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Estimating the efficacy of symptom-based screening for
COVID-19
Alison Callahan 1,3✉, Ethan Steinberg 1,3, Jason A. Fries1,3, Saurabh Gombar 2, Birju Patel 1, Conor K. Corbin1 and Nigam H. Shah1

There is substantial interest in using presenting symptoms to prioritize testing for COVID-19 and establish symptom-based
surveillance. However, little is currently known about the specificity of COVID-19 symptoms. To assess the feasibility of symptom-
based screening for COVID-19, we used data from tests for common respiratory viruses and SARS-CoV-2 in our health system to
measure the ability to correctly classify virus test results based on presenting symptoms. Based on these results, symptom-based
screening may not be an effective strategy to identify individuals who should be tested for SARS-CoV-2 infection or to obtain a
leading indicator of new COVID-19 cases.
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INTRODUCTION
There is substantial interest in developing symptom-based
screening to prioritize who should be tested for SARS-CoV-2
infection and to establish symptom-based surveillance to provide
an early indicator of new COVID-19 cases1–3. However, the degree
to which presenting symptoms are reliable indicators of SARS-
CoV-2 infection is unknown4. Therefore, it is crucial to determine
whether symptom-based screening to prioritize testing is feasible.
To assess the feasibility of using symptom-based screening to
assign a probability of SARS-CoV-2 infection, we first quantified
the ability to correctly predict results of tests for common
respiratory viruses observed to frequently co-infect patients
positive for SARS-CoV-2 at Stanford Health Care5, using symptoms
mentioned in clinical notes at the time of the test order. After
establishing a baseline for the performance of machine learning
models to correctly classify common respiratory virus infections6,
we then trained a similar model for SARS-CoV-2 test results7.

RESULTS AND DISCUSSION
Performance of models to predict respiratory virus test results
For the respiratory viruses examined, area under the receiver
operator curve (AUROC) on the test set ranged from 0.60 to 0.77
(Table 1). Two non-SARS-CoV-2 viruses (influenza type A, and RSV)
were moderately predictable given presenting symptoms. For
example, mentions of coughing, wheezing and rhinorrhea were
features with high importance for the RSV model. However, SARS-
CoV-2 and the remaining common respiratory viruses (adenovirus,
rhinovirus, metapneumovirus and parainfluenza) were not highly
predictable, with average AUROCs below 0.70.
These results suggest that, for both SARS-CoV-2 and other

commonly diagnosed respiratory viral infections, the presenting
symptoms at the time of the test order may not provide sufficient
information to correctly classify whether a given patient will test
positive for that virus. Prior studies of presenting symptoms and
case definitions for influenza found that information on present-
ing symptoms alone is not sufficient to accurately diagnose
influenza, or distinguish it from other influenza-like illnesses8–12,
and our results support this finding. Though our Influenza Virus A

model had one of the higher AUROCs we observed, it is not
sufficient for use in a clinical setting.

Limitations
There are several limitations to this work. Firstly, we did not
include information on the duration of reported symptoms as
features in our models, because duration is often not reliably
described in clinical notes and therefore difficult to ascertain13.
The sensitivity and specificity of SARS-CoV-2 PCR tests is highest in
the first few days that symptoms present14. It is possible that the
data used in our analysis included patients tested later in the
course of SARS-CoV-2 infection, which would diminish classifier
performance. Secondly, the number of SARS-CoV-2 positive cases
in our data was small, which is fortunate for our population’s
health, but creates a sample size limitation which can adversely
impact machine learning model performance. Lastly, the pre-
valence of positive cases in those tested for SARS-CoV-2 infection
is dependent on the health system’s protocols used to decide
whether to test a patient; this may impact the applicability of our
findings as testing protocols evolve.
We note that clinicians’ knowledge of the signs and symptoms

of COVID-19 are rapidly evolving, such as recent findings that a
substantial fraction of patients experience gastrointestinal symp-
toms15 and dermatologic symptoms16, and the prevalence of
these presentations are still being characterized. The CDC has
recently updated their list of COVID-19 related symptoms to
include loss of taste or smell, headache, and chills with fever17.
Documentation of such emerging symptoms will increase in the
clinical notes of tested patients. Therefore, as part of Stanford
Health Care’s response to COVID-19, we continue to collect data
on patients tested for SARS-CoV-2 and to profile their presenting
symptoms7,18. Doing so will allow us to assess the effect of
improved symptom characterization and additional data on the
performance of models to identify SARS-CoV-2 infections in an
ongoing manner.

Summary
In summary, our current findings indicate that symptom-based
screening may not be an effective strategy to quantify an
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individual’s likelihood of having COVID-19. The non-specific nature
of the symptoms, and the fact that co-infections with other
respiratory viruses are common5, might limit the utility of
symptom-based screening strategies to prioritize testing and the
use of symptom surveys as a leading indicator of new COVID-19
cases in a region1,19.

METHODS
Patient cohort selection
Patients included in our study were those tested for adenovirus, influenza
virus A, metapneumovirus, parainfluenza virus, respiratory syncytial virus
(RSV), rhinovirus, and SARS-CoV-2 (Table 2). Historical data on patients
tested for other respiratory viruses were collected between September
2010 and October 2019, and included virus tests ordered as part of
respiratory virus panels as well as tests ordered on their own. Data on
patients tested for SARS-CoV-2 were collected up to March 30, 2020, and
also included results of tests ordered as part of respiratory pathogen
panels5. Only the contents of the emergency department or urgent care
note associated with the order of a patient’s virus test was used as input
for training the models, in order to emulate the information that would be
available in a real-life usage setting.

Feature engineering
Each patient’s test-associated note was processed using a rule-based NLP
pipeline20 to extract mentions of medical concepts. Extracted concepts
were classified to filter out negated terms, to identify relative timing of the
concept (e.g. a current condition or past condition), and to identify note
sections, in order to filter out concepts that were not noted at initial
observation but added later in the course of documentation. All concepts
were derived from the 2018AA SNOMED CT US vocabulary with the
semantic group DISORDER21, maintained as part of the National Library of
Medicine Unified Medical Language System.
Extracted concepts were encoded as binary variables to indicate their

presence or absence in a given patient’s clinical note, after filtering to keep
only the non-historical, positive mentions about the patient and restricting
to signs and symptoms based on SNOMED CT US semantic types. The
outcome was whether the virus test returned positive or negative for
infection with the tested pathogen.

Model training and evaluation
For respiratory viruses other than SARS-CoV-2, we trained logistic
regression models on a randomly selected 80% sample of patients’ note-
derived data and tested their performance on the remaining 20%. We
calculated 95% confidence intervals using bootstrapping on the testing
set. We evaluated performance using the AUROC, which is a measurement
of a model’s ability to distinguish positive and negative test results. For
SARS-CoV-2, because we were not able to use a fixed test set due to the
limited sample size of tested patients, we performed tenfold cross
validation and estimated uncertainty with a t-distribution confidence
interval. Hyperparameters were tuned using cross validation on the
training set. This study was approved by the Stanford University
Institutional Review Board, and this approval included a waiver of
informed consent due to the retrospective nature of the study.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
www.tinyurl.com/symptom-profile contains a summary of the top 50 most frequent
clinical observations extracted from the clinical notes of patients tested for SARS-CoV-
2 at Stanford Health Care and will be updated monthly through to September 2020.

CODE AVAILABILITY
Feature engineering, model training, and evaluation were conducted in Python using
scikit-learn version 0.22.1. Code is available upon request from the corresponding author.
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