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Abstract

We consider the codifference and the normalized codifference function as dependence mea-
sures for stationary processes. Based on the empirical characteristic function, we propose
estimators of the codifference and the normalized codifference function. We show the consis-
tency of the proposed estimators, where the underlying model is an ARMA with symmetric
α-stable innovations, 0 < α ≤ 2. In addition, we derive their limiting distribution. Finally,
we present a simulation study showing the dependence of the estimator on certain design
parameter.
Keywords: ARMA, Infinite Variance, Codifference, Empirical Characteristic Function

1 Introduction

In many cases, assumption of normality for the observations seems to be reasonable. On the other
hand, in the number of applications, such as, signal processing, telecommunications, finance,
physics and chemistry, the leptokurtic distribution, i.e., the distribution which is heavy-tailed and
peaked around the center, seems to be more appropriate (e.g., Rachev and Mittnik, 2000; Nikias
and Shao, 1995). An important class of distributions in this context is the stable distributions,
which is a flexible class for data modelling and contains normal distributions as its special case.
The importance of this class of distributions is strongly supported by generalized central limit
theorems, which indicate that the stable distribution is the only possible limiting distribution for
the normed sum of independent and identically distributed random variables. For information on
the stable distribution, the reader is referred to, e.g., Samorodnitsky and Taqqu (1994).

In this paper, we consider univariate strictly stationary linear processes {Xt|t ∈ Z}, where Z

denotes the integers, given by

Xt =

∞
∑

j=0

cjǫt−j (1)

where the following holds

(C1). The coefficients cj ’s are real-valued and satisfying |cj | < cQ−j for some c > 0, Q > 1

(C2). ǫt is i.i.d. symmetric α stable (SαS) distributed, i.e., ǫt has a characteristic function of the
form

E exp(isǫt) = exp(−σα |s|
α
) (2)

where α denotes the index of stability (0 < α ≤ 2), and σ ≥ 0 denotes the scale parameter.
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Under conditions C1 and C2,
∑∞

j=0 |cj |
α <∞, and the infinite sum (1) is well defined in the sense

of a.s. convergence. Moreover, under the assumption C2, the process {Xt} will be a strictly station-
ary SαS process with the same index of stability α but the scale parameter σX = σ(

∑∞
j=0 |cj |

α)1/α(
Samorodnitsky and Taqqu, 1994, Theorem 7.12.2). Furthermore, the ARMA(p, q) process for ar-
bitrary (p, q),

Φ(z)Xt = Θ(z)ǫt (3)

for t ∈ Z, where the polynomials Φ and Θ are given as

Φ(z) = 1 − φ1z − φ2z
2 − · · · − φpz

p,

Θ(z) = θ0 + θ1z + θ2z
2 + · · · + θqz

q,

with the real coefficients φ1, φ2, . . . , φp and θ1, . . . , θq, and θ0 = 1, has unique stationary solution
of the form (1) which fulfils condition C1 and C2 if and only if the polynomial Φ(z) has no roots in
the closed unit disk {z : |z| ≤ 1}. The polynomials Θ(z) and Φ(z) are assumed have no common
roots, where z denotes backward-shift operator (here z(Xt) = (Xt−1)) as well as the complex
variable ( Samorodnitsky and Taqqu, 1994, Theorem 7.12.2).

Here notice that if α = 2, then ǫt is i.i.d. Gaussian with var(ǫt) = 2σ2. When α < 2, E|ǫt|
p = ∞

for p ≥ α and E|ǫt|
p < ∞ for 0 < p < α. Thus, the second moments of ǫt (and Xt) exist only

for α = 2, and for α < 2, one can not use the covariance function γn = E(XnX0) to describe
dependence structure of the process {Xt}. Some generalizations of the autocovariance function
as dependence measures of stationary process with infinite variance have been proposed in the
literature, i.e., the autocovariation (see, e.g., Samorodnitsky and Taqqu, 1994), the codifference
function (e.g., Kokoszka and Taqqu, 1994; Samorodnitsky and Taqqu, 1994) and the dynamical
function (Janicki and Weron, 1994). In this paper, we consider the codifference function and
analyze the properties of its estimator, both by an analytical investigation and the simulation
study.

The rest of this paper is organized as follows. In section two, we present the main results of this
paper. In this section, we give the definition of the codifference and the normalized codifference
function, and also propose their estimator. Furthermore, for a class of linear processes, we show
consistency of the sample codifference function, and further establish the limiting distribution of
the proposed estimator. In section three, we present several simulation studies for the estimation
of the normalized codifference function of pure moving average processes. Last section concludes.

2 Dependence structure of linear time series model with

infinite Variance

2.1 Definition of the codifference function and its estimator

We consider the codifference function as proposed in Kokoszka and Taqqu (1994) and Yang et al.
(2001)

τ(k) = τ(s,−s; k) = − ln E exp(is(Xt+k −Xt)) + ln E exp(isXt+k) + ln E exp(−isXt) (4)

where s ∈ R and k ∈ Z. Because the characteristic function always exists, the codifference function
requires no moment conditions for the original process {Xt}. In the Gaussian case, the codifference
function is proportional to the covariance function, i.e., τ(s,−s; k) = −s2γ(k), where γ(·) denotes
the covariance function of the stationary process {Xt}. Moreover, by defining the normalized
codifference function I(k) as

I(k) =
τ(k)

τ(0)
=

−τ(k)

−τ(0)
(5)

one directly obtains I(k) = ρ(k) in the Gaussian case, where ρ(k) denotes the correlation function.
Note that in general τ(−k) = τ(k)∗, where τ(k)∗ denotes the conjugate of τ(k). For symmetric

stationary process, τ(−k) = τ(k) holds. In particular, under the assumptions C1 and C2, we obtain
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that the codifference function τ(k) of the linear process (1) is of the form (see Kokoszka and Taqqu
(1994))

τ(k) = σα|s|α





∞
∑

j=0

(|(cj+k − cj)|
α
− |cj+k|

α
− |−cj|

α
)



 , k ≥ 0 (6)

Note that under conditions C1 and C2, the normalized codifference function (5) is independent
with the choice of s (i.e., for given α, it is equal to I(1,−1; k) = τ(1,−1; k)/τ(−1, 1; 0) for any
choice of s). For SαS process, τ(1,−1; k) is coincided with the codifference function u(k) as given
in Samorodnitsky and Taqqu (1994), eq. (4.7.1). For given strictly stationary SαS process Xt,
u(k) is defined as

u(k) = 2(σXt
)α − (σXt+k−Xt

)α (7)

where σZ and σY −Z denote the scale parameters of Z and Y − Z, respectively.
Notice that if the SαS stationary process Xt is independent, then for k 6= 0, u(k) = 0, and

clearly, τ(k) = 0 for all s. Conversely, if u(k) = 0, k 6= 0 and 0 < α < 1, then Xt independent.
When 1 ≤ α < 2, u(k) = 0 does not imply that Xt+k and Xt are independent (Samorodnitsky
and Taqqu, 1994).

Using Property 2.10.5 in Samorodnitsky and Taqqu (1994), we obtain that the normalized
codifference I(k) has the following property

0 ≤ I(k) ≤ 1 if 0 < α ≤ 1 (8)

1 − 2α−1 ≤ I(k) ≤ 1 if 1 ≤ α ≤ 2 (9)

When α = 2, (9) is equal to −1 ≤ ρ(k) ≤ 1, where ρ(·) denotes the autocorrelation function.
Further theoretical properties of the codifference function were studied in Kokoszka and Taqqu
(1994), Samorodnitsky and Taqqu (1994), Nowicka (1997) and Nowicka and Weron (1997).

As the codifference function is defined via characteristic functions (cf ), it can be estimated by
empirical characteristic functions (ecf )(see, e.g., Yu, 2004, for a review on ecf ). Given a sample
X1, X2, . . . , XN , an estimator for the codifference function at lag k ∈ Z can be defined as (s ∈ R)

τ̂ (s,−s; k) =
√

(N − k)/N × [− lnφ(s,−s; k) + lnφ(s, 0; k) + lnφ(0,−s; k)] (10)

where for u, v ∈ R

φ(u, v; k) =

{

(N − k)−1
∑N−k

t=1 exp(i(uXt+k + vXt)) when k ≥ 0

(N + k)−1
∑N+k

t=1 exp(i(uXt−k + vXt)) when k < 0
(11)

Accordingly, Î(s,−s; k) = τ̂(s,−s;k)
τ̂(s,−s;0) can be used as the estimator of the normalized codifference

I(k). Here we consider a discrete estimation procedure, i.e., we evaluate the codifference function
at r points s1 < · · · < sr, for si ∈ R, si 6= 0, i = 1, . . . , r. In what follows, we denote the vectors
s = {s1, . . . , sr},

τ̂ (s, k) = [τ̂(s1,−s1; k), τ̂ (s2,−s2; k), . . . , τ̂(sr,−sr; k)]
T

and
Î(s, k) = [Î(s1,−s1; k), Î(s2,−s2; k), . . . , Î(sr,−sr; k)]

T

Note that one can replace the factor
√

(N − k)/N in (10) by unity, and also the divisor (N − k)
in (11) by N without changing the asymptotic properties of the estimator, however, the choices
in (10) and (11) will give a better finite sample performance than the alternative. Note that
τ̂ (−k) = τ̂ (k) such one can restrict the analysis to the case of k ≥ 0. Two similar estimators for
the codifference function have recently been proposed in Yang et al. (2001) and in Hong (1999).
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2.2 The asymptotic properties of the estimator

The asymptotic properties of the codifference estimator are summarized in the following theorems.

Theorem 2.1 Let Xt, t ∈ Z be the stationary linear process (1) satisfying conditions C1 and
C2. For s ∈ R, si 6= 0, i = 1, . . . , r, its codifference estimator τ̂ (s, k) and the sample normalized
codifference Î(s, k) are (weakly) consistent estimators for τ(s, k), k ∈ {0, 1, 2, . . .} and I(s, k) =
I(k), respectively.

The proof is given in Appendix A.
The asymptotic distribution of the sample codifference function (and the sample normalized

codifference function) of the linear process (1) can be derived using the central limit theorem for
empirical characteristic function ( Hesse, 1990, Theorem 1 and Remark 2.6.). For convenience, we
split τ̂ into its real and imaginary parts. We write

Re τ̂ (s, k) = [Re τ̂(s1,−s1; k),Re τ̂ (s2,−s2; k), . . . ,Re τ̂ (sr,−sr; k)]
T

and
Im τ̂ (s, k) = [Im τ̂(s1,−s1; k), Im τ̂ (s2,−s2; k), . . . , Im τ̂(sr,−sr; k)]

T

Here, Re(z) and Im(z), z ∈ C denote the real and imaginary parts of z. As τ̂(s,−s, 0) by definition
is a real function, we therefore obtain

Re Î(s, k) =











Re τ̂(s1,−s1; k)/τ̂ (s1,−s1; 0)
Re τ̂(s2,−s2; k)/τ̂ (s2,−s2; 0)

...
Re τ̂(sr,−sr; k)/τ̂ (sr,−sr; 0)











, Im Î(s, k) =











Im τ̂ (s1,−s1; k)/τ̂(s1,−s1; 0)
Im τ̂ (s2,−s2; k)/τ̂(s2,−s2; 0)

...
Im τ̂ (sr,−sr; k)/τ̂(sr,−sr; 0)











(12)
In the following theorem, a result regarding the asymptotic distribution of the sample normal-

ized codifference is given. The proof is given in Appendix B.

Theorem 2.2 Let Xt, t ∈ Z be the stationary linear process (1), satisfying conditions C1 and C2.
Then for h ∈ {1, 2, . . .},

[(

Re Î(s, 1)

Im Î(s, 1)

)

,

(

Re Î(s, 2)

Im Î(s, 2)

)

, . . . ,

(

Re Î(s, h)

Im Î(s, h)

)]T

is

AN

(

[(

I(1)
0

)

,

(

I(2)
0

)

, . . . ,

(

I(h)
0

)]T

, N−1W

)

(13)

The matrix variance-covariance W is given in (43).

Applying this theorem, we obtain the following corollary. The proof is given in Appendix C.

Corollary 2.3 Let Xt, t ∈ Z be an i.i.d. sequence satisfying the condition C2. Then for k ∈
{1, 2, . . .},

Re Î(s, k) is AN(0, N−1W1) (14)

and
Im Î(s, k) is AN(0, N−1W2) (15)

where the (i, j)-th elements of matrix W1 and W2 are,

W1(i, j) =
fij

gij
and W2(i, j) =

hij

gij
, i, j = 1, . . . , r (16)
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with

fij = eσα(|si|
α+|sj |

α−|si−sj |
α)
{

1
2e

σα(|si|
α+|sj |

α−|si−sj |
α) − 1

}

+ eσα(|si|
α+|sj |

α−|si+sj |
α)
{

1
2e

σα(|si|
α+|sj |

α−|si+sj |
α) − 1

}

+ 1

hij = eσα(|si|
α+|sj |

α−|si−sj |
α)
{

1
2e

σα(|si|
α+|sj |

α−|si−sj |
α) − 1

}

+ eσα(|si|
α+|sj |

α−|si+sj |
α)
{

1 − 1
2e

σα(|si|
α+|sj |

α−|si+sj |
α)
}

and
gij = 4σ2α |si|

α
|sj |

α

3 Simulation evidence

In this section, we present a simulation study for investigating the small sample properties of the
sample normalized codifference function.

3.1 Practical considerations

Before we proceed, we make a remark about the sample and the population codifference function.
From (6) and the fact that all cj ’s are real, we have that the codifference function of the models
we consider here is a real-valued function but the estimator (10) is complex. Therefore, one
possibility is to use only the real part of the estimator. Because in practice we are working with a
finite sample, the imaginary part of the estimator is still present, but will vanish asymptotically.

In what follows, we are only working with the estimator of normalized codifference Î(k). Hence,
we note that unlike the true normalized codifference (5), from (10) and Corollary 2.3, one can
see that the sample normalized codifference function and its limiting variance depend on s =
{s1, . . . , sr}. Apparently Î(·) is defined for all s > 0, and from Theorem 2.1, we know that it
is a consistent estimator. However, in a finite sample, the convergence of the estimator to the
population values depends on the choice of s. Therefore, for estimation, s is a design parameter
which has to be chosen appropriately. In other words, Î(·) should be calculated from those values
of s which gives the most accurate estimates of the true function I(·).

To be more precise, in practice the number of grid points r and more importantly, the location
of s1, . . . , sr, have to be chosen. As the normalized codifference function is defined based on the
ecf, we can apply here the known results for ecf. For a fixed r, Koutrouvelis (1980) and Kogon and
Williams (1998) showed that for calculating ecf, the location of the grid points s1, . . . , sr, should
be chosen close, but not equal to zero. It has been shown in this case, the ecf will most accurately
estimate the characteristic function. This particular choice of grid points seems to be reasonable
for calculating Î(·), as for instance, can be shown in Figure 1. To determine the location of si’s,
we suggest to plot Re Î(k) within the interval 0.01 ≤ s ≤ 2, for some values of lag k > 0. These
graphs will show the interval of s around zero which has relatively small bias, as the best location
for evaluating the estimator. The best choice for the interval of s clearly depends on the data
itself and in general also on the lag k. However, we suggest to use sa = 0.01 as the left bound of
the interval, where the best choice for the right bound can be determined from the graphs, i.e.,
as the threshold of s = sb where the graphs Re Î(k), for some lag k, are still relatively flat. The
individual choices for si’s can be chosen in one of two ways:

1. If we wish to use equal spacing of si’s, we can set s = {s1 = 0.01, 0.01 + i sb−sa

r−1 , sb}, i =
1, . . . , r − 2. To obtain r, we can minimize the determinant of covariance matrix in (13).
Unfortunately, the covariance matrix in (13) depends on the unknown parameters cj ’s, α, σ
and the distance between si’s. One possibility is to replace (13) with its consistent estimate,
however here we consider a different approach for choosing the si’s, i.e., with the help of
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the trajectories of the estimator, for instance, as given in Figure 1. Figure 1 indicates that
these trajectories will depend on the sample size N and, more strongly, on α. From our
numerical studies, we observe that for given α, the behavior of these trajectories is typical
for arbitrary lag k. For α = 2, Î(k) is relatively smooth, where for α < 2, Î(k) has an erratic
behavior, and this behavior will be stronger when α is goes farther away from 2. This result
suggests that when α = 2, there is no benefit by choosing the si’s very close to each other,
and conversely for α < 2. This conjecture can be checked in i.i.d. case using the determinant
of the covariance matrix (14). Here, we propose to use si’s with distance d = 0.01 for α ≤ 1,
0.01 < d ≤ 0.05 for 1 < α ≤ 1.5, 0.05 < d ≤ 0.1 for 1.5 < α < 2 and d = 0.1 or larger for
α = 2. Especially in i.i.d. case we can show that these choices are sufficient, in the sense that
for given α, choosing a smaller distance between grid points will not significantly decrease
the determinant of the covariance matrix (14). Notice that in practice it is not necessary to
know α. As the erratic behavior of the estimator is typical for given α, we can observe this
property using the plot of Re Î(k) within an interval near zero, for some values of lag k > 0.

2. If equal spacing is not considered, when r has been fixed, the choice of si’s can be chosen
using the determinant of covariance matrix in (13). However, here we can use a similar
consideration as above, i.e., we choose the si’s sufficiently close, depending on the erratic
behavior of the estimates Re Î(·).

The last thing to consider is the number of points r. For r ≥ 1, the final estimate Î(k) can
be defined as the weighted average of the estimates at the grid points s1, . . . , sr, i.e., we define
Î(k) =

∑r
i=1 wiÎ(si,−si; k) with

∑r
i=1 wi = 1. For instance, we can use a simple average with

wi = 1/r or a negative exponentially weighted average with wi = exp(−s2i )/
∑r

j=1 exp(−s2j ). In
i.i.d. case, we obtain that by averaging the estimates at different points, the asymptotic variance
of the estimator will be smaller or equal to the variance of the estimator obtained at single point,
which can be seen directly from Figure 2. Figure 2 shows that for α = 2, there is no difference in
terms of the asymptotic variance between estimating Î(·) either at a single point or at more points,
whereas for α < 2, the difference is significant, especially when α is small. Furthermore, Figure
2 also shows that the smaller α is, the smaller the covariance between the grid points. For the
finite sample case, this fact agrees with the typical erratic behavior of the plot Re Î(·) of some non
i.i.d. samples, for instance, as shown in Figure 1. Based on these results and from our numerical
studies, in the finite sample case, we suggest the choice of the number of grid points r as follows.
For α = 2 (i.e., for smooth graphs of Re Î(k), k > 0), we observe that r = 1 is sufficient, whereas
for α < 2 (i.e., for erratic graphs of Re Î(k), k > 0), at least two points should be chosen, and
more points are required when α is farther away from 2 (i.e., for more erratic graphs of Re Î(k),
k > 0). It is important to note that from our simulation experience, the accuracy of the estimator
is more sensitive to the location of grid points than to the number of points r.

In the following subsection, we will investigate the choice of grids points through monte carlo
simulations.

3.2 Simulation results

To investigate the proposed choice of s and also the finite sample behavior of the estimator, we run
several monte-carlo simulations using R/GNU-S version 1.7.0 (R Development Core Team, 2004)
(available on the Web at http://www.r-project.org), where we use function rstable in the exten-
sion package stable (available on the Web at http://alpha.luc.ac.be/~jlindsey/rcode.html),
to generate the unit symmetric α stable innovations (based on method presented in Chambers et
al., 1976) and function arima.sim in the package stats to generate Xt = ǫt + c1ǫt−1 + c2ǫt−2

processes where (c1, c2) are

I. (2, 1.111) II. (−1, 0.5) III. (0.55, 0.05) IV. (−0.4, 0.7) (17)

and from now on we refer to these as experiment I - experiment IV, respectively.
In Gaussian framework, models in experiments I, II and III were examined in Bhansali (1983).

The roots of the polynomial 1 + c1z + c2z
2 = 0 are as follows. In experiment I, the roots are
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−0.9± 0.3i, close to the invertibility region. In experiment II and IV, the roots are 0.5± 0.5i, and
−0.2857 ± 0.247i, so the absolute values of the roots are 0.71, and 0.378, respectively. In these
experiments, the models have similar roots properties which are neither too close to 1 nor to 0.
In experiment III, the roots are real-valued, equal to −0.435 and −0.115, one close to 0.5 and the
other close to 0.

For α = 2, the true values of the normalized codifference (equal to the correlation function) at
lag k , (I(1), I(2)) = (ρ(1), ρ(2)) in experiment I-IV are:

(I). (0.677, 0.178), (II). (−0.667, 0.222), (III). (0.443, 0.038), (IV ). (−0.412, 0.424)

In experiment I and II, the values of I(k) are closer to 1 at lag 1 and not too close to 0 at lag 2
while for experiment III, at lag 1 close to 0.5 but almost 0 at lag 2. For the last experiment, at
lag 1 it is negative but it is positive at lag 2, with absolute values near 0.5.

In order to see the performance of the estimator, we simulate the time series in experiment
I - IV for several values of α with σ = 1 and two sample sizes, the the “small” one is N = 100
and the “large” one is N = 1000. All experiments are replicated T = 1000 times. The estimates
of the normalized codifference are calculated for lags 1 till lag 10. Figure 1 suggests that in the
interval 0.01 ≤ s ≤ 0.5, Re Î(·) is relatively less biased, although the best interval of s depends
on the index α. For checking the best location of s and also the choice of grid points, we choose
several different sets of si = {s1, . . . , sr}, i = 1, 2, . . . , 28. Here we consider the equidistant and
non equidistant grid points. The complete listing of the choices is as follows : s1 = {0.01},
s2 = {0.1}, s3 = {0.2}, s4 = {0.3}, s5 = {0.5}, s6 = {1}, s7 = {0.01, 0.1}, s8 = {0.01, 0.2}, s9 =
{0.01, 0.5}, s10 = {0.01, 1}, s11 = {0.1, 0.2}, s12 = {0.1, 0.5}, s13 = {0.1, 1}, s14 = {0.5, 1}, s15 =
{0.01, 0.1, 0.2}, s16 = {0.01, 0.1, 0.5}, s17 = {0.01, 0.1, 1}, s18 = {0.1, 0.2, 0.3}, s19 = {0.1, 0.3, 0.5},
s20 = {0.01, 0.5, 1}, s21 = {0.1, 0.5, 1}, s22 = {0.1, 0.2, 0.3, 0.4, 0.5}, s23 = {0.1, 0.2, . . . , 1},
s24 = {0.01, 0.06, 0.11, 0.16, 0.21}, s25 = {0.01, 0.02, . . . , 0.2}, s26 = {0.01, 0.02, . . . , 0.1}, s27 =
{0.11, 0.12, . . . , 0.2} and s28 = {0.5, 0.55, . . . , 1}. For each choice of si in run h, the final estimates
are calculated as the weighted value of estimates among the choices of grid points sij , j = 1, . . . , ri,

denoted by Re Î(·)ih =
∑ri

j=1 wij Re Î(sij ,−sij , ·)h, where Re Î(sij ,−sij , ·)h denotes the real part
of the estimates of the normalized codifference in run h at certain lags, calculated at sij , j =
1, . . . , ri. Here we consider two methods for weighting the estimates, first we use a simple average
of the estimates and the second, we use a negative exponential weighted average. To save the
space, we only present the result of experiment 1, which is summarized in table 1, but the results
in the other experiments are equivalent. In the table, we also record the best choices of s, which
are defined as the values of grid points which minimize the sum of mean absolute deviation (MAD)
of estimates at lag 1 and lag 2, among all considered choices of grid points above. Here, MAD at
lag k and for grid si is defined as MADik = 1

T

∑T
h=1 |Re Î(k)ih − I(k)|, k = 1, 2. For the sake of

comparison, when α = 2 we also record the estimates of sample (central) ACF.
From the result of simulation, as expected, we observe that the estimation accuracy will be

improved when the sample size is increased. Furthermore, throughout the simulation studies, the
results indicate that the accuracy of the estimates of the normalized codifference function depends
on the choice of grid points s, where the optimal choices of grids depend on the index α and the
sample size N . When α = 2, surprisingly that under suitable choices of grid points, we find in
some cases, the sample normalized codifference can provide a better estimate (in terms of total
MAD for the first two lags) to the true values (of the normalized codifference, which is equal to
ACF) than the estimates given by the sample ACF. When α < 2, it seems that there is a great
benefit by evaluating Re Î(·) at several points of s, that is r > 1, where under the appropriate
choice of grid points s, the performance of the weighting methods (the simple average and the
exponential weight) are approximately the same. For MA(2) models, in all cases we consider here,
we also find that the estimation accuracies are significantly better if we choose the grids point
s < 0.5 than s ≥ 0.5. In general, there is a benefit in terms of the estimation accuracy to include
a point close to zero. We further observe that when α < 1.5, the choice of equidistant grids with
a distance between 0.01 and 0.05 seems to be adequate. For α ≥ 1.5, a distance 0.1 seems to be
adequate, because a smaller grid distance does not really improve the accuracy of the estimates.
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As a general conclusion, from this simulation studies, we may conclude that the optimal choice of
grid points s will follow the lines of our proposed choice of grid points s as in Section 3.1.

4 Conclusion

In this paper, we propose estimators of the codifference and the normalized codifference function,
where for the linear processes with geometrically bounded coefficients and SαS innovations, we
established the asymptotic properties of the proposed estimators. Notice that unlike the ACF
estimator, we obtain that there is no discontinuity in either the normalization or the limiting
distribution of the proposed estimators when α → 2. Moreover, we note that unlike the sample
ACF which has an unfamiliar limiting distribution when α < 2 and relatively difficult to obtain the
quantiles of the limit distribution, estimators of the codifference and the normalized codifference
will be asymptotically normally distributed at the same rate as the sample ACF in the classical
case although the asymptotic variance is different. We also present a simulation study to observe
the small sample properties of the normalized codifference estimator.

In the practical situation, to obtain the estimates of the normalized codifference with a good
accuracy for the real data, first we suggest to plot Re Î(k) within the interval s ∈ [0.01, 2], for
some values of lag k > 0. These graphs will show two important things. First, they suggest the
interval of s near zero which has a small bias (i.e., the interval 0.01 < s < sb, sb denotes the
threshold point of s where the graphs Re Î(k), for some k, are still relatively flat), as the best
location for evaluating Î(·). Secondly, it reveals the erratic behavior of the estimates. When the
graphs are smooth, the choice of one point s = 0.01 is sufficient for estimating Re Î(k). If the
graphs are erratic, at least two points are required and more points are better for more erratic
graphs. If the equidistant points s1, . . . , sr are considered, when the graphs are highly erratic, we
can use a small distance between points, e.g., 0.01, where for less erratic graphs, we can use a
bigger distance, such as 0.05 or 0.1. If the non equidistant points are used, we should include one
point close to zero in the choice of si’s and the chosen points are sufficiently close to each other.
Finally, we define the final estimate as the weighted average of the estimates at s1, . . . , sr.

Notice that in this paper we have considered a method for calculating the codifference and
the normalized codifference “directly” from the data. As an obvious alternative, once one knows
the estimated parameters and the orders of the estimated models, one may directly estimate the
codifference and the normalized codifference using equation (6). The methods for estimating the
parameters of stable ARMA models have been reviewed in, e.g., Embrechts et al. (1997), Chapter
7. Notice that for small order MA and AR processes, the tail index α can be well estimated using
a quantile based estimator (i.e McCulloch’s method), see, e.g., Adler et al. (1998) for simulation
evidences. In our opinion, for inference purpose, the “direct” estimation method is more preferable
than estimating the codifference function via estimated parameters.

Acknowledgement We wish to thank to D. Bauer for various discussions and helpful sugges-
tions. The financial support for D. Rosadi from the Ministry of Science and Technology of Austria
via ÖAD TSA Project is gratefully acknowledged.

APPENDIX

A Proof of Theorem 2.1

Before we give the lemmas which are necessary for the consistency proof of the codifference es-
timator, a related result from Kokoszka and Taqqu (1994) will be presented, which shows the
codifference function in ARMA case is bounded by an exponentially decaying function just like
the covariance function in the classical case. Kokoszka and Taqqu (1994) consider more general

8



definition of the codifference function (for θ1, θ2 ∈ R)

τG(θ1, θ2; k) = − lnE exp(i(θ1Xt+k + θ2Xt)) + ln E exp(iθ1Xt+k) + ln E exp(iθ2Xt) (18)

but contain (4) as the special case (θ1 = s, θ2 = −s).

Theorem A.1 (Kokoszka and Taqqu (1994), Theorem 2.1.) If the coefficients cj’s of the
linear process (1), satisfying conditions C1 and {ǫt} satisfying C2 then (θ1, θ2 ∈ R)

lim sup
k→∞

Qαk |τG(k)| ≤ 2(1 −Qα)−1/α |θ1|
α

for 0 < α ≤ 1 (19)

and

lim sup
k→∞

Qk |τG(k)| ≤ α





∞
∑

j=0

|cj|
α





α−1

α

(1 −Qα)−1/α |θ1| |θ2|
α−1

for 1 < α ≤ 2 (20)

To show consistency of the codifference estimator, the following two lemmas are necessary.

Lemma A.2 Let Xt, t ∈ Z be the stationary linear process (1), satisfying conditions C1 and C2,
and let Φ(s) = E exp(isXt) denote its first order characteristic function. For k ∈ {0, 1, 2 . . .} and
s ∈ R, s 6= 0

lnφ(s, k) = ln

(

(N − k)−1
N−k
∑

t=1

exp(isXt)

)

is a consistent estimator of ln Φ(s).

Proof.Let yt = exp(isXt). Apparently, the magnitude of yt is equal to one, and therefore it is a
second order stationary process. For the notation simplicity, instead of working with φ(s, k), we

first show consistency of φ∗(s, k) = N−1
∑N

t=1 exp(isXt). Here, φ∗(s, k) is an unbiased estimator
for Φ(s) = E(yt). To show the weak consistency of this estimator, we show that yt is a mean
ergodic process. A sufficient condition for yt to be mean ergodic, i.e., φ∗(s, k) → E(yt) in the mean
square sense, is that its covariance function tends to zero as time lags tends to ∞ (e.g., Theorem
7.1.1. in Brockwell and Davis, 1987). The covariance function of yt at lag k can be expressed as

c(k) = |Φ(s)|
2

(

E(exp(is(Xt+k −Xt)))

E(exp(isXt+k))E(exp(−isXt))
− 1

)

= |Φ(s)|
2
(exp(−τ(k)) − 1) (21)

From Theorem A.1, we see that c(k) → 0 when k → ∞ exponentially fast. As mean square

convergence entails convergence in probability, φ∗(s, k)
p
−→ Φ(s). Moreover, under assumptions C1

and C2, we have Φ(s) = exp(−
∑∞

j=0 σ
α |scj|

α), a real-valued function. Therefore we can conclude

Reφ∗(s, k)
p
−→ Re Φ(s) = Φ(s) and Imφ∗(s, k)

p
−→ ImΦ(s) = 0.

By taking the principal value of ln(·) function in the complex domain, we can see that ln(·)
is a continuous and well-defined function on C minus the negative real line. Because |cj | < cQ−j

for some c > 0, Q > 1, we conclude Re Φ(s) always strictly greater than 0, which implies with
the probability converging to 0, Reφ∗(s, k) will be less than or equal to 0. Therefore, without
loss of generality, we can restrict the definition of the real and imaginary parts of lnφ∗(s, k)
only on the right half plane where Reφ∗(s, k) > 0, and equal to 0 on the other case. From this

consideration, we obtain Re lnφ∗(s, k) = 1
2 ln((Reφ∗(s, k))

2
+ (Imφ∗(s, k))

2
) and Im lnφ∗(s, k) =

arctan( Im φ∗(s,k)
Re φ∗(s,k) ). From the continuity of the logarithm function in the considered domain, we

can deduce that Re lnφ∗(s, k)
p
−→ Re ln Φ(s) = ln Φ(s) and Im lnφ∗(s, k) = argφ∗(s, k)

p
−→ 0,

when N → ∞. In other words, we obtain lnφ∗(s, k)
p
−→ ln Φ(s). To complete our proof, it

is sufficient to show φ∗(s, k) − φ(s, k)
p
−→ 0. By assumption of the model, Re Φ(s) > 0, thus

E |Reφ∗(s, k) − Reφ(s, k)| < 2 k
N−k and E |Imφ∗(s, k) − Imφ(s, k)| < 2 k

N−k , and therefore we
can conclude φ∗(s, k) − φ(s, k) = op(1).
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Lemma A.3 Let Xt, t ∈ Z be the stationary linear process (1), satisfying conditions C1 and C2,
and for k ∈ {0, 1, 2, . . .} and s ∈ R, s 6= 0, let Φ(s,−s; k) = E exp(is(Xt+k−Xt)) be its second-order
characteristic function evaluated at (s,−s). Then as N → ∞

lnφ(s,−s; k)
p
−→ ln Φ(s,−s; k)

where φ(s,−s; k) is as given in (11).

Proof.For the proof, we can proceed in a similar way as the previous lemma. For simplicity, instead
of working with φ(s,−s; k), we first show the consistency of φ∗(s,−s; k) = N−1

∑N
t=1 exp is(Xt+k−

Xt). A sufficient condition for yt to be autocovariance ergodic (Proakis and Manolakis, 1996,
p.A10), i.e., φ∗(s,−s, k) → Φ(s,−s; k), in the mean square sense is that

E exp(is(Xt −Xt+k −Xt+n +Xt+n+k)) → |Φ(s,−s; k)|2

as n → ∞ where the index n denotes the lag of covariance among the sample autocovariance
function. Hence, we have

E exp(is(Xt −Xt+k −Xt+n +Xt+n+k))

= |Φ(s,−s; k)|
2 E exp(is((Xt −Xt+k) − (Xt+n −Xt+n+k)))

E exp(is(Xt −Xt+k))E exp(is(Xt+n+k −Xt+n))
= |Φ(s,−s; k)|

2
exp(−Cn)

where

Cn = − lnE exp(is((Xt −Xt+k) − (Xt+n −Xt+n+k))) (22)

+ ln E exp(is(Xt −Xt+k)) + ln E exp(is(Xt+n+k −Xt+n)) (23)

Applying the similar technique as obtaining (6), one can write Cn as

Cn = σα





∞
∑

j=0

|s(cj − cj+k − cj+n + cj+n+k)|α − |s(cj+n+k − cj+n)|α − |s(cj − cj+k)|α





= σα





∞
∑

j=0

|s(kj − kj+n)|α − | − skj+n|
α − |skj |

α





where kj = cj − cj+k. This expression is the codifference function τG(n) for coefficients kj ’s and
parameters θ1 = −s, θ2 = s. Because |cj | < cQ−j for some c > 0, Q > 1, then |kj | < c1Q

−j

for some c1 = 2c > 0, Q > 1. Therefore, by (20) and (19), we can conclude that exp(−Cn)
will converge to 1 exponentially fast. In other words, E exp(is(Xt −Xt+k −Xt+n +Xt+n+k)) →

|Φ(s,−s; k)|
2

for n→ ∞, and we obtain the mean square convergence of φ∗(s,−s; k) to Φ(s,−s; k)

and therefore φ∗(s,−s; k)
p
−→ Φ(s,−s; k). For the rest of the proof, we can proceed similarly to the

proof of previous lemma, as we have Φ(s,−s; k) = exp(−σα(
∑k−1

j=0 |scj |
α
−
∑∞

j=0 |s(cj+k − cj)|
α
))

also a real-valued function, strictly greater than 0.

Proof of Theorem 2.1. As for finite k and N → ∞ we obtain
√

1 − k/N → 1, then using the
results in lemma A.2 and lemma A.3, we have as N → ∞, for i = 1, . . . , r

τ̂ (si,−si; k)
p
−→ − ln Φ(si,−si; k) + ln Φ(si) + ln Φ(−si) = τ(si,−si; k) (24)
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B The limit distribution of the sample codifference function

In this part, we will derive the asymptotic distribution of the sample codifference function of linear
processes. The proof will be given as a series of propositions, where the main results are presented
in Theorem B.4 and also the proof of Theorem 2.2 at the end of this part. The proof will follow
closely an approach for obtaining the limiting distribution of the sample ACF in the classical case,
e.g., Theorem 7.2.1 in Brockwell and Davis (1987).

For notational simplicity, instead of working with τ̂ (si,−si; k), i = 1, . . . , r, in the following
first we will consider the similar estimator τ̂∗(si,−si; k),

τ̂∗(si,−si; k) = − lnφ∗(si,−si; k) + lnφ∗(si, 0; k) + lnφ∗(0,−si; k) (25)

where φ∗(u, v; k) = N−1
∑N

t=1 exp(i(uXt+k+vXt)), u, v ∈ R. The required result will be presented
in Theorem B.4.

Proposition B.1 Let Xt, t ∈ Z be the stationary linear process (1), satisfying conditions C1 and
C2. Then if p ≥ 0 and q ≥ 0,

lim
N→∞

Ncov

((

Re τ̂∗(s, p)
Im τ̂∗(s, p)

)

,

(

Re τ̂∗(s, q)
Im τ̂∗(s, q)

))

= λLp
2VpqL

q
2λ

T

where the matrices λ,Lk
2 , k = p, q and Vpq are given in (27), (34) and (36) below. Here cov(X,Y )

denotes the covariance between X and Y .

Proof.To obtain a complete variance-covariance structure of the estimator, we consider the fol-
lowing representation of τ̂∗(s, k)

(

Re τ̂∗(s, k)
Im τ̂∗(s, k)

)

=





























Re τ̂∗(s1,−s1, k)
Re τ̂∗(s2,−s2, k)

...
Re τ̂∗(sr,−sr, k)
Im τ̂∗(s1,−s1, k)
Im τ̂∗(s2,−s2, k)

...
Im τ̂∗(sr,−sr, k)





























= λ

(

Y
X

)

(26)

where

λ =

(

Ir ⊗ λ1 0
0 Ir ⊗ λ1

)

(27)

λ1 =
(

1 1 −1
)

and

Y =











Re lnY k
1

Re lnY k
2

...
Re lnY k

r











,X =











Im lnY k
1

Im lnY k
2

...
Im lnY k

r











Here Ir denotes the matrix identity of size r, where we denote

Y k
i =





φ∗(0,−si; k)
φ∗(si, 0; k)
φ∗(si,−si; k)



 =





φ1(si, k)
φ2(si, k)
φ3(si, k)





and the logarithm function is defined componentwise, i.e., we have

Re lnY k
i =





Re lnφ1(si, k)
Re lnφ2(si, k)
Re lnφ3(si, k)
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and similarly for the imaginary part. Let us denote

EY k
i =





Eφ1(si, k)
Eφ2(si, k)
Eφ3(si, k)



 =





Φ1(si, k)
Φ2(si, k)
Φ3(si, k)





Notice that Φ(u, v; k) = E(exp(i(uXt+k + vXt))), u, v ∈ R. Using mean value theorem, we can
expand the codifference function into

(

Re τ̂∗(s, k)
Im τ̂∗(s, k)

)

= λ
{

Lk
1 + L̄k

2Z
k
N

}

(28)

where

Lk
1 =

(

ReLk
1

ImLk
1

)

, Zk
N =

(

ReZk
N

ImZk
N

)

=

(

Reϕk
N − Reψk

N

Imϕk
N − Reψk

N

)

with

ReLk
1 =











Re ln EY k
1

Re ln EY k
2

...
Re ln EY k

r











,Reϕk
N =











ReY k
1

ReY k
2

...
ReY k

r











,Reψk
N =











ReEY k
1

ReEY k
2

...
ReEY k

r











and similarly for the imaginary parts, and where and L̄k
2 = (d̄k

ij)i,j=1,...,6 denotes Jacobian of (26),

which is evaluated at c (
∥

∥c − ψk
N

∥

∥ <
∥

∥ϕk
N − ψk

N

∥

∥). From the assumption C2, we obtain

Φ3(si, k) = Φ(si,−si; k) = exp(−

k−1
∑

j=0

σα |sicj |
α
−

∞
∑

j=0

σα |si(cj+k − cj)|
α
) (29)

and Φ1(si, k) = Φ2(si, k), i.e.,

Φ(si, 0; k) = Φ(0,−si; k) = exp(−
∞
∑

j=0

σα |sicj |
α) (30)

From identities (29)-(30) and further applying the assumption C1, we obtain that the elements
of Reψk

N are always strictly greater than 0. Therefore, with a probability convergent to 0, the
elements of Reϕk

N will be less than or equal to 0. Hence, without changing the limiting distribution

of the estimator, we can restrict the definition of the real and the imaginary components of

(

Y
X

)

in (26) only in the right half plane where the elements of Re(ϕk
N ) > 0, and equal to 0 in the other

case. Thus, we can conclude that the Jacobian matrix L̄k
2 is well defined here. By Theorem 2.1,

L̄k
2 will converge in probability to Lk

2 , where

Lk
2 = ∇Lk

1

Here ∇g denotes the Jacobian of g. From (29), (30), we have the following identities

Re Φ(si,−si; k) = E cos(si(Xt+k −Xt)) = Φ(si,−si, k) (31)

Re Φ(si, 0; k) = E cos(siXt+k) = Φ(si, 0, k) (32)

Re Φ(0,−si; k) = E cos(−siXt) = Φ(0,−si, k) (33)

and ImΦ(si,−si; k) = E sin(si(Xt+k−Xt)) = 0, ImΦ(si, 0; k) = E sin(siXt+k) = 0 and ImΦ(0,−si; k) =
E sin(−siXt) = 0. Using these identities, after some algebra we directly obtain

Lk
2 =

(

Ird
k 0

0 Ird
k

)

(34)
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where (dk)T = [dk
1 ,d

k
2 , . . . ,d

k
r ], and the elements of dk

i , i = 1, . . . r are

dk
i (1, 1) = (ReΦ(0,−si; k))

−1

dk
i (2, 2) = (Re Φ(si, 0; k))−1

dk
i (3, 3) = (Re Φ(si,−si; k))

−1)

and equal to 0, otherwise. The asymptotic variance-covariance matrix is obtained from (28) as

lim
N→∞

N cov

((

Re τ̂∗(s,−s; p)
Im τ̂∗(s,−s; p)

)

,

(

Re τ̂∗(s,−s; q)
Im τ̂∗(s,−s; q)

))

= λLp
2VpqL

q
2λ

T (35)

where

Vpq =

(

VRR
pq VRI

pq

VIR
pq VII

pq

)

= lim
N→∞

N

(

cov(ReZp
N ,ReZq

N ) cov(ReZp
N , ImZq

N )
cov(ImZp

N ,ReZq
N ) cov(ImZp

N , ImZq
N )

)

(36)

The matrix Vpq can be obtained by applying Theorem 1 and Remark 2.6. in Hesse (1990). Its
elements can be derived in a similar way as obtaining variance-covariance matrix in Theorem 1 of
Hesse (1990). This is possible, because it can be shown that all elements of Vpq (in the form of sum
of the absolute components) are finite. Therefore, one can apply the property of the sample mean
of ergodic processes (e.g., Theorem 7.1.1. in Brockwell and Davis, 1987). Notice that here in par-
ticular, we obtain all elements of Vpq with respect to cov(ReZp

N , ImZq
N ) and cov(ImZp

N ,ReZq
N )

are zeros. The elements of Vpq with respect to cov(ReZp
N ,ReZq

N ) and cov(ImZp
N , ImZq

N ) can
be shown to be finite using identities (29)-(30) and applying a similar approach as obtaining eq.
(21) and (23), and further applying Theorem A.1, or sometimes, eq.(2.7) in Kokoszka and Taqqu
(1994) together with the similar steps as the proof of Theorem A.1. However, we omit details.

Proposition B.2 Let Xt, t ∈ Z be the moving average process of order m, Xt =
∑m

j=0 cjǫt−j,
satisfying conditions C1 and C2. Then for h ∈ {1, 2, . . .}, s ∈ R, s 6= 0

[(

Re τ̂∗(s, 0)
Im τ̂∗(s, 0)

)

, . . . ,

(

Re τ̂∗(s, h)
Im τ̂∗(s, h)

)]

is AN

([(

τ(s, 0)
0

)

, . . . ,

(

τ(s, h)
0

)]

, N−1M

)

where M is the covariance matrix

M =
[

λLp
2VpqL

q
2λ

T
]

p,q=0,...,h

and the matrices λ,Lk
2 , k = p, q and Vpq are as given in Proposition B.1 above.

Proof.To show this relation, define vectors {Yt} by

YT
t = (Zt,Zt+1, . . . ,Zt+h)

where

Zt+k =











Xk
1

Xk
2
...

Xk
r











where for j = 1, . . . , r

Xk
j =





exp(−isjXt)
exp(isjXt+k)

exp(isj(Xt+k −Xt))





By definition, {Zt+k} ism+k-dependent sequence and therefore {Yt} ism+h-dependent sequence.
Next define

ζT
t = (ξt, ξt+1, . . . , ξt+h)
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where

ξt+j =

(

Re(lnN−1
∑N

t=1 Zt+j)

Im(lnN−1
∑N

t=1 Zt+j)

)

and

Re(lnN−1
∑N

t=1
Zt+j) =











Re(lnN−1
∑N

t=1 Xj
1)

Re(lnN−1
∑N

t=1 Xj
2)

...

Re(lnN−1
∑N

t=1 Xj
r))











where l = 1, . . . , r

Re(lnN−1
∑N

t=1
Xj

l ) =







Re(lnN−1
∑N

t=1 exp(−islXt))

Re(lnN−1
∑N

t=1 exp(islXt+j))

Re(lnN−1
∑N

t=1 exp(isl(Xt+j −Xt)))







(similarly for the imaginary part. Note that the summation and the principal value of ln(·) are
defined componentwise), then we have

λ

(

Re ln (N−1
∑N

t=1 YT
t )

Im ln (N−1
∑N

t=1 YT
t )

)

= λζT
t =

[(

Re τ̂∗(s, 0)
Im τ̂∗(s, 0)

)

, . . . ,

(

Re τ̂∗(s, h)
Im τ̂∗(s, h)

)]

where λ is as given in (27). We therefore need to show that when N → ∞

aT (λ[ξt, ξt+1, . . . , ξt+h])T is AN

(

aT

((

Re τ(0)
0

)

, . . . ,

(

Re τ(h)
0

))T

, N−1aT Ma

)

(37)

for all vectors a = (a0, . . . , ah)T ∈ Rh+1 such that aT Ma > 0. For any such a, the sequence
{aT (λζT

t )T } is (m+ h)-dependent and since by Proposition B.1

lim
N→∞

N var(aT (λ[ξt, ξt+1, . . . , ξt+h])T ) = aT Ma > 0

where M is the covariance matrix

M =
[

λLp
2VpqL

q
2λ

T
]

p,q=0,...,h

and the vectors λ,Lp
2,L

q
2, matrix Vpq are as given in Proposition B.1 above. We can conclude

that {aT (λζT
t )T } satisfies the conditions of central limit theorem for m-dependent processes (e.g

Brockwell and Davis, 1987, Theorem 6.4.2), and therefore by this theorem, for N → ∞, we obtain
the required result (37). The relation Im τ(s, j) = 0, j = 0, 1, . . . , h can be obtained directly from
identities (29)-(30).

Proposition B.3 Proposition B.2 remains true for Xt, t ∈ Z being a stationary linear process
(1), satisfying conditions C1 and C2.

Proof.For the proof, we will apply the result of Proposition B.2 to the truncated sequence Xtm =
∑m

j=0 cjǫt−j and then derive the result for Xt by letting m→ ∞. For 0 ≤ p ≤ h, we define

τ̂∗m(s,−s; p) = − lnφ∗m(s,−s; p) + lnφ∗m(s, 0; p) + lnφ∗m(0,−s; p) (38)

where φ∗m(u, v; p) = N−1
∑N

t=1 exp(i(uX(t+p)m + vXtm)). Then by Proposition B.2

N1/2

[(

Re τ̂∗m(s, 0) − Re τm(s, 0)
Im τ̂∗m(s, 0) − Im τm(s, 0)

)

, . . . ,

(

Re τ̂∗m(s, h) − Re τm(s, h)
Im τ̂∗m(s, h) − Im τm(s, h)

)]

⇒ Ym
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where Ym ∼ N(0,Mm). Here Mm is the covariance matrix

Mm =

(

cov(Re τ̂∗m(s, p),Re τ̂∗m(s, q)) cov(Re τ̂∗m(s, p), Im τ̂∗m(s, q))
cov(Im τ̂∗m(s, p),Re τ̂∗m(s, q)) cov(Im τ̂∗m(s, p), Im τ̂∗m(s, q))

)

p,q=0,...,h

=
[

λLp
2(m)Vm

pqL
q
2(m)λT

]

p,q=0,...,h

where λ is defined as (27) and the Jacobian matrix Lk
2(m) and matrix Vm

pq are defined for Xtm as
in (34) and (36), respectively. Now, as m→ ∞,

Mm → M

where M is defined like Mm by replacing Xtm by Xt. Hence

Ym ⇒ Y where Y ∼ N(0,M)

The proof now can be completed by applying Proposition 6.3.9. in Brockwell and Davis (1987)
provided we can show that

lim
m→∞

lim sup
N→∞

P(N1/2 |Re τ̂∗m(s, p) − Re τm(s, p) − Re τ̂∗(s, p) + Re τ(s, p)| > ǫ) = 0 (39)

for p = 0, 1, . . . , h (and similarly for the imaginary part). The probability in (39) is bounded by

ǫ−2N var(Re τ̂∗m(s, p) − Re τ̂∗(s, p))

= ǫ−2 [N var(Re τ̂∗m(s, p)) +N var(Re τ̂∗(s, p)) − 2Ncov(Re τ̂∗m(s, p),Re τ̂∗(s, p))]

From the calculation of Proposition B.1 and further noting that Theorem 1 and Remark 2.6. in
Hesse (1990) can be applied for the finite moving average process by setting some of the coefficients
cj ’s to be zero, we obtain

lim
m→∞

lim
N→∞

N var(Re τ̂∗m(s, p)) = lim
N→∞

N var(Re τ̂∗(s, p)) = mRR
pp

where mRR
pq denotes the covariance between the real elements in (p, q)- block of covariance matrix

M. Moreover, using the same steps to that given in the proof of Proposition B.1, it can be shown
that

lim
m→∞

lim
N→∞

Ncov(Re τ̂∗m(s, p),Re τ̂∗(s, p) = mRR
pp

Thus
lim

m→∞
lim sup
N→∞

ǫ−2N var(Re τ̂∗m(s, p) − Re τ̂∗(s, p)) = 0

Similar results can be obtained for the imaginary part. This established (39).

Theorem B.4 Let Xt, t ∈ Z be the stationary linear process (1), satisfying conditions C1 and
C2. Then for h ∈ {1, 2, . . .}, s ∈ R, s 6= 0

[(

Re τ̂ (s, 0)
Im τ̂(s, 0)

)

, . . . ,

(

Re τ̂ (s, h)
Im τ̂ (s, h)

)]

is AN

([(

τ(s, 0)
0

)

, . . . ,

(

τ(s, h)
0

)]

, N−1M

)

where M is as given in Proposition B.2 above.

Proof.To show the convergence of the estimator Re τ̂ (s, j) and Im τ̂ (s, j) to the same limit as
Re τ̂∗(s, j) and Im τ̂∗(s, j), respectively, with 0 ≤ j ≤ h, it suffices to show that as N → ∞

N1/2







λ2





Reφ∗(sk,−sk; j)
Reφ∗(sk, 0; j)

Reφ∗(0,−sk; j)



− λ2





Reφ(sk,−sk; j)
Reφ(sk, 0; j)

Reφ(0,−sk; j)











= op(1)
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(and similarly for the imaginary part), where φ∗(u, v; j) = N−1
∑N

t=1 exp(i(uXt+j+vXt)), φ(u, v; j)=

(N − j)−1
∑N−j

t=1 exp(i(uXt+j + vXt)) and λ2 =
[

−1 1 1
]

. The required result then follows
from Slutzky’s theorem (e.g., Theorem 5.1.1. in Lehmann, 1999).
Simple algebra gives, for 0 ≤ j ≤ h,

N1/2E

∣

∣

∣

∣

∣

∣

λ2





Reφ∗(sk,−sk; j)
Reφ∗(sk, 0; j)

Reφ∗(0,−sk; j)



− λ2





Reφ(sk,−sk; j)
Reφ(sk, 0; j)

Reφ(0,−sk; j)





∣

∣

∣

∣

∣

∣

= N1/2E

∣

∣

∣

∣

∣

∣

∣

λ2







j
(N−j)

1
N

∑N
t=1 cos(isk(Xt+j −Xt)) −

1
N−j

∑N
t=N−j+1 cos(is(Xt+j −Xt))

j
(N−j)

1
N

∑N
t=1 cos(iskXt+j) −

1
N−j

∑N
t=N−j+1 cos(iskXt+j)

j
(N−j)

1
N

∑N
t=1 cos(−iskXt)) −

1
N−j

∑N
t=N−j+1 cos(−iskXt)







∣

∣

∣

∣

∣

∣

∣

≤ 6j(N − j)−1/2( N
N−j )1/2

The required result is obtained from 3j(N − j)−1/2 → 0 and N/(N − j) → 1 as N → ∞. Using
the same arguments, similar results can be obtained for the imaginary part. The conclusion of the
theorem then follows from Proposition B.3 above.

Proof of Theorem 2.2. Let g(·) be the function from R2r×(h+1) to R2r×h defined by

g

(

[(

τ̂ (s, 0)
0

)

,

(

Re τ̂(s, 1)
Im τ̂ (s, 1)

)

, . . . ,

(

Re τ̂(s, h)
Im τ̂ (s, h)

)]T
)

=

[(

Re Î(s, 1)

Im Î(s, 1)

)

,

(

Re Î(s, 2)

Im Î(s, 2)

)

, . . . ,

(

Re Î(s, h)

Im Î(s, h)

)]T

where for 0 < j ≤ h and τ̂(0) 6= 0, we have Re Î(si,−si; j) = Re τ̂(si,−si;j)
τ̂(si,−si;0)

and Im Î(si,−si; j) =
Im τ̂(si,−si;j)

τ̂(si,−si;0)
, for i = 1, . . . , r. By applying delta method and Theorem B.4 above, we can show

that

[(

Re Î(s, 1)

Im Î(s, 1)

)

,

(

Re Î(s, 2)

Im Î(s, 2)

)

, . . . ,

(

Re Î(s, h)

Im Î(s, h)

)]T

is asymptotically normal distributed with mean

g

(

[(

τ(s, 0)
0

)

,

(

τ(s, 1)
0

)

, . . . ,

(

τ(s, h)
0

)]T
)

=

[(

I(1)
0

)

,

(

I(2)
0

)

, . . . ,

(

I(h)
0

)]T

and varianceN−1DMDT. Here the matrix M is as given in Proposition B.2 and D is the Jacobian
matrix of g(·). To obtain the elements of matrix D, we proceed as follows. First, note that the
codifference function at lag 0 is a real-valued function. Therefore, for 0 ≤ j ≤ h, and τ(0) 6= 0,

we obtain Re I(j) = Re τ(j)
τ(0) = I(j) and Im I(j) = Im τ(j)

τ(0) = 0. It is straightforward to obtain the

Jacobian matrix D as

D =











D11 D12 0 . . . 0
D21 0 D23 0

...
...

...
. . .

...
Dh1 0 0 . . . Dh(h+1)











(40)

where

Dl1 =

[

D11
l1 0r

0r 0r

]

(41)
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and

Dl(l+1) =

[

D11
l(l+1) 0r

0r D11
l(l+1)

]

(42)

for l = 1, ..h, where

D11
l1 = Ir

[

−I(l)

τ(s1,−s1; 0)
,

−I(l)

τ(s2,−s2; 0)
, . . . ,

−I(l)

τ(sr ,−sr; 0)

]T

and

D11
l(l+1) = Ir

[

1

τ(s1,−s1; 0)
,

1

τ(s2,−s2; 0)
, . . . ,

1

τ(sr ,−sr; 0)

]T

Here Ir denotes the matrix identity of size r. Let’s denote wij , for i, j = 1, . . . , h, the (i, j)-th

block element of DMDT and mij , for i, j = 0, 1, . . . , h, the (i, j)-th block element of M. We find
that

wij =

[

cov(Re Î(s, i),Re Î(s, j)) cov(Re Î(s, i), Im Î(s, j))

cov(Im Î(s, i),Re Î(s, j)) cov(Im Î(s, i), Im Î(s, j))

]

= Di1m00Dj1 +Di(i+1)mi0Dj1 +Di1m0jDj(j+1) +Di(i+1)mijDj(j+1)

=

[

D11
i1m

RR
00 D

11
j1 +D11

i(i+1)m
RR
i0 D11

j1 +D11
i1m

RR
0j D

11
j(j+1) +D11

i(i+1)m
RR
ij D11

j(j+1) 0r

0r D11
i(i+1)m

II
ij D

11
j(j+1)

]

(43)

Here mRR
ij and mII

ij denote the partitions of mij which correspond to the real and the imaginary
components, respectively.

C Proof of Corollary 2.3

Proof of Corollary 2.3. As MA(0) is a special case of the linear process (1), by applying
Theorem 2.2, one can conclude the asymptotic normality of

[(

Re Î(s, 1)

Im Î(s, 1)

)

,

(

Re Î(s, 2)

Im Î(s, 2)

)

, . . . ,

(

Re Î(s, h)

Im Î(s, h)

)]T

for h ∈ {1, 2, . . .}. The true codifference function of i.i.d. process Xt is

τ(s,−s; k) = − lnE exp(is(Xt+k −Xt)) + ln E exp(isXt+k) + ln E exp(−isXt)

=

{

−2σα |s|
α

for k = 0
0 for k > 0

which enables us to conclude that the real and the imaginary parts of I(k) = 0 whenever k > 0.
From (43), we obtain that wkk, k > 0 is reduced to

wkk = Dk(k+1)mkkDk(k+1) (44)

where matrix Dk(k+1) is as given in (42), with

D11
l(l+1) = Ir

[

1

−2σα|s1|α
,

1

−2σα|s2|α
, . . . ,

1

−2σα|sr|α

]T

and where
mkk = λLk

2VkkL
k
2λ

T (45)
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with λ is as given as (27), and the elements of the matrix Lk
2 and the covariance matrix Vkk will

be given below. Let us denote

VRR
kk (i, j) = [cov(Reφp(si, k),Reφq(sj , k)))]p,q=1,2,3

and
VII

kk(i, j) = [cov(Imφp(si, k), Imφq(sj , k)))]p,q=1,2,3

as the (i, j)-th block elements of VRR
kk and VII

kk, respectively. Using identities (31)-(33) (and the
identities for imaginary part afterwards) in p.12, we can obtain their components as follows

cov(Re(φ1(si, p)),Re(φ1(sj , q))) = cov(cos(−siXt), cos(−sjXt))

= 1
2{e

−σα|si+sj |
α

+ e−σα|si−sj |
α

} − e−σα(|si|
α+|sj |

α)

cov(Re(φ1(si, p)),Re(φ2(sj , q))) = cov(Re(φ2(si, p)),Re(φ1(sj , q))) = cov(Re(φ1(si, p)),Re(φ1(sj , q)))

cov(Re(φ2(si, p)),Re(φ2(sj , q))) = cov(Re(φ1(si, p)),Re(φ1(sj , q)))

cov(Re(φ1(si, p)),Re(φ3(sj , q)))

= cov(cos(−siXt), cos(sj(Xt+q −Xt))) + cov(cos(−siXt+q), cos(sj(Xt+q −Xt)))

= e−σα(|sj |
α+|si−sj |

α) + e−σα(|sj |
α+|si+sj |

α) − 2e−σα(|si|
α+|2sj |

α)

cov(Re(φ3(si, p)),Re(φ1(sj , q)))

= cov(cos(−sjXt), cos(si(Xt+p −Xt))) + cov(cos(−sjXt+p), cos(si(Xt+p −Xt)))

= e−σα(|si|
α+|si−sj |

α) + e−σα(|si|
α+|si+sj |

α) − 2e−σα(|sj |
α+|2si|

α)

cov(Re(φ2(si, p)),Re(φ3(sj , q)))

= cov(cos(siXt+q), cos(sj(Xt+q −Xt))) + cov(cos(siXt+p), cos(sj(Xt+p+q −Xt+p)))

= e−σα(|sj |
α+|si−sj |

α) + e−σα(|sj |
α+|si+sj |

α) − 2e−σα(|si|
α+|2sj |

α)

cov(Re(φ3(si, k)),Re(φ2(sj , k)))

= cov(cos(sjXt+k), cos(si(Xt+k −Xt))) + cov(cos(sjXt+k), cos(si(Xt+2k −Xt+k)))

= e−σα(|si|
α+|si−sj |

α) + e−σα(|si|
α+|si+sj |

α) − 2e−σα(|sj |
α+|2si|

α)

cov(Re(φ3(si, p)),Re(φ3(sj , q)))

= cov(cos(si(Xt+p −Xt)), cos(sj(Xt+q −Xt))) + cov(cos(si(Xt+p+q −Xt+q)), cos(sj(Xt+q −Xt)))

+ cov(cos(si(Xt+p −Xt)), cos(sj(Xt++p+q −Xt+p))) + cpq
Re

where

cpq
Re =







0 if p = q
cov(cos( si(Xt+q −Xt+q−p)), cos( sj(Xt+q −Xt))) if q > p
cov(cos( si(Xt+p −Xt)), cos( sj(Xt+p −Xt+p−q))) if p > q

yielding for p = q

cov(Re(φ3(si, p)),Re(φ3(sj , q))) = 1
2e

−2σα|si+sj |
α

+ 1
2e

−2σα|si−sj |
α

− 3e−σα(2|si|
α+|2sj |

α)

+ e−σα(|si|
α+|sj |

α+|si−sj |
α) + e−σα(|si|

α+|sj |
α+|si+sj |

α)
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and for p 6= q

cov(Re(φ3(si, p)),Re(φ3(sj , q))) = 2e−σα(|si|
α+|sj |

α+|si−sj |
α)

+ 2e−σα(|si|
α+|sj |

α+|si+sj |
α) − 4e−σα(2|si|

α+|2sj |
α)

cov(Im(φ1(si, p)), Im(φ1(sj , q))) = cov(sin(−siXt), sin(−sjXt)) = 1
2{e

−σα|si−sj |
α

− e−σα|si+sj |
α

}

cov(Im(φ1(si, p)), Im(φ2(sj , q))) = cov(Im(φ2(si, p)), Im(φ1(sj , q))) = −cov(Im(φ1(si, p)), Im(φ1(sj , q)))

cov(Im(φ2(si, p)), Im(φ2(sj , q))) = cov(Im(φ1(si, p)), Im(φ1(sj , q)))

cov(Im(φ3(si, p)), Im(φ3(sj , q)))

= cov(sin(si(Xt+p −Xt)), sin(sj(Xt+q −Xt))) + cov(sin(si(Xt+p+q −Xt+q)), sin(sj(Xt+q −Xt)))

+ cov(sin(si(Xt+p+q −Xt+p)), sin(sj(Xt+p −Xt))) + cpq
Im

where

cpq
Im =







0 if p = q
cov(sin( si(Xt+q −Xt+q−p)), sin( sj(Xt+q −Xt))) if q > p
cov(sin( si(Xt+p −Xt)), sin( sj(Xt+p −Xt+p−q))) if p > q

yielding for p = q

cov(Im(φ3(si, k)), Im(φ3(sj , k)))

= 1
2e

−2σα|si−sj |
α

− 1
2e

−2σα|si+sj |
α

+ e−σα(|si|
α+|sj |

α+|si+sj |
α) − e−σα(|si|

α+|sj |
α+|si−sj |

α)

and cov(Im(φ3(si, k)), Im(φ3(sj , k))) = 0 for p 6= q. The other elements are all zeros. The elements
of Lk

2 are as given in (34), where the elements of dk
i , i = 1, . . . r are

dk
i (1, 1) = (Re Φ(0,−si; k))

−1
= eσα|si|

α

dk
i (2, 2) = (Re Φ(si, 0; k))−1 = eσα|si|

α

dk
i (3, 3) = (Re Φ(si,−si; k))

−1 = e2σα|si|
α

)

As from (45) we obtain

mRR
kk = cov(Re τ̂(s, k),Re τ̂ (s, k)) = (Ir ⊗ λ1)d

kV RR
kk dk(Ir ⊗ λT

1 )

and
mII

kk = cov(Im τ̂ (s, k), Im τ̂(s, k)) = (Ir ⊗ λ1)d
kV RR

kk dk(Ir ⊗ λT
1 )

then the (i,j)-th element of mRR
kk and mII

kk is obtained from

mRR
kk (i, j) = λ1d

k
i V

RR
kk (i, j)dk

jλ
T
1

and
mII

kk(i, j) = λ1d
k
i V

II
kk (i, j)dk

jλ
T
1

which therefore after a simple algebra, we obtain

mRR
kk (i, j) = eσα(|si|

α+|sj |
α−|si−sj |

α)
{

1
2e

σα(|si|
α+|sj |

α−|si−sj |
α) − 1

}

+ eσα(|si|
α+|sj |

α−|si+sj |
α)
{

1
2e

σα(|si|
α+|sj |

α−|si+sj |
α) − 1

}

+ 1

mII
kk(i, j) = eσα(|si|

α+|sj |
α−|si−sj |

α)
{

1
2e

σα(|si|
α+|sj |

α−|si−sj |
α) − 1

}

+ eσα(|si|
α+|sj |

α−|si+sj |
α)
{

1 − 1
2e

σα(|si|
α+|sj |

α−|si+sj |
α)
}

The required result follows directly from (44).
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Table 1: The true values I(·) and the estimates Î(·)

N α Method s I(1) Avg. Î(1) MAD1 I(2) Avg. Î(2) MAD2

100 2 Avg. {0.01} 0.66180 0.04600 0.14647 0.10186
Exp. {0.01, 0.1, 1} 0.67722 0.63195 0.05732 0.17821 0.19387 0.09025
ACF - 0.65848 0.04644 0.14500 0.10115

1.8 Avg. {0.01, 0.2} 0.64700 0.64938 0.04415 0.19237 0.15860 0.09297
Exp. {0.01, 0.1, 1} 0.62509 0.04760 0.20409 0.08011

1.5 Avg. {0.01, 0.1, 0.2} 0.59903 0.60826 0.04839 0.21343 0.17158 0.07927
Exp. {0.01, 0.1, 1} 0.59728 0.04888 0.21062 0.06729

1.3 Avg. {0.01, 0.06, . . . , 0.21} 0.56554 0.57235 0.05032 0.22665 0.19017 0.06974
Exp. {0.01, 0.1, 1} 0.57364 0.05548 0.22380 0.06105

1 Avg. {0.01, 0.02, . . . , 0.2} 0.51350 0.50708 0.04745 0.24325 0.21576 0.06049
Exp {0.01, 0.02, . . . , 0.2} 0.50717 0.04739 0.21577 0.06036

0.8 Avg. {0.01, 0.02, . . . , 0.1} 0.47792 0.47274 0.04357 0.25014 0.22644 0.05599
Exp. {0.01, 0.02, . . . , 0.1} 0.47276 0.04355 0.22643 0.05597

0.5 Avg. {0.01, 0.02, . . . , 0.1} 0.42379 0.40713 0.04463 0.24809 0.22776 0.06033
Exp. {0.01, 0.02, . . . , 0.1} 0.40715 0.04459 0.22776 0.06028

1000 2 Avg. {0.01} 0.67577 0.01335 0.17495 0.03096
Exp. {0.01} 0.67722 0.67577 0.01335 0.17821 0.17495 0.03096
ACF - 0.67544 0.01336 0.17477 0.03094

1.8 Avg. {0.01, 0.06, . . . , 0.21} 0.64700 0.65059 0.01645 0.19237 0.18859 0.02708
Exp. {0.01, 0.06, . . . , 0.21} 0.65067 0.01649 0.18854 0.02708

1.5 Avg. {0.01, 0.02, . . . , 0.2} 0.59903 0.60204 0.01815 0.21343 0.20879 0.02155
Exp. {0.01, 0.02, . . . , 0.2} 0.60209 0.01822 0.20878 0.02154

1.3 Avg. {0.01, 0.02, . . . , 0.2} 0.56554 0.56751 0.01640 0.22665 0.22312 0.01996
Exp {0.01, 0.02, . . . , 0.2} 0.56754 0.01644 0.22310 0.01992

1 Avg. {0.01, 0.02, . . . , 0.1} 0.51350 0.51396 0.01521 0.24325 0.24105 0.01577
Exp. {0.01, 0.02, . . . , 0.1} 0.51396 0.01521 0.24105 0.01576

0.8 Avg. {0.01, 0.02, . . . , 0.1} 0.47792 0.47742 0.01383 0.25014 0.24811 0.01511
Exp. {0.01, 0.02, . . . , 0.1} 0.47742 0.01382 0.24811 0.01510

0.5 Avg. {0.01, 0.02, . . . , 0.1} 0.42379 0.42239 0.01296 0.24809 0.24548 0.01852
Exp. {0.01, 0.02, . . . , 0.1} 0.42239 0.01295 0.24548 0.01851

The true values I(·) and the estimates Î(·) from the experiment I, that is MA(2) process with c0 = 1,

c1 = 2 and c2 = 1.111 for T = 1000 replication, and for some sample size N . The ǫt is SαS process

with some α and σ = 1. Here, Avg.Î(i) = 1

T

∑T

j=1
Re Î(i)j , and MADi = 1

T

∑T

j=1
|Re Î(i)j − I(i)|,

i = 1, 2, where Re Î(i)j denotes the estimates at lag i in run j . The weighting methods here denote by

the simple average (method Avg.) and the negative exponential weighted average (method Exp.). Further

explanation about the table is given in Section 3.2
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Figure 1: Plots of Re Î(1)
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Plots of Re Î(1) for several simulation runs where (1a − 1b).α = 2, (2a − 2b).α = 1.5, (3a − 3b).α = 1 and

(4a− 4b).α = 0.5 and σ = 1, s ∈ [0.01, 1.55]. Data are generated from experiment I that is MA(2) process

with c0 = 1, c1 = 2 and c2 = 1.111. The straight lines denote the true values of I(1).22
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Figure 2: Plots of W1(i, j) (see eq. (16)), for si, sj ∈ [0.01, 1], and some α’s.
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