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Abstract

Advances in recording technologies have given neuroscience researchers access to large amounts
of data, in particular, simultaneous, individual recordings of large groups of neurons in different
parts of the brain. A variety of quantitative techniques have been utilized to analyze the spiking
activities of the neurons to elucidate the functional connectivity of the recorded neurons. In the
past, researchers have used correlative measures. More recently, to better capture the dynamic,
complex relationships present in the data, neuroscientists have employed causal measures—most
of which are variants of Granger causality—with limited success. This paper motivates the
directed information, an information and control theoretic concept, as a modality-independent
embodiment of Granger's original notion of causality. Key properties include: (a) it is nonzero if
and only if one process causally influences another, and (b) its specific value can be interpreted as
the strength of a causal relationship. We next describe how the causally conditioned directed
information between two processes given knowledge of others provides a network version of
causality: it is nonzero if and only if, in the presence of the present and past of other processes,
one process causally influences another. This notion is shown to be able to differentiate between
true direct causal influences, common inputs, and cascade effects in more two processes. We next
describe a procedure to estimate the directed information on neural spike trains using point process
generalized linear models, maximum likelihood estimation and information-theoretic model order
selection. We demonstrate that on a simulated network of neurons, it (a) correctly identifies all
pairwise causal relationships and (b) correctly identifies network causal relationships. This
procedure is then used to analyze ensemble spike train recordings in primary motor cortex of an
awake monkey while performing target reaching tasks, uncovering causal relationships whose
directionality are consistent with predictions made from the wave propagation of simultaneously
recorded local field potentials.
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1 Introduction

Due to recent advances in multiple electrode recording techniques, neuroscientists are now
able to record the simultaneous, individual activity of hundreds of neurons in various
regions of the brain. Many researchers are asking questions about how the spiking of
individual neurons are influencing and influenced by the spiking activity of specific
neighboring neurons, the local ensemble spiking activity, and the spiking activity in other
regions of the brain. The dynamic, complex interactions between neurons often make
thorough analysis of the large volumes of data, such as identifying the complete, functional
topology of the recorded neurons, quite difficult. However, since such analyses could
provide great insight into brain function, there has been a concentrated effort by researchers
to develop techniques to perform them.

Past work in analyzing the relationships between multiple, simultaneously recorded neurons
often involved using correlative measures. Quantitative techniques such as cross correlation
(Eguiluz et al. 2005; Diekman et al. 2009), mutual information (Paninski 2003), and
coherence (Salvador et al. 2005) have been employed, as they can provide insight to whether
two or more spike trains are statistically dependent. Such information can be helpful to
discern potential functional connections between pairs of neurons or even groups of neurons.
However, since these measures are correlative, they are symmetric, and thus do not capture
any of the directionality that might be present. For example, even if the spiking activity of
neuron A directly affects the spiking activity of neuron B, but there is no influence in the
other direction, correlative measures would only be able to identify that the spiking activity
of neurons A and B are related.

To address this issue, neuroscientists have recently begun using alternative, causal

measures. The goal of using these measures is to identify the types of relationships between
the spiking activity of the recorded neurons, to distinguish if the relationship between
neurons A and B are mutual (both influence each other) or unidirectional (A influences B,
but B does not influence A). Some of the quantitative techniques that have been used to
identify causal relationships include Granger causality (Granger 1969), extensions of
Granger causality such as directed transfer function (Kaminski and Blinowska 1991),
transfer entropy (Schreiber 2000), and dynamic causal modeling (Friston et al. 2003), among
others.

The aforementioned techniques have been used in a variety of settings in the recent past. In
some situations, they have provided insight into the underlying causal relationships, and
consequently the functional connectivity, of the recorded neurons. However, in other cases,
the complicated relationship structures have led to mis-interpretations (Kamiński et al.
2001).

This paper connects a newly defined information-theoretic concept of “directed
information” to the Granger's philosophical relationship between causality and prediction
(Granger 1969) in a rigorous manner, operating on arbitrary modalities. The estimation
procedure on neural spike trains requires milder assumptions than other techniques and has
strong proven consistency properties. Directed information plays a fundamental role in
information theory, especially in communication with feedback (Massey 1990; Rissanen and
Wax 1987; Kramer 1998; Marko 1973). Within the context of causality, directed
information has been used sparingly to infer the causal structure of gene regulatory networks
(Rao et al. 2006, 2007, 2008; Mathai et al. 2007) and neural data (Amblard and Michel
2010). However, in all the aforementioned papers, either a plug-in estimator (described in
Section 5.1), that is not necessarily statistically consistent was used, or no proposed
estimation schemes were discovered. In this paper, we demonstrate a consistent estimation
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procedure to infer the directed information between two point processes (representing neural
spike trains). Moreover, we extend this notion to define “direct” causal relationships that
uncover causal relationships between networks of spike trains.

This paper is organized as follows. First, in Section 2, definitions and notations are
provided. In Section 3, previously used causal measures will be discussed. Section 4
introduces the directed information as a measure of causal influence. Section 5 develops an
estimation paradigm, which is consistent under appropriate assumptions, to estimate the
directed information from simultaneous recordings. A measure of the strength of each
estimated pairwise influence, along with 95% confidence intervals of the directed
information, are also presented. Section 6 introduces causal conditioning to infer causal
relationships between a network of processes. This is particularly important to differentiate
between true direct causal influences and common inputs or cascade effects. Section 7
demonstrates results of this estimation paradigm on synthetically constructed neural spike
trains, where all pairwise causal relationships (whether there is an influence or not) are
correctly identified. This procedure subsequently is used to effectively uncover the network
structure of relationships between processes and differentiates direct causal influences from
common inputs or cascade effects. This procedure is also used to analyze ensemble spike
train recordings in primary motor cortex of an awake monkey while executing movements
pertaining to target reaching (Wu and Hatsopoulos 2006). The procedure identified strong
structure in the estimated causal relationships, the directionality of which is consistent with
predictions made from the wave propagation of simultaneously recorded local field
potentials (Rubino et al. 2006).

2 Definitions and notations

In this section, we provide probabilistic notations and information-theoretic definitions that
will be used throughout the remainder of the manuscript. Denote definitions with the symbol
≜.

– For integers i ≤ j, define . For brevity, define 

– Throughout this paper,  corresponds to a measurable space that a random variable,
denoted with upper-case letters (X) takes values in, and lower-case values 
correspond to specific realizations.

– We define the probability mass function (PMF) of a discrete random variable by

and the probability density function (PDF) of a continuous random variable by

– The entropy of a discrete random variable is given by

(1)

– The conditional entropy is given by
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(2)

– The chain rule for entropy is given by

(3)

– For two probability distributions P and Q on , the Kullback–Leibler (KL)
divergence is given by

(4)

– The mutual information between random variables X and Y is given by

(5a)

(5b)

(5c)

(5d)

The mutual information is known to be symmetric: I(X; Y) = I(Y; X).

– The chain rule for mutual information is given by

(6)

where the conditional mutual information is given by

(7)

– We denote a random process by X = (Xi : i ≥ 1), with associated PX(·) which induces
the joint probability distribution of all finite collections of X.

– We denote the set of kth order Markov chains as
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with .

– We denote the set of all finite-memory random processes on  as

– We denote the set of stationary and ergodic random processes on  as SE ( )

– The entropy rate and mutual information rate, assuming they exist, are given as
follows

(8)

(9)

– Within the context of point processes, consider the time interval (0, T] as the time

window for which our neural spike train is observed. In this context, define  to be the
set of functions y : (0, T] →  that are non-decreasing, right-continuous, and y0 = 0. In

other words,  is the set of point processes on (0, T]. Succinctly, we can represent a

point process as a sample path  where each jump in y corresponds to the
occurrence of a spike (at that time)

– Consider two random processes X = (Xτ : 0 ≤ τ ≤ T) and .

Define the histories at time t for the point process  as the σ-algebra generated by
appropriate random processes up to time t as:

(10a)

(10b)

It is well known that the conditional intensity function (CIF) completely characterizes
the statistical structure of all well-behaved point processes used in statistical inference
of neural data (Brown et al. 2003). The CIF is defined as (Daley and Vere-Jones 1988):

(11a)
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(11b)

Succinctly, the conditional intensity specifies the instantaneous probability of spiking
per unit time, given previous neural spiking (and, in the scenario when using , also
previous exogenous inputs X). Almost all neuroscience point process models (Brown et
al. 2002) implicitly use this causal assumption in the definition of  given by Eq.
(10a). Examples of how  is interpreted will appear in the experimental results section.

– For a point process  with conditional intensity functions  and

, the likelihood or density of Y at y given x is given by (Brown et al. 2003)

(12)

and analogously, the marginal likelihood or density of Y at y is given by

(13)

We use the ∥ notation to explicitly speak to how these conditional probabilities in Eq.
(11b) are taken with respect to causal histories, specified in Eq. (10b). By discretizing
(0, T] into n = T/Δ intervals of length Δ << 1 so that dy = (dy1, . . . , dyn) with

, we can approximate Eqs. (12) and (13) by

(14)

(15)

where the discrete time index i corresponds to the continuous interval (0, T] at time iΔ.

– Denote the set of GLM point processes with discrete-time (Δ) conditional likelihood
pertaining to a generalized linear model of the conditional intensity: by the function h to
be

The function (h1, . . . , hK) operate on the extrinsic covariate X in the recent past. We
subsequently define GLM (h) as
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3 Previous approaches to identify causal relationships in neural data

3.1 Granger causality and DTF

Granger causality (Granger 1969) has been perhaps the most widely-established means of
identifying causal relations between two times series (Hesse et al. 2003). It operates by
calculating the variances to correction terms for autoregressive models. Given two time
series X = {Xi : i ≥ 1} and Y = {Yi : i ≥ 1}, to determine whether X causally influences Y, Y

is first modeled as an univariate autoregressive series with error correction term Vi:

Then Y is modeled again, but this time using the X series as causal side information:

with Ṽi as the new error correction term. The value of p can be fixed a priori or determined
using a model order selection tool (Akaike 1976; Barron and Cover 1991). The Granger
causality is defined as

(16)

This technique examines the ratio of the variances of the correction terms. If including X in
the modeling improves the model, then the variance of the correction term Ṽl will be lower,
and thus GX→Y > 0. Usually GX→Y and GY→X are compared, and the larger term is taken to
be the direction of causal influence.

The directed transfer function (DTF) (Kaminski and Blinowska 1991) is related to Granger
causality, with the principle difference being that it transforms the autoregressive model into
the spectral domain (Kamiński et al. 2001). Instead of working with univariate and bivariate
models, DTF works with multivariate models for each time series, and so in theory should
improve the modeling, since it can take into account the full covariance matrix for each of
the time series (Kamiński et al. 2001).

These and derivative techniques have been used extensively (Hesse et al. 2003; Uddin et al.
2009; Goebel et al. 2003; Roebroeck et al. 2005; Rogers et al. 2007; Dhamala et al. 2008;
Abler et al. 2006; Korzeniewska et al. 2003; Wang et al. 2007; Brovelli et al. 2004). These
approaches can be attractive because they are generally fast to compute and easy to interpret.
However, because of the sample-variance calculations, they are not necessarily statistically
appropriate for statistical inference questions pertaining to neural spike train data—which
are generally modeled as point processes. Autocorrelations and spectral transforms on point
processes often do not accurately provide meaningful, conceptual interpretations. Moreover,
these approaches do not have strong statistical guarantees of correctly identifying causal
relations. Another issue is that even in cases where they can detect a causal influence, these
approaches do not necessarily identify the extent of the influence (whether A fully causes B
or only partially). It is not clear that the actual values obtained through these methods,
GX→Y, have a physical meaning beyond comparison with the opposite direction (e.g. GX→Y

v.s. GY→X).
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3.2 Transfer entropy

Transfer entropy was developed by Schreiber (2000). It assumes two stochastic processes X
= (Xi : i ≥ 1) and Y = (Yi : i ≥ 1) satisfy a Markov property:

for some known constants J and K. Schreiber defined transfer entropy as:

This term is part of a sum of terms (Eq. (21)) that will be defined as the directed information
(with a Markov assumption applied). Some studies have employed this measure (Chávez et
al. 2003; Gourevitch and Eggermont 2007; Kraskov 2008). This has not been as widely
employed as Granger causality and related measures, principally due to the lack of
convergence properties (Pereda et al. 2005). As no model for the underlying distribution is
suggested, the straightforward approach to estimate the transfer entropy is to use plug-in
estimates, which in general do not have statistical convergence guarantees.

3.3 Dynamic causal modeling

Dynamic causal modeling (DCM) (Friston et al. 2003) is a recently developed procedure
which differs in its approach from previously discussed techniques. DCM models the brain
as a deterministic, causal, dynamic multiple-input and multiple-output (MIMO) system, with
a priori unknown coupling coefficients. Through a series of perturbations and observations,
the potentially time varying coefficients of the system are estimated using Bayesian
inference (Friston et al. 2003). By incorporating dynamic coefficients, DCM could
potentially capture the effects of plasticity, which the aforementioned procedures, which
assume static coefficients, cannot. DCM has been applied to both fMRI studies (Stephan et
al. 2008; Grefkes et al. 2008; Hamandi et al. 2008; Schuyler et al. 2009; Bitan et al. 2005),
and EEG and MEG studies (David et al. 2006). While it has been applied with some success
to certain brain imaging studies, to the authors’ knowledge, it has not been shown to
robustly characterize causal relationships in local recording data such as data obtained with
large electrode arrays. Also, although there are asymptotic convergence results for some of
the coefficients through properties of EM estimation (Friston et al. 2003), the model as a
whole does not have statistically guaranteed convergence properties.

4 Directed information as a robust measure of statistical causality

We will now motivate and introduce a more general measure of statistical causality—
directed information—and discuss how it has a meaningful interpretation of statistically
causal influences in a variety of settings.

4.1 Motivation and setup

4.1.1 Background—To help address the aforementioned issues, consider the construction
of Granger causality. In his original paper, Granger defined causality as “We say that Xt is
causing Yt if we are better able to predict Yt, using all available information [up to time t]
than if the information apart from Xt had been used” (Granger 1969). Despite the generality
of this conceptual definition, his functional definition was restricted to linear models for the
ease of computation and used variances of correction terms in quantifying causality because
variance is easy to compute and understand (Granger 1969).
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Two decades later, Rissanen and Massey, both Shannon award winners, independently
introduced a different functional definition of causality (Rissanen and Wax 1987; Massey
1990). Massey, whose work is based on earlier work by Marko (1973), named the quantity
directed information. Directed information is philosophically grounded on the same
principle as Granger causality: the extent to which X statistically causes Y is measured by
how helpful causal side information of process X is to predicting the future of Y, given
knowledge of Y's past. Unlike Granger causality, directed information is not tied to any
particular statistical model. It operates on log likelihood ratios—which exist for an arbitrary
modality. If we imagine the random processes are all discrete, one interpretation of directed
information is the reduction in the minimum number of bits required to sequentially specify
a source Y given causal knowledge of X. Specifically, the Shannon codelengths are the
“ideal” codelengths (description lengths) of a random source Y (Cover and Thomas 2006)—
using such a code length mapping results in the average description length in bits being
within one bit of its fundamental limit: the entropy H(Y). Shannon codes are a function of
the random sequence's probability distribution:

For example, if a source Y has distribution PY and is jointly distributed with X according to
PX,Y, then the reduction in the minimum number of bits required to specify Y given
knowledge of X is the mutual information:

(17)

where Eq. (17) follows from Eq. (5d). The mutual information is symmetric, and nonzero if
and only if the two random variables are statistically independent. From Eq. (6), for vectors
Xn and Yn, the mutual information can be written as:

(18)

(19)

(20)

where Eq. (18) follows from Eq. (6); Eq. (19) follows from Eq. (7); and Eq. (20) follows
from Eq. (4). The symmetry I(Xn; Yn) = I(Yn; Xn) implies that the mutual information only
measures the correlation between random processes (in the colloquial sense of statistical
dependence), and will be unable to capture directionality of causation.

4.1.2 Definition of directed information—Shannon-award winners Rissanen and
Massey separately modified the mutual information to capture causal influences (Rissanen
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and Wax 1987; Massey 1990), and this new quantity is known as the directed information,
denoted I(X → Y), between two stochastic processes X and Y. With similar work as above:

(21)

(22)

(23)

where Eq. (22) follows from Eq. (7) and Eq. (23) follows from Eq. (4). Alternatively by
applying the chain rule for entropy, the directed information can be written as:

(24)

where the causally conditioned entropy H(Yn ∥ Xn), introduced by Kramer (1998), is defined
as:

(25)

The difference between mutual information (Eq. (19)) and directed information (Eq. (22)) is
the change from Xn to Xi: the directed information takes into the account the causal

influence of process X on the current Yi at each time i.

An important difference between directed information and Granger causality is that directed
information itself is a sum of divergences (Eq. (23)) and thus is well-defined for arbitrary
joint probability distributions (for example, of point processes (Bremaud 1981; Sundaresan
and Verdú 2006)). Moreover, calculation of directed information does not impose any strict
probabilistic structure on the (such as an autoregressive model used for Granger causality).
Consequently, directed information is more flexible as a metric that can be directly
applicable to many modalities, including neural spike trains. As one can determine a “degree
of correlation” (statistical interdependence) by computing the mutual information in bits,
one can also compute the directed information to determine a “degree of causation” in bits.
This quantification allows for an unambiguous interpretation of how much Y is statistically
causally influenced by X.

4.1.3 Directed information and prediction—Directed information has an important
“information gain” interpretation of the divergence with respect to prediction (Cover and
Thomas 2006), related to that of mutual information. The mutual information quantifies the
expected reduction in the total description cost (Shannon code length) of predicting X and Y
separately, as compared to predicting them together (Eq. (5a)). Alternatively,
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the mutual information is equivalent to the description penalty of predicting Y with
knowledge of X as compared to Y by itself. Using the chain rule (Eq. (6)),

the mutual information between sequences Xn and Yn (from PXn,Yn) measures the total
expected reduction in codelength from sequentially predicting (or compressing) the Yn with
full knowledge of the Xn sequence and causal knowledge of the past of Yn as opposed to just
causal knowledge of the past of Yn.

The directed information has a similar interpretation for prediction with sequences Xn and Yn

(from PXn,Yn). It is also a sum of KL-divergences (Eq. (23)):

However, it quantifies the total expected reduction in bits by sequentially encoding Yi using
causal side information of both processes, Xi and Yi–1, as compared to encoding Yi given
only Yi–1. This expected log-likelihood ratio follows directly from Granger's original
philosophical viewpoint with a Shannon codelength measure of prediction, but differs
operationally from Granger's mathematical measure because it operates on arbitrary
modalities and statistical models. Other ways of statistically measuring causality from a
prediction viewpoint beyond the Shannon code length have recently been discussed in Al-
khassaweneh and Aviyente (2008), but for the remainder of this manuscript, we will adhere
to the Shannon codelength viewpoint on prediction.

4.1.4 Example of measuring causal influences—To demonstrate that directed
information can identify the statistically causal influences between relationships which
correlation (as measured by mutual information) cannot, we next present a simple example
discussed by Massey and Massey (2005). The example involves two random processes X =
(Xi : i ≥ 0) and Y = (Yi : i ≥ 1) where the Xi random variables are independent, identically
distributed (i.i.d.) binary (Bernoulli) equiprobable random variables. For i ≥ 1: let Yi = Xi–1,
so that X causally influences Y. Figure 1 depicts the relationship between the processes.
Calculating the normalized mutual information between X and Y,

(26)

where Eq. (26) follows from Eq. (6), Yi = Xi–1, and that Xi's are i.i.d.. Taking the limit,

. The mutual information detects a strong relationship, but offers no
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evidence as to what kind of a relationship it is (is there only influence from one process to
another or is there crosstalk?). The normalized directed information from Y to X is

(27)

where Eq. (27) holds because Yi = Xi–1. The normalized directed information in the reverse
direction is:

(28)

where Eq. (28) follows because Yi = Xi–1, for i ≥ 2 and the Xis are i.i.d. Therefore,

. This example the demonstrates merit of directed information in
causal inference as it correctly characterizes the direction of information flow while mutual
information fails to do so.

4.2 Interpretations of directed information

Mutual information has a canonical role in a variety of problems (Cover and Thomas 2006).
For instance, it characterizes the maximum data rate (“capacity”) for reliable communication
over a memoryless channel without feedback. Next, we will examine some of the important
roles that directed information has in similar settings (in addition to prediction and causal
inference).

4.2.1 Communication with feedback—First, consider communication of a message W
across a noisy channel using n channel uses, where an encoder maps W to channel inputs Xn

and the decoder d(·) receives the channel outputs Yn to construct an estimate Ŵ. Under the
performance criterion that the error probability (P (() W ≠ Ŵ) tend to 0 in n, the fundamental
limit (or capacity) is governed by the maximum possible reduction in uncertainty about the
message W given knowledge of the channel outputs, Yn, which is I(W; Yn). When the
encoder does not have feedback, so that each Xi = ei(W), then it can be easily shown that
I(W; Yn) = I(Xn; Yn) (Cover and Thomas 2006). However, if there is causal feedback of the
outputs of the channel, then the encoder design paradigm is now Xi = ei(W, Yi–1). See Fig. 2.
Here, I(W; Yn) can be rewritten as:

(29)
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(30)

(31)

(32)

where Eq. (29) follows from entropy chain rule of conditional probability; Eq. (30) follows
because Xi is a deterministic function of W and Yi–1; Eq. (31) because in complete
generality, the statistical nature of the channel output Yi is linked to W only through the
inputs causal Xi and previous outputs Yi (Cover and Thomas 2006); Eq. (32) follows from
Eq. (24). So when the encoder has feedback, I(W; Yn) I(Xn → Yn) and so the directed
information I(Xn = Yn) replaces the mutual information I(Xn; Yn) as the fundamental limit of
communication over noisy channels with feedback (Kramer 1998; Tatikonda and Mitter
2009; Permuter et al. 2009b).

4.2.2 Other interpretations—Permuter et al. considered directed information in the
context of gambling and investment, and showed that directed information can be
interpreted as the difference of capital growth rates due to available, causal side information
(Permuter et al. 2008, 2009a). Permuter et al. have also investigated the role of directed
information in data compression with causal side information and hypothesis testing of
whether one sequence statistically causally influences another (Permuter et al. 2009a).
Venkataramanan and Pradhan consider the setting of sequential lossy compression
(quantization) where the decoder has causal side information about the source and
demonstrated that the fundamental limit (the rate-distortion function) is given in terms of the
directed information (Venkataramanan and Pradhan 2007). Recently, Kim et al. have
demonstrated how the directed information can be interpreted from an optimal causal
estimation viewpoint (Kim et al. 2009). Fundamental limits of control when the controller
has noisy information about the state of the system have been specified in terms of directed
information (Tatikonda 2000; Elia 2004; Martins and Dahleh 2008; Gorantla and Coleman
2010).

5 Estimation

5.1 Previous estimation approaches for information theoretic quantities

For many neuroscientific scenarios of interest pertaining to ensemble-recorded neural
signals X and Y, the underlying joint probability distributions PX,Y is a priori unknown.
Consequently, the normalized information-theoretic quantity (i.e. entropy rate, mutual
information rate, etc) cannot be directly computed must be estimated. There are two
principled ways of estimating information theoretic quantities (which are functionals of the
underlying PX,Y). One approach is to estimate the underlying joint probability distribution
PX,Y, and then plug this estimate into the formula—for example, the normalized directed

information . Note from Eq. (22) that In is a functional on the joint
PMF of Xn and Yn:
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Similar expressions, in terms of functional on PMFs, can be described for entropy,
conditional entropy, divergence, and mutual information.

A plug-in estimator, first attempts to estimate the density . We denote the estimate

of the density by . In general,  will not be a consistent estimate of PXn,Yn

(·, ·), as only a single realization of (Xn, Yn) is observed, and there are  possible
realizations, and a probability estimate needs to be made for each. Consequently, the
normalized directed information estimate

will not be consistent. Note that for i.i.d. processes, there are consistent density estimators,
but there are none (known) for general processes (Cesa-Bianchi and Lugosi 2006).

We note that making an i.i.d. sample assumption is not sensical within the context of
developing measures to understand causal dynamics in random processes. This is because
with i.i.d. processes, there is no causation through time. Thus, any estimation procedure that
relies on i.i.d. assumptions is not applicable to the estimation of the directed information.

More recently, non-parametric procedures have been developed. These procedures attempt
to directly estimate the functional on the joint distribution of interest. For information
theoretic quantities such as entropy and KL divergence, there are successful universal
estimators, including Lempel-Ziv ’77 (Ziv and Lempel 1977), the Burroughs-Wheeler
Transform (BWT) estimator (Cai et al. 2004), and context weighting tree methods (Cai et al.
2006). Additionally, there has been work extending the context weighting tree method to
estimating directed information (Zhao et al. 2010). Unfortunately, these methods are often
computationally expensive and have slow convergence rates. There has also been some
recent work by Perez-Cruz (2008) for estimating numerous information theoretic quantities
with better convergence rates and more moderate computational expense, but these
procedures depend on i.i.d. assumptions.

5.2 A consistent direct estimator for the directed information rate

In this section, we propose a consistent estimator for the directed information rate, under
some appropriate assumptions that have physical meaning for questions of causality, and are
analogous to the canonical i.i.d.-like assumptions for other information-theoretic like
quantities.

– Assumption 1: .

Here, we assume that the random processes X and Y are stationary and ergodic.
Under this assumption, as will be seen below, this means that the entropy rate

, the causal entropy rate , and the directed information rate

 all exist. Thus, an estimation procedure can be developed which
separately estimates the entropy rate and the causal entropy rate, then takes the
difference between the two (see Eq. (24)).
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Lemma 1 Let Assumptions 1. Let . Then , , and

 all exist.

The proof is in Appendix A.

– Assumption 2: .

This assumption is the complete analog to the standard i.i.d. sample assumption
that is used in the simplest of statistical estimation paradigms. Note that by
assuming a Markov model, we are incorporating a dynamic coupling, through time,
on the processes X and Y which is physically important for any causal estimation
paradigm. The Markov model enables, amongst other things, the strong law of
large numbers (SLNN) for Markov chains to hold (Meyn and Tweedie 2009).
Many Granger causality, DTF, and other previously discussed estimation
procedures assume Markov-like assumptions (Granger 1969; Kaminski and
Blinowska 1991; Schreiber 2000), in addition to other constraints.

Lemma 2 Let Assumptions 1 and 2 hold, and let . Then for

all n,

(33)

for the function , where the
expectation is taken with respect to the stationary distribution for the Markov chain.

The proof is Appendix B. Since the right hand side of Eq. (33) has no dependence
on n, taking the limit of the above as n → ∞ results in

By exploiting how sample averages converge to ensemble averages with our
Markov assumption, we have:

Theorem 1 Let Assumptions 1 and 2 hold, and let J satisfy .
Then

Proof Taking the limit on both sides of Eq. (33) as n → ∞,

Using the SLLN for Markov chains (Meyn and Tweedie 2009), for a fixed function
g(·) over the states of the Markov chain, as n → ∞, the sample mean will converge
almost surely to the expected value:
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With these results, if a consistent estimate  for the function gJK(·) can be
found, then the sample mean of this function will converge almost surely to the

causal entropy rate , and thus directed information rate can be estimated with
almost sure convergence. Note that if Y alone forms a discrete-time, finite state,

stationary, and ergodic Markov chain, then this result can be used to estimate 
by taking X to be a known, deterministic process.

– Assumption 3: For point processes  and  and a pre-specified set of

functions {hk : k ≥ 0}, .

The recorded neural spiking activity—in millisecond time resolution—is known to
be well-modeled using point process theory (Truccolo et al. 2005). Because of the
duration of a neural spike and its refractory period, we will partition continuous
time into Δ = 1 millisecond time bins, and denote dyi = 1 if a neural spike occurs
within it, and 0 otherwise. Generalized linear models (GLM) for point processes
(Truccolo et al. 2005) are a flexible class of parametric point process neural spiking
models that allows for dependencies on a neuron's own past spiking, the spiking of
other neurons, and ex trinsic covariates. GLM models have the following
conditional intensity:

(34)

where hk(·) is some function of the extrinsic covariate, and

is the parameter vector. Note that with such a GLM model, from Theorem 1, we
have:

(35)

(36)

where Eq. (36) shows that the estimate is a sample mean of a fixed function
(independent of i) of the data. Note that any probabilistic model (parametric or
nonparametric) could be used to estimated the directed information, not just GLM.
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5.3 Parameterized estimation and MDL

Define Ω(J, K) to be vector space of possible parameters θ = {α0, α1, · · · , αJ, β1, · · ·, βK}. If

it is known a priori that , then θ0 can be consistently estimated
using Assumptions 1–3 and a maximum likelihood estimate (MLE) (Casella et al. 2002):

In practice, J0 and K0 are unknown. A model order selection procedure can be used to find

estimates Ĵ, K̂, and subsequently  by penalizing “more complex” models, that is
—those with larger J + K values. The minimum description length (MDL) (Grünwald and
Rissanen 2007) is a model order selection procedure, which is known to be have strong
consistency guarantees (Barron and Cover 1991). In particular, under the assumption that

—which means that θ0 ∈ Ω(J0, K0), for some J0 and K0, then it can

be shown that an appropriately designed estimate  a.s.. Specifically, MDL selects the

(Ĵ, K̂) and  according to

(37)

As K is the number of extrinsic parameters, if K̂ =0, then we say that no causal influence

was detected, since  which implies that . Thus, to determine
whether there is a detected causal influence or not does not require computation of the
directed information; only the K̂ from the best-fitting model is necessary. If K̂ = 0, there is

no detected influence . If K̂ > 0, there is a detected influence .

Although one can identify whether there is a detected causal influence without computing
the directed information, the extent of an influence cannot be determined by the GLM model
alone. Directed information considers both the model and the data to determine the
influence. An example which illustrates this point is as follows. Let A and B be two neurons,
such that whenever B spikes, A will spike with probability 1 within each of the next 12 ms
except when A has just fired (refractory period). Let A have a large average spiking rate,
such as one spike per 10 ms, and let B have a very low average spiking rate, such as one
spike per second (see Fig. 3).

The best fitting GLM model (provided the data recording is sufficiently long) of neuron A
using neuron B as B as an extrinsic process will have K̂ ≈ 12 and {β1, · · · , βK ̂} large and
Thus, it would seem, from the GLM model alone, that B strongly influences A. However,
since there are few instances where B spikes, few of A's spikes are caused by B's, and so B
will have a small, causal influence influence on A. If B has a much larger firing rate,
however, then many more of A's spikes could statistically be explained by B's spikes (if the
β parameters remain the same), and thus B would have a larger, causal influence. Changes in
the data, with a fixed model, can result in changes in the extent of the influence. Thus,
directed information, which considers both, is able to measure the extent of the influence,
which the model alone cannot.
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5.4 The proposed estimation procedure

Under the Assumptions 1–3, we provide the following consistent estimation procedure:

1. Find Ĵ, K̂, and  according to the MDL procedure Eq. (37).

2. Calculate  according to Eq. (36) using the estimated parameter values

.

3. Compute an estimate for the unconditional entropy rate  using a well-
established entropy estimator (such as Lempel-Ziv ’77 (Ziv and Lempel 1977) or
the BWT based estimator (Cai et al. 2004)).

4. Calculate the directed information rate estimate

Theorem 2 If Assumptions 1, 2, and 3 hold, then

(38)

Proof

1. If Assumptions 1–3 hold, then the MDL procedure will identify the “true”
parameter values θ ∈ Ω(J, K) (Barron and Cover 1991): Ĵ → J a.s., K̂ → K a.s., and

 a.s..

2. Note that since  a.s., from the continuity of gθ  specified above

satisfies  a.s. by virtue of Theorem 1.

3. Universal estimators such as Lempel Ziv ’77 and the BWT based estimator

converge almost surely to the unconditional entropy rate  for stationary and
ergodic finite-order Markov processes (Lastras 2002; Cai et al. 2004).

4. Combining these results,

5.5 Implementation details

To perform the MDL search procedure, we examine values of J, K ∈ {0, 1, · · · , M}, where
M is a user-specified maximum value. M should be chosen to be sufficiently large that any
causal influences of interest in the data occur within the timescale of MΔ. However, if the
best-fitting models have and/or K̂ near M, then M can be increased adaptively to search for
larger parameter orders (thus, it is not a hard limit). M is chosen a priori to save computation
for when the procedure settles on small values for Ĵ and K̂. More precisely, when local
communications within a small brain region is of interest, picking a relatively small M is
sufficient (Truccolo et al. 2005). If we anticipate that an upper bound for the maximum time
scale for a spike from one neuron to influence another neuron (including time to propagate)
is around 25 ms (Vogels and Abbott 2005), then it would be appropriate to pick an M ≈ 25.
However, in the case of motor feedback, e.g. hand movement, the longer delays for the
signal to propagate should be taken into account, and a larger M, such as M ≈ 150 should be
selected (Paninski et al. 2004).
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For each (J, K), the MLE parameter vector  can be computed using the built-in
Matlab function glmfit(·), called with a Poisson link parameter. Then Eq. (37) is computed to

determine . The estimate for the causal entropy rate is taken to be the sample mean:

To compute an estimate of the entropy rate, , a universal estimator such as the BWT
based estimator could be used (which has a faster convergence rate than LZ ’77) (Cai et al.
2004). Alternatively, the above procedure could be used with K = 0 fixed. Through trials
with large neural data binary time series (on the order of 100,000 bins), the values were
quite close, and obtained quicker than with the universal estimator. The difference between

the two estimates, , then becomes the directed information estimate,

.

In some cases, the relative influence of a process X on a process Y is of interest. The
normalized directed information rate can be computed by normalizing the directed
information by the entropy rate of the process Y:

(39)

For values of this quantity close to 1, X can be interpreted as having a strong causal
influence on Y, and for values close to 0, X can be interpreted as having a weak causal
influence on Y.

In addition to the bound on the model order search space, M, there is another design choice
to be made before running the procedure, that of the time resolution Δ. The GLM framework
which is used for modeling depends on having binary time series, such that the data can be
modeled as a point process (Truccolo et al. 2005). It has been found that Δ = 1 ms is a
sufficiently small time window, such that using this resolution will result in binary data (no
more than one spike in that time window) (Truccolo et al. 2005). However, such resolution
is not necessary for the point-process-GLM framework; all that is necessary for the
modeling is that the temporal resolution is small enough that the data is binary (Truccolo et
al. 2005).

There are both potential benefits and harms to choosing Δ > 1 ms. One benefit of choosing Δ
> is that there is a reduction of the length of data (number of bins), which can increase the
speed of the procedure. Another potential benefit is that the fits could be better. The
procedure finds the best fitting α and β parameters. Choosing a larger Δ will cause the data
to become less zeros). There could then be more instances of multiple spikes within the MΔ
time window to fit the window to fit the α's and β's. Also, for a fixed upper bound on the
time scale over which take place, increasing Δ will decrease the corresponding M to ensure
that the maximum time scale searched over, MΔ, is large enough. The smaller search space
would increase the speed of the procedure.

One possible problem of choosing Δ to be larger, such as 2, 5, or 10 ms, is that there is a
potential loss of timing information which can effect detection of causal influences. For
example, consider two neurons, A and B, such that whenever A fires, B fires 3 ms
afterwards with very high probability. Also, let A and B have very low average firing rates,
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so with 1ms time resolution, there are many more 0's than 1's. While using Δ = 10 ms might
result in A and B having binary spike trains (so the framework can still be applied), it is
possible that the spikes from A and the corresponding spikes from B will be grouped in the
same time bin. They will then appear to have occurred simultaneously, instead of B firing
with a firing with a slight delay. The loss of relevant timing information such as this could
effect how well the detect the underlying influences.

Issues such as the aforementioned problem could potentially be screened beforehand, to
determine if both the time differences between spikes of the different neurons and the time
differences between spikes of the neuron are smaller than the proposed Δ. However, the
authors are not aware of any study which has compared how different choices of sufficiently
small values of Δ (sufficient so that the data is binary) correspond to differences in how well
the best-fitting models (for a given Δ) compare with others. There is no known general
procedure for deciding the best value of δ.

Computation time might be a factor in deciding the maximum model order M, the time
resolution Δ, and the amount of data to use. Our simulations were designed and tested in the
Matlab environment, using built-in Matlab functions (the code is available upon request).
The primary computational bottleneck is finding the α and β parameters for a given J and K,
which were computed with glmfit(·). In our tests (see Section 7), we used datasets on the
order of 100,000 elements. Trials ran on computers with a 2.6 GHz processor (each estimate

of  ran on a single computer). A single glmfit(·) operation with 1 ≤ J, K ≤ 5 took a
few seconds. A single glmfit(·) operation with 20 ≤ J, K ≤ 25 took upwards of 2 min. The
proposed procedure involves searching over a larger (J, K) parameter space for each ordered
pair of processes. If M = 25, then there are M2 = 625 calls to glmfit(·). For each ordered pair,
this search took approximately 2 h. With six processes total, there are 6*5=30 ordered pairs.
The total procedure took about 2 and a half days for each directed information estimate. For
causally conditioned directed information estimates (going beyond pairwise estimates; see
Section 6), the search space increased. For causally conditioning on two elements, the search
space involves M4 ≈ 400,000 calls to glmfit(·). Since the runtime for glmfit(·) changes with
model order, the total time does not scale multiplicatively. The computations for different (J,

K) orders can be done in parallel. It is possible that other implementations of the GLM
model fitting (a convex optimization procedure) could be faster than the Matlab
implementation, thus reducing computation times.

5.6 Confidence intervals

To obtain confidence intervals on the directed information estimates, sensitivity analysis
using the Fisher Information is used. Once the observed data is fixed (a given spike train

, possibly with an extrinsic spike train ), the directed information estimate is a

function only of the estimated parameters . We here perform a sensitivity
analysis to characterize how much the directed information estimate changes as a function of

the parameter values used, in the neighborhood of the original parameters . The variation
in estimate values is then taken into account by specifying a confidence interval.

For this particular estimation problem, since for fixed (Ĵ, K̂), the search for the best fitting
model is a MLE problem, and, in particular, since the probability class being considered
(point process GLMs) are convex in the parameters, the MLE will be the global maximum
of the probability function
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over the space of parameter values Ω(Ĵ, K̂) (Casella et al. 2002). Under appropriate
aforementioned assumptions that guarantee consistency, the global maximum converges to
the true model almost surely. With a finite amount of data, we use the curvature of the
likelihood function in the neighborhood—observed Fisher information—to estimate a 95%
confidence interval on the directed information. The observed Fisher information matrix,
denoted as I(z, θ), where z denotes the data and θ the parameter values, is defined as the
second derivative (or Hessian) of the negative log likelihood, with respect to the parameter
values. Analogous to approximating a continuous function using a Taylor series
approximation, one can approximate the probability density function near the global
maximum with a gaussian distribution, with a mean value at the global maximum, and a
covariance matrix I(z, θ)–1 (Casella et al. 2002):

in the neighborhood of θMLE. Using this approximation, an approximate 95% confidence
interval for the picked θMLE (interpreted as an interval about θMLE that with 95% probability
contains the true parameter θ0) (Casella et al. 2002):

(40)

For the purposes of this problem, since the parameters of interest are those corresponding to
whether or not there is statistically causal influence, the βis, assume that only the βis from
the best fitting model might vary from those of the true model. Assume that Ĵ, K̂, and

( ) are correct. To find a confidence interval on any particular parameter βk,

consider second order partial derivatives of the form . For each , compute the
(l, l)th entry of the observed Fisher information matrix:

With this value, the 95% confidence interval for this parameter  can be calculated using

Eq. (40). When the confidence intervals for all the  parameters are determined, then the

region of parameter values where  are the same as the best fitting model, and the  are
within the Once the maximum variations from the original directed information estimate
values are identified, they can be considered to be the corresponding bounds of the 95%
confidence interval for the directed information estimate.

6 Causal relationships in a network of processes

Although there might be situations where researchers are primarily interested in whether one
process “causes” another, there are many situations in neuroscience as well as
communications, economics, social sciences, and other fields were researchers want to
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identify the causal relationships in a network of processes. For example, an electrode array
recording of a brain section might detect the spike trains of 50 neurons, and the researcher
might be interested in which of the neurons causally influence other neurons. In particular,
the researcher might be interested in identifying the direct, causal influences (as opposed to
indirect influences through other recorded neurons).

Researchers have already begun investigating the problem of identifying causal relationships
in neuronal networks (Eguiluz et al. 2005; Goebel et al. 2003; Hesse et al. 2003; Okatan et
al. 2005; Uddin et al. 2009; Kramer et al. 2009; Ramnani et al. 2004; Smith et al. 2006; Seth
and Edelman 2007; Stevenson et al. 2009). As the framework presented in this paper for
measuring causal inferences is principally different than previous, known research, the
previous approaches are not directly applicable. There recently has been research on using
directed information to infer causality graphs for neuroscience (Amblard and Michel 2010),
but they do not propose an estimation scheme and their conditions for estimating whether
there is a direct, causal influence or not is different than the definitions in the paper. More
relevant to this paper is research on Bayesian networks (Pearl 2009). Bayesian networks, or
“belief networks,” define causality between random variables by using properties of the joint
distribution (Pearl 2009). There is also a corresponding graphical depiction of the network
using a directed, acyclic graph. Note, however, that causality as defined by Bayesian
networks is not philosophically consistent with Granger's definition. The elements of
Bayesian networks are random variables, so there is no sense of time or prediction. This
work is concerned with the causal relationships between random processes, where there is a
sense of time. Thus, the methods and definitions developed for Bayesian networks cannot be
directly applied. However, some of the underlying ideas are related to the related to the
methods and definitions for networks of random processes presented here. This section will
define causal influences in the context of networks of random processes and introduce
graphical structures to represent these influences.

6.1 Causal conditioning and direct, causal conditioning

Define the causal conditioning of a length n random process B on the marginal distribution
of another length n random process A to be

(41)

Define causal influences as follows. Let V be a set of m + 1 random processes, V = {X1, · · ·,

Xm, Y}, where each process is a length n vector, .

Definition 1 The random process Xi is said to causally influence the random process Y if:

(42)

Note that this definition only identifies if there is influence through some path, possibly This
form of influence will also be denoted as “pairwise” influence, since it is from one process
to another. In many circumstances, causal influences can be fully explained by paths of
causal influence through other processes, without any “direct” influence.

Definition 2 The random process Xi is said to directly, causally influence the random
process Y with respect to V if:
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(43)

Thus, even with causal knowledge of any of the other processes in the network, there is still
some influence influence from Xi to Y. Here, the “directness” of an influence is only with
respect to the known processes V. For example, in an electrode array recording of neurons,
there could be many undetected neurons which greatly influence the recorded ones. It might
even be the case that none of the recorded ones have direct, physical connections, but
instead all go through other, unrecorded neurons. Thus, the meaning of “direct” in this
context is statistical, and if no subset of the other, known processes (recorded neurons) can
explain statistically the influence of one process Xi on another Y, then it is said that Xi has a
direct influence on Y. These conditions are related to the conditions of “d-separation” in

Bayesian networks (Pearl 2009). Let VY denote the set of all the Y. Let  denote the set of
all the processes that causally influence Y. By the above definitions,

The set of direct, causal influences amongst processes in set V is a subset of the causal
influences amongst processes V.

6.2 Graphical depiction and indirect influences

Bayesian networks and other approaches to identifying causal relationships in networks
often use directed graphs to depict the relationships (Pearl 2009). They can be used here as
well. Let each of the processes in V be represented as a node. Let there be a solid arrow
from process Xi to process Xj (i ≠ j) iff Xi directly, causally influences Xj. Otherwise, let
there be no arrow. An example is shown below for processes A, B, C, D, and E is Fig. 4.

A similar representation for causal influences in a network (that is, not just those which are
direct) will be used. Let there be a long-dashed arrow from process Xi to process Xj (i ≠ j)
iff Xi causally influences Xj. Otherwise, let there be no arrow. An example is shown below
for processes A, B, C, D, and E, which is consistent with the above graph for the direct
influences is Fig. 5. It is consistent because all of the direct, causal influences are present,
and the extra arrows could be due to indirect influences, which are discussed below.

Two types of indirect influences which result in more causal influences than direct, causal
influences will be denoted as “proxy” and “cascading” influences. In a proxy influence,
process X1 influences process X2 which in turn influences X3, but with no direct influence
from X1 to X3. In some cases, there will be a causal influence from X1 to X3 through X2

(Fig. 6), and causal knowledge of X2 renders X1 and X3 statistically independent. Thus,
proxy effects can be considered analogous to the analogous to the Markovicity property.
Note that if there is a loop of direct, causal influence between a set of processes (such as X1

→ X2, X2 → X3, X3 → X4, and X4 → X1), then the causal influences from every process to
all the others, due to proxy effects.

Another form of indirect influence is “cascading” influence. Here two processes X2 and X3

have a common influencing process X1. Knowledge of X1 renders X2 and X3 statistically
independent, but there is causal influence between the two possibly accounted for by
residual self dependence in X1 (Fig. 6).
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6.3 Causal conditioning and directed information

The definitions of causal influences and direct, causal influences can be used to establish
related conditions using causally conditioned directed information.

Theorem 1 The process Xi causally influences the process Y if and only f I(Xi → Y) > 0.

Proof That causal influence implies positive directed information is proven as follows.
PY||Xi

(·) ≠ PY(·) by definition. Recall that the KL distance is 0 if and only if PY||Xi
(·) ≠ PY(·).

Secondly, note from Eq. (23) that

The definition of direct, causal influences can also be extended to conditions of directed
information. The conditions will require causally conditioning on extrinsic processes.
Kramer introduced causally conditioned directed information for a process Xi, process Y,
and set of processes W as (Kramer 1998):

(44)

Lemma 2 PY||W,Xi
(·) ≠ PY||W(·) if and only if I(Xi → Y||W) > 0.

The proof is identical to the proof of the above theorem but causally conditioning on the set
of processes W.

Theorem 3 The random process Xi directly, causally influences the random process Y with
respect to V iff:

(45)

The proof here follows from Lemma 2 and the definition of direct, causal influences.

6.4 Identifying the direct, causal influences in a network of processes

Identification of all of the causal influences in a network of processes V is straightforward
by the definition. For each ordered pair of distinct processes (Xi, Xj), compute I(Xi → Xj). If
the value is positive, then there is causal influence from Xi to Xj, or Xi → Xj. Otherwise,
there is no causal influence.

Identificaton of all the direct, causal influences in a network of processes is more
complicated, as there are more conditions to check than for causal influences. Since every
direct, causal influence is causal influence, one could first identify all of the causal
influences, and then determine which of those of those were also direct, causal influences.
Consider two processes in V, Xi and Y, such that I(Xi → Y) > 0. Thus, Xi causally
influences Y. To determine if Xi directly, causally influences Y, one could check that for

each . If so, then Xi directly, causally influences Y, else if
there is even one such W for which I(Xi → Y||W) = 0, then the influence is not direct. Since
some processes are statistically independent of Xi and/or Y, it can be helpful to focus on the
subsets W which contain those Xj's such that each Xj causally influences Y and causally
influences or is influenced by there is a causal subgraph that could contain a proxy or
cascading influence, to check those first.
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7 Results

7.1 Simulated data

To test the effectiveness of this estimation procedure, it was applied to simulated data. A
small network of six binary processes, modeled as neuronal spike trains, was simulated.
Each process will be referred to as a “neuron,” and is labeled with a letter between “A” and
“F.” Twenty independent samples of the network were randomly generated using the same
values and procedure. Point process GLM models were used to generate the spike trains. For
fixed values of the model orders J and K, the conditional intensity functions were selected

according to , where (hk : 1 ≤ k ≤ K) were all the identity function.
The values of the parameters were selected to be within the range of parameters (J, K, and α,

β values) previously identified in point process GLM model fits to spike trains from
electrode array recording data of goldfish retinal ganglia (Iyengar and Liao 1997) and
primate primary motor cortex (Wu and Hatsopoulos 2006). In particular, 3 ≤ J ≤ 20, 0 ≤ K ≤
20, –10 ≤ αi, βj ≤ 10. The time width Δ = 1 ms was used, and 160,000 ms of data were
generated. Once the data and experimental design parameters were determined, the time
series for each neuron was obtained by generating a sequence of i.i.d. unit rate exponentials
and inverting the time-rescaling theorem (Brown et al. 2002).

The designed influence structure, or the “functional topology,” is shown in Fig. 7. An arrow
from neuron X to neuron Y depicts that during the generation of Y's spike train, the spike
train of X was used as an extrinsic covariate (thus X directly, causally influences Y). The βis
were either positive, corresponding to an excitatory influence, or negative, corresponding to
an inhibitory influence. An arrow from neuron Y to neuron Y depicts autoregressive
influence, such that at time step i, the recent past of Y's spike train (beyond a 2–3 ms
refractory period) influenced the present. The absence of an arrow from neuron X to neuron
Y depicts that the spike train of neuron X was not used as an extrinsic covariate in
generating the spike train of Y. Note that some of the neurons, in particular E and F, both
have two arrows from two other neurons. For these, two sets of extrinsic covariates were
used when calculating the conditional intensity function:

where  corresponds to the i – (k1 – 1)th value of the first extrinsic spike train.

As an example of the selected parameters, neuron F, which was influenced by C and D
(inhibitory and excitatory respectively), was set to have constant firing rate α0 = 1.8, J = 3,
KC = 5, KD = 7,

A sample of the time series for neurons C, F, and D respectively are shown in Fig. 8.

After the data was generated for each of the 20 samples, the estimation algorithm described
in the previous section was used for each sample, using Matlab (code available upon
request). No knowledge of the parameters for generating the data was used in the estimation

procedure. First all of the pairwise directed information rates, , were computed.
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All 0 ≤, J, K ≤ 15 were examined. None of the design parameter values were more than 10,
and none of the estimated Ĵ or K ̂ were larger than 12, so increasing the range would not have
effected the procedure. If any of the Ĵ or K ̂ were near 15, then the range for J and K
examined would have been increased. The pairwise directed information estimates were

then normalized with the respective unconditional entropy estimates , which were
found using the same procedure with K = 0. The same ordered pairs (X, Y) were estimated
as having nonzero directed information rates across all 20 samples, and all of the other
ordered pairs were estimated as having zero directed information rate in all the samples
(thus, the same structures were found for each sample). Figure 9 shows the averaged
normalized estimates (see Eq. (39)) for all of the nonzero values with averaged normalized
95% confidence intervals. The averages were taken over the 20 samples. The empirical
standard deviations for the estimated rate values (across the samples) were between 0.001
and 0.007 for each of the nonzero estimated rates. The empirical standard deviations for the
confidence intervals (across the samples) were between 0.001 and 0.031.

An arrow in Fig. 9 indicates that causal influence was detected ( ), and the corresponding

normalized estimate is adjacent to it. Absence of an arrow indicates that , so no
statistically causal influence was detected. The procedure identified all of the planned causal
relationships, which are depicted with thick arrows (see Fig. 7). Note that no invalid causal
influences were detected, such as from A → B and D → A. There were 18 of the possible 30
influences which would have been invalid, and all of these had pairwise directed
information estimates of 0. Also, no planned causal influences were undetected (6 of the
possible 30 influences). It also identified some indirect influences, which are depicted with
thin arrows, such as “cascading” influences (see Fig. 10) (C→E, E→C, D→E, E→D),
“proxy” influences (see Fig. 11) (A→F and B→F), and higher order influences (E→F,
F→E).

After the pairwise estimates were computed, causally conditioned directed information rates
were computed and the spurious influences were removed (see Fig. 12). Neurons A and B
did not have any detected influencing neurons, so they were not examined. There were no
neurons with only one input; if there had been, the input would have been accepted. Neurons
C and D both had two influencing neurons, and for both there were connections amongst the

influencing neurons. For neuron C, A and E were found to be influences.  and

 were computed by first computing  and then comparing with

 and  respectively. For all samples, it was estimated that 

and , so A→C was kept and E→C was rejected. The same procedure was

performed for neuron D with influences B and E, and it was found that  and

, so B→D was kept and E→D was rejected.

Neurons E and F both had five influences, but those influences were not all connected. For
example, the subsets {A, C} and {B, D} each were estimated as having influences on both E
and F, but not with the other subset. Thus, they could be considered separately (for example,
the hypothesis that A influences F through B did not need to be tested). First, the influences

for neuron E were examined.  was found to be 0 as was , for all of
the samples, so C→E and D→E were rejected. Since A and B did not have any detected
influences between them, A→E and B→E were kept. The same tests were done for F
instead of E, but the estimates were nonzero in most cases, so they were inconclusive (since
they were nonzero, but the other inputs to F were not also causally conditioned upon). To

resolve this,  and  were both computed and found to be 0 for
all the samples, and consequently A→F and B→F were rejected.
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A, B, C, D were now considered unambiguous in terms of influences on them. E and F were
still ambiguous. E had A, B, and F as possible direct influences, and F had C, D, and E as

possible direct influences. To resolve the ambiguity with E,  was computed.
For 15 of the 20 samples, it was 0, and thus F→E was rejected, with A→E and B E kept. E's
influences were now unambiguous. For the five samples where the estimated rate was

greater than  and  were both computed and found to be
nonzero, so F→E, A→E, and A→E, and B→E were all kept, and E's influences were now
unambiguous. A similar procedure was done 12 of the 20 samples, E→F was rejected,
leaving C→F and D→F; for the rest E→F was also kept. was also kept. Two of the samples
kept both E→F and F→E. All of the influences for each of the neurons was thus resolved.
The remaining influences were taken to be the direct, causal influences between the neurons
(see Fig. 13).

Figure 13 depicts the averaged non-zero normalized causally conditioned estimated directed
information rates for the simulated data set (with averaged 95% confidence intervals). For
each of the samples, all of the planned direct, causal influences (see Fig. 7) were detected,
and these all had “reliable” estimated rates (the rates much larger than the confidence
interval). These are depicted with solid arrows. For some of the samples, the procedure only
selected the direct, causal influences and no spurious (indirect) ones. Only two spurious
influences, E to F and F to E, were detected amongst any of the samples, and their estimated
rates were small and found to be unreliable (rates much smaller than confidence interval).
The rates and confidence intervals for these two influences were calculated only using those
samples which had detected them. Of the 20 samples, the procedure picked E→F for only
eight samples, and F→E for only five samples (two of these had both). Enforcing the
criterion that only reliable estimated rates would be accepted would result in only the
planned, direct causal influences being accepted (that is, there would be no errors). The

values in the graph (Fig. 13) are: , , , ,

, ,  and .

It is difficult to determine how accurate the directed information estimates for the synthetic
data set are. Calculating the joint statistics of the neurons using the design parameters

(which were choices of J, K, K, , and  for each neuron) is difficult and was not
done for data set. However, none of the values obtained for the normalized directed
information rates were substantially larger or smaller than what was anticipated given the
design parameters. For two neurons X and Y, where Y is designed to causally depend on X's
past spiking, if the α values of Y are fixed, then the extent of X's influence can be changed
by varying X's spiking rate and the β values used in generating Y. In Eq. (34) of the
conditional intensity function, which for neurons uses hk(xi–(k–1)) = xi–(k–1), a 1 if X had a
spike at time index i – (k – 1) and 0 otherwise, larger (positive or negative) values of β will

generally cause the sum  to have a larger magnitude (in particular when the
β's have the same sign), thus having more of an effect on the conditional intensity and thus
Y's spiking rate. Also, if X has a larger spiking rate, there will, in general, be more non-zero

values in the sum , also effecting the conditional intensity more and thus Y's

spiking rate. For example, . C was designed to depend on A with parameters
J = 6, K = 5,
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A had approximately 18,000 spikes total, and C had 15,000. In contrast, . D
was designed to depend on B with parameters J = 8, K = 5,

B and D both had approximately 25,000 spikes. The α's were comparable, but the larger β
values for D's dependence on B and B's larger spiking rate resulted in a larger influence for
B→D as compared to A→C.

7.2 Experimental data

7.2.1 Data source—In addition to simulated data trials, experimental data from Wu and
Hatsopoulos (2006) was analyzed. The data consisted of electrode array recordings from the
arm area of the primary motor cortex (MI) in a juvenile male macaque monkey. The monkey
was performing a series of trials involving contralateral arm movement tasks. One of the
monkey's arms was attached to a robotic arm system, which constrained the arm (the
shoulder joint was abducted 90°) such that shoulder and elbow movements were restricted to
the horizontal plane. In each trial, a series of seven targets appeared in a workspace on the
horizontal plane. The monkey moved its arm, which correspondingly moved a cursor, to hit
the current target. Each target was presented for a maximum of 2 s, and if the monkey did
not hit the target within that time period, the target would disappear and the next target was
presented. The targets were randomly positioned, with a bias towards the exterior of the
workspace, to ensure full movement of the arm. The monkey had been operantly trained to
perform this task. When the monkey successfully hit the seven targets presented in a trial,
the monkey was rewarded with a drop of water or juice at the end of the trial.

The recordings were obtained with a silicon micro-electrode array, which consisted of 100
platinized tip electrodes, 1.0 mm in length and with 400 μm separation (Cyberkinetics Inc,
Salt Lake City, UT, USA) (Wu and Hatsopoulos 2006). The arrays were implanted in the
arm area of the monkey's primary motor cortex (MI). The signals were filtered, amplified
(gain 5,000), and digitally recorded (14-bit) at 30 kHz per channel (Cerebus acquisition
system; Cyberkinetics, Inc.). After the experiment, the waveforms (1.6 ms in duration) with
a peak voltage that passed a set threshold were stored. These selected waveforms were then
spike-sorted (Offline Sorter; Plexon Inc., Dallas, TX, USA). For the sorting process, the
Contours and Templates methods were used to manually extract single units. After sorting,
only the single units with signal-to-noise ratio greater than 3 were kept (Wu and
Hatsopoulos 2006).

7.2.2 Data analysis—For the purposes of testing the proposed directed information
estimation procedure, a single data set (recordings from a single monkey in one session,
with several hundred trials) was used. The data set contained spike train data (spike times)
for 115 neurons for a duration of an hour. The data for each neuron was converted to a
binary times series with 1 ms time resolution. 7 s samples of the data selected for neurons 3
and 1 are shown in Fig. 14. Due to the computational cost of analyzing the complete data
set, only a subset of the data was used. Spike train data for only the 37 neurons with the
highest total spike count (over the whole session) were kept, and only data from the first 500
s (from the beginning of the first trial) were used. Due to the sparsity of the data (the largest
total spike count in the first 500 s for selected neurons was about spikes, or approximately
one spike every 62 ms on average), Δ = 5 ms was used. Although the resulting data was not
strictly binary, there were very few instances with more than one spike in the same 5 ms
time window. Directed information estimates for all ordered pairs of neurons were
computed. Figure 15 is a graph of the pairwise results. Each box with a label of i ∈ {1, 2, · ·
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· , 37} corresponds to a different neuron, but the labeling is arbitrary (the numbers do not
correspond to any sorting of the data). The position of a neuron in the graph corresponds to
the position of the electrode on the array that detected that neuron. Note that adjacent boxes,
such as {2, 3, 4} and {5, 6} correspond to multiple neurons detected on the same electrode,
although for visual purposes the boxes are only partially overlapping.

A directed arrow is graphed for each ordered pair (X,Y) of neurons for which the estimation

procedure detected a statistically causal influence ( ). Absence of an arrow between an
ordered pair (X,Y) depicts that the estimation procedure detected that there was no

statistically causal influence ( ). The normalized directed information estimates are not
included in the graph for clarity purposes. Most of the normalized directed information
estimates were on the order of 10–2 to 10–3. Note that the causal influences detected in this
data set were not as large as those detected in the simulated data set. The simulated data set
was constructed to have large statistically causal influences, whereas neurons recorded from
in brain tissue could have many neighboring neurons exciting or inhibiting it (thus the
influence from any one neuron could be small). It is also possible that the neurons which
were detected to have a statistically causal relationship do not directly communicate with
each other, but only do so through other neurons that might not be present in the data set.

After the pairwise directed information estimates were computed, a small number of nodes
were selected which had few pairwise influences and whose influences were ambiguous.
These nodes and their respective influences were then examined using causally conditioned
directed information, to determine which of the influences were direct. The subsets
examined include {1, 4, 9}, {3, 10, 13}, {5, 13, 35}, {8, 10, 27}, {13, 18, 25}, and {32, 33,
36}. For each of the subsets {1, 4, 9}, {3, 10, 13}, and {13, 18, 25}, one of the causally
conditioned directed information estimates were 0, and thus one of the estimated of the
estimated pairwise influences was removed from each. See Figs. 16, 17, 18, 19, 20 and 21.
For the other subsets, all of the causally conditioned directed information estimates were
greater than 0, and so they were kept.

A strong structure can be seen in the graph (Fig. 15). Some neurons have many incoming
and outgoing connections, such as 1, 8, and 12. Some have more incoming than outgoing,
such as 8, and 18. Some have very few, if any, incoming or outgoing connections. Note that
this is only suggestive of the functional connectivity of the neurons, and only amongst those
used in the analysis. It is unclear what the underlying physical connectivity structure of the
region of recorded brain tissue is. That a statistically causal influence from a neuron X to a
neuron Y is detected in this data set is only suggestive that there might be some physical
pathway between the two neurons, such that the spiking activity of activity of X could
influence the spiking activity of Y. Many of the neurons present in the section of brain tissue
recorded from are not present in this analysis (Wu and Hatsopoulos 2006). Similar to the
analysis of the simulated data set, even amongst the recorded neurons, it is unclear what
influences are “direct,” which might be accounted for by “proxy” or “cascading” effects (see
Fig. 6).

In addition to the number of detected influence relationships between the neurons, there is
also a visibly dominant orientation of the connections (see Fig. 15). While the procedure
detected relationships in many directions, there are a large number of connections along the
bottom left to upper right diagonal (oriented with respect to the recording electrode array).
Neurons 1, 5, 12, 13, and 31 all have several arrows (incoming and outgoing) along this
diagonal. This result is promising, because it might correspond to propagating waves of high
frequency oscillations in the beta range (10–45 Hz) in the motor cortex (Rubino et al. 2006).
These oscillation waves observed in local field potentials (LFPs) in the motor cortex have
been found to encode information about visual targets in reaching tasks, and are thought to
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facilitate information transfer between intra- and inter-cortical regions during movement
preparation and execution (Rubino et al. 2006). Other studies have found that in the turtle
visual cortex, these waves were present during the introduction of visual stimuli (Prechtl et
al. 1997) and have been shown to encode information related to target position (Du et al.
2005). Similar wave-like spatiotemporal activity has been observed in other areas of the
nervous systems of a variety of animals and are thought to have an important role in the
communication between different areas of the brain (Ermentrout and Kleinfeld 2001).
Physically, beta oscillations are believed to correspond to the summed effects of multiple,
synchronous postsynaptic potentials from neurons close to the recording electrode (Rubino
et al. 2006). There is little is known about the precise mechanisms through which the
propagation of these waves occur (Rubino et al. 2006). The proposed estimation procedure
could provide insight into these mechanisms. The procedure could potentially both identify
the local propagation pathways (by detecting structure as in Fig. 15) as well as the specific
relationship dynamics between the recorded neurons (by identifying the coefficients of the
conditional intensity function, the αis and βjs).

8 Future work

The current estimation procedure has been proven theoretically and shown through
simulated data trials to correctly identify statistically causal influences. It has also identified
strong structure in an electrode recording data set. There are several improvements that
could furthermore enhance both the theoretical and practical aspects of this procedure. To
improve computation time, stochastic optimization procedures, such as cross-entropy (De
Boer et al. 2005) and model reference adaptive search (MRAS) (Hu et al. 2007), will be
tested. In the current, deterministic, estimation procedure, the MLEs for a large number of
(J, K) values are separately computed and then compared with corresponding complexity
penalty terms. This can be computationally expensive and possibly redundant (as the MLE
calculation for a large (J, K) searches over the spaces examined for smaller values of (J, K)).
Stochastic optimization procedures, however, directly optimize over the objective function
(Eq. (37)), potentially accelerating the optimization process. Additionally, the development
of efficient algorithms to identify the direct, causal structure of a network could benefit the
employment of this procedure to large data sets. In the simulated and electrode array
recordings data sets analyzed in the results section, all of the pairwise directed information
estimates were analyzed first, and then indirect influences examined. This might not be
efficient for all networks of interest, in particular when there is a priori knowledge of
underlying structure.

9 Conclusion

The information theoretic quantity directed information was introduced as a measure of
statistical causality. The directed information has been shown to characterize statistically
causal influences between arbitrary processes, including binary time series of neuronal
spiking activity, in a more robust and meaningful way than previously used methods such as
Granger causality. It was also noted that while it is quantitatively different than Granger
causality, their philosophical underpinnings are identical. Using an established, statistical
model class for neuronal spiking activity, a parametric estimation procedure for the directed
information was developed and consistency properties were proven.

The procedure was tested on simulated data and applied to experimental data, both with
promising results. Further tests on more complicated simulated data, and further analyses of
real data will be performed to further test the effectivenss of this procedure. Also, several
theoretical and practical improvements will be made to enhance this methodology. This
technique could become a practical, provably-good, and philosophically well-grounded
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means of identifying the statistically causal, complex relationships between neurons in large
data sets of simultaneous, multiple electrode recordings.

Appendix A: Proof of Lemma 1

Proof First, prove that . This proof closely follows the proof for the unconditional
entropy rate in Cover and Thomas (2006). An important theorem used for the proof is the
Cesaro mean theorem (Cover and Thomas 2006): For sequences of real numbers (a1, · · · an)

and (b1, · · · bn), if limn→∞ an = a, and , then limn→∞ bn = a.

By definition, . Since conditioning reduces entropy, entropy
is nonnegative, and the processes are jointly stationary, we have

Observe that

(46)

(47)

where Eq. (46) uses the property that conditioning reduces entropy (in reverse) and Eq. (47)
uses stationarity. This sequence of real numbers (once the process is defined, that is, the
underlying probability distribution is specified), the entropies are deterministic numbers)

 are nonincreasing and bounded below by 0. Therefore, limit of an as n →
∞ exists, and thus, by employing Cesaro mean theorem, 
exists.

Next, taking Xn to be a deterministic sequence, and following the above,

 exists. Taking the limit in Eq. (24),

 also exists.

Appendix B: Proof of Lemma 2

Proof The normalized causal entropy can be rewritten as

(48)

(49)
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(50)

(51)

where Eq. (48) follows by the definition of causally conditioned entropy, Eq. (49) follows
by chain rule for entropy, Eq. (50) follows from the Markov assumption, and Eq. (51)
follows from the stationarity assumption.
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Fig. 1.

Diagram of the processes and their causal relationship. X is drawn i.i.d. equi-probably to be
0 or 1, and Yi = Xi–1. Clearly X is causally influencing Y. Moreover, Y is not causally
influencing X
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Fig. 2.

Diagram of a noisy channel. The capacity of the noisy channel without feedback is a
function of I(Xn; Yn). With feedback, the capacity of the noisy channel changes. The
capacity of the whole channel (inside the dotted line), which includes both the noisy channel
and the feedback, is always a function of I(W; Yn) = I(Xn → Yn)
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Fig. 3.

Spiking activity of neurons A (top) and B (bottom)
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Fig. 4.

A graphical depiction of the direct, causal influences in a network of processes
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Fig. 5.

A graphical depiction of the causal influences in a network of processes
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Fig. 6.

A graphical depiction of two types of indirect influences. Each arrow depicts a causal
influence. The arrows with a question mark are the indirect influencs influences
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Fig. 7.

Diagram of the direct, causal influence structure that the simulated data set models. Note
that an arrow from neuron M to neuron N (possibly with M = N) means that N was designed
to be causally dependent on M's firing via N's conditional intensity function. Thus, the
arrows represent direct, causal influences
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Fig. 8.

A one second sample of the spike trains generated for neurons D, F, and C. Neuron D was
excitatory, whereas neuron C was inhibitory, in causally influencing neuron F
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Fig. 9.

Diagram of the averaged non-zero, estimated normalized pairwise directed information rates
(with averaged 95% confidence intervals) for the simulated data set, using 20 independently
generated samples. The procedure selected the same structure for each sample. The
procedure identified all the direct, causal relationships, which are depicted with thick,

dashed arrows (see Fig. 7). No invalid (pairwise) causal influences were detected (18 of the
possible 30 arrows), nor were any planned causal influences undetected. The procedure also
identified some indirect influences, which are depicted with thin, dashed arrows, such as
“proxy” influences (i.e. the groups B, D, and F) as well as some “cascading” influences (i.e.
the groups B, D, and E)
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Fig. 10.

Diagram depicting a subgraph, in which cascading influences (denoted by arrows with
adjacent“?”) were detected by the pairwise directed information estimates
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Fig. 11.

Diagram depicting a subgraph, in which proxy influences (denoted by arrows with
adjacent“?”) were detected by the pairwise directed information estimates
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Fig. 12.

Steps of the algorithm to identify which of the detected (pairwise) causal influences are
direct causal influences. A check-mark is placed next to influences that were tested and kept
at that stage in the algorithm. An “X” is placed over the influences which were determined
to not be direct, causal influences. The algorithm found the same results for the top three
figures in each of the 20 sample sets. The bottom figure has smaller “X”s because the
algorithm estimated that those influences were not direct in most, but not all, of the sample
data sets
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Fig. 13.

Diagram of the averaged non-zero normalized causally conditioned estimated directed
information rates for the simulated data set (with averaged 95% confidence intervals). For
each of the samples, all of the direct, causal influences (see Fig. 7) were detected. Only two
spurious (indirect) influences, E to F and F to E, were detected amongst any of the samples.
Nine of the 20 samples detected neither and nine of the 20 only detected one of them. Their
estimated rates were small and found to be unreliable (rates much smaller than confidence
interval)
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Fig. 14.

Seven second snapshot of spiking activity of neurons 1 and 3 in the data set from Wu and
Hatsopoulos (2006) used for analysis. The procedure found that neuron 3 causally influences
neuron 1, in an excitatory manner
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Fig. 15.

Diagram of statistically estimated causal relationships for the 37 neurons used from the
subset of electrode recordings in the arm area of a monkey's primary motor cortex (MI) from
Wu and Hatsopoulos (2006). Each box with a number indicates a different neuron. The
relative positions of the neurons in the diagram correspond to the relative positions of the
electrodes on the electrode array where the neurons were detected. An arrow from a box

labelled X to a box labelled Y depicts that a statistically causal relationship was detected

from X to Y (in particular, ). Absence of an arrow from X to Y depicts that the

procedure detected no statistically causal relationship from X to Y ( ). The transparent

diagonal arrow represents a ‘dominant’ orientation of the detected causal influences. This
might correspond to the direction of propagating local field potential waves discussed in
Rubino et al. (2006)
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Fig. 16.

Diagram depicting the induced subgraph of neurons 1, 9, and 4. Both 1 and 9 have pairwise
influences into 4, one of which might be due to an indirect influence. A question mark is
drawn adjacent the arrows in question
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Fig. 17.

The resulting subgraph after computing causally conditioned directed information estimates.

 and  was removed, and 1→4 kept
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Fig. 18.

Diagram depicting the induced subgraph of neurons 3, 10, and 13. Both 3 and 13 have
pairwise influences into 10, one of which might be due to an indirect influence. A question

mark is drawn adjacent to the arrows in question
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Fig. 19.

The resulting subgraph after computing causally conditioned directed information estimates.

 and , so 3→10 was removed, and 13→10 was kept
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Fig. 20.

Diagram depicting the induced subgraph of neurons 13, 18, and 25. Both 13 and 18 have
pairwise influences into 25, one of which might be due to an indirect influence. A question

mark is drawn adjacent to the arrows in question
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Fig. 21.

The resulting subgraph after computing causally conditioned directed information estimates.

 and , so 18→25 was removed, and 13→25 was kept
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