
RESEARCH ARTICLE

Estimating the cumulative incidence of
COVID-19 in the United States using influenza
surveillance, virologic testing, andmortality
data: Four complementary approaches

Fred S. LuID
1☯, Andre T. NguyenID

2,3☯, Nicholas B. LinkID
4☯, Mathieu Molina4, Jessica

T. DavisID
5, Matteo ChinazziID

5, Xinyue Xiong5, Alessandro VespignaniID
5,

Marc LipsitchID
6, Mauricio Santillana4,6,7*

1Department of Statistics, Stanford University, Stanford, California, United States of America, 2University
of Maryland, Baltimore County, Baltimore, Maryland, United States of America, 3 Booz Allen Hamilton,

Columbia, Maryland, United States of America, 4Computational Health Informatics Program, Boston
Children’s Hospital, Boston, Massachusetts, United States of America, 5 Laboratory for the Modeling of
Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of

America, 6Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts,
United States of America, 7Department of Pediatrics, Harvard Medical School, Boston, Massachusetts,

United States of America

☯ These authors contributed equally to this work.

* msantill@fas.harvard.edu

Abstract

Effectively designing and evaluating public health responses to the ongoing COVID-19 pan-

demic requires accurate estimation of the prevalence of COVID-19 across the United States

(US). Equipment shortages and varying testing capabilities have however hindered the use-

fulness of the official reported positive COVID-19 case counts. We introduce four comple-

mentary approaches to estimate the cumulative incidence of symptomatic COVID-19 in

each state in the US as well as Puerto Rico and the District of Columbia, using a combina-

tion of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality

reports, and a spatially structured epidemic model. Instead of relying on the estimate from a

single data source or method that may be biased, we provide multiple estimates, each rely-

ing on different assumptions and data sources. Across our four approaches emerges the

consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times

higher than the official positive test counts across the different states. Nationally, our esti-

mates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million,

with possibly as many as 7.6 million cases, up to 25 times greater than the cumulative con-

firmed cases of about 311,000. Extending our methods to May 16, 2020, we estimate that

cumulative symptomatic incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million

positive test counts. The proposed combination of approaches may prove useful in assess-

ing the burden of COVID-19 during resurgences in the US and other countries with compa-

rable surveillance systems.
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Author summary

Accurate estimates of the weekly incidence of COVID-19 in the United States is essential

for planning and researching effective public health responses. Because of systematic test-

ing shortages across the United States, official positive COVID-19 test counts are an unre-

liable indicator of true incidence. In this study, we present four alternative approaches for

estimating cumulative incidence, which leverage different data sources and assumptions.

Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range

of 2.3 to 4.8 million, with possibly as many as 7.6 million cases, up to 25 times greater than

the cumulative confirmed cases of about 311,000. We emphasize that comparing multiple

models rather than relying on a single method gives more reliable estimates of COVID-19

incidence. Our approaches could be useful for tracking the resurgence of COVID-19 in

the United States as well as in other countries.

Introduction

COVID-19 (SARS-CoV-2), is a coronavirus that was first identified in Hubei, China, in

December of 2019. OnMarch 11, due to its extensive spread, the World Health Organization

(WHO) declared it a pandemic [1]. As of July 24, 2020, COVID-19 had infected people in

nearly every country globally with an official case count surpassing 15 million cases worldwide

and 4 million in the United States (US) [2]. It is however accepted that the official case count is

capturing only a fraction of the actual infections, and reliable estimates of COVID-19 infec-

tions are critical for appropriate resource allocation, effective public health responses, and

improved forecasting of disease burden [3].

A lack of widespread testing due to equipment shortages, varying levels of testing by region

over time, and uncertainty around test sensitivity make estimating the point prevalence of

COVID-19 difficult [4, 5]. In addition, meta-analyses have estimated that 17% [6] or 20% [7]

to 45% [8] of people infected with COVID-19 are asymptomatic or paucisymptomatic. Even in

symptomatic infections, under-reporting can further complicate the accurate characterization

of the COVID-19 burden. For example, one study estimated that in China, 86% of cases had

not been captured by lab-confirmed tests [9], and it is possible that this percentage is even

higher in the US [5]. Finally, it has been suggested that the available information on confirmed

COVID-19 cases across geographies may be an indicator of the local testing capacity over

time, as opposed to an indicator of the epidemic trajectory. Thus, solely relying on positive test

counts to infer the COVID-19 epidemic trajectory may not be sensible [10].

The aim of this study is to show how alternative methodologies, each with different sets of

inputs and assumptions, can provide a consensus estimate of weekly cumulative symptomatic

incidence of COVID-19 in each state in the US. One such approach is to analyze region-spe-

cific changes in the number of individuals seeking medical attention with influenza-like illness

(ILI), defined as having a fever in addition to a cough or sore throat. The significant overlap in

symptoms common to both ILI and COVID-19 suggests that leveraging existing disease moni-

toring systems, such as ILINet, a sentinel system created and maintained by the United States

Centers of Disease Control and Prevention (CDC) [11, 12], may offer a way to estimate the

ILI-symptomatic incidence of COVID-19 without needing to rely on COVID-19 testing

results. Importantly, regional increases in ILI observed from February to April 2020 in con-

junction with stable or decreasing influenza case numbers present a discrepancy (i.e., an

increase in ILI not explained by an increase in influenza) that can be used to impute COVID-

19 ILI-symptomatic cases. We denote such methods as the Divergence approach.
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A second and related approach (denoted as COVID Scaling) uses ILI data to deconfound

COVID-19 testing results from state-level testing capabilities. These two approaches show that

existing ILI surveillance systems are a useful signal for measuring COVID-19 ILI-symptomatic

incidence in the US, especially during the early stages of the outbreak. However, they are

dependent on reporting from the ILINet system, and thus become less reliable outside of peak

flu season and when COVID-19 precautions disrupt routine health care use.

Our third approach (denoted asmMAP) uses reported COVID-19-attributed deaths to esti-

mate COVID-19 symptomatic incidence (broader than the ILI-symptomatic incidence of

the first two methods) and improves upon previously introduced methodologies [13–17].

COVID-19 deaths may represent a lower-noise estimate of cases than surveillance testing

given that patients who have died are sicker, more likely to be hospitalized, and thus more

likely to be tested than the general infected population.

The fourth approach is based on the use of the Global Epidemic and Mobility model

(GLEAM), a fully stochastic epidemic modeling platform that uses real-world data to perform

in silico simulations of the spatial spread of COVID-19 in the US [18]. The mechanistic model-

ing stage explores the parameter space defined by the basic reproduction number, generation

time, seasonality scaling factor, social distancing policies, and generates a corpus of simulated

epidemic profiles. The simulation results can be aggregated at the level of each US state and

the entire country. The model selection stage is performed by measuring the information loss

with respect to the ground truth surveillance data of the weekly death incidence in each state.

While previous work has attempted to quantify COVID-19 incidence in the United States

using discrepancies in ILI trends [19, 20], to the best of our knowledge this study is the first to

offer a range of estimates at the state level, leveraging a suite of complementary methods based

on different assumptions. We believe that this provides a more balanced picture of the uncer-

tainty over COVID-19 (ILI-)symptomatic incidence in each state. While our results are

approximations and depend on a variety of (likely time-dependent) estimated factors, we

believe that our presented case counts better represent (ILI-)symptomatic incidence than sim-

ply relying on laboratory-confirmed COVID-19 tests. Providing such estimates for each state

enables the design and implementation of more effective and efficient public health measures

to mitigate the effects of the ongoing COVID-19 epidemic outbreak. While the scope of this

paper is focused on the United States, the methods introduced here are general enough that

they may prove useful to estimate COVID-19 burden in other locations with comparable dis-

ease (and death) monitoring systems.

Results

We implement four approaches—Divergence, COVID Scaling,mMAP, and GLEAM—to esti-

mate the cumulative symptomatic incidence of COVID-19 within the US fromMarch 1 to

April 4, 2020 (we further extendmMAP and GLEAM predictions to May 16, 2020). These

dates correspond to the early stages of the outbreak (with fewer than 50 confirmed cases in the

US), up to the date of the the CDC reports as of May 28th, 2020. Two methods, labeled div-

Hist and div-Vir, fall under the Divergence approach, which first estimates what the level of ILI

activity across the US would have been if the COVID-19 outbreak had not occurred. Each

method develops a control time series and uses the unexpected increase in the ILI rate over the

control to infer the burden of COVID-19. div-Hist is based on a seasonal time series decompo-

sition, fitted to the observed 2019–2020 ILI (prior to the introduction of COVID-19 to the

US), while div-Vir is based on the time-evolution of empirical observations of positive virologi-

cal influenza test statistics. A third method, using the COVID Scaling approach, leverages

healthcare ILI visits and COVID-19 test statistics to directly infer the proportion of ILI due to
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COVID-19 in the full population. These three methods estimate ILI symptomatic incidence

and may miss symptomatic patients not matching the ILI symptoms (for the remainder of the

paper, we use ‘ILI-symptomatic’ to denote COVID-19 patients with ILI symptoms and ‘symp-

tomatic’ to denote COVID-19 patients with any symptoms). In addition, these methods are

accurate only while ILI surveillance systems are operating normally (usually only during the

flu season) and only while the outbreak has not yet overwhelmed hospitals. We use the ILI

based methods to estimate ILI-symptomatic case counts until April 4th, 2020.

The fourth method, using themortality MAP (mMAP) approach, uses the time series of

reported COVID-19-attributed deaths in combination with the observed epidemiological

characteristics of COVID-19 in hospitalized individuals to infer the latent disease onset time

series. This is then scaled up to yield estimates of symptomatic case counts using reported esti-

mates of the symptomatic case fatality rate (sCFR). Finally we use a fifth method based on the

explicit modeling of the epidemic using the GLEAMmodel, calibrated on reported deaths. The

model provides the number of individuals that have been infected, the number of individuals

that are currently infectious, and the number of daily new infections in US states and at the

national level. GLEAM estimates the cumulative number of both symptomatic and asymptom-

atic infections using an estimated infection fatality rate (IFR) [21], so it is scaled down by 40%,

the current best point estimate for the number of infections that are asymptomatic [8, 22, 23],

to produce estimates of symptomatic cases. The Methods section provides extensive details on

the assumptions and data sources for each of these approaches.

Adjusted assumptions represent most likely scenarios

Each method from the first three approaches has an adjusted version, which represents our

best guess taking into account all information available to us, and an unadjusted version,

which uses pre-COVID-19 baseline information. Specifically, the adjusted divergences (div-

Hist and div-Vir) and COVID Scalingmethods incorporate an increased probability that an

individual with ILI symptoms will seek medical attention after the start of the COVID-19 out-

break based on recent survey data [24, 25]. The adjustedmMAP incorporates newer informa-

tion from serological testing, indicating a lower IFR and asymptomatic rate (and thus higher

estimated symptomatic case count) than expected. In addition, it supplements the confirmed

COVID-19 deaths with unusual increases in influenza and pneumonia-related deaths across

the country that may represent untested COVID-19 cases. Since there is no unadjusted version

for GLEAM and because its sCFR (calculated as IFR
1�AR

, AR = asymptomatic rate) is the same as

the sCFR in adjustedmMAP, we group GLEAM in with the adjusted methods. In most states,

as seen in Fig 1, the adjusted estimates from each method are more closely clustered than

their unadjusted counterparts, increasing our confidence in the adjusted range estimates of

COVID-19 cumulative symptomatic incidence (ILI-symptomatic specifically for the ILI based

methods).

Estimated case counts far surpass reported positive cases

We first computed estimates for the national and state levels (including the District of Colum-

bia and Puerto Rico) using these four approaches for the time period between March 1, 2020

and April 4, 2020. The adjusted methods estimate that there had been 2.3 to 4.8 million symp-

tomatic or ILI-symptomatic COVID-19 cases in the US; including unadjusted estimates raises

the upper limit to 7.6 million cases. In comparison, around 311,000 positive cases had been

officially recorded during that time period. Fig 1A displays the COVID-19 symptomatic case

count estimates from our methods (ILI-symptomatic in particular for the ILI based methods)

at the national and state levels compared with the reported case numbers. The results suggest
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that the estimated true numbers of infected cases are nearly uniformly much higher than those

reported. Next, we extended our methods to produce estimates through May 16, 2020 using

recent data, displayed in Fig 1B. Because of a strong decline in ILINet statistics due to the end

of the flu season and unusually low numbers of reporting providers, our Divergence and

COVID Scaling approaches report few or no cases after April 4, 2020. Therefore, our recent

Fig 1. COVID-19 (ILI-)symptomatic case count estimates compared with reported case counts at the national and state levels fromMarch 1, 2020
to (A) April 4, 2020 and (B) May 16, 2020. Cases are presented on a log scale. Adjusted methods take into account increased visit propensity (div-Hist,
div-Vir, COVID Scaling) and excess influenza and pneumonia deaths along with a lower estimated case fatality rate (mMAP). In places where the ILI-
based methods show no divergence in observed and predicted ILI visits, the estimates of COVID-19 cannot be calculated and are not shown. Note that
Florida does not provide ILI data, so onlymMAP could be estimated there.

https://doi.org/10.1371/journal.pcbi.1008994.g001
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estimates are computed using themMAPmethod and the GLEAMmodel, which estimate

between 4.9 and 10.1 million symptomatic cases had occurred as of May 16. In contrast, 1.5

million positive test counts had been reported. This highlights that models using only con-

firmed test cases may significantly underestimate the actual COVID-19 cumulative incidence

in the United States, which is consistent with what previous studies have shown [9, 20].

As a naive baseline, if one only adjusts the number of reported cases by the (likely) percent-

age of asymptomatic cases (18% [6, 26] to 50% [27, 28]) and symptomatic cases not seeking

medical attention (up to 73% [29]), one would conclude that the actual number of cases were

about four to eight times the number of reported cases; this ratio would also be constant across

states. In contrast, our methods frequently estimate 5-fold to 50-fold more symptomatic (for

mMAP) or ILI-symptomatic (for Divergence and COVID Scaling) cases than those reported

and show significant state-level variability (see Fig 2). The median estimates for the ratios of

estimated cases to reported cases fromMarch 1 to April 4, 2020 for the adjusted div-Hist

method is 18 (with a 90% interval from 1 to 101), for adjusted div-Vir is 21 (2, 67), for adjusted

COVID-Scaling is 17 (3, 76), for adjustedmMAP is 11 (4, 20), and for GLEAM is 10 (2, 29).

Using our methods, we also compute cumulative case estimates for each week within the

studied period. Fig 3 highlights the rapid increase in estimated COVID-19 cases over the

United States as well as in New York, Washington, and Louisiana, three locations which expe-

rienced early outbreaks. These methods suggest that states under-reported COVID-19 case

counts even early in March, likely due to limited testing availability. In New York and Louisi-

ana, the estimates were more similar across methods than inWashington. Since Washington

had already experienced an outbreak by February 28 [30], testing shortages may have been

more pronounced than in the other states. Our divergence analysis approach does not rely on

any COVID-19 test-dependent data (including deaths) and therefore may provide more accu-

rate estimates in Washington.

State-level comparisons

Over the period of March 1, 2020 to April 4, 2020, the adjusted div-Hist, div-Vir, COVID Scal-

ing,mMAP, and GLEAM approaches estimated that between 21 and 35 (21, 25, 35, 35, and 25,

respectively) locations had actual (ILI-)symptomatic case counts above 10 times the reported

counts (Figs 1 and 2). Up to 12 locations had at least one adjusted estimate above 50 times the

Fig 2. Distribution of the state-level ratios of estimated to reported case counts fromMarch 1, 2020 to April 4, 2020. The right-hand plot shows the
results of using all methods together: taking themin,median, andmax of the state-level estimates across methods. Adjusted methods take into account
increased visit propensity (div-Hist, div-Vir, COVID Scaling) and excess influenza and pneumonia deaths along with a lower estimated case fatality rate
(mMAP).

https://doi.org/10.1371/journal.pcbi.1008994.g002

PLOS COMPUTATIONAL BIOLOGY Estimating the early outbreak cumulative incidence of COVID-19 in the United States

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008994 June 17, 2021 6 / 28

https://doi.org/10.1371/journal.pcbi.1008994.g002
https://doi.org/10.1371/journal.pcbi.1008994


reported counts, with three of them above 100 times the reported counts (Nebraska, Oregon,

Missouri). Places with low official case counts, such as Alaska and North Dakota, may have

experienced significantly more COVID-19 cases than reported. Even places with high official

case counts, such as Georgia, Pennsylvania, and Texas, appeared to be significantly under-

reporting. As expected, our methods computed high estimates in New York and New Jersey,

locations with especially high numbers of confirmed cases. Over the period leading up to May

16, 2020,mMAP and GLEAM estimates indicate that up to 30 locations had estimated case

counts above five times the reported counts, with two locations over 10 times (Connecticut

and Michigan).

Using the unadjusted methods, the ILI-based methods yield significantly higher estimates

thanmMAP (median estimates of 84k, 155k, 62k, 11k for div-Hist, div-Vir, COVID Scaling,

andmMAP, respectively, for the locations that have estimates for all methods). However, the

adjusted versions of the methods (including GLEAM) are more similar (median estimates of

35k, 73k, 85k, 23k, and 17k for div-Hist, div-Vir, COVID Scaling,mMAP, and GLEAM), pro-

viding support that the adjusted methods are more accurate than the unadjusted ones.

All five methods generally agree on the ordering of states by (ILI-)symptomatic case count

(Table 1), with rank correlations of the adjusted methods ranging from 0.64 to 0.98.mMAP

and GLEAM have 0.95 and 0.91 correlations with the reported case counts, which is likely

because official COVID-19 deaths and positive COVID-19 cases represent overlapping pools

of patients and are therefore subject to similar biases. COVID Scaling also shows a relatively

high correlation with the reported cases, 0.88, which may reflect the use of COVID-19 test sta-

tistics in its model. div-Hist and div-Vir, however, solely rely on aggregate data from ILINet,

which may cover a different set of patients.

Fig 3. Cumulative weekly case counts fromMarch 1 to May 16, 2020 for the United States, New York,
Washington, and Louisiana, as estimated by each method and the reported cases. The estimate for each week
indicates total cases up to the denoted date. Solid lines indicate the adjusted estimates with shading for the unadjusted
estimate ranges. Adjusted methods take into account increased visit propensity (div-Hist, div-Vir, COVID Scaling) and
excess influenza and pneumonia deaths along with a lower estimated case fatality rate (mMAP). Refer to S2 Fig for
results over all locations.

https://doi.org/10.1371/journal.pcbi.1008994.g003
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Discussion

We present five methods based on four distinct approaches to estimate the COVID-19 cumu-

lative symptomatic incidence across the United States. The methods are complementary, in

that they rely on different methods, assumptions and use diverse datasets. Despite their clear

differences, these methods estimate that the likely COVID-19 cumulative symptomatic inci-

dence varies from 5 to 50 times higher, at the state level, than what has been reported so far in

the U.S. By providing ranges of estimates, both within and across models, our suite of methods

offers a robust picture of the under-ascertainment of state-level COVID-19 case counts. When

making public health decisions to respond to COVID-19, it is important to account for the

uncertainty in estimates of symptomatic incidence; the multiple estimates presented here pro-

vide a consistent picture of the number of infected individuals.

Our estimates are specifically for symptomatic cases, while a high proportion of COVID-19

cases are believed to be asymptomatic [23, 26, 27]. To estimate total cases, our counts can be

adjusted by the proportion of symptomatic cases. For example, if 40% of cases are asymptom-

atic, this could indicate a total cumulative incidence of up to 16.8 million as of May 16, 2020.

Our approaches could be expanded to include other data sources and methods to estimate

incidence, such as Google searches [31–33], electronic health record data [34], clinician’s

searches [35], and/or mobile health data [36]. Accurate and appropriately sampled serological

testing would provide the most accurate estimate of incidence and would be useful for public

health measures, especially when attempting to relax or re-institute shelter-in-place recom-

mendations. In addition, serological testing could be used to evaluate the reliability of the

methods presented in this study. This could inform prevalence estimation methods for

COVID-19 in other countries as well as for future pandemics. The ILI-based methods pre-

sented in this study demonstrate the potential of existing and well-established ILI surveillance

systems to monitor future pandemics that, like COVID-19, present similar symptoms to ILI.

This is especially promising given the WHO initiative launched in 2019 to expand influenza

surveillance globally [37]. Incorporating estimates from influenza and COVID-19 forecasting

and participatory surveillance systems may prove useful in future studies as well [18, 38–42].

Limitations

Since the Divergence and COVID Scaling approaches are estimated using ILINet statistics, their

symptomatic incidence estimates are dependent on the ILI definition of a fever and cough or

sore throat. Thus, they may miss a percentage of COVID-19 patients that are symptomatic

without meeting the ILI definition. With this limitation, the reported estimates may serve as

an approximate lower bound. Given a clearer understanding of COVID-19 symptoms, our

Divergence and COVID Scaling estimates could be adjusted upward by the proportion of symp-

tomatic to ILI-symptomatic patients.

Table 1. Pairwise Spearman correlations between adjusted methods and reported case counts fromMarch 1, 2020 to April 4, 2020 across the state level.

Reported div-Hist div-Virology COVID Scaling mMAP GLEAM

Reported 1.00 0.70 0.71 0.88 0.95 0.91

div-Hist – 1.00 0.78 0.70 0.67 0.64

div-Virology – – 1.00 0.69 0.68 0.66

COVID Scaling – – – 1.00 0.84 0.78

mMAP – – – – 1.00 0.98

GLEAM – – – – – 1.00

https://doi.org/10.1371/journal.pcbi.1008994.t001
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Furthermore, we note that ILI surveillance networks may not always accurately measure

ILI for the most at risk elderly individuals who reside in nursing homes.

As well, the data used and delays in reporting affect the timing of the methods’ estimates.

The Divergence and COVID Scalingmethods estimate the date of medical visitation for ILI/

COVID-19 symptoms while themMAP and GLEAMmethods estimate the date of COVID-19

symptom onset, which is expected to be on average 4–5 days before medical visitation [43].

However,mMAP and GLEAM estimates are shifted later by the delay in death reporting, likely

making the dates of estimation of the methods fairly close. There is limited research on quanti-

fying this delay, though one study found it to be 4.29 days for Mexico and 1.74 for England,

with a wide range of heterogeneity between localities [44].

The uncertainty and bias of each individual method should be considered carefully. The

Divergencemethods suffer from the same challenges faced when attempting to scale CDC-

measured ILI activity to the entire population [45]. In particular, scaling to case counts in a

population requires estimates for p(visit), the probability that a person seeks medical attention

for any reason, and p(visit | ILI) which captures health care seeking behavior given that a per-

son is experiencing ILI; these estimates are likely to change over time, especially during the

course of a pandemic. At the beginning of the pandemic, many more than usual may have

paid their doctors a visit on the first sign of any ILI symptoms. Moreover, the weekly symp-

tomatic incidence estimates from this method decrease towards the end of March, perhaps

caused by a drop in health care seeking behavior after the declaration of a national emergency

on March 13, 2020 and the widespread implementation of shelter-in-place mitigation strate-

gies which may have increased the use of medical services and health providers that are not

included in the ILI surveillance network, such as telehealth services and urgent care.

It is also important to note that ILI based methods are expected to be accurate only while

ILI surveillance systems are operating normally (reporting tends to decrease outside of the flu

season) and only while the outbreak has not yet overwhelmed hospitals and doctors. Fig 4

shows the underlying influenza surveillance data for the last five seasons. We note a sharp

decrease in the total number of reported patients in late March 2020 even though the number

of providers did not decrease more than is usually expected. This suggests that the ILINet sig-

nal may no longer be reliable until regular reporting patterns return. As a result, we only use

ILI based methods to estimate COVID-19 symptomatic incidence early in the outbreak.

COVID Scaling relies on the assumption that COVID-19 positive test proportions uni-

formly represent the pool of all ILI patients and that shortages in testing do not bias the posi-

tive proportion. This assumption may be problematic when prior suspicion of exposure is

involved, such as when health workers at a nursing home outbreak are preemptively tested,

and may be a greater issue during testing shortages. In a sensitivity analysis, we computed the

hypothetical impact of testing bias, finding that in the most extreme case, the true case count

could be 80% of what we estimated (S3 Text).

mMAP is limited by assumptions of the the distribution of time from case onset to death.

Furthermore,mMAP and GLEAM rely on assumptions about the IFR and asymptomatic rate;

point estimates of each are uncertain, with reasonable estimates ranging from 0.65% to 1.1%

for the IFR and 17% to 50% for the asymptomatic rate, which therefore yields sCFR point esti-

mates ranging from 0.78% to 2.2% (a more detailed discussion these values is provided in the

mMAPmethods). As well, the IFR likely evolved as the pandemic progressed because treat-

ments were improving and different subsets of the population were infected at different times.

However, there is some evidence that the IFR remained stable during the beginning of the pan-

demic [22, 46] and a meta analysis of IFR using data until September [47] yielded similar IFR

estimates to the meta-analysis using data until April [22, 48], indicating that there is not a clear

decreasing trend in IFR. BothmMAP and GLEAM rely on accurate reporting of COVID-19
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deaths and, in the case of adjustedmMAP, that excess influenza and pneumonia deaths capture

all unreported COVID-19 deaths. It is likely that there are other unreported COVID-19 deaths

that are not categorized as influenza and pneumonia deaths [49]. In New York City, for

example, probable COVID-19 deaths (as in, not needing a test result) are being reported as

COVID-19 deaths and accounted for a 42% increase in cumulative COVID-19 death counts as

of April 29, 2020 [50], indicating that other locations not counting probable deaths could be

missing a significant portion of deaths. Under-reporting of deaths may explain whymMAP

Fig 4. The underlying influenza surveillance data for the last five seasons. The top subplot shows the ILINet total number of patients and
participating providers. The bottom subplot shows the total reported numbers of influenza tests conducted and positive influenza tests.

https://doi.org/10.1371/journal.pcbi.1008994.g004
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and GLEAM sometimes yield lower case estimates than Divergence and COVID Scaling even

though its symptomatic case definition is more inclusive. A high-level summary of the three

methods, their estimation strategy, and their assumptions are provided in Table 2.

Conclusions

We have presented four complementary approaches for estimating the true COVID-19 cumu-

lative (ILI-)symptomatic incidence in the United States fromMarch 1 to May 16, 2020 at the

national and state levels. The approaches rely on different datasets and modeling assumptions

in order to balance the inherent biases of each individual method. While the case count esti-

mates from these methods vary, there is general agreement among them that the actual state-

level symptomatic case counts up to April 4, 2020 were likely 5 to 50 times greater than

what was reported. Up to May 16, 2020, most states likely had 5 to 10 times more cases than

reported, with a total estimated range of 4.9 million to 10.1 million cases over the United

States.

A more accurate picture of the burden of COVID-19 is actionable knowledge that will help

guide and focus public health responses. As social distancing measures are being (or have

been) relaxed, some locations are experiencing a resurgence in cases. If the true case counts are

near the upper bound of our estimated symptomatic case count, then a substantial proportion

(up to 3% as of May 16) of the US population may have already been infected. Factoring in

asymptomatic cases this could increase the proportion up to 8%. On the other hand, it is evi-

dent that the large majority of the population has not yet been exposed to COVID-19, and

therefore effective, informed public health responses to future upsurges in cases will be essen-

tial in the upcoming months.

Table 2. Comparing the four approaches to estimate COVID-19 cases in the US.

Approach Divergence COVID Scaling mMAP GLEAM

Brief
Description

Treat COVID-19 ILI-symptomatic
case count estimation as a causal
inference problem. COVID’s impact
on ILI activity is measured using as
controls a projection based on
historical ILI data as well as influenza
testing statistics.

Extrapolate state-level positive test
percentages for COVID-19 to the
weekly ILI data to estimate COVID-
19 proportion in medical visits, then
scale to the whole population.

Using reported COVID-19
deaths, the sCFR, and a
distribution of time from cases
to deaths, predict the latent case
distribution.

Estimates cumulative infections
using a stochastic spatially
structured epidemic model,
calibrated on weekly incident
deaths.

Data Input ILI activity and influenza test results. ILI activity and COVID-19 test
results.

COVID-19 deaths. COVID-19 deaths.

Model
Assumptions

1. The divergence between predicted
ILI activity for the 2019–2020
season and measured ILI activity
after the start of the COVID-19
pandemic can be attributed to
COVID-19.

2. Scaling from ILI to population is
reliable.

1. COVID-19 test reports accurately
represent the pool of weekly ILI
visits.

2. Delayed test reporting does not
significantly affect positive test
proportions after applying
smoothing

3. Scaling from ILI to population is
reliable.

1. All COVID-19 deaths are
reported (mMAP) or
explained by excess
pneumonia deaths
(mMAPadj).

2. The distribution of time from
cases to death is log-normal.

3. The age-stratified IFR is the
same as reported in [64] and
the asymptomatic rates are
40% or 50%.

1. Modeling estimates for the effect
of school closures, smart
working, and social distancing
effects on the transmissibility of
SARS-CoV-2.

2. Spatial variation of the IFR are
not considered.

3. Differential transmissibility
across age brackets is not
considered.

4. Pre-symptomatic transmission is
not modeled explicitly.

Expected Bias Can be sensitive to model fit and
changes in healthcare seeking
behavior, and it will work only while
ILI surveillance is reliable.

ILI visits and COVID-19 tests may
capture different segments of the
sick population.

May underestimate cases as
many COVID-19 related deaths
may go unreported or untested.

Revision to the current estimate of
the IFR affects the model estimated
of the total number of infections/
cases.

https://doi.org/10.1371/journal.pcbi.1008994.t002
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Data andmethods

CDC ILI and virology

The CDC US Outpatient Influenza-like Illness Surveillance Network (ILINet) monitors the

level of ILI circulating in the US at any given time by gathering information from physicians’

reports about patients seeking medical attention for ILI symptoms. ILI is defined as having a

fever (temperature of 37.8+ Celsius) and a cough or a sore throat. ILINet provides public

health officials with an estimate of ILI activity in the population but has a known availability

delay of 7 to 14 days. National level ILI activity is obtained by combining state-specific data

weighted by state population [12]. Additionally, the CDC reports information from the WHO

and the National Respiratory and Enteric Virus Surveillance System (NREVSS) on laboratory

test results for influenza types A and B. The data is available from the CDC FluView dashboard

[11]. We omit Florida from our analysis as ILINet data is not available for Florida.

COVID-19 case and death counts

The US case and death counts are taken from the New York Times repository, which compiles

daily reports of counts at the state and county levels across the US [51]. For themMAP valida-

tion in S4 Text, the case and death counts from other countries are taken from the John’s Hop-

kins University COVID-19 dashboard [52]. Counts are taken up until May 28, 2020.

COVID-19 testing counts

In addition, daily time series containing positive and negative COVID-19 test results within

each state were obtained from the COVID Tracking Project [53].

US demographic data

The age-stratified, state-level population numbers are taken from 2018 estimates from the US

census [54].

Approach 1: Divergence

Viewing COVID-19 as an intervention, this approach aims to construct control time series

representing the counterfactual 2019–2020 influenza season without the effect of COVID-19.

While inspired by the synthetic control literature [55, 56], we are forced to construct our own

controls since COVID-19 has had an effect in every state. We formulate a control as having the

following two properties:

1. The control produces a reliable estimate of ILI activity, where ILI refers to the symptomatic

definition of having a fever in addition to a cough or sore throat.

2. The control is not affected by the COVID-19 intervention (that is, the model of ILI condi-

tional on any relevant predictors is independent of COVID-19).

We construct two such controls, one based on historical seasonality and one based on cur-

rent virology data. We also explore a model-based method, with details in S1 Text.

Method 1: Singular value decomposition-based historical projection. Unseen future ILI

can be projected by fitting a time series model to historical ILI data which can account for

trends that capture state-specific seasonal trends. A simple approach capable of doing this

could be a simple historical weekly average of past flu seasons; however this baseline approach

would lack the flexibility to incorporate the thus-far observed season-specific patterns. Instead,

in our approach, we model ILI during a specific flu season, in a specific location, as the
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historical averageH at that location plus a season-specific component Y:

ILI ¼ H þ Y

We produce an estimate Ŷ of the season-specific component Y by first arranging the his-

toric ILI data into a matrix X with rows corresponding to weeks in a season (time) and col-

umns corresponding to (space) observed ILI in all spatial locations in past seasons. We then

compute the most salient features of this matrix (in other words, we identify the weeks with

highest variance) by factorizing the matrix X using the singular value decomposition (SVD):

X = USVT. The columns of U form an orthonormal basis for the ILI behavior during past and

fully-observed seasons. The SVD algorithm returns these columns ranked by importance by

the singular values in S. The estimate of the season-specific component is then computed

using an elastic net regression using the (first elements of the) columns of US as predictors to

fit the thus-far observed ILI activity as a response variable. The unseen portion of the season is

then calculated using the full length of the columns U with the regression coefficients from the

elastic net fit. In other words, we make the assumption that an epidemic year can be described

as a linear combination of vectors using the historic data for all locations. We scale U by the

singular values in S so that elastic net’s regularization will favor basis vectors with higher

importance.

For each location, we use between 7 and 10 years of historical ILI data depending on data

availability and quality. We also perform variable selection by keeping only the basis vectors Ui

where Sii

traceðSÞ
> 1

52
, yielding around 10 basis vectors kept depending on the year. The elastic net

regularization parameters are tuned by validation on a fraction of the current season data clos-

est to the prediction period of interest. Fig 5 shows the improvement over a historical average

during the 2018–2019 season prediction period by also incorporating a season specific compo-

nent to model ILI. Overall, the SVD Historical Projection performs better than the historical

average baseline. The locations for which SVD Historical Projection performs worse are loca-

tions where both methods have low error.

Method 2: Virology. As an alternative control, we also present an estimator of ILI activ-

ity using influenza virology results. As suggested by [19], there has been a divergence in

March between CDC measured ILI activity and the fraction of ILI specimens that are

Fig 5. L2 errors by location for March, April, andMay 2019, comparing SVDHistorical Projection with a baseline historical average for ILI
prediction.

https://doi.org/10.1371/journal.pcbi.1008994.g005
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influenza positive. Clinical virology time series were obtained from the CDC virologic sur-

veillance system consisting of over 300 laboratories participating in virologic surveillance for

influenza through either the USWHO Collaborating Laboratories System or NREVSS [12].

Total number of tests, total influenza positive tests, and percent positive tests are our vari-

ables of interest.

None of the three time series satisfy both properties of a valid control, as defined in, since

total number of tests is directly susceptible to increase when ILI caused by COVID-19 is

added. Similarly, percent positive flu tests may decrease when COVID-19 is present. On the

other hand, total positive flu tests satisfies property 2, but is not a reliable indicator of ILI activ-

ity (property 1) on its own because it is highly dependent on the quantity of tests administered.

We propose a modification that satisfies the properties. Let Fþ
t , Nt, It denote positive flu

tests, total specimens tested, and ILI visit counts respectively. In addition, let Ft be the true

underlying flu counts. For any week t we assume the following relation:

Ft ¼
Fþ
t � It
Nt

There are two interpretations of this quantity: 1) It extrapolates the positive test percentage

(Fþ
t =Nt) to all ILI patients (It), a quantity known in the mechanistic modeling literature as ILI+

[57]. 2) It adjusts the number of positive tests for test frequency, which is a confounder in the

relationship between the number of positive tests (F+) and total flu cases (Ft) [58]. In S2 Text,

we demonstrate over a series of examples that this estimator behaves as desired. Each estimate

of Ft is then scaled to population ILI cases using least squares regression over pre-COVID-19

ILI counts.

In other words, we first use virology data to estimate Ft (actual flu cases causing ILI) as: per-

cent ILI visits times percent positive for flu. Then, modeling ILI visits (It) as an affine function

of Ft in a normal (without COVID-19) situation, we use 2019 pre-COVID-19 data to fit the

regression. This allows us to estimate the divergence after the COVID-19 intervention occurs.

ILI case count estimation. To fit the above models, we estimate the ILI case count in the

population from the CDC’s reported percent ILI activity, which measures the fraction of medi-

cal visits that were ILI related.

In a similar fashion to the approach of [45], we can use Bayes’ rule to map percent ILI activ-

ity to an estimate of the actual population-wide ILI case count. Let p(ILI) be the probability of

any person having an influenza-like illness during a given week, p(ILI | visit) be the probability

that a person seeking medical attention has an influenza-like illness, p(visit) be the probability

that a person seeks medical attention for any reason, and p(visit | ILI) the probability that a

person with an influenza-like illness seeks medical attention. Bayes’ rule gives us

pðILIÞ ¼
pðvisitÞ

pðvisit j ILIÞ
� pðILI j visitÞ

p(ILI | visit) is the CDC’s reported percent ILI activity, for p(visit) we use the estimate from

[45] of a weekly doctor visitation rate of 7.8% of the US population, and for p(visit | ILI) we

use a base estimate of 27%, consistent with the findings from [29]. Once p(ILI) is calculated,

we multiply p(ILI) by the population size to get a case count estimate within the population.

Visit propensity adjustment. We note that health care seeking behavior varies by region

of the United States as shown in [29]. To better model these regional behavior differences, we

adjust p(visit | ILI), the probability that a person with an influenza-like illness seeks medical

attention, using regional baselines for the 2019–2020 influenza season [12].
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Additionally, because our method estimates the increase in ILI visits due to the impact of

COVID-19, we must distinguish an increase due to COVID-19 cases from an underlying

increase in medical visit propensity in people with ILI symptoms. Due to the widespread

alarm over the spread of COVID-19, it would not be unreasonable to expect a potential

increase in ILI medical visits even in the hypothetical absence of true COVID-19 cases.

For this reason, we also explore increasing p(visit | ILI) from 27% to 35% to measure the

possible effect of a change in health care seeking behavior due to COVID-19 media attention

and panic. The increase of p(visit | ILI) to 35% is consistent with health care seeking behavior

surveys done after the start of COVID-19 [24, 25]. The Divergence and COVID Scalingmeth-

ods have adjusted versions which incorporate this shift as well as unadjusted versions that keep

the baseline 27% propensity.

Estimating COVID-19 case counts. The ultimate goal is to estimate the true burden of

COVID-19. The projection and virology predicted ILI case counts can be used to estimate

CDC ILI had COVID-19 not occurred. In other words, the projection and virology predicted

ILI can be used as counterfactuals when measuring the impact of COVID-19 on CDCmea-

sured ILI. The difference between the observed CDCmeasured ILI and the counterfactual for

a given week is then the estimate of COVID-19 ILI-symptomatic case counts for that week. Fig

6 shows example observed CDCmeasured ILI, historical projected ILI, and virology predicted

ILI. S1 Fig contains similar plots to Fig 6 for all locations. For this method as well as the follow-

ing two, we start estimating COVID-19 case counts the week starting on March 1, 2020. We

note that while the projection and virology ILI predictions tend to track CDC ILI well earlier

in the flu season, after COVID-19 started to impact the United States there is a clear diver-

gence between predictions and observed CDC ILI, with CDC ILI increasing while the counter-

factual estimates decrease.

This method is expected to be accurate only while ILI surveillance systems are operating

normally (reporting tends to decrease outside of the flu season) and only while the outbreak

has not yet overwhelmed hospitals and doctors. As a result, we use ILI based methods to esti-

mate COVID-19 symptomatic incidence only early in the outbreak, until April 4th. The disap-

pearance of the divergence does not mean that the outbreak is over, but rather that the ILI

signal is no longer reliable.

Approach 2: COVID scaling

This approach infers the COVID-19 fraction of the total ILI by extrapolating testing results

obtained from the COVID Tracking Project [53], following the same reasoning as the Virology

Divergence method. That is,

Ct ¼
Cþ

t � It
Nc

t

where Cþ
t , N

c
t , It denote positive COVID-19 tests, total COVID-19 specimens, and ILI visit

counts respectively.

State-level testing results were aggregated to the weekly level and positive test percentages

were computed using the positive and negative counts, disregarding pending tests. Positive

test counts were adjusted for potential false negatives. There are varying estimates for the false

negative rate for the RT-PCR used in COVID-19 tests, with some reports suggesting rates as

high as 25–30% [59, 60]. We apply a 15% false negative rate in our analysis; repeating our anal-

ysis using a range of values from 5% to 25% yielded little difference in our estimates. On the

other hand, COVID-19 testing is highly specific, so we assume no false positives. Then, the

number of false negatives (FN) can be computed from the recorded (true) positives (TP) and
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Fig 6. COVID-19 is treated as an intervention, and we measure COVID-19 impact on observed CDC ILI, using historical
projected ILI, virology predicted ILI, and historical projection predicted ILI as counterfactuals. The difference between
the higher observed CDC ILI and the lower predicted ILI is the measured impact of COVID-19. The impact directly maps to
an estimate of COVID-19 ILI-symptomatic case counts. Virology predicted ILI is omitted when virology data is not available.
We note that this approach is meaningful only at the beginning of the outbreak (March 2020), while ILI surveillance systems
are still fully operational and before they are impacted by COVID-19. The disappearance of the divergence does not mean that
the outbreak is over, but rather that the ILI signal is no longer reliable. In this figure, as a counterfactual we also include
Incidence Decay and Exponential Adjustment (IDEA), a model-based method we explored with details in S1 Text.

https://doi.org/10.1371/journal.pcbi.1008994.g006
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the false negative rate (fnr) as

FN ¼ TP �
fnr

1� fnr

Because COVID-19 testing is sparse in many states, there are issues with zero or low sample

sizes, as well as testing backlogs. Rather than taking the empirical positive test percentage

(Cþ
t =N

c
t ), we first smoothed the test statistics over time by aggregating results over a 2-week

sliding window. This has a Bayesian interpretation of combining each week’s observed statis-

tics with the prior of the previous week, weighted by relative specimen count. For convenience,

Cþ
t and Nc

t henceforth refer to these respective quantities. We also applied the same process to

the ILI information to reduce noise and so that the data are comparable. This helped but did

not address all issues with case backlog, so we further smoothed the COVID-19 estimates

using a Bayesian spatial model:

Denote pjt as the prevalence of COVID-19 in a given ILI patient in state j and week t.

Assuming COVID-19 status is independent in each ILI patient, conditional on the state preva-

lence, the COVID-19 status of patient i from state j in week t is

X
ðiÞ
jt � BernoulliðpjtÞ

Under the assumption that testing is applied uniformly conditional on showing ILI symp-

toms, the state testing results follow a Binomial distribution. We apply a spatial prior based on

first-order conditional dependence:

pjt � BetaðajtN0t; ð1� ajtÞN0tÞ

ajt ¼
1

jN jj

X

k2N j

pkt

whereN j are the neighbors of state j. The strength of the prior was specified by setting N0t to

be the number of total tests at the 5th quantile among all states in each week. Finally, we com-

pute αjt by replacing each pkt by their empirical estimates. Using the Beta-Binomial conjugacy

we derive closed-form posterior mean estimates for pjt:

p̂ jt ¼
Cþ

jt þ ajtN0t

Nc
jt þ N

0t

As described previously, the weekly, state-level reported percent ILI were then multiplied

by p̂ jt to get an estimate of the percent of medical visits that could be attributed to COVID-19.

These values were subsequently scaled to the whole population using the same Bayes’ rule

method as described in ILI Case Count Estimation (5.1.3).

The uniform testing assumption relies on the premise that conditional on having ILI symp-

toms, the probability of getting tested is independent of whether the patient has COVID-19 or

some other infection. This assumption is likely inexact when additional factors such as prior

exposure caused biased testing towards patients more likely to be COVID-19 positive. While

the impact of these factors cannot be measured in our data, we conduct a sensitivity analysis in

S3 Text that models testing bias during low test availability to assess their potential impact on

our estimates.
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Approach 3: Mapping mortality to COVID-19 cases

Other studies have introduced methods to infer COVID-19 cases from COVID-19 deaths

using (semi-)mechanistic disease models [15] or statistical curve-fitting based on assumptions

of epidemic progression [16], but, to the best of our knowledge, no methods have been pro-

posed to directly infer COVID-19 cases without either of these assumptions.

Mortality Map (mMAP) is a time series deconvolution method that uses reported deaths

to predict previous true case counts, similar to prior work on influenza [17].mMAP accounts

for right-censoring (i.e. COVID-19 cases that are not resolved yet) by adapting previously

used methods [13]. A study of clinical cases in Wuhan found that the time in days from

symptom onset to death roughly follows a log-normal distribution with mean 20.2 and stan-

dard deviation 11.6 [61]. It also found the mean time from hospitalization to death to be 13.2

days, similar to the estimate of 13.7 from a large cohort study in California [62], suggesting

that the timing of disease progression is similar in the United States. Using this distribution,

a smoothed time series of reported deaths, D (described below), and the age-adjusted symp-

tomatic case fatality rate (sCFR), we estimate the distribution of symptomatic cases C,

defined at the usual time of symptom onset, using a modified expectation maximization

approach. We use Bayes’ rule to define the probability that there was a case on day t given a

death on day τ.

pðcase on t j death on tÞ ¼
pðdeath on t j case on tÞ � pðcase on tÞ

pðdeath on tÞ
ð1Þ

D is the time series of reported deaths from the New York Times repository [51] (Draw)

averaged weekly. That is, D(t) =mean[Draw(max(t − 3, 0)), . . ., Draw(min(t + 3, tmax)]. The

reporting of deaths depends heavily on the day of the week due to limited reporting on week-

ends, and we found that averaging the deaths by week significantly improves the perfor-

mance ofmMAP (more frequent convergence, smoother and more reasonable case time

series).

Let Cd� denote the predicted distribution of when D are classified as cases (i.e. are hospital-

ized), Cd denote the predicted distribution of when D and future deaths are classified as cases

(so adjusted for right-censoring), and tmax denote the most recent date with deaths reported.

Let p(death on τ | case on t) = p(T = (τ − t)) denote the log-normal probability.mMAP per-

forms the following steps:

1. Initialize the prior probability of a case on day t, p0(case on t), as uniform.

2. Repeat the following for each iteration i:

• Calculate CðiÞ
d� .

C
ðiÞ
d� ðtÞ ¼

Xtmax

t¼tþ1

DðtÞ � pi�1
ðcase on t j death on tÞ

¼
Xtmax

t¼tþ1

DðtÞ �
pðT ¼ ðt� tÞÞ � pi�1

ðcase on tÞ

Xt�1

s¼1

pðT ¼ ðt� sÞÞ � pi�1
ðcase on sÞ

ð2Þ

where the denominator is equivalent to p(death on τ) in (1).
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• We estimate that the proportion p(T� (tmax − t)) of CðiÞ
d ðtÞ have died by tmax and use this

to adjust for right censoring.

C
ðiÞ
d ðtÞ ¼

C
ðiÞ
d� ðtÞ

pðT � ðtmax � tÞÞ
ð3Þ

• Update prior probabilities

piðcase on tÞ ¼
C

ðiÞ
d ðtÞP
C

ðiÞ
d ðtÞ

ð4Þ

• Repeat until the normalized χ2 statistic descends below 1 or decreases by less than 10% on

successive iterations (justification provided below):

w
2 ¼

1

tmax

Xtmax

t¼1

ðEðtÞ � DðtÞÞ
2

EðtÞ
ð5Þ

where EðtÞ ¼
P

t<t
C

ðiÞ
d ðtÞ � pðT ¼ t� tÞ is the expected (predicted) number of deaths on

day τ.

3. Cd(t) represents the number of cases on day t that will lead to death. We scale this to esti-

mate the number of all symptomatic cases by dividing by the sCFR.

CðtÞ ¼
CdðtÞ

sCFR
ð6Þ

Interestingly, the update step for CðiÞ
d ðtÞ in each iteration is the same as the Richardson-

Lucy deconvolution step, or expectation-maximization step for the likelihood of the underly-

ing cases, proposed for influenza [17] and for positron emission tomography (without right-

censoring) [63], albeit with different notation in each study. S4.1 Text demonstrates this equiv-

alence and discusses the mathematical justification this provides formMAP. The influenza

paper demonstrates that under the true parameters (or true case time series),D(t) would follow

a Poisson distribution with mean E(t) and therefore the chi-squared statistic (Eq (5)) would

have expectation 1. Thus it is useful to iterate until (5) is less than one for the first time and

stopping there to avoid over-fitting the noise in the observed death data [17]. We also stopped

if (5) changed by less than 10% for successive iterations because for locations with large

enough death numbers (United States, New York, New Jersey, and Texas) the value of (5)

never descended below 1.

S4.2 Text demonstrates thatmMAP successfully predicts cases using simulated and

reported deaths from six countries, providing further justification for this method.

If one were interested in estimating the incidence of all cases—symptomatic and asymp-

tomatic—Cd(t) would need to be divided by the infection fatality ratio (IFR) in step 3 (Eq 6).

For the sake of comparison with the ILI-based methods in this study, we chose to use sCFR in

the denominator in Eq 6 to estimate the incidence of just the symptomatic cases. The national

sCFR values used are 2.2% and 1.1% for the unadjusted and adjusted method. These values

were found by adjusting the IFR estimates (1.1% and 0.65%) with an assumed 50% and 40%

asymptomatic rate, respectively (estimates of the percentage of asymptomatic cases range from

17/18% [6, 26] to 50% [27, 28] and the CDC puts 40% as the best point estimate of this number

[8, 23]). The first IFR value comes from an analysis of individual case data in China and repa-

triated Chinese citizens in January and February to estimate the fatality ratio for all—symp-

tomatic and asymptomatic—infections [21]. The second value comes from a meta-analysis of
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published IFR values and is the CDC best point estimate of the IFR [22, 48]. The sCFR esti-

mates for each state are adjusted using the age-stratified fatality rate [64] and the population

age structure provided by the US census [54], with values ranging from 1.3% in Utah to 2.3%

in Florida.

Accounting for unreported COVID-19 deaths. WhilemMAP assumes all COVID-19

deaths are reported, some deaths will be unreported because of limited testing and false nega-

tive results [65, 66]. Previous research on the H1N1 epidemic estimated that the ratio of lab-

confirmed deaths to actual deaths caused by the disease was 1:7 nationally [67] and 1:15 glob-

ally [68]. While the actual rate of under-reporting is unknown, we include an adjustment,

mMAPadj, that attributes excess influenza and pneumonia deaths to COVID-19, as has been

done in previous studies [65].

The CDC reports weekly reported influenza and pneumonia deaths and expected influenza

and pneumonia deaths based on historical trends for each state [69]. We estimate that the

number of un-classified COVID-19 deaths for a given location each week, DU(w), ismax(0,

reported deaths—expected deaths). Nationally, this leads to two peaks of DU(w)—the first,

larger peak in March in April accounting for 2,791 deaths and a smaller peak in July and

August accounting for 221 deaths—with values of zero excess deaths almost every other week.

The daily deaths used for mMAPadj, Dadj(t), are the sum of the reported deaths, D(t), and the

average of the weekly excess deaths.

DadjðtÞ ¼ DðtÞ þ
1

7
DUðwÞ; where t 2 w ð7Þ

Approach 4: Global epidemic and mobility model

The Global Epidemic and Mobility model is an individual-based, stochastic, and spatial epi-

demic model. GLEAM uses real-world data to perform in silico simulations of the spatial

spread of infectious diseases at the global level. In the model, the world is divided into over

3,200 geographic subpopulations constructed using a Voronoi tessellation of the Earth’s sur-

face. Subpopulations are centered around major transportation hubs and integrate data on the

population such as age specific contact patterns [70], short-range (i.e. commuting) and long-

range (i.e. flights) mobility data from the Offices of Statistics for 30 countries on 5 continents

as well as the Official Aviation Guide (OAG) and IATA databases (updated in 2019) [71, 72].

The model has been used extensively to analyze previous epidemic such as the H1N1 2009

pandemic and the Zika epidemic in the Americas [73–75], and to simulate the early spreading

of COVID-19 in mainland China [18].

We use the model to analyze the spatiotemporal spread and magnitude of the COVID-19

epidemic in the continental US. For COVID-19 the model adopts a classic SLIR disease charac-

terization in which individuals can be classified into four compartments: susceptible, latent,

infectious, or removed. Susceptible individuals become latent through interactions with infec-

tious individuals. During both the latent and infectious stages we assume that individuals are

able to travel. Following the infectious period, individuals then progress into the removed

compartment where they are no longer able to infect others, meaning they have either recov-

ered, been hospitalized, isolated, or have died. The disease dynamic does not explicitly describe

the pre-infectious period that is implicitly accounted for in the infectious stage and the length

of the generation time. GLEAM is able to simulate explicitly the disease dynamic at the individ-

ual level.

Approximate Bayesian Computation is used to estimate the posterior distribution of the

basic parameters of the model. The prior distribution of the parameters and the calibration of
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the global model for COVID-19 is reported in [18]. Within the US, we have implemented

domestic airline traffic reductions and local commuting pattern reductions. The magnitude of

these reductions is based on the analysis of data from millions of (anonymized, aggregated,

privacy-enhanced) devices [76] and official airline data from OAG. We consider two major

social distancing periods in the US. The first period includes mitigation policies widely

adopted on March 16, 2020 [20], including system-wide school closures, work from home pol-

icies (smart work), and reduction in casual social interactions in the community. The second

period refers to the issuing in more than 41 states of “stay at home” or “shelter in place” orders

starting on April 1, 2020. The impact of these mitigation policies is reflected in specific contact

patterns calculated in the model’s synthetic populations on the different layers where individu-

als interact: households, schools, workplaces, and in the general community. We also consider

in each state the progression into reopening phases after April 30th, 2020.

As our model considers contact matrices for different settings, namely households, schools,

workplaces and community contacts [70, 77], we quantify the decrease in contacts that indi-

viduals have in each of these environments. To implement school closures in the United States

we follow [78] where authors study the effects of school closure in the context of seasonal influ-

enza epidemics. According to the date when schools were closed in the different states we con-

sider a reduction of contacts in all individuals attending an educational institution [79, 80].

This intervention was applied at state level.

Following the school closure, most US states issued a “stay at home order”. In this case, we

consider that only contacts in the household and essential workplaces were available. Using

the COVID-19 Community Mobility reports [81] we compute the relative reduction on the

number of contacts in workplaces, and community interaction as well as the relative reduction

in the intra-country mobility. From the Google mobility reports we use the field work-
places percent change from baseline to infer contacts reduction in workplaces,

the average of the fields retail and recreation percent change from base-
line and transit stations percent change from baseline for the general

community settings. The Google mobility report provides the percentage change rl(t) on day t

of total visitors to specific locations s with respect to a pre-pandemic baseline. We turn this

quantity into a rescaling factor for contacts such as ωs(t) = ωs(1 + rl(t)/100)
2, by considering

that the number of potential contacts per location scales as the square of the number of

visitors.

When the interventions are relaxed the mobility reduction is relaxed accordingly. Finally

we explore different level of overall transmissibility reduction (0–30%, step 10%) due to the

awareness of population and behavioral changes starting at the date of the state of the emer-

gency in the US.

By using the global calibration we generate an ensemble of epidemic models defined by the

posterior distribution of the parameters and the interventions in each state that provides the

weekly number number of new deaths by using available estimates of infection fatality rate

[21, 23, 82]. For each model that satisfies the global calibration, we use the Akaike Information

Criterion (AIC) with information loss Δi < 9. The selected models define the median and 95%

CI for cumulative infections in each state (Fig 7). The estimated total number of infections can

be adjusted to provide an estimate of COVID-19 symptomatic cases by reducing the predic-

tions by an estimated asymptomatic rate of 40% [22, 23]. In Fig 7, we report the model esti-

mates of the cumulative number of infections on May 16, 2020 compared to the number of

cases reported through that date within each state. We see a strong correlation between the

reported cases and our model’s estimated number of infections, (Pearson’s correlation coeffi-

cient on log-values 0.98, p< 0.001). If we assume that the number of reported cases and simu-

lated infections are related through a simple binomial stochastic sampling process, we find
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that the median ascertainment rate of detecting an infected individual by May 16, 2020 is

11.2% (95%CI: [6.4%, 40.5%]). The detailed model’s results are publicly available at https://

covid19.gleamproject.org/.

Aggregation of estimates

The divergence-based methods predict national COVID-19 symptomatic incidence directly

using national ILI data.mMAP and GLEAM predict national symptomatic incidence using

national death data, while COVID Scaling estimates national symptomatic incidence by aggre-

gating the case estimates from each state.

The Divergence and COVID Scalingmethods provide separate case estimates for each week

within the studied period, which are summed to the total cumulative case estimates.mMAP

and GLEAM provide daily estimates which are further aggregated by week.

Fig 7. (A) Model estimates of the cumulative number of infections using the GLEAMmodel by May 16, 2020 for each
state. (B) Correlation between the number of reported cases of COVID-19 for each state and the model estimates of the
total number of infections by May 16, 2020.

https://doi.org/10.1371/journal.pcbi.1008994.g007
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Supporting information

S1 Fig. Divergence by location. Figures A and B in S1 Fig show the Divergence approach

model fits for all available locations. COVID-19 is treated as an intervention, and we measure

COVID-19 impact on observed CDC ILI, using IDEA model predicted ILI, virology predicted

ILI, and historical projection predicted ILI as counterfactuals. The difference between the

higher observed CDC ILI and the lower predicted ILI is the measured impact of COVID-19.

The impact directly maps to an estimate of COVID-19 ILI-symptomatic case counts. Virol-

ogy-predicted ILI is omitted when virology data is not available. We note that model fit quality

varies by location. CDC reported ILI activity is plotted in blue, historical projection predicted

ILI is plotted in purple, IDEA model predicted ILI is plotted in orange, and virology predicted

ILI is plotted in green. We note that this approach is meaningful only at the beginning of the

outbreak (March 2020), while ILI surveillance systems are still fully operational and before

they are impacted by COVID-19. The disappearance of the divergence does not mean that the

outbreak is over, but rather that the ILI signal is no longer reliable. As a reference, Figures C

and D in S1 Fig show the model fits for the same locations during the COVID-free 2018–2019

flu season.

(PDF)

S2 Fig. Time series plots for all methods. Figures A and B in S2 Fig show the cumulative esti-

mated counts for each week over the entire study period of March 1, 2020 to May 16, 2020,

compared with cumulative reported counts, in each location in the United States. The solid

and dotted lines indicate adjusted and unadjusted methods, respectively. Due to the seasonal

nature of ILI information, estimates from all approaches besidesmMAP and GLEAM are lim-

ited to April 4, 2020.

(PDF)

S1 Text. A third divergence method: Incidence decay and exponential adjustment model.

We explore an additional model-based method for ILI counterfactual estimation for the Diver-

gence approach.

(PDF)

S2 Text. Virology-based estimation. Theoretical backing for virology-based estimation.

(PDF)

S3 Text. COVID scaling sensitivity analysis. Sensitivity analysis on different assumptions of

COVID Scaling.

(PDF)

S4 Text. Mortality-MAP analysis. Theoretical backing for Mortality-MAP method.

(PDF)
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