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Estimating the density of deep 
eutectic solvents applying 
supervised machine learning 
techniques
Mohammadjavad Abdollahzadeh1, Marzieh Khosravi2, Behnam Hajipour Khire Masjidi3, 
Amin Samimi Behbahan4, Ali Bagherzadeh5, Amir Shahkar6 & Farzad Tat Shahdost7*

Deep eutectic solvents (DES) are recently synthesized to cover limitations of conventional solvents. 
These green solvents have wide ranges of potential usages in real-life applications. Precise measuring 
or accurate estimating thermophysical properties of DESs is a prerequisite for their successful 
applications. Density is likely the most crucial affecting characteristic on the solvation ability of DESs. 
This study utilizes seven machine learning techniques to estimate the density of 149 deep eutectic 
solvents. The density is anticipated as a function of temperature, critical pressure and temperature, 
and acentric factor. The LSSVR (least-squares support vector regression) presents the highest accuracy 
among 1530 constructed intelligent estimators. The LSSVR predicts 1239 densities with the mean 
absolute percentage error (MAPE) of 0.26% and  R2 = 0.99798. Comparing the LSSVR and four empirical 
correlations revealed that the earlier possesses the highest accuracy level. The prediction accuracy 
of the LSSVR (i.e., MAPE = 0. 26%) is 74.5% better than the best-obtained results by the empirical 
correlations (i.e., MAPE = 1.02%).

The separation-based equipment has always been an accompanied part of chemical  processes1, pharmaceutical 
 industries2, water/wastewater treatment  processes3–5, and environmental  protection6. The separation process 
primary responsibility is to remove contaminants from feed stocks and effluent liquid and gas streams, purify final 
products, and recover unreacted  materials7. Although diverse separation processes have already been established, 
the solvent-based technique has a wider range of applications.

The green chemistry principles introduced by Anastas and Warner suggested constructing chemical processes 
that eliminate or at least reduce utilizing/generating harmful  substances8. Since the traditional organic solvents 
undesirably impact the ecosystem and human health, researchers have paid great attention to synthesizing green, 
sustainable, and environmentally-friendly solvents. Attempts to fulfill this objective have resulted in suggesting 
supercritical  fluids9, renewable  solvents10, liquid  polymers11, and ionic  liquids12.

Deep eutectic solvents (DES) have recently been recommended as materials that have the favorable features of 
ionic liquids and cover their undesirable  characteristics13–16. Deep eutectic solvents have readily been synthesized 
by mixing two main agents, i.e., hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA)17. Hydrogen 
bond formations between HBA and HBD resulted in synthesizing a mixture with a melting point highly smaller 
than its  ingredient17. Generally, deep eutectic solvents are biodegradable, inexpensive, non-toxic, non-volatile, 
thermally/chemically stable, and easy to  manufacture17.

Despite a short life of deep eutectic solvents, they have engaged in diverse applications, including material 
 synthesis18, separation  processes13,  nanotechnology19, environmental  protection17,  biotechnology20, and phar-
maceutical  processing21.
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The accurate values of volumetric properties of deep eutectic solvents, like density, are essential for feasibility 
study and detailed design of any possible industrial usages of  DESs22. Moreover, selecting an appropriate DES 
with the desired density is an arduous task to be accomplished through laboratory-scale investigations.

Therefore, constructing a predictive tool to anticipate the density of deep eutectic solvents may be helpful in 
this regard. Although a few empirical correlations have technically been built for estimating the density of DESs 
(see Sect. 3.1), to the best of our knowledge, no intelligent scheme has been suggested yet. Hence, this work 
utilizes five intelligent schemes for calculating the DES’s density from some available variables, i.e., temperature 
and DES’s inherent features (acentric factor and critical pressure and temperature) and compares their prediction 
accuracy. This is the most comprehensive modeling study yet conducted for mechanizing the DES’s characteriza-
tion. The databank includes massive laboratory-scale density measurements gathered from the literature to certify 
that the suggested paradigms are general and robust. The reliability of the constructed intelligent estimators is 
higher than the other correlations proposed in the literature.

Laboratory-measured datasets
The objective of the current study is constructing an intelligent tool to approximate the density of deep eutectic 
solvents precisely. Identical to the regression-based  correlation23, all intelligent methods also need a laboratory-
measured database to adjust their parameters and test their prediction  reliability24,25. Thus, 1239 experimentally 
measured datasets for the density of deep eutectic solvents have been gathered from thirty references and engaged 
in the model development/validation stage. The summary of the collected density data has been presented in 
Table 1. This table introduces the name of hydrogen bond donors and hydrogen bond acceptors of the consid-
ered deep eutectic solvents. As Table 1 shows, the gathered databank includes thirteen HBA and forty-two HBD 
ingredients. This table also indicates the number of measurements and ranges of the working temperature and 
measured density.

Critical pressure, critical temperature, and acentric factor. This study aims to build a single model 
to anticipate the density of 149 various deep eutectic solvents. Therefore, it is mandatory to include inherent 
characteristics of these materials in the list of independent variables. The three-parameter corresponding state 
theory explains that each material has its own specific acentric factor, critical temperature, and critical  pressure26. 
Hence, these parameters could help the machine learning method distinguish different deep eutectic solvents 
and discriminate among their density  values27. Haghbakhsh et al.28 utilized the improved Lydersen-Joback–Reid 

Table 1.  Summary of the reported laboratory-measured density for diverse deep eutectic solvents in the 
literature.

HBA agent HBD agent Temperature range (K) Density range (kg/m3) Numbers of data References

Acetyl choline chloride (HBA #1)
1,2,4-triazole, D-Fructose, D-Glucose, 
D-Mannose, D-Ribose, D-Xylose, Guaiacol, 
Imidazole, Levulinic acid

293.15–363.15 1089.5–1275.0 120 13–16

Allyl triphenylphosphonium bromide (HBA 
#2) Diethylene glycol, Triethylene glycol 293.15–343.15 1108.4–1201.1 66 17

Benzyl tripropyl ammonium Chloride (HBA 
#3)

Ethylene glycol, Glycol, Lactic acid, Oxalic 
acid, Phenol 293.15–348.15 1027.6–1263.0 56 30

Betaine (HBA #4) Lactic acid, Levulinic acid 293.15–343.15 1126.6–1208.9 32 31

Benzyldimethyl (2-hydroxyethyl) ammo-
nium chloride (HBA #5)

D-Fructose, D-Glucose, D-Mannose, 
D-Ribose, D-Xylose 293.15–353.15 1192.0–1262.0 65 14

Choline chloride (HBA #6)

1,2-propanediol, 1,4-butanediol, 2,3-butan-
ediol, Acetamide, Citric acid, D-Fructose, 
D-Glucose, D-Mannose, D-Ribose, 
D-Sorbitol, D-Sucrose, D-Xylose, Ethylene 
glycol, Glycolic, Glycolic acid, Guaiacol, Lev-
ulinic acid, Malonic acid, N-furfuryl alcohol, 
O-Cresol, Oxalic acid, P-Chlorophenol, 
P-Cresol, Phenol, p-Toluenesulfonic acid, 
Tartaric acid, Triethylene glycol, Urea, Xylitol

283.15–368.15 1019.7–1350.0 439 14–16,19,32–48

Diethylamine hydrochloride (HBA #7) Guaiacol 293.15–323.15 1075.8–1106.1 12 15

L-proline (HBA #8) Lactic acid, Levulinic acid 293.15–343.15 1164.0–1265.1 22 31

Methyl triphenylphosphonium bromide 
(HBA #9) Ethylene glycol, Glycerol 298.15–368.15 1168.8–1306.4 105 47,49

N, N diethylenethanol ammonium chloride 
(HBA #10) Ethylene glycol, Glycerol 298.15–368.15 1054.6–1220.1 110 33,47

Tetrabutylammonium chloride (HBA #11)
Arginine, Aspartic acid, Ethylene glycol, 
Glutamic acid, Glycerol, Phenylacetic acid, 
Propionic acid, Triethylene glycol, Levulinic 
acid

288.15–353.15 928.0–1154.0 158 16,17,50,51

Tetraethylammonium bromide (HBA #12) Levulinic acid, Ethylene glycol, Glycerol 293.15–343.15 975.7–1177.4 33 16,52

Trimethylglicine (HBA #13) 2-Chloro benzoic acid, Benzoic acid, Man-
delic acid, Phenylacetic acid 298.15–373.15 1110.0–1290.0 21 53



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4954  | https://doi.org/10.1038/s41598-022-08842-5

www.nature.com/scientificreports/

group  contribution12 and the Lee-Kesler mixing  rules29 to estimate acentric factor and critical temperature/pres-
sure of different deep eutectic solvents.

Table 2 presents the range of these inherent characteristics for all considered deep eutectic  solvents28. The 
supplementary excel files includes all experimental databank utilized in the current study.

In order to reduce the table size, the reported values have been presented for deep eutectic solvents based 
on their hydrogen bond acceptor type. Specific values of the acentric factor, critical temperature, and critical 
pressure for each deep eutectic solvent can be found in Haghbakhsh et al.  article28.

Estimation scenarios for density of deep eutectic solvents
The literature has suggested several empirical correlations for estimating the liquid’s density. Furthermore, the 
current study focuses on seven machine learning methods to anticipate the density of 149 deep eutectic solvents. 
The mathematical formulation/background of the available empirical correlations and machine learning methods 
has been briefly reviewed in this section.

Empirical correlations. Rackett correlation. Rackett’s correlation is likely the first equation developed 
to calculate the saturated liquid’s  density54. As Eq. (1) explains, the molar volume ( ν ) is estimated as a function 
of temperature (T) and critical pressure (Pc), molar volume ( νc ), and temperature (Tc). R and Tr show the gas 
constant and reduced temperature (Eq. 2), respectively.

Equation (3) is then possible to be used to reach the density ( ρ ) from the molecular weight (M) and estimated 
molar volume.

Although Rackett’s correlation was initially suggested for the saturated liquid’s density, it has also presented 
good predictions for the deep eutectic  solvent55.

Spencer and Danner correlation. Spencer and Danner incorporate a base molar volume measurement ( νref  ) at 
a base temperature ( Tref  ) in Rackett’s  correlation56. Equations (4) and (5) introduce the modified Rackett model, 
i.e., the Spencer and Danner correlation.

(1)ν = (RTc/Pc)(Pcνc/RTc)
1+(1−Tr )

0.2857

(2)Tr = T/Tc

(3)ρ = M/ν

(4)ν = νref Z
(1−Tr )

0.2857−
[

1−
(

Tref /Tc

)]0.2857

Table 2.  The reported critical pressure, critical temperature, and acentric factor for the considered deep 
eutectic  solvents28.

HBA agent HBD agent Range of Tc (K) Range of Pc (MPa) Range of ω (-)

Acetylcholine chloride 1,2,4-triazole, D-Fructose, D-Glucose, D-Mannose, D-Ribose, 
D-Xylose, Guaiacol, Imidazole, Levulinic acid 635.41–846.26 2.3489–4.7708 0.4154–1.4097

Allyl triphenylphosphonium bromide Diethylene glycol, Triethylene glycol 696.23–817.24 2.5162–3.4033 0.9700–1.0819

Benzyl tripropyl ammonium chloride Ethylene glycol, Glycol, Lactic acid, Oxalic acid, Phenol 644.10–744.01 2.7293–3.7822 0.5152–1.2862

Betaine Lactic acid, Levulinic acid 668.50–701.24 3.8938–4.7230 0.6195–0.8755

Benzyldimethyl (2-hydroxyethyl) ammonium chloride D-Fructose, D-Glucose, D-Mannose, D-Ribose, D-Xylose 843.35–908.27 2.1009–2.4724 1.3871–1.5684

Choline chloride

1,2-propanediol, 1,4-butanediol, 2,3-butanediol, Acetamide, 
Citric acid, D-Fructose, D-Glucose, D-Mannose, D-Ribose, 
D-Sorbitol, D-Sucrose, D-Xylose, Ethylene glycol, Glycolic, 
Glycolic acid, Guaiacol, Levulinic acid, Malonic acid, N-furfu-
ryl alcohol, O-Cresol, Oxalic acid, P-Chlorophenol, P-Cresol, 
Phenol, p-Toluenesulfonic acid, Tartaric acid, Triethylene 
glycol, Urea, Xylitol

600.98–1084.19 2.4301–5.2851 0.4770–1.5011

Diethylamine hydrochloride Guaiacol 680.55–694.99 4.3476–4.5308 0.4659–0.4737

L-proline Lactic acid, Levulinic acid 721.95–745.61 4.2880–4.8538 0.7044–0.8243

Methyl triphenylphosphonium bromide Ethylene glycol, Glycerol 666.50–843.78 2.8329–4.2132 0.9031–1.2929

N, N diethylenethanol ammonium chloride Ethylene glycol, Glycerol 604.66–699.38 3.2396–4.4874 0.9195–1.3207

Tetrabutylammonium chloride
Arginine, Aspartic acid, Ethylene glycol, Glutamic acid, 
Glycerol, Phenylacetic acid, Propionic acid, Triethylene glycol, 
Levulinic acid

588.75–808.05 1.4380–4.1852 0.6212–1.3576

Tetraethylammonium bromide Levulinic acid, Ethylene glycol, Glycerol 687.77–793.24 1.9639–2.8859 0.6275–1.3155

Trimethylglycine 2-Chloro benzoic acid, Benzoic acid, Mandelic acid, Pheny-
lacetic acid 711.92–780.73 3.5488–4.0881 0.5609–0.8301
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Mjalli et al. correlation. Mjalli et al.57 suggested a technical correlation for the density of deep eutectic solvents 
by reformulating the Spencer and Danner model. Equations (6) and (7) express the mathematical shape of the 
developed correlation by Mjalli et al.57.

Haghbakhsh et al. correlation. Haghbakhsh et al. recently proposed a correlation for calculating the density 
of deep eutectic solvents from the working and critical temperatures, acentric factor (ω), and critical molar 
 volume28.

It can be seen that all empirical correlations utilize the temperature and inherent characteristics of the material 
(a combination of the νc,  Pc,  Tc, and ω) to formulize the liquid’s density. Since the first three inherent properties 
 (Tc,  Pc, and νc) are related through the following equation, it is unnecessary to utilize all of them.

Therefore, the current study only utilizes temperature,  Tc,  Pc, and ω to estimate the DES’s density employing 
different intelligent estimators (Eq. 11).

Computational intelligent methods. Wide ranges of supervised and unsupervised artificial intelligence 
techniques have been suggested and applied in different modeling  studies58–63. The working procedures of the 
used machine learning methods, i.e., least-squares support vector regression (LSSVR), hybrid neuro-fuzzy sys-
tem, and five types of artificial neural networks have been briefly explained in this section.

Least‑squares support vector regression. This intelligent estimator employs a particular equation (i.e., linear, 
Gaussian, and polynomial kernel function) to transfer original independent variables ( ξ ) to a multi-dimensional 
computational domain. The following equation defines these functions.

The superscript of T shows the transpose operation. In addition, ε , σ , and δ are the kernel-related parameters.
It is then possible to linearly relate the dependent ( γ ) to the independent ( χ ) variables in this new computa-

tional domain utilizing Eq. (13).

In Eq. (13), γLSSVR represents the estimated target by the least-squares support vector regression. Furthermore, 
w and b are adjustable coefficients of this intelligent model. In summary, the kernel type is the main topology 
feature of the LSSVR that should be determined by a practical scenario like the trial-and-error  process64.

The detailed working process of the least-squares support vector machine has recently been explained by 
Nabavi et al.64.

Artificial neural networks. This neuron-based machine learning method is the most widely-used tool as either 
 estimator65,66 or  classifier67. The working process of the artificial neural network is handled by a combination of 
linear (LPart) and non-linear (NLPart) operations conducted by the neuron as  follows68:

(5)Z =
(

νref Pc/RTc

)

[

1+
(

1−
(

Tref /Tc
))0.2857

]−1

(6)ν = νref Z
(1−Tr )

2.2857−
[

1−
(

Tref /Tc

)]2.2857

(7)Z =
(

νref Pc/RTc

)[0.2083+
(

Tref /Tc
)

]
2.2857

(8)ρ = α − 4.64× 10−4 × T

(9)α = −1.13× 10−6 × T2
c + 2.566× 10−3 × Tc + 0.2376× ω0.2211 − 4.67× 10−4 × νc

(10)Pc × νc = R × Tc

(11)ρDES
pred = f

(

T , PDESc ,TDES
c ,ωDES

)

(12)ϕ
�

ξi , ξj
�

=











ξTi ξj Linear
�

ξTi ξj + ε
�σ

Polynomial

exp
�

−
�

�ξi − ξj
�

�

2
/2δ2

�

Gaussian

(13)γLSSVR(χ) = wTϕ(χ)+ b

(14)LPart = �w�ξ + b

(15)NLPart = φ

(

�w�ξ + b
)
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w, b, and φ are weight and bias coefficients and activation function, respectively. Although a linear activation 
function exists, the non-linear, continuous, and differentiable ones often provide artificial neural networks with 
a better generalization  ability69. Equation (16) defines several widely-used activation functions in the field of 
artificial neural networks.

Different artificial neural networks can be built by inserting neurons in several successive neuronic layers. The 
multilayer  perceptron70,  recurrent71–73, cascade  feedforward70, radial basis  function70, and general  regression74 
neural networks are those neuron-based estimators utilized in the current study. Interested readers are referred 
to the book written by Hagan et al. for the detailed understanding of the working procedure of these artificial 
neural  networks75.

Hybrid neuro‑fuzzy systems. The idea of combining the artificial neural  network76,77 and fuzzy  logic78,79 has 
resulted in a new class of machine learning, namely adaptive neuro-fuzzy inference  system80,81. This method 
estimates a target response employing five successive layers (i.e., fuzzification, rule, normalization, defuzzifica-
tion, and output)82. Shojaei et al. have comprehensively described the mathematical operations performed in 
each layer of the adaptive neuro-fuzzy inference  system82. The membership function utilized in the fuzzification 
 layer83, numbers of the  cluster80, cluster  radius84, and training  algorithm25 are the main structural features that 
are often regulated by the trial-and-error scenario.

Results and discussions
This section comprehensively explains the followed procedure to choose the best intelligent method for estimat-
ing the DES’s density and determining its structural features. The accuracy of this smart approach and available 
correlations in the literature has then been compared. Several numerical and graphical analyses have also been 
employed for further monitoring the accuracy of the best model for predicting the density of deep eutectic 
solvents.

Constructing intelligent models. Topology determination. The topology of machine learning meth-
ods is often determined by trial-and-error  practice85–87. This practical scenario changes the core features of a 
machine learning scheme and monitors its accuracy in diverse stages of the model  development88–90. Table 3 
specifies the core features of the considered intelligent techniques and their investigation range during the trial-
and-error procedure. The literature approved that artificial neural networks with one hidden layer are accurate 
enough to simulate a wide range of  problems72,91–93. Consequently, the multilayer perceptron (MLP), recurrent 
(RNN), cascade feedforward (CFF), general regression (GR), and radial basis function (RBF) have been fabri-
cated with only one hidden layer.

Selecting the best topology of the intelligent methods. The core features of the machine learning methods have 
been changed according to the reported values in Table 3, both training and testing stages have been performed, 
and accuracy has been monitored utilizing several statistical indexes. Various uncertainty criteria, including 
MAPE (mean absolute percentage error), RMSE (root mean square error), RAPE (relative absolute percentage 
error), MAE (mean absolute error), and  R2 (regression coefficient), have been utilized to accuracy monitor of the 
developed intelligent scenarios and selecting the most precise ones.

Equations (17) to (21) express the mathematical shapes of the MAPE, MAE, RAE, RMSE, and  R2, respectively.

(16)φ(LPart) =















LPart Linear
1

1+exp (−LPart) Logarithm sigmoid
2

1+exp (−2×LPart) − 1 Tangent sigmoid

exp
�

−LPart2/2δ2
�

Gaussian

Table 3.  The name and range of deciding features of each intelligent estimator during the trial-and-error 
process.

Model name Deciding features changed during the trial-and-error process Numbers of model

LSSVR Types of the kernel function, i.e., linear, polynomial, and Gaussian 210

MLP Numbers of the hidden neuron, i.e., 1, 2, …, 11 220

CFF Numbers of the hidden neuron, i.e., 1, 2, …, 10 200

GR Spread values of the Gaussian activation function, i.e., 1 ×  10–6, …, 10 220

RBF Numbers of the hidden neuron, i.e., 1, 2, …, 11
Spread values of the Gaussian activation function, i.e., 1 ×  10–6, …, 10 220

RNN Numbers of the hidden neuron, i.e., 1, 2, …, 6 180

ANFIS
Types of membership function, i.e., subtractive and c-mean clustering
Numbers of the cluster, i.e., 2,3, …, 12
Values of the cluster radius, i.e., 0.5, 0.53571, …, 1
Training algorithm, i.e., hybrid and backpropagation

360



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4954  | https://doi.org/10.1038/s41598-022-08842-5

www.nature.com/scientificreports/

These equations only need the actual ( ρexp ), predicted ( ρpred ), and average ( ρave
exp ) density values and numbers 

of the dataset (n) to measure the accuracy of any constructed model.
The most precise density estimations obtained by each machine learning method have been reported in 

Table 4. The accuracy monitoring approves that 1) the Gaussian function is the best kernel for LSSVR, 2) eleven 
hidden neurons is the best feature for the MLP, 3) ten hidden neurons provides the CFF with the best perfor-
mance, 4) spread factor of 0.04312 and 1053 hidden neurons should be used in the GR structure, 5) the RBF is 
better to construct by spread factor of 1.0526 and eleven hidden neurons, and 6) the ANFIS (adaptive neuro-fuzzy 
inference systems) with the subtractive clustering membership function, twelve clusters, and hybrid training 
algorithm has the best performance.

Although all these prediction accuracies confirm a high level of consistency with the laboratory-measured 
density, the LSSVR and RBF neural network present the highest and lowest precise results, respectively. For 
systematical approving this claim, the subsequent analysis has ranked these selected intelligent models based 
on their prediction accuracy in different stages of model development.

(17)MAPE% = (100/n)×

n
∑

i=1

(∣

∣ρexp − ρpred
∣

∣/ρexp
)

i

(18)MAE = (1/n)×

n
∑

i=1

∣

∣ρexp − ρpred
∣

∣

i

(19)RAPE% = 100×

n
∑

i=1

∣

∣ρexp − ρpred
∣

∣

i
/

n
∑

j=1

∣

∣

∣
ρexp − ρave

exp

∣

∣

∣

i

(20)RMSE =

√

√

√

√

n
∑

i=1

(

ρexp − ρpred
)2

i
/n

(21)R2 = 1−

{

n
∑

i=1

(

ρexp − ρpred
)2

i
/

n
∑

i=1

(

ρexp − ρave
exp

)2

i

}

Table 4.  The most precise prediction obtained by different intelligent estimators (1053 training and 186 
testing datasets).

Model name Datasets MAPE% MAE RAPE% RMSE R2

LSSVR

Training data 0.25 2.86 3.94 5.64 0.99799

Testing data 0.30 3.38 4.75 5.68 0.99794

Training + Testing 0.26 2.94 4.06 5.65 0.99798

MLP

Training data 1.04 11.75 16.54 18.16 0.97805

Testing data 1.10 12.47 15.68 19.98 0.97801

Training + Testing 1.05 11.86 16.39 18.44 0.97804

CFF

Training data 1.16 13.29 18.12 18.53 0.97844

Testing data 1.16 13.20 19.88 18.61 0.97345

Training + Testing 1.16 13.28 18.36 18.54 0.97780

GR

Training data 0.95 10.73 14.82 16.92 0.98246

Testing data 1.52 17.10 23.72 27.70 0.94916

Training + Testing 1.04 11.68 16.16 18.94 0.97758

RBF

Training data 2.98 33.87 46.13 44.17 0.86954

Testing data 2.56 29.32 44.33 38.72 0.88919

Training + Testing 2.92 33.18 45.88 43.39 0.87158

RNN

Training data 2.52 28.57 39.49 36.93 0.90923

Testing data 2.58 28.95 40.21 39.10 0.89494

Training + Testing 2.53 28.63 39.59 37.26 0.90701

ANFIS

Training data 1.17 13.40 18.61 19.22 0.97605

Testing data 1.21 13.89 18.76 20.23 0.97402

Training + Testing 1.17 13.47 18.63 19.37 0.97573
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Selecting the best intelligent model using the ranking analysis. The ranking analysis is a well-established proce-
dure to arrange several models based on their performance. The previous step measured the prediction ability of 
the seven selected intelligent models using five well-known statistical indexes. Now the ranking analysis utilizes 
the numerical values of these statistical indexes to arrange them from the best to the worst model. Equation (22) 
indicates that the selected models have been ranked based on their average rankings over five statistical criteria 
(indx).

This ranking analysis has been separately applied to the model’s performances during the learning and test-
ing stages. Furthermore, the rank orders of the chosen intelligent models have also been tracked over the whole 
1239 datasets. Figure 1 displays the rank order of the LSSVR, artificial neural network models (i.e., MLP, RNN, 
RBF, CFF, and GR), and ANFIS over three different databases. It can be easily inferred that the LSSVR with the 
three first ranking places and the RBF neural network with the three seventh ranking places are the best and 
worst tools for calculating the density of deep eutectic solvents. The ranking order of other constructed models 
has also displayed in this figure.

In summary, it can be claimed that the LSSVR equipped with the Gaussian kernel function is the most trustful 
model for calculating the density of deep eutectic solvents from temperature and inherent characteristics (i.e., ω, 
Tc, and Pc) of the involved substance. This highly accurate model anticipates the density of 1239 deep eutectic 
solvents with the MAPE = 0.26%, MAE = 2.94, RAPE = 4.06%, RMSE = 5.65, and  R2 = 0.99798.

Validation stage. The LSSVR versus empirical correlations. The accuracy of the suggested LSSVR and four 
empirical correlations in the literature (Rackett, Spencer and Danner, Mjalli et al., and Haghbakhsh et al.) for 
estimating 1239 densities of the deep eutectic solvent has been compared in the current section. The results of 
this comparison utilizing the MAPE have been described in Fig. 2. The observed results confirm that the LSSVR 
is the most accurate tool for estimating the density of deep eutectic solvents. The LSSVR anticipates 1239 density 
samples of 149 deep eutectic solvents with the MAPE = 0.26%, while the most accurate empirical correlation 
(Spencer and Danner model) presents the MAPE = 1.02% for an entirely similar database. The suggested LSSVR 
improves the best previously achieved accuracy by more than 74%.

Validation using graphical inspections. The anticipated densities by the LSSVR ( ρLSSVR ) versus their counterpart 
experimental values (i.e., cross-plot) have been shown in Fig. 3. This cross-plot separately presents the LSSVR 
predictions for both learning and testing steps. Two straight lines associated with the relative deviation percent 
(RD%) of − 2% and + 2% have also been added to this figure. Equation (23) expresses the formula of the RD%.

(22)Rank = round

(

5
∑

indx=1

Rankindx/5

)

(23)RD% = 100×
[(

ρexp − ρLSSVR
)

/ρexp
]

i
i = 1, 2, . . . , n
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Figure 1.  The ranking order of the intelligent estimators in different stages of the model development.
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Figure 2.  The prediction accuracy of the LSSVR and four empirical correlations in the  literature28 to estimate 
the DES’s density of a completely similar database.
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Figure 3 displays that about ten density samples have been anticipated with the RD% of lower than − 2% and 
higher than + 2%. The excellent ability of the built LSSVR to estimate the density of deep eutectic solvents can 
be readily approved by this observation.

The kernel density estimation is a reliable method for visually inspecting the compatibility between a given 
variable’s actual and anticipated values. As Fig. 4 shows, this method depicts the cumulative distribution func-
tion (CDF) as a function of the experimental values of a given variable. Figure 4A–C illustrate the compatibility 
between actual and anticipated density values over the training and testing subdivisions and the whole database. 
Excluding the intermediate values of the DES’s density, a remarkable consistency can be seen between actual and 
predicted values. Moreover, it can be detected that both the experimental data and the LSSVR predictions have 
a standard Gaussian distribution shape.

The magnitude of difference between actual and predicted densities (the residual error, i.e., RE) is another 
statistical index applied to monitor the prediction accuracy of the built LSSVER. The mathematical expression 
of the RE is given in Eq. (24).

Based on reported results in Fig. 5, 61% of the available samples have been estimated with a residual error of 
less than 2 kg/m3. Moreover, the LSSVR successfully anticipated 84% of the experimental databank with an RE 
of lower than 5 kg/m3. Only 16% of the gathered database has been estimated with a residual error of higher than 
5 kg/m3. All these observations confirm the excellent compatibility between calculated densities by the LSSVR 
and their related actual measurements.

Checking the reliability of the gathered database. The gathered experimental data had a central 
role during the development/validation/selection of machine learning methods hereinbefore. Furthermore, this 
experimental databank has been used to compare the accuracy of empirical correlations and the selected LSSVR. 

(24)REi =
(

ρexp − ρLSSVR
)

i
i = 1, 2, . . . , n

Figure 4.  Utilizing the kernel density estimation method to check the LSSVR validity in the training (A) and 
testing (B) stages and against whole the databank (C).
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The entire previous findings are valid only if the gathered laboratory-measured densities have an acceptable 
validity level. The leverage is a well-trusted technique to detect both valid and outlier data in an experimentally-
measured  database94. This technique plots the standardized residuals (SR) against the Hat index to accomplish 
its  duty89. Equation (27) explains that the SR can be obtained by dividing the average value ( REave ) and standard 
deviation (SD) of the residual error. Equations (25) and (26) give the REave and SD formula, respectively.

Furthermore, numerical values of the Hat index (HI) can be reached by applying Eq. (28) on the matrix of 
the independent variables ( ξ)95. The superscripts of T and ‑1 stand for the transpose and inverse operations, 
respectively.

Figure 6 shows the plot of SR versus the HI values associated with the DES’s density databank. The leverage 
method states that the region bounded by the -3 < SR <  + 3 and HI lower than the critical leverage is valid, and 
all other positions are the suspect  domain96. Equation (29) helps calculate the critical leverage (CL) from the 
number of independent variables (NIV) and experimental data points (n)83,95. Having four independent variables 
and 1239 data points, the CL equals 0.0121.

The leverage method approves that 1210 out of 1239 data points have appeared in the valid zone, and only 29 
density samples may be outlier measurements. It can be claimed that the validity of the gathered database has 
been approved now, and all previous findings based on this databank are trustful.

LSSVR accuracy for density predicting each deep eutectic solvent. It may be a good idea to moni-
tor the prediction accuracy of the LSSVR against the deep eutectic solvents with the same HBA agent. Since the 
average relative deviation (Eq. 30)97 clarifies both underestimated and overestimated predictions, it has been 
selected to measure the LSSVR accuracy in this stage.

(25)REave = (1/n)×

n
∑

i=1

REi

(26)SD =

√

√

√

√

n
∑

i=1

(REi − REave)2/n

(27)SRi = REi/SD i = 1, 2, ..., n

(28)HI = ξ

(

ξTξ

)

ξ−1

(29)CL = 3× (NIV + 1)/n

(30)ARD% = (100/n)×

n
∑

i=1

[(

ρexp − ρLSSVR
)

/ρexp
]

i

Figure 5.  The cumulative frequency of the residual error (RE) of the LSSVR for estimating the DES’s density.
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Figure 7 states that the density of thirteen classes of the deep eutectic solvent with the HBA#1 to HBA#13 
(see Table 1) has been estimated with the ARD ranges from − 0.24 to + 0.17%. Those deep eutectic solvents 
having the HBA #1, 9, and 13 have been underestimated by the LSSVR. On the other hand, the DESs with the 
HBA #3, 5, and 12 have been overestimated. The ARD% associated with the other deep eutectic solvent classes 
is almost equal to zero.

Investigating the effect of temperature, and HBD/HBA types. The effect of temperature on the 
density of deep eutectic solvents with the specific HBA agent (i.e., Choline chloride) and different HBD sub-
stances can be deduced from Fig. 8. This figure reports both experimentally-measured densities and their coun-
terparts simulated values by the LSSVR. This figure readily justifies an excellent agreement between experi-
mental and predicted density values. The LSSVR effectively discriminates between the effect of HBD type and 
working temperature on the density of the Choline chloride-based DESs and accurately estimates all distinct 
data points. Like the conventional liquid, the density of deep eutectic solvents decreases by increasing the work-
ing temperature. Increasing the intermolecular void volume in the DES’s body by increasing the temperature has 
been introduced as responsible for this  observation98.

The density variation of deep eutectic solvents with the temperature and HBA type has been exhibited in 
Fig. 9. All DESs in this analysis have glycerol as their HBD agent. A high level of compatibility between actual 
density values and their counterparts estimated by the LSSVR can be seen in Fig. 9. The LSSVR distinguishes 
the effect of HBA type and temperature on the DES’s density and accurately anticipates all individual density 
data points.

Simple flowchart of our study
A simple and understandable flowchart for the stages followed in the current research study has been presented 
in Fig. 10. This figure can be broken down into four distinct parts as follows:

1. Developing machine learning methods
2. Comparing accuracy performances of the machine learning methods and empirical correlations
3. Selecting the model with the highest prediction accuracy
4. Utilizing the model chosen for further analyzing purposes

Conclusion
The accuracy of seven machine learning methods and four empirical correlations has been compared to find the 
highest accurate tool for estimating the density of 149 deep eutectic solvents. Huge performed statistical analyses 
proved that the least-squares support vector regression equipped with the Gaussian kernel function is more 
accurate than the other methods investigated. This suggested scheme predicted 1239 experimentally-measured 
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Figure 8.  The excellent performance of the LSSVR model for correctly identifying the HBD effect on the 
density of Choline chloride as an HBA.
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densities with the MAPE = 0.26%, MAE = 2.94, RAPE = 4.06%, RMSE = 5.65, and  R2 = 0.99798. Visual inspections 
utilizing the cross-plot, kernel density estimation, residual error, and average relative deviation have also justi-
fied a high level of compatibility between LSSVR predictions and their experimentally-measured counterparts. 
Investigating the experimental database employing the leverage technique resulted in founding 1210 valid and 29 
suspect information. Furthermore, the fabricated LSSVR successfully infers the effect of temperature and HBA 
and HBD types on the density of the deep eutectic solvent. The current research may be viewed as an initiative 
towards constructing reliable models for anticipating DESs properties. Such a model promotes an efficient solvent 
synthesis that can help design and simulate new processes utilizing the DES.
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Figure 9.  Monitoring the ability of the LSSVR model to anticipate the HBA effect on the density of the glycerol 
as an HBD.
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