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ESTIMATING THE FIRST- AND SECOND-ORDER PARAMETERS
OF A HEAVY-TAILED DISTRIBUTION

Liang Peng1 and Yongcheng Qi2∗

Georgia Institute of Technology and University of Minnesota Duluth

Summary

This paper suggests censored maximum likelihood estimators for the first- and second-
order parameters of a heavy-tailed distribution by incorporating the second-order regular
variation into the censored likelihood function. This approach is different from the bias-
reduced maximum likelihood method proposed by Feuerverger and Hall in 1999. The paper
derives the joint asymptotic limit for the first- and second-order parameters under a weaker
assumption. The paper also demonstrates through a simulation study that the suggested
estimator for the first-order parameter is better than the estimator proposed by Feuerverger
and Hall although these two estimators have the same asymptotic variances.

Key words: bias; censored likelihood function; Hill estimator; second-order regular variation; tail
index.

1. Introduction

To estimate large quantiles or extreme tail probabilities of an unknown distribution func-
tion, we have to estimate beyond the observations, so we need extra assumptions on the
underlying distribution function. One approach is to assume that the underlying distribution
has a heavy tail; see Danielsson & deVries (1997), Hall & Weissman (1997), Danielsson, Hart-
man & de Vries (1998) and Embrechts, Resnick & Samorodnitsky (1998). Thus, estimating
the tail index of a heavy-tailed distribution is of both practical and methodological importance,
and many different estimators have been proposed; see e.g. Hill (1975), Hall (1982a), Csörgő,
Deheuvels & Mason (1985), Csörgő & Viharos (1997) and de Haan & Peng (1998). Since we
make inference about the tail quantity, we can use only upper k order statistics of a sample
size n, where k = k(n) → ∞ and k/n → 0 as n → ∞. When k is small, the variance
of the tail index estimator is large. However, the use of large k introduces a big bias in the
estimation, so the choice of k plays an important role. Recently, several procedures have been
proposed for choosing the optimal k in the sense of asymptotic minimal mean squared error;
see Hall (1990), Dekkers & de Haan (1993), Beirlant, Teugels & Vynckier (1996), Drees &
Kaufmann (1998) and Danielsson et al. (2001). Since the optimal choice of k depends on the
second-order regular variation parameter, which is usually hard to estimate accurately, some
new estimators are proposed to reduce the bias term; see Beirlant et al. (1999) and Guillou &
Hall (2001).
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Suppose X1, . . . , Xn are independent and identically distributed random variables with
common cumulative distribution function F which satisfies

lim
t→∞

1 − F(tx)
1 − F(t) = x−α (x > 0) , (1)

where α > 0 is termed the tail index or first-order regular variation parameter. One of the
well-known estimators for the index α is the Hill estimator (Hill, 1975) defined as

α̂H (k) =
(

1
k

k∑
i=1

logXn,n−i+1 − logXn,n−k

)−1

,

where Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of the random variables X1, . . . , Xn .
Let Yi = i log(Xn,n−i+1/Xn,n−i) for i = 1, . . . , k. Then it can be shown that, for any fixed
k ≥ 1,

(Y1, . . . , Yk)
d→ (W1, . . . ,Wk) as n→ ∞ ,

where the Wi are independent Exp(α) random variables, i.e. exponentially distributed with
mean 1/α (see e.g. Weissman, 1978). Therefore, asymptotically the Hill estimator can be
viewed as the sample mean of W1, . . . ,Wk . For the consistency of α̂H (k) we refer to Mason
(1982). To derive the asymptotic normality of α̂H (k), we need a stricter condition than (1).
Suppose that as x→ ∞,

1 − F(x) = cx−α + dx−β + o(x−β) , (2)

where c > 0, d �= 0 and β > α > 0. Here β is called the second-order regular variation
parameter. Note that (2) is a special case of the general second-order regular variation (see de
Haan & Stadtmüller, 1996). For simplicity define θ = (β/α)− 1. Under condition (2) it can
be shown that, if

√
k(k/n)θ → λ ∈ [0,∞),

α̂H(k)− α
α/

√
k

d→ N
( λθd

(1 + θ)c1+θ , 1
)

(see Hall & Welsh, 1985 or de Haan & Peng, 1998). Hence the optimal choice of sample
fraction is

k∗ =
( (1 + θ)2c2+2θ

2θ3d2

)ξ
n1−ξ , where ξ = 1

1 + 2θ
(3)

in the sense of minimal asymptotic mean squared error of the Hill estimator. Using the result

Yi
d∼ Exp(giα) where gi = gi(θ, ω) = exp

(
− ω

( i
n

)θ)
, with ω = θd

c1+θ ,

Feuerverger & Hall (1999) estimated α, ω and θ by the maximum likelihood method. This
results in the estimator

α̂FH(k) =
(

1

k

k∑
i=1

Yi

gi(θ̂, ω̂)

)−1

, (4)

where (θ̂, ω̂) are chosen to minimize

L1(θ, ω) = 1

k

k∑
i=1

log gi + log
(1

k

k∑
i=1

Yi

gi

)
.

This approach reduces bias by an order of magnitude without inflating the order of variance.
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The determination of the optimal sample fraction k∗ in (3) depends on both the first- and
the second-order parameters, α and β, of the underlying distribution (2). Thus the estimation
of the second-order parameter is also desired in practice. In this paper we first derive the
Hill estimator as the maximum likelihood estimator (MLE) for left-censored data, rather than
basing the estimator on an asymptotic exponential distribution. Then we can incorporate the
second-order regular variation into the censored likelihood, which introduces new estimators
for the first- and second-order parameters. This new procedure allows simultaneous estimation
of both α and β, and permits a larger range of sample fractions for the new estimator of the
first-order parameter α without introducing any bias. Section 2 gives the detailed method
and main results, showing that our new estimator for α has the same asymptotic variance as
α̂FH(k) defined in (4). In comparison with Feuerverger & Hall (1999), we are able to derive
the joint asymptotic distribution for estimators of the first- and second-order parameters under
a weaker assumption. Section 3 presents a simulation study and a real application, where
our new estimator for the first-order parameter is shown to have a better performance than
α̂FH(k) in Feuerverger & Hall (1999), although these two estimators have the same asymptotic
variances. All proofs are omitted in the paper. Interested readers can find them in the technical
report by Peng & Qi (2003).

2. Method

Let T = T(n) → ∞ as n → ∞, and define δi = I (Xi > T) for i = 1, . . . , n. Since
we can only use a part of upper order statistics to make inference, we view our observations
as ((Xi ∨ T, δi), 1 ≤ i ≤ n) instead of (Xi, 1 ≤ i ≤ n). If we suppose that 1 −F(x) = cx−α
for x > T, then the likelihood for ((Xi ∨ T, δi), 1 ≤ i ≤ n) is

L(α, c) =
n∏
i=1

(cαX−α−1
i )δi (1 − cT−α)1−δi .

Hence we have

(α̃, c̃) = argmax
α>0,c>0

L(α, c) =
( ∑n

i=1 δi∑n
i=1 δi(logXi − log T)

,
1
n
T α̃

n∑
i=1

δi

)
.

So if T is chosen as Xn,n−k , then α̃ becomes the Hill estimator α̂H (k). Hall (1982b) used a
somewhat similar approach to derive the MLE for the endpoint of a distribution.

If 1 − F(x) = cx−α + dx−β for x > T, then the likelihood for ((Xi ∨ T, δi), 1 ≤ i ≤ n)
is

L = L(α, c, β, d) =
n∏
i=1

(cαX−α−1
i + dβX−β−1

i )δi (1 − cT−α − dT−β)1−δi .

Therefore our new estimators can be obtained as

(ᾱ, c̄, β̄, d̄) = argmax
α>0,c>0,β>α,d �=0

L(α, c, β, d) ,

i.e. (ᾱ, c̄, β̄, d̄) is the solution of the following set of equations:

∂ logL

∂α
=

n∑
i=1

δi(cX
−α−1
i − cαX−α−1

i logXi)

cαX−α−1
i + dβX−β−1

i

+ mcT−α log T

1 − cT−α − dT−β = 0 , (5)

∂ logL

∂c
=

n∑
i=1

δiαX
−α−1
i

cαX−α−1
i + dβX−β−1

i

− mT−α

1 − cT−α − dT−β = 0 , (6)
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∂ logL

∂β
=

n∑
i=1

δi(dX
−β−1
i − dβX−β−1

i logXi)

cαX−α−1
i + dβX−β−1

i

+ mdT−β log T

1 − cT−α − dT−β = 0 , (7)

∂ logL

∂d
=

n∑
i=1

δiβX
−β−1
i

cαX−α−1
i + dβX−β−1

i

− mT−β

1 − cT−α − dT−β = 0 , (8)

where m = ∑n
i=1(1 − δi), under the constraints

β > α > 0 , c > 0 , d �= 0 .

It follows from (5)–(8) that

c = αβTα

α− β
(∑n

i=1 δi

nβ
−

∑n
i=1 δi(logXi − log T)

n

)
, (9)

d = αβTβ

β − α
(∑n

i=1 δi

nα
−

∑n
i=1 δi(logXi − log T)

n

)
; (10)

see Peng & Qi (2003) for detail. Write


H∗(α) =
∑n
i=1 δi

nα
−

∑n
i=1 δi log(Xi/T)

n
,

Q∗
i (α, β) = α

(∑n
i=1 δi

n
+ αβ

α− βH
∗(α)

)(Xi
T

)β−α − αβ2

α− βH
∗(α) .

Substituting (9) and (10) into (8), we obtain

1

n

n∑
i=1

δi
1

Q∗
i (α, β)

= 1

β
. (11)

Substituting (9) and (10) into (7) and using (11) we have

1

n

n∑
i=1

δi
1

Q∗
i (α, β)

log
Xi

T
= 1

β2 . (12)

If we take T = Xn,n−k and define



H(α) = 1

α
− 1

k

k∑
i=1

log
Xn,n−i+1

Xn,n−k
,

Qi(α, β) = α

β

(
1 + αβ

α− βH(α)
)(Xn,n−i+1

Xn,n−k

)β−α − αβ

α− βH(α) ,

then (11) and (12) become

1

k

k∑
i=1

1

Qi(α, β)
= 1 (13)

and
1

k

k∑
i=1

1

Qi(α, β)
log
Xn,n−i+1

Xn,n−k
= 1

β
. (14)
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Put
β > α > 0 and β > α̂H(k) . (15)

Our reason for imposing the constraint β > α̂H(k) is that β = α̂H (k) is a solution to (13) for
any fixed α < α̂H(k). For any fixed β > α0 , where α0 denotes the true parameter value,




1

k

k∑
i=1

1

Qi(α̂H(k), β)

p→ 1 ,

1

k

k∑
i=1

1

Qi(α̂H(k), β)
log
Xn,n−i+1

Xn,n−k

p→ 1

β
,

as k → ∞, k/n→ 0.
Let U(x) denote the inverse function of 1/(1 − F(x)). Then (2) implies that for any

x > 0

lim
t→∞

U(tx)/U(t)− x1/α

A(t)
= x1/α 1 − x−θ

θ
, where θ = β

α
− 1 > 0 ,

i.e. lim
t→∞

1

A(t)

(
logU(tx)− logU(t)− 1

α
log x

)
= 1 − x−θ

θ
, where A(t) = − θd

αc1+θ
1

tθ
.

Suppose there exists a function B(t)→ 0, with constant sign near infinity, such that

lim
t→∞

1

B(t)

( logU(tx)− logU(t)− α−1 log x

A(t)
− 1 − x−θ

θ

)

= − 1

ρ

(1 − x−θ−ρ
θ + ρ − 1 − x−θ

θ

)
= h(x) , (16)

where ρ ≥ 0 can be called the third-order regular variation parameter.
Our main result is as follows.

Theorem 1. Suppose (16) holds with true parameters α0 > 0 and β0 > α0, and suppose
k = k(n) satisfies

k → ∞ ,
√
k

∣∣∣A(n
k

)∣∣∣ → ∞ ,
√
kA2

(n
k

)
→ 0 ,

√
k

∣∣∣A(n
k

)
B

(n
k

)∣∣∣ → 0 , as n→ ∞ .

Assume there exists a solution to (13)–(15), say (α̂(k), β̂(k)). Then

(√
k
(
α̂(k)− α0

)
,

√
kA

(n
k

)(
β̂(k)− β0

)) d→ (N1, N2) ,

where (N1, N2) is a bivariate normal random vector with E(N1) = E(N2) = 0, E(N2
1 ) =

α2
0β

4
0/(β0 − α0)

4, E(N2
2 ) = α0(β0 − α0)

2/(β2
0(2β0 − α0)), and E(N1N2) = α2

0/(β0 − α0).

The condition
√
k |A(n/k)| → ∞ ensures that there exists a consistent solution to (13)–

(15); see Peng & Qi (2003) for the proof of Theorem 1. We suspect that the theorem in
Feuerverger & Hall (1999) requires the consistency of the estimator of β0 since the expansion
D(i/n)θ in Feuerverger & Hall (1999 p.776) requires that (θ − θ0) log(i/n)→ 0 uniformly
for i = 1, . . . , k, where θ = β/α− 1 and θ0 = β0/α0 − 1.
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Table 1

Comparison by using a practical choice of sample fraction. Estimators α̂(k) and
α̂FH(k) are computed with k = min([ 1

2k
∗ log k∗], 1

2n), where k∗ is given in (3).

k∗ k α̂(k) se α̂FH(k) se

Burr(0.5, 0.7) 35 62 0.4099 0.0901 0.3923 0.1189
Burr(0.5, 1.0) 125 301 0.4839 0.0616 0.4809 0.0903
Burr(2.0, 3.0) 47 90 1.7268 0.3285 1.6936 0.5064
Burr(2.0, 4.0) 125 301 1.9468 0.2505 1.9240 0.3710
Fréchet(0.5) 199 500 0.4930 0.0552 0.4949 0.0765
Fréchet(2.0) 199 500 1.9821 0.2203 1.9805 0.3069

Table 2

Comparison of the effect of using different choices of sample fraction. Estimators α̂(k)
and α̂FH(k) are computed for k = k∗ + 10i, i = 1, . . . , 10, where k∗ is given in (3).

Burr(0.5, 0.7) Burr(2.0, 3.0)
k α̂(k) se α̂FH(k) se α̂(k) se α̂FH(k) se

k∗ + 10 0.4275 0.1210 0.4017 0.1334 1.7558 0.4741 1.6695 0.5359
k∗ + 20 0.4214 0.1015 0.3990 0.1206 1.7469 0.4147 1.6617 0.5359
k∗ + 30 0.4101 0.0877 0.3906 0.1154 1.8000 0.3873 1.7263 0.4859
k∗ + 40 0.4125 0.0784 0.3959 0.1049 1.7583 0.3366 1.7350 0.4783
k∗ + 50 0.4081 0.0751 0.3872 0.1074 1.7428 0.3165 1.6654 0.4165
k∗ + 60 0.4080 0.0688 0.3596 0.0977 1.7111 0.3038 1.6514 0.4036
k∗ + 70 0.4150 0.0800 0.3925 0.0961 1.7084 0.2768 1.6722 0.3903
k∗ + 80 0.4037 0.0560 0.3902 0.0861 1.7156 0.2866 1.6637 0.3977
k∗ + 90 0.4019 0.0609 0.3903 0.0926 1.7298 0.2633 1.6583 0.3281
k∗ + 100 0.3956 0.0570 0.3856 0.0871 1.7126 0.2518 1.6682 0.3590

We found that the complicated variance for α̂FH(k) given by Feuerverger & Hall (1999)
is exactly E(N2

1 ), i.e. our new estimator α̂(k) has the same asymptotic variance as α̂FH(k).

Condition (4.1) in Feuerverger & Hall (1999) is slightly stronger than our condition (16). On
the other hand, we expect that α̂(k) would behave better than α̂FH(k) since α̂(k) is based on a
censored likelihood function rather than an approximate exponential distribution like α̂FH(k).

This is confirmed in Section 3.
Feuerverger & Hall (1999) did not give the asymptotic variance for estimating the second-

order parameter β. There are a few consistent estimators for β in the literature, but as far as
we know, no asymptotic properties for them are established. Our estimator for β is a sort of
MLE, so it can be considered to be efficient.

In the case
√
kA2(n/k)→ λ1 ∈ [0,∞) and

√
kA(n/k)B(n/k)→ λ2 ∈ (−∞,∞), we

are able to show, by a refinement of the proof of Theorem 1, that the limit in Theorem 1 has a
bias term.

Comparing our estimator with the Hill estimator, we can draw the same conclusions as
Feuerverger & Hall (1999), i.e. our new estimator α̂(k) allows the use of a larger sample
fraction k.

3. Simulation study and real application

3.1. Simulation study

We report on a simulation study which examined the finite sample properties of our
estimator α̂(k), and compare it with the α̂FH(k) proposed by Feuerverger & Hall (1999).
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Figure 1. Danish fire loss data. This consists of 2156 losses over
one million Danish Krone from the years 1980 to 1990, inclusive.
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Figure 2. Tail index estimation of Danish fire-loss data. Here ‘new estimator’
and ‘FH estimator’ denote α̂(k) and α̂FH(k), respectively.

We generated 200 pseudorandom samples of size n = 1000 from one of the following
two distributions: (i) Burr(α, β) distribution, given by F(x) = 1 − (1 + xβ−α)−α/(β−α) (x >
0); (ii) Fréchet(α) distribution, given by F(x) = exp(−x−α) (x > 0).

First we compare our estimator α̂(k) with α̂FH(k) by employing a practical choice of
k = min([ 1

2k
∗ log k∗], 1

2n) with the theoretical optimal value of k∗ given in (3) for dis-
tributions Burr(0.5, 0.7), Burr(0.5, 1.0), Burr(2.0, 3.0), Burr(2.0, 4.0), Fréchet(0.5) and
Fréchet(2.0); see Table 1. Here we use the theoretical value of k∗ rather than estimated
value, since we investigate the effect of the choice of sample fraction in our next comparison.
Second, we compare α̂(k) with α̂FH(k) by using various choices of sample fraction for dis-
tributions Burr(0.5, 0.7) and Burr(2.0, 3.0); see Table 2. Although both estimators have the
same asymptotic variance, we can conclude from Tables 1 and 2 that our new estimator α̂(k)
is better than α̂FH(k), because it is based on a censored likelihood function whereas α̂FH(k)

is based on an approximate exponential distribution.
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3.2. Real application

The dataset we analyse consists of 2156 Danish fire losses totalling over one million
Danish Krone from the years 1980 to 1990 inclusive (see Figure 1). The loss figure is a total
loss figure for the event concerned, and includes damage to buildings and furnishings and
personal property, as well as loss of profits. This Danish fire dataset was analysed by McNeil
(1997). We compute α̂(k) and α̂FH(k) for k = 50 + 5i, i = 1, . . . , 100; see Figure 2. We
observe from Figure 2 that our new estimator α̂(k) is much more robust than α̂FH(k) as the
sample fraction k becomes large.
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Csörgő, S. & Viharos, L. (1997). Asymptotic normality of least-squares estimators of tail indices. Bernoulli
3, 351–370.
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