates includes also: age (years), calendar year (1985,1986,1987—
89,>1990); CD4; CD8; WBC; RBC; platelets (natural cubic splines); presence of fever; oral candidiasis; diarrhoea;
weight loss; oral hairy leukoplakia; herpes zoster (yes, no); zidovudine use, and prophylaxis use.

T Weights estimated as described in the text using data on baseline covariates plus most recent CD4, CD8, WBC,
RBC and platelets (splines), and presence of symptoms.

7. DATA ANALYSIS OF THE MACS

Using the unweighted GEE model (1) with CD4 count at visit £ + 1 as the outcome and no
covariates other than time ¢, the estimate of the parameter y; for cumulative zidovudine use
was —39.6 (95 per cent confidence interval (CI) —46.7, —32.6). When adding the baseline
covariates V' to the model, the regression coefficient was —17.7 (95 per cent CI —23.4, —11.9).
These confidence intervals are obtained using the robust standard error with 6%/ as the working
covariance matrix.

To adjust for time-dependent confounding due to the time-dependent covariates L(z), we
estimated the parameters of MSM (5) by calculating a stabilized weight SW(¢) x SWT(t) for
each person-visit and then fitting a weighted GEE regression model using 62/ as the working
covariance matrix. Our IPTW causal estimate of the parameter ff; of MSM (5) was 5.4 (95
per cent conservative CI —1.8, 12.7). The use of non-stabilized weights yielded a similar
estimate of f; with a slightly wider 95 per cent CI (Table II). The point estimates and
robust standard errors for each of the parameters of our MSM are shown in Table III.

The robust standard error is outputted by any standard GEE software that uses the ‘sand-
wich’ estimator [10, 11] such as SAS proc genmod [12]. Because this estimator does not take
into account the estimation of the weights, it yields an asymptotically conservative confidence
interval for our IPTW estimator. Thus, we also estimated this standard error using 1000 boot-
strap samples. However, the results were virtually identical: the bootstrap mean estimate of
i was 5.4, and its 95 per cent CI was (—1.9,12.8).

The weights SW(t) x SWT(t) were estimated by means of four pooled logistic regression
models as described in Section 5.3. In two of the models the outcome was ‘initiation of
zidovudine’. Using the estimated predicted values from each of these models, we calculated
two quantities for each person-visit: the probability of each person having his own observed
zidovudine history up to visit ¢ given baseline covariates V, and, then, given also the time-
varying covariates L(¢). Similar models were fit for the outcome ‘censoring’, after adding
zidovudine history as a time-dependent dichotomous variable indicating whether the subject
had started zidovudine by visit ¢ — 1.
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Table III. Inverse-probability of treatment weighted estimates of the parameters of the marginal
structural model for repeated measures, Multicenter AIDS Cohort Study.

Variable™ Parameter estimate Robust stand. error 95 per cent conservative CI
Zidovudine 5.44 3.68 —1.77,12.66
Age —0.69 1.00 —2.65,1.26
Year:
1985 85.12 41.20 4.36,165.87
1986 61.22 43.48 —23.99,146.4
1987-89 25.71 46.55 —65.53,116.9
= 1990 0.00
CD4 (/ul) 0.63 0.18 0.27,0.99
3.05 3.56 —3.93,10.02
—5.06 5.29 —15.43,5.30
CD8 (/ul) —0.27 0.11 —0.48,—0.06
0.99 1.03 —1.02,3.00
—1.30 1.65 —4.53,1.94
WBC (/ul) 0.09 0.04 0.02,0.16
—1.20 0.66 —2.49,0.10
0.38 1.79 —0.20,3.58
RBC (x 10°/ul) —10.77 18.20 —46.44,2491
43.78 64.71 —83.06, 170.6
—67.94 106.21 —276.1,140.2
Platelets (x 10°/ul) —1.31 0.55 —2.39,—-0.22
9.57 2.55 4.57,14.57
—19.10 5.05 —29.01,-9.19
Thrush —59.70 21.11 —101.1,—18.3
Oral leukoplakia —69.86 44.77 —157.6,17.89
Weight loss 25.06 38.62 —50.64,100.8
Herpes zoster —53.51 33.51 —119.2,12.17
Diarrhoea —47.16 50.57 —146.3,51.95
Fever 0.61 71.28 —139.1,140.3
Visit —20.44 2.26 —24.87,—16.02

*All variables measured at baseline except zidovudine (1=ever user, 0 =never user) and visit. The three parameters
for CD4, CD8, WBC, RBC and platelets correspond to a linear term (first row) plus two parameters for natural
cubic splines with knots at percentiles 1, 27.5, 50, 72.5 and 99 as estimated from SAS macro RCSPLINE by Frank
Harrell (http://jse.stat.ncsu.edu:70/Is/software/sas).

Table IV summarizes the empirical distribution at two arbitrary time points (visits 2 and
10) of (a) the numerator and denominator of the stabilized treatment weights SW (¢), and
(b) the numerator and denominator of the stabilized censoring weights SW f(¢). Table V
summarizes the empirical distribution at visits 2 and 10 of the stabilized treatment weights
SW (¢), the non-stabilized treatment weights W(t), the stabilized censoring weights N4 (1)
and the non-stabilized censoring weights WT(t). The non-stabilized weights are a fraction
whose denominator is equal to that of the stabilized weights but whose numerator is 1.

The distribution of the stabilized weights SW (t) x SWT(t) and non-stabilized weights W (t) x
Wi(t) is presented in Figures 3 and 4, respectively (a logarithmic transformation was ap-
plied for display purposes only). Reading from Table V and Figures 3 and 4, we see that the

distribution of W(¢) is much more variable and skewed than that of SW (1).
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Table IV. Distribution of the estimated numerator and denominator of the weights
SW and SW1 at visits 2 and 10 in the Multicenter AIDS Cohort Study.

Mean (SD)* Median (IQR)* Percentile 1 Percentile 99

Visit 2 (n=1186)
Probability of having observed
zidovudine history:

given baseline covariates' 0.775(0.242) 0.859(0.136) 0.053 0.978

given time-varying covariates® 0.808(0.246) 0.907(0.159) 0.006 0.994
Probability of being uncensored:

given baseline covariates' 0.685(0.096) 0.697(0.124) 0.408 0.858

given time-varying covariates* 0.691(0.102) 0.704(0.134) 0.383 0.867

Visit 10 (n=439)
Probability of having observed
zidovudine history:

given baseline covariates' 0.224(0.237) 0.082(0.305) 0.030 0.833

given time-varying covariates® 0.298(0.292) 0.151(0.463) 0.011 0.947
Probability of being uncensored:

given baseline covariates' 0.398(0.122) 0.402(0.173) 0.096 0.661

given time-varying covariates® 0.406(0.125) 0.412(0.186) 0.116 0.705

*SD = standard deviation, IQR = interquartile range.

T Age (years), calendar year (1985,1986,1987-89, >1990); CD4; CD8; WBC; RBC; platelets (natural cubic splines);
presence of fever; oral candidiasis; diarrhoea; weight loss; oral hairy leukoplakia; herpes zoster (yes, no); zidovudine
use, and prophylaxis use.

tBaseline covariates plus most recent CD4, CD8, WBC, RBC and platelets (splines), and presence of symptoms.

Table V. Distribution of the estimated weights SW and SWT at visits 2 and 10 in the MACS.

Mean (SD)* Median (IQR)* Percentile 1 Percentile 99

Visit 2 (n=1186)

N4 1.00(0.60) 0.96(0.07) 037 3.69
w 2.49(8.34) 1.10(0.21) 1.01 30.06
swi 0.99(0.04) 0.99(0.04) 091 1.14
wt 1.49(0.28) 1.42(0.27) 1.06 261
Visit 10 (n=439)

N4 1.02(0.79) 0.79(0.62) 0.16 536
W 11.90(20.14) 6.62(12.58) 1.06 90.97
swi 0.98(0.11) 0.98(0.10) 0.72 1.32
wt 2.82(1.36) 2.43(1.18) 1.48 8.63

*SD = standard deviation, IQR = interquartile range.

The difference between the unweighted and weighted estimates is an indication of the
amount of time-dependent confounding due to the time-dependent covariates L(¢), which is
considerable in the MACS. One might be tempted to adjust for this time-dependent confound-
ing by adding, for example, the variables in L(¢) to the unweighted GEE model (1). The point
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Figure 3. Distribution of stabilized weights at each study visit. The box for each visit shows the
location of the mean (+), median (middle horizontal bar) and second and third quartiles (border
horizontal bars). Vertical lines extend to the maximum and minimum values.
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Figure 4. Distribution of non-stabilized weights at each study visit.

estimate of the cumulative zidovudine coefficient from this model was —1.40 (95 per cent
CI —3.11,0.31). However, because the covariates in L(¢) are affected by earlier treatment,
this estimate cannot be causally interpreted as the overall zidovudine effect. It also cannot be
interpreted as the direct effect of zidovudine mediated by pathways not through the covari-
ates L(¢). Since we have only made the assumption of no unmeasured confounders for the
treatment process A(¢) and not for the covariate process L(?).
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8. DISCUSSION

We have used a marginal structural linear model for repeated measures to estimate the causal
effect of zidovudine on CD4 count in the MACS. This method was utilized because stan-
dard statistical methods are not appropriate when there exists time-dependent confounding by
variables, such as CD4 count, that are affected by previous treatment.

Because of the presence of confounding, the crude GEE estimate for cumulative zidovu-
dine was —39.6 (95 per cent CI —46.7, —32.6), erroneously suggesting a marked decline of
CD4 count among zidovudine users. The regression coefficient estimated by the (unweighted)
standard model that included only baseline covariates, and that therefore does not adjust for
time-dependent confounding, was —17.7 (95 per cent CI —23.4, —11.9), which still suggests
a detrimental effect of zidovudine.

In fact, the estimated coefficient 5, for zidovudine was 5.4 (95 per cent conservative CI
—1.8, 12.7) in the weighted analysis that provides, under our assumptions, an unbiased esti-
mate of the expected change in mean CD4 attributable to an additional visit of zidovudine use
under the marginal structural model (4). The weighted analysis appropriately adjusts for time-
dependent confounders affected by earlier treatment. This result is consistent with those from
placebo-controlled randomized trials [25—-27] and suggests that, on average, zidovudine users
may perhaps undergo a slightly slower decline of their CD4 count as compared to non-users.

MSMs are useful for estimating the effect of prespecified treatment regimes a (for exam-
ple, ‘start treatment at visit 3°, or ‘never start treatment’) in the whole population and within
levels of the baseline covariates V. However, MSMs are much less useful for estimating the
causal effect of dynamic treatment regimes in which treatment in a given visit is decided in
part based on a subject’s evolving covariate history (for example, ‘start treatment when CD4
drops below 200’). To estimate the causal effect of dynamic regimes, which involve inter-
actions between treatment and the time-dependent covariates L(z), structural nested models
(SNMs) can be used [3]. An attractive feature of MSMs, compared to SNMs, is their close
resemblance to conventional regression models, which renders them both familiar and easy to
implement.

The correctness of our causal inferences is dependent on a number of assumptions. First,
we assume that the information on visit of zidovudine initiation is accurate. Second, we
assume that the measured covariates in L(¢) are sufficient to adjust for both confounding
and for selection bias due to loss to follow-up. This implies that we have available, for
each visit ¢, accurate data recorded in all time-dependent covariates L(¢) necessary for the
assumption of no unmeasured confounders (assumption (1)) to hold. Unfortunately, as in all
observational studies, these two assumptions cannot be tested from the data. In our analysis
we assume this goal has been realized, while recognizing that, in practice, this would never
be precisely or sometimes even approximately true. Recently, Robins and co-workers have
developed extensions of IPTW estimation of MSMs that allow one to evaluate the sensitivity
of one’s estimates to increasing violation of these fundamental assumptions [28]. Third, we
assume that the models for initiation of zidovudine and censoring, given the past, are correctly
specified. Fourth, we assume that our MSM for the effect of zidovudine on mean CD4 count,
within levels of baseline covariates V/, is correctly specified.

A similar set of assumptions (accurate information, no unmeasured confounders, non-
informative censoring and no model misspecification) is required to give a causal inter-
pretation to the parameters of standard statistical models used in point-treatment studies.
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Furthermore, when studying the effect of a time-dependent treatment like zidovudine, the
assumptions of MSMs are less restrictive than those of standard methods: MSMs do not
require the absence of time-dependent confounding by wvariables affected by previous
exposure.
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