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Abstract

�e Policy Research Working Paper Series disseminates the �ndings of work in progress to encourage the exchange of ideas about development 

issues. An objective of the series is to get the �ndings out quickly, even if the presentations are less than fully polished. �e papers carry the 

names of the authors and should be cited accordingly. �e �ndings, interpretations, and conclusions expressed in this paper are entirely those 

of the authors. �ey do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 

its a�liated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 7308

�is paper is a product of the Agriculture and Rural Development Team, Development Research Group. It is part of a 

larger e�ort by the World Bank to provide open access to its research and make a contribution to development policy 

discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. 

�e authors may be contacted at w.martin@cgiar.org.  

�is paper evaluates the performance of alternative estima-

tors of the gravity equation when zero trade �ows result 

from economically-based data-generating processes with 

heteroscedastic residuals and potentially-omitted variables. 

In a standard Monte Carlo analysis, the paper �nds that this 

combination can create seriously biased estimates in grav-

ity models with frequencies of zero frequently observed in 

real-world data, and that Poisson Pseudo-Maximum-Like-

lihood models can be important in solving this problem. 

Standard threshold–Tobit estimators perform well in a 

Tobit-based data-generating process only if the analysis 

deals with the heteroscedasticity problem. When the data 

are generated by a Heckman sample selection model, the 

Zero-In�ated Poisson model appears to have the lowest bias. 

When the data are generated by a Helpman, Melitz, and 

Rubinstein-type model with heterogeneous �rms, a Zero-

In�ated Poisson estimator including �rm numbers appears 

to provide the best results. Testing on real-world data for 

total trade  throws up additional puzzles with truncated 

Poisson Pseudo-Maximum-Likelihood and Poisson Pseudo-

Maximum-Likelihood estimators being very similar, and 

Zero-In�ated Poisson and truncated Poisson Pseudo-Max-

imum-Likelihood identical. Repeating the Monte Carlo 

analysis taking into account the high frequency of very small 

predicted trade �ows in real-world data reconciles these �nd-

ings and leads to speci�c recommendations for estimators. 
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 I. Introduction 

 

The gravity model is now enormously popular for analysis of a wide range of trade 

questions. This popularity is due to its apparently good performance in representing trade 

flows and to the strong theoretical foundations provided in papers such as Anderson (1979) 

and Anderson and van Wincoop (2003). Until recently, the gravity equation was almost 

invariably estimated using data sets converted into logarithms and truncated to contain only 

positive trade flows.  The problem of zero trade flows was rarely emphasized, partly 

because trade theories were silent on their causes, partly because of a lack of recognition 

of their frequency, and partly because of the convenience of the log-linear estimator. 1 

Recently, there has been growing recognition among trade economists that zero trade 

flows do not occur randomly and that using truncated samples in logarithms may yield 

misleading results. Melitz (2003) and myriad subsequent studies have added firm-level 

foundations to earlier models of zero trade flows, such as those based on the Tobin (1958) 

and Heckman (1979) models. Santos Silva and Tenreyro (SST) (2006) raised an important 

additional concern by pointing to the possibility of serious bias from combinations of 

heteroscedasticity and nonlinearity in the gravity model. Helpman, Melitz and Rubinstein 

(HMR) (2008) pointed to another potential source of bias in coefficient estimates—failure 

to account for the increase in demand for exports as the number of exporting firms increases.  

Like SST (2006), we believe that at least part of the process of identifying the right 

estimator must involve analysis of generated data whose statistical properties are known. 

In this paper we evaluate different estimators of the gravity equation in the presence of 

pervasive zero trade flows and under different patterns of heteroscedasticity. Because we 

are unsure of the process generating real-world data, we test alternative estimators on data 

sets generated using three different economic models in which the probability of a nonzero 

trade flow and the volume of trade when trade is nonzero are jointly determined: the 

threshold-Tobit model of Eaton and Tamura (1994); the Heckman model; and an extended 

Heckman model of the type used by HMR (2008). 

                                                 
1 As shown in Annex A, zero trade flows account for more than 40% of the possible bilateral trade flows in 

country-level data and more than 60% in U.S. 10-digit product-level export data, and the probability of zero 

trade flows is strongly linked to the explanatory variables in gravity models. The frequency of zero trade 

flows is much higher at the more disaggregated levels of product and firm trade that are increasingly being 

used for analysis.  
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Each of the three data-generating processes used in our Monte Carlo simulations 

provides a plausible economic representation of observed trade flows, and can be 

parameterized to represent the frequency of zero trade flows observed in real trade data. 

The resulting data sets differ from those used by SST (2006) in containing true zero 

observations, and in being based on economic models that jointly determine whether to 

trade and, if so, the volume of trade. They are not constant-elasticity models because 

constant-elasticity models cannot generate finite probability mass at zero trade. Instead of 

moving from a constant-elasticity model to a model containing zeros by transforming the 

latent variables from constant-elasticity models with a negative-binomial distribution as in 

SST (2011), we use limited-dependent variable models whose properties have been 

thoroughly explored in the literature.  

The paper is organized as follows. In the next section we provide a brief review of 

the relevant literature. Section III discusses the econometric problems associated with zero 

trade flows. Potential approaches to estimating the gravity equation in the presence of 

frequent zero trade flows are considered in Section IV. Section V covers the DGPs of our 

Monte Carlo simulations and the simulation results. Section VI provides an empirical 

implementation of the gravity estimation using country-level trade data and section VII 

discusses reconciling Monte Carlo and empirical findings. Finally, the paper concludes in 

Section VIII. 

II. Review of Relevant Literature on Estimating the Gravity Model 

Eaton and Tamura (1994) appear to have been the first to provide a systematic approach to 

estimation of the gravity equation as a limited-dependent model. Their model builds on the 

Tobin (1958) model, where non-limit observations arise when the latent dependent variable 

(including the error term) crosses a threshold value. 2  Another popular approach to 

estimation uses the Heckman (1979) model to deal with the presence of zero trade flows 

(see, for example, Francois and Manchin (2007) and Lederman and Ozden (2007)). The 

third approach that we consider builds on the Heckman model to take into account the 

extensive margin of firm involvement in trade (HMR 2008).  

                                                 
2 Note that in the Tobit model the effect of the coefficient estimate on the explanatory variable x cannot be 

interpreted as the effect of x on the dependent variable y. Rather, as McDonald and Moffitt (1980) correctly 

point out, it is the effect of x on two components of y: “(1) the change in y for those observations above the 

limit, weighted by the probability of being above the limit; and (2) the change in the probability of being 

above the limit, weighted by the expected value of y if above” (pg. 318-319). 
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In an important and influential article, SST (2006) emphasized the potential 

econometric problems resulting from a combination of heteroscedastic residuals and zero 

trade flows. Using Monte Carlo simulations, they showed that traditional estimators may 

yield severely-biased parameter estimates and identified the Poisson Pseudo Maximum 

Likelihood (PPML) estimator as the preferred estimator for dealing with these problems. 

The data sets used for the main experiments in their 2006 paper included no zeros (SST 

2011, p220), suggesting that their important findings about the bias and variance of 

standard estimators arise from the combination of nonlinearity and heteroscedasticity 

highlighted in the paper, rather than from success in dealing with the presence of zero 

observations. While their paper included some experiments with zeros generated by 

rounding errors, a process quite different from economic processes generating zeros such 

as those assumed when applying limited-dependent variable estimators.  

The tractable and apparently robust PPML estimator proposed by SST is now widely 

used in estimation of gravity models (see, for example, Shepherd 2010; Anderson and 

Yotov 2012). SST show why the normal equations used to solve the PPML estimator 

should make it more robust than OLS-based estimators when the function is nonlinear and 

the errors are heteroscedastic, and show using Monte Carlo simulations that its coefficients 

are much less subject to bias in this situation. Based on their evidence, the case for the 

PPML estimator seems extremely strong for analysis of nonlinear relationships in models 

where zero values are infrequent.3 However, because the tests in their 2006 paper were 

based on samples containing no zero values, the results obtained cannot be expected to 

provide a reliable guide to the robustness of the PPML estimator in the presence of 

economically-determined zero values.  

Perhaps a more fundamental problem for reliance on the PPML estimator applied to 

censored samples (including the zeros) is that the move from the traditional, discrete 

version of the Poisson distribution to the continuous needed for the gravity equation 

removes the ability to have positive probability mass at the limit observation (Ilienko 2013, 

p2). While a discrete version of the Poisson distribution could adequately capture the 

presence of large shares of limit observations of the type identified by Tobin (1958), the 

                                                 
3 Heteroscedasticity in nonlinear models with relatively few zero observations arises in many important 

applications such as consumption, investment and money demand systems; and representative models for 

consumer demand, firm costs and profits. The results of SST (2006) appear to deserve much more attention 

for estimation in this context. 
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continuous version of this distribution is unable to adequately represent these cases. This 

problem appears worse than the common concern that empirical distributions may be over-

dispersed relative to the Poisson, in which the mean and the variance are equal. Especially 

in cases where large fractions of a sample are zero trade flows that are retained in the 

analysis, the continuous Poisson specification appears likely to be seriously mis-specified. 

The Zero-inflated Poisson estimator developed by Lambert (1992) and applied to the 

gravity model by Burger, van Oordt and Linders (2009) might be one way to retain the 

advantages of the Poisson estimator while allowing for substantial numbers of zeros. 

On the theoretical front, there have also been major recent developments. HMR 

(2008) provide a heterogeneous-firm trade model that both allows for frequent and 

asymmetric patterns of zeros in bilateral trade data and introduces a number-of-firms 

variable, correlated with the probability of non-zero trade that affects trade volume through 

a love-of-variety effect. They extend the Heckman model so that the standard gravity 

explanatory variables determine not only the probability of positive bilateral trade (i.e. the 

probability that the most productive firm finds it profitable to export to a foreign 

destination) but also the fraction of firms that are productive enough to enter foreign 

markets when positive trade occurs. This overcomes an omitted-variable problem different 

from that created by the limited-dependent feature of the data.  

 

III. Intuition on the Econometric Problems Associated with Zero Flows  

Since Tobin’s famous (1958) paper, it has been known that zero values of the dependent 

variable can create potentially large limited-dependent variable biases in parameter 

estimates, even in linear models, if the estimator used does not allow for this feature of the 

data generating process. Heckman (1979) generalized Tobin’s approach to estimation in 

the presence of this problem, casting it in the context of estimation using samples with non-

random sample selection. A nonlinear version of Heckman’s formulation of the problem is 

presented in a two equation context: 

(1)    y*
1i  =  f(xi,β) + u1i  

(2)    y*
2i  =  f(zi,α)  + u2i  

where xi and zi are vectors of exogenous regressors while β and α are vectors of parameters, 

and  

E(uji) = 0,   
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E(uji uj´i´´)  =  σjj´ if    i = i´´    

     =     0  if     i ≠ i´´  

In Heckman’s formulation, equation (1) is a behavioral equation and equation (2) is a 

sample selection rule that determines whether observations in equation (1) are observed or 

not. In our context, this model results in:   

(3)   y1i =  y*
1i                    if    y*

2i > 0  or 

(4)   y1i  = 0                        if   y*
2i ≤ 0   

A key problem for estimation of equation (1) in the presence of sample selection is that its 

residuals no longer have the properties assumed in standard regression theory, particularly 

a zero mean. In this situation, standard regression procedures result in biased estimates of 

the coefficient vector β because they omit relevant explanatory variables.  

 

The Tobit model is a special case of the Heckman model in which the right hand 

sides of (1) and (2) are identical (Heckman 1979). In this case, a simple diagram (Figure 

1) provides important insights into the key problems arising in applying standard 

approaches to estimation. Our version of the figure includes both the nonlinearity and 

heteroscedasticity of the gravity equation emphasized by SST (2006) and the limited-

dependent variable problem.  
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Figure 1. Limited-dependent variable bias in the gravity model 
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Figure 1 shows the relationship between a latent variable, y*, and an explanatory variable, 

x, with the non-stochastic relationship represented by the solid curve, and individual data 

points by the bullets. The hollow bullets correspond to any value of y* less than or equal to 

zero. In the censored regression case, the residuals associated with these low values of the 

latent variable will be replaced by positive residuals that lead to a zero value of the 

dependent variable, a change represented by the dashed arrows in the diagram. With this 

model, using a sample containing the zero values—for which E(u)>0—biases the 

coefficient on the slope and results in an estimate something like the dashed curve (Greene 

1981).  

Another insight from careful examination of Figure 1 is the difference between the 

case of censoring shown in the diagram and the case of truncation where all of the 

observations at the limit (zero in this case) are discarded from the sample. In the censoring 

case, the error terms on all limit observations but those where y* was precisely zero have 

been increased. In the case of truncation, observations with negative errors, like the 

rightmost hollow bullet in the diagram, are more likely to be excluded from the truncated 
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0

x

� ��

�

�

�

��

�

�
�

�
� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�
� �

�

�� �

�

�



 

 8

error terms associated with the censored sample seems likely to be greater than that 

associated with the truncated sample. This suggests that moving from a truncated 

estimation procedure to one which retains the zero values without changing the estimation 

procedure may result in greater bias. 

The diagram shows another feature of the residuals from application of a regression 

estimator designed for non-censored problems. Such estimators are likely to find residuals 

that are both large and serially dependent at both ends of the regression line—note the 

consistently positive apparent residuals relative to the dashed line in Figure 1 for 

observations near zero and near the largest observations in the sample. The estimated 

regression line is likely to be strongly influenced by such extreme observations, particularly 

when using ordinary least squares (Beggs 1988). However, the implications of this are 

likely to vary considerably between estimators, given the different weighting implied by 

the normal equations for the different estimators (SST 2006).  

With a little more imagination, Figure 1 can also help visualize a different problem 

associated with heteroscedasticity even in the absence of the nonlinearity problem 

identified by SST—a problem associated with mis-measurement of the probability of 

observations at the limit. Following the notation of Terza (1985), the log-likelihood 

function for a sample generated by a Tobit-type process is given by  

L  = Σi dilog(f(yi)) + (1-di)log(F(0)) 

where di is an indicator value taking the value 1 for a non-limit observation; (f(yi)) is the 

density function for non-limit observation i, and F(0) is the distribution function showing 

the probabilities of zero observations. If the variance relevant to assessing the value of the 

distribution function is incorrectly specified—as it would be with a model assuming 

homoscedasticity—this is clearly likely to change the realized values of the distribution 

function for limit observations, causing potentially-serious bias in parameter estimates, as 

pointed out by SST (2014) in their assessment of the HMR (2008) estimator. 

 

IV. Potential Approaches to Estimating Gravity Models with Zeros 

In estimating the gravity model when there are many zero observations, some key questions 

must be confronted: 

i. Which functional form to use for the explanatory variables? 

ii. Whether to truncate or censor the zero observations? and 
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iii. What estimator to use? 

There seems to be widespread agreement that the gravity model involves 

relationships between variables that are nonlinear in levels, with a constant-elasticity 

functional form almost always used. This implies a relationship: 

(5) yi   =   exp(xiβ) + εi 

where yi represents bilateral trade; xi is a vector of explanatory variables (some of which 

may be linear, some in logarithms and some dummy variables) for observation i; β is a 

vector of coefficients; and εi is an error term whose variance, unlike those of equations (1) 

and (2), need not be constant across observations. As noted by SST, the gravity model has 

traditionally been estimated after taking logarithms, which allows estimation using linear 

regression techniques. However, this specification will only involve homoscedastic 

residuals if εi = exp(xiβ).vi where vi is distributed independently of xi with a zero mean and 

constant variance. Of course, if this is the true model, the constant-elasticity model 

estimated in levels will have heteroscedastic errors. 

The use of the logarithmic transformation for the dependent variable creates another 

immediate difficulty when trade is zero, since the log of zero is undefined. The most 

common response to this problem has been to truncate the sample by deleting the 

observations with zero trade. This is inefficient, since it ignores the information in the limit 

observations, and may lead to bias as noted in the previous section. Many studies have 

replaced the value of imports by the value of imports plus one, allowing the log of the zero 

values to take a zero value. Others have estimated in levels using nonlinear estimation 

techniques which allow the zero values to be retained. However, as we have seen from 

Figure 1, retaining the zero observations without using an estimator that accounts for the 

limited-dependent nature of the model may lead to more serious bias than simply truncating 

the sample. What seems to be needed is an approach to estimation that systematically takes 

into account the information in the limit observations. Once the decision to include the 

limit observations is taken, a number of other decisions must be confronted. We find it 

useful to lay out the choices with the decision tree in Figure 2. 

At the first stage of the decision tree, analysts must decide between parametric 

models and semi-parametric models. Semi-parametric models (Chay and Powell 2001) 

avoid specifying a distribution for the residuals, sometimes at the expense of computational 

efficiency, and estimate parameters using methods such as Powell’s (1984) Censored Least 
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Absolute Deviations (CLAD) model. While such models have been extended to deal with 

nonlinear models (Berg 1998), it appears that such applications have been infrequent to 

date. Certainly, most of the focus in estimation of gravity models has been on the 

parametric branch of the decision tree. 

 

Figure 2. Choosing an estimator for the gravity model with limited-dependent trade 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If a parametric approach is taken, the first decision required is whether to adopt a 

Tobit/Heckman-type model (Amemiya 1984), or a Two-Part model (Jones 2000). The 

Two-Part model has the desirable feature of allowing the sample selection and the 

behavioral equations to be estimated independently (Duan et al. 1983). However, this 

simplification comes at the expense of assuming that these decisions are taken 

independently, something that seems implausible in a world where decisions on whether 

to export and on how much to export and how much to ship should they choose to export 

are taken by individual firms based on the profitability of exports of their particular 

products to particular markets. In most cases, it seems to us that the variable of interest is 

the latent variable for the desired level of trade, y*, for which the Tobit/Heckman approach 

seems the most suited.  

Parametric Semi-Parametric 

Tobit/Heckman Two-Part 

Normal 

Residuals 
Other Normal 

Residuals 
Other 

2-Step MLE 2-Step MLE 
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A key argument for the Two-Part model has been a belief that the performance of 

the sample-selection models is irretrievably compromised by statistical problems, and 

particularly multicollinearity. Leung and Yu (1996) show that these problems may be less 

of a problem for practical implementation than was thought based on earlier studies such 

as Manning, Duan and Rogers (1987), which included insufficient variation in the 

exogenous variables to mitigate the multicollinearity between these variables and the 

inverse Mills ratio added to the behavioral equation when estimating using the two-step 

estimator of the Heckman (1979) sample selection model.4 Based on a detailed review of 

the literature on the Heckman correction for sample selection bias, Puhani (2000) found 

that the full-information maximum likelihood estimator of Heckman’s model generally 

gives better results than either the two-step Heckman estimator or the Two-Part model, 

although the Two-Part model is more robust to multicollinearity problems than the other 

standard estimators. Clearly, these results suggest that the consistency of the data with the 

assumptions of the Tobin/Heckman models should be examined carefully. 

Whichever parametric estimator is chosen, an assumption about the distribution of 

the residuals must be made. The most common approach is to assume that the residuals are 

distributed normally. However, alternative assumptions are sometimes used, including the 

Poisson distribution highlighted by SST (2006) or the Gamma distribution that they also 

examined. The decision about which distribution to use need not be based solely on 

judgments about the actual distribution of the residuals. The essence of SST’s 

recommendation of the PPML estimator was that it is more robust to heteroscedasticity 

than one based on the normal distribution when the residuals are actually normally 

distributed. 

The first part of the Two-Part approach is the use of a qualitative-dependent model 

such as Probit to determine whether a particular bilateral trade flow will be zero or positive. 

The second part is to estimate the relationship between trade values and explanatory 

variables using only the truncated sample of observations with positive trade (Leung and 

Yu 1996, p198). Potential estimators for this stage include the standard approach of OLS 

in logarithms; the nonlinear least squares (NLS) model used by Frankel and Wei (1993); 

                                                 
4 Leung and Yu (1996, p201) show that problems with Heckman’s two-step estimator are more likely when 

there are few exclusion restrictions; a high degree of censoring; limited variability among the exogenous 

regressors; or a large error variance in the choice equation. 
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and the PPML and Gamma Pseudo-Maximum Likelihood (GPML) estimators discussed 

by SST. Estimation of the bias of truncated single-equation estimators will therefore help 

assess the suitability of Two-Part models. 

Under the Tobit/Heckman limited-dependent branches of the decision tree, a 

decision must be made about whether to estimate using two-step estimators of the type 

proposed by Heckman (1979) or a maximum likelihood approach (see Tobin (1958), 

Puhani (2000) and Jones (2000)). One concern with the Heckman two-step estimator is that 

the variable that adjusts for the probability of sample selection5 may be close to a linear 

function of the other explanatory variables, resulting in multicollinearity problems (Puhani 

2000). A second concern is that this approach introduces heteroscedasticity into the 

residuals. An alternative, nonlinear, approach to estimating Heckman’s second-step 

equation is provided by Wales and Woodland (1980, p461). We do not consider this 

estimator because it performed poorly in their simulations. 

The performance of the Heckman-based models appears to depend heavily on 

whether both equations (1) and (2) are active, and whether there are at least some variables 

included in equation (1) but excluded from equation (2). Leung and Yu (1996) concluded 

that this estimator with some excluded variables in the behavioral equation outperformed 

other estimators for limited-dependent variables. 

 

V. Monte Carlo Simulations 

In this section of the paper, we provide a description of the approach we used to create zero 

observations with frequencies similar to those observed in real-world data and to test the 

ability of different estimators to retrieve the parameters of these data generating processes. 

We also followed the approach of SST and of Westerlund and Wilhelmsson (2011) to 

creating heteroscedastic errors—that is, we posited a range of different types of 

heteroscedasticity, and tested their implications for the performance of different estimators. 

Because we know the true parameters, we focus on the bias and imprecision of the 

coefficient estimates, rather than the goodness of fit measures emphasized by Gomez-

Herrera (2013). 

                                                 
5 Which is the inverse Mills ratio for the particular observation (Heckman 1979). 
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We adopted the following specification of the gravity equation from SST (2006).6  

(6) yi = exp(xiβ) + εi =exp(xiβ).ηi =  exp(β0 + β1x1i + β2x2i).ηi  

where ηi ≡1+[εi/exp(xiβ)]; x1 is a binary dummy, designed to mimic variables such as 

border dummies, that equals 1 with probability 0.4;  x2 is a standard normal variable to 

mimic the behavior of continuous explanatory variables such as the log of distance or 

income; and the data are randomly generated using β0=0, β1= β2 =1. Following SST, we 

assumed that ηi is log-normally distributed with mean 1 and variance σi
2.  

To assess the sensitivity of the different estimators to different patterns of 

heteroskedasticity, we used Santos Silva and Tenreyro’s four cases:  

Case 1: σi
2 = (exp(xiβ))-2 ;    V(yi׀x) = 1 

Case 2: σi
2 = (exp(xiβ))-1 ;    V(yi׀x) = exp(xiβ) 

Case 3: σi
2 = 1 ;     V(yi׀x) = (exp(xiβ))2 

Case 4:  σi
2 = (exp(xiβ))-1 +exp(x2i) ; V(yi׀x) = exp(xiβ)  + exp(x2i).(exp(xiβ))2

 

where Case 1 involves an error term that is homoscedastic when estimated in levels; Case 

3 is homoscedastic when estimated in logarithms; Case 2 is an intermediate case between 

1 and 3; and Case 4 represents a situation in which the variance of the residual is related to 

the level of a subset of the explanatory variables, as well as to the expected value of the 

dependent variable. To help interpret such a large number of results, we also present, in 

Appendix Table 4, measures of the average absolute bias for each coefficient across the 

four cases and the average absolute bias across both coefficients, together with averages of 

their standard errors. 

 We consider two broad types of data-generating-process (DGP): one based on the 

Eaton-Tamura model and another based on the Heckman model. We also examine a special 

case of the Heckman DGP, including an additional variable for the number of products 

traded, proposed by HMR (2008), whose robustness to heteroscedasticity bias does not 

appear to have been examined on data sets with known parameters, although SST (2014) 

raise concerns about potentially serious bias. These DGPs have solid economic foundations 

and can generate data sets with the required fractions of zero trade values. We considered 

using the SST (2011) DGP but its economic underpinnings and statistical properties were 

less obvious to us than was the case for the three more conventional limited-dependent 

                                                 
6 These equations correspond exactly to the SST (2006) specification for equations (14) and (15). 
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variable DGPs that we used and, in any event, its properties have already been examined 

using Monte Carlo techniques. We investigated the Two-Step Method of Moments 

estimator of Xiong and Chen (forthcoming), but did not find encouraging results with our 

sample.     

V.1. ET-Tobit data generating process (DGP) 

For the threshold-Tobit model, we ensured that a significant number of observations would 

have zero values by adding a negative intercept term, -k, in the levels version of the data-

generating equation, and then transforming all realizations of the latent variable with a 

value below zero into zero values. We refer to this DGP as the ET-Tobit DGP because it 

is the model underlying the Eaton and Tamura (1994) estimator. It has the interpretation of 

introducing a threshold that must be exceeded before trade actually occurs. It differs 

fundamentally from the rounding approach used by SST (2006) and the approach of setting 

observations to zero randomly or for particular groups used by Martinez-Zarzoso (2013).  

The data generating process for these initial simulations was equation (6) 

augmented with the negative intercept term, -k, that defines the ET-Tobit model 

(7)  yi
* =  exp(xiβ) + εi – k ≡ exp(xiβ) ).ηi - k = exp(β0 + β1x1i + β2x2i).ηi  - k 

                         where yi = yi
*   if   yi

*  ≥   0;  yi =  0 if yi
*  <  0 

Within these samples, we found that a value for k of 1 provides numbers of zero 

trade values consistent with the 40-50 percent of zero values frequently observed in 

analyses of total bilateral trade. As shown in Appendix Table 1, a k value of 1.5 generated 

higher shares of zeros. The analysis was performed in Stata 9.2, using double precision to 

minimize numerical errors, with samples of 1000 observations, replicated 10,000 times as 

in SST (2006). 7 

 

Semi-Parametric Estimators 

Given the pervasive uncertainty about the distribution of the errors, and the relatively poor 

results obtained using standard limited-dependent variable estimators, it seemed important 

to investigate the performance of the semi-parametric, Least-Absolute-Deviations (LAD) 

approach proposed by Powell (1984). Although this model has not, to our knowledge, been 

                                                 
7 Our first estimation task was to replicate the simulations of SST (2006). While our results are not exactly 

the same as theirs because of the stochastic nature of the analysis, they are completely consistent. The 

replicated simulation results are available upon request.  
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applied to gravity models, Paarsch (1984) found the censored version of this model to give 

satisfactory results in large samples with censored data. Because the estimator for this 

model in Stata requires linearity, we examined the model in logarithms to make an initial 

assessment of its suitability. We considered first the truncated LAD estimator based only 

on the positive observations, and then turned to Powell’s (1984) censored LAD estimator. 

The results are presented in Table 1. 

From the results in Table 1, it appears that the Truncated LAD estimator has quite 

small bias in Case (3), when the heteroscedasticity is consistent with the functional form 

adopted for estimation. However, it appears to be very vulnerable to heteroscedasticity. In 

cases (1), (2) and (4), the bias of the Truncated LAD was typically 20 to 30 percent. The 

Censored LAD estimator performed worse than the truncated estimator in all cases using 

k=1, with bias of 0.5 or greater. With k=1.5, the bias averaged 70 percent in cases (1) to 

(3). Given its overall poor performance we did not pursue the LAD estimator further.  

Standard Single-Equation Estimators 

In this section, we first considered the performance of eight parametric estimators that do 

not account for the limited-dependent nature of the DGP. Despite their failure to account 

for the limited-dependent nature of the data-generating-process, they might plausibly be 

the best estimators of the key underlying parameters, just as truncated OLS was widely 

believed to be the best estimator for limited-dependent variable models for the reasons 

outlined in Manning, Duan and Rogers (1987). The specific estimators considered were: 

(i) the traditional truncated OLS-in-logs regression, (ii) its censored counterpart with 0.1 

added to the log of output to allow taking logs of the dependent variable, (iii) Truncated 

nonlinear least squares (NLS) in levels, (iv) Censored NLS in levels, (v) a Poisson Pseudo-

Maximum Likelihood (PPML) estimator, (vi) a truncated Pseudo-Maximum Likelihood 

estimator,  (vii) a Gaussian Pseudo-Maximum Likelihood (GPML) estimator, and (viiii) a 

Negative Binomial Maximum Likelihood estimator (NBML). We report the results for k=1 

in Table 2. Summary results reporting the average absolute bias and standard errors across 

the four cases, and across the two coefficients, are included in Appendix Table 4.    

An important feature of the results for the truncated OLS-in-logarithms model is its 

apparently strong sensitivity to heteroscedasticity. In Case 3, where the error distribution 

is homoscedastic in the log-linear model, the bias in the estimates is around 6 percent for 

both coefficients. However, when we move to cases involving errors that are 
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heteroscedastic in the log-linear equation, the bias of the estimated coefficient on the 

normally-distributed variable (β2) rises to around 20 percent in cases 1, 2 and 4. For this 

estimator, unlike many others, the biases in the coefficients are generally similar for the 

dummy variable, x1 and the normally distributed explanatory variable, x2. The censored 

OLS model in logarithms (with 0.1 added to allow inclusion of the zeros) produces results 

that are generally inferior to those obtained from the truncated OLS estimator. Except in 

Case 4, the biases were smaller for the coefficient estimate on x2 than on x1.  

Truncated NLS is the levels counterpart to the traditional OLS-in-logs estimator 

and the second stage of a two-part estimator. It has lower bias than its logarithmic 

counterpart in cases 1 and 2, but is inferior in cases 3 and 4. In Case 3, the bias of this 

estimator is 40 percent for β2, around seven times the bias of truncated OLS in logs. Perhaps 

the best thing that can be said for the truncated NLS estimator is that it is consistently less 

biased than the censored NLS regression model. The superiority of the truncated OLS and 

NLS models over their censored regression counterparts reinforces our intuition that just 

solving the “zero problem” and adding the zero-valued observations to the sample is likely 

quite an unhelpful strategy when the data are generated by a process that determines the 

levels of observed trade and the probability of zero trade together.  

The PPML estimator in levels yielded estimates that were strongly biased in all 

cases. Because this equation was estimated with the dependent variable in levels, the 

underlying error structure is consistent with the estimator in case 1, but, In this case, the 

bias in the estimate of β1 was 0.28 and of β2 was 0.25. The bias was very similar for each 

of the other cases. This confirms SST’s hypothesis that the PPML estimator is robust to 

heteroscedasticity in the residuals while demonstrating its potential vulnerability to 

limited-dependent variable bias.  

The truncated PPML estimator has much lower bias than the PPML estimator in all 

cases, again reinforcing our belief that truncated estimators are to be preferred over 

censored estimators. The truncated PPML, in fact, outperforms truncated OLS in logs in 

all cases considered, including Case 3 where heteroscedasticity is not a problem for the 

OLS estimator.  

The GPML estimator has very large bias in almost all cases, reinforcing the SST 

conclusion that this estimator has little role to play in estimation of the gravity model. The 

NBML estimator is inferior to the two preferred estimators—truncated OLS in logs and 
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truncated PPML—in all except Case 1 with k=1. This good performance seems likely to 

be an outlier, since the NBML is strongly biased in Case 1 when k=1.5 (see Appendix 

Table 2).  

When the k=1.5 sample is considered (see Appendix Table 2), the superior 

performance of truncated PPML relative to full-sample, censored PPML is again evident. 

It has by far the lowest mean absolute bias across the four cases considered and is superior 

to its nearest competitors (the two OLS in logs models) even in case 3, where the pattern 

of heteroscedasticity is consistent with the model in logarithms. This result suggests a case 

for use of the truncated PPML, at least in exploratory analyses. It retains the robustness to 

heteroscedasticity emphasized by SST (2006), but reduces the vulnerability to the limited-

dependent variable bias emphasized in the earlier literature originated by Tobin (1958).  

The summary results in Appendix Table 4 give the average absolute bias and 

standard errors across the four cases and again highlight the superiority of truncated PPML 

in terms of bias. For both coefficients, it has by far the lowest average absolute bias—less 

than half that of other estimators in almost every case, and on average across the two 

coefficients. The standard errors associated with this estimator are almost always among 

the lowest—although OLS in logs and the NBML have lower standard errors around their 

highly biased estimates. 

 

Limited-Dependent Variable Estimators 

In this section, we considered eight estimators designed specifically for estimation with 

limited-dependent variables. The estimators considered are: (i) the Eaton-Tamura model 

with the dependent variable in levels; (ii) the Eaton-Tamura model in logs; (iii) a Tobit-

Poisson model8 like that of Terza (1985); (iv) the maximum likelihood version of the 

Heckman model estimated in logs (see Amemiya (1984)); (v) the Heckman (1979) 2SLS 

estimator in logs; (vi) the ML version of the Heckman estimator in levels; (vii) the 2SLS 

version of the Heckman model estimated in levels by nonlinear least squares; and (viii) the 

Zero-Inflated Poisson Maximum likelihood estimator (ZIP) (Lambert 1992).  

Key results for cases with k = 1 are presented in Table 3, while results for k=1.5 

are presented in Appendix Table 3. The Eaton-Tamura Tobit estimator in levels has quite 

                                                 
8  To program the likelihood function in Stata, we needed to replace the factorial function with 

exp(ln(gamma(y+1))) to allow evaluation with non-integer values of the dependent variable. 
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low bias for both coefficients—around three percent—in Case 1. However, it exhibited 

much larger bias in all other cases. The same model in logarithms suffers from quite large 

bias (25 percent) in cases 1 and 2 but around 6 percent in Case 3, where the pattern of 

heteroscedasticity is consistent with the estimator. The average bias across cases was much 

lower for the log version than for the version in levels. The poor result for the ET estimator 

in levels is somewhat surprising given that the ET-Tobit model is the data-generating 

process, and that the ET-Tobit model in levels might be expected to avoid the bias 

associated with the combination of heteroscedasticity and log-linearization. 

The performance of the Poisson-Tobit estimator is much worse than the ET-Tobit 

in all cases. It yields large bias—20 percent or higher in all but one case—and large 

standard errors in all cases. Because this model lacks the additive intercept that is central 

to the ET-Tobit data generating process, it suffers from similar problems to the censored 

PPML estimator. 

The Heckman ML estimator in logs performed poorly in virtually every case. The 

bias of this estimator was smallest in case (3), where the form of heteroscedasticity is 

consistent with the estimator, but was still 14 percent for each coefficient. The Heckman 

2SLS estimator in logs was worse in all cases, while the Heckman ML in levels was sharply 

inferior in cases 3 and 4. The Heckman 2SLS estimator in levels had the lowest average 

absolute bias of any of the limited-dependent variable estimators, although this bias was 

over 16 percent for β1 in all four cases. The ZIP estimator was uniformly inferior to the 

Heckman 2SLS estimator. 

We had expected the ET-Tobit models to outperform alternative models such as 

Heckman given that the DGP in this case is ET-Tobit. One potential approach to improving 

the performance of the ET Tobit model might be to adjust for heteroscedasticity. In Table 

4, we report results including the adjustments proposed by Maddala (1985), in which the 

error variance is specified by the process  for the log-linear model, 

with γ and δ are estimated using nonlinear least squares.  For the linear-in-levels model, 

the specified error process is exp . These models should capture 

heteroscedasticity of the types considered in Cases 1 to 3. The resulting estimates were 

reasonably satisfactory for Cases 1 and 3 using estimators in logs and for Case 1 using 

estimators in levels. When the true restriction that β0=0 was imposed, the bias in β1 and β2 

fell to very low levels. This suggests that it may be important in estimation of the 
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heteroscedasticity-corrected model to use restrictions on the parameter values when prior 

information or prior testing suggests that these are valid.  

A feature of the results for this DGP is that the limited-dependent variable models 

were, in almost all cases, outperformed in terms of both bias and standard error by the 

truncated PPML estimator. This suggests that a two-part approach to estimation might be 

best if the underlying DGP appears to be of the ET-Tobit type, with a first stage used to 

assess whether trade occurs or not, and the PPML estimator applied in the second stage. 

This is clearly an imperfect strategy given that the truncated PPML estimator has an 

average bias across the two coefficients of 7 percent, but the average bias of even the best 

limited-dependent estimator—the Heckman 2SLS in levels—is around 50 percent higher. 

The superiority of the truncated PPML estimator over all other estimators appears to be 

robust to the frequency of zeros in the sample. It also arises in the sample with k=-1.5. It 

appears worthwhile to pursue limited-dependent-variable estimation only if an appropriate 

correction for heteroscedasticity can be made—perhaps by following a general to specific 

approach to estimation in order to introduce as many justified restrictions as is possible. 

 

V.2. Heckman sample selection DGPs 

In this section, we examine the performance of the estimators when the data are generated 

using Heckman Sample Selection models. For this purpose, we first generate the data with 

frequent zeros based on a standard Heckman sample selection framework. We then 

construct HMR-type data sets with two sources of omitted variable bias— sample selection 

and omission of the number of firms engaged in exporting.  

The Standard Heckman DGP 

For the standard Heckman DGPs, we assume that the selection equation contains at least 

one variable that is excluded from the behavioral equation. To generate the data for this 

test, we use equation (6) for the behavioral equation, but add the following sample selection 

equation:  

(8)  y2i= exp (ziα).η*i  ≡ exp (ziα)+ u*2i   
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where ziα ≡ α0+ α1 x1i+ α2 x2i+ α4 x4i; η*i ≡1+[u*2i/exp(ziα)];  x4 is a variable included in the 

selection equation but excluded from the behavioral equation; and the correlation between 

ln(η*i) and ln(ηi) is set at  0.5.9 The dependent variable in (6) is observed when y2i>1.  

The results for standard estimators with this DGP are presented in Table 5 while 

those based on limited-dependent estimators are presented in Table 6. Results for average 

bias and standard errors across the four cases are summarized in Appendix Table 4. Zero 

trade flows account approximately for 30% of the observations in this sample.  

In Table 5, many of the results are similar to those obtained using Eaton-Tamura 

data sets. For example, comparison of the truncated and censored versions of each 

estimator reveals consistently better performance of the truncated versions. Also similarly, 

the NLS estimators generally have smaller biases and standard errors in cases 1 and 2 while 

the than in cases 3 and 4. With this DGP, the censored OLS in logs estimator has quite 

serious bias in case 3, even though the form of the dependent variable is consistent with 

homoscedasticity.  

 The Poisson estimator outperforms the standard log-linear estimators in most cases. 

Specifically, in cases 1 2 and 3 the bias on the estimate for β1 is about 14%. The bias is 

smaller in case 4 but the standard error is substantially larger. The bias on the—frequently 

more important—estimate of β2 is substantially lower than for β1. The truncated PPML 

performs better than the censored PPML in almost all cases, reinforcing our finding using 

the ET-Tobit DGP.  As in the case of the Tobit DGP we find that as the number of zeros 

increases so does the bias and standard error of the parameter estimates generated by the 

PPML estimator.10 

 The GPML and NBML estimators suffer from very large bias in almost all cases. 

The standard errors associated with these estimators are also large. This finding reinforces 

our earlier findings—and those of SST—that these estimators do not appear to perform 

well for estimation of the gravity model. 

When we turn to limited-dependent variable estimators, we find that the ET-Tobit 

estimators are frequently seriously biased. In some cases, such as the ET-Tobit estimator 

                                                 
9 Note that ln(η*i) and ln(ηi) correspond exactly to the two error terms U1i and U2i in Heckman (1979), 

respectively. The correlation between ln(η*i) and ln(ηi) is assumed to be  0.5 in order to rule out the case of 

independence between the two error terms in which case, the standard least squares estimator may be used 

on the selected subsample without introducing bias.  
10 The simulation results with higher percentages of zero observations are available upon request by the 

authors.  
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in levels in Case 1, this seems related to the mismatch between the data generating process 

and the more restricted estimator.  In Case 3 with this estimator in logs, the bias is again 

large with the error process homoscedastic. The Heckman estimators generally have lower 

bias and standard errors than the ET-Tobit estimators, which is not surprising given that 

the data were generated using a Heckman process. Perhaps somewhat surprisingly, 

however, the Heckman estimators in logs performed better than those in levels, despite the 

problems associated with the log transformation. The Poisson-Tobit estimator in levels 

performed reasonably well, although the Heckman-Maximum Likelihood estimator had 

lower average bias and smaller standard errors.  

As shown in Appendix Table 4, the Zero-inflated Poisson (ZIP) estimator has, on 

average, substantially lower bias than any of the other estimators considered. The standard 

errors of this estimator are slightly larger than for the Heckman ML estimator in logs, the 

estimator with the second-lowest average absolute bias, suggesting that it is important to 

have a large sample when considering the use of the ZIP estimator11. The Heckman ML 

estimator has lower bias than the ZIP for categorical explanatory variables, but greater bias 

for the normally-distributed variable. The Heckman 2SLS estimator in logs may also be 

worth considering if convergence problems with the Heckman ML prove too difficult 

although its average bias across the four cases is more than twice as high as that for the ZIP 

estimator. By contrast with the ET-Tobit DGP, the ZIP estimator has clearly lower bias 

than the truncated PPML model both on average and in all but one case. 

The HMR Data Generating Process 

To capture the essence of the DGP à la HMR we need a firm number variable that is non-

negative and positively correlated with the probability of nonzero trade. It should also be 

correlated with the economic mass variable, and take the value zero when there is no 

trade. We generate synthetic data sets with our four different types of heteroscedasticity 

for Monte-Carlo analysis using the following two equations and the procedures laid out 

in more detail in Annex B: 

(10.1)    y1i=exp(xiβ).ηi  ≡ exp(β0+β1x1+β2x2+β3x3)+εi    

(10.2)    y2i=exp(ziα).η*i  ≡ exp(α0+α1x1+α2x2+α4x4). + u*2i 

                                                 
11 Another practical problem with ML estimators with the dependent variable in levels is frequent difficulty 

with convergence in Stata. In many cases we had to vary initial values to overcome this problem. In other 

cases, even varying initial values does not lead the ML estimators to convergence, especially when the 

dependent variable is in levels.  
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where x3 is the firm number variable, constructed to be correlated with x2; and all other 

variables are as defined in equations (6) and (9). Equation (10.2) is the selection equation 

which determines whether there is nonzero trade. Specifically, if y2i>1 then y1i is positive. 

Again, as in the standard Heckman sample selection model, we set the correlation between 

ln(ηi) and ln(η*i) equal to 0.5.  Variable x3 in the behavioral equation mimics the behavior 

of the firm heterogeneity variable in the HMR theoretical framework. It is—for want of 

better information—assumed to be uniformly distributed12.  As in the standard Heckman 

case, x4 is excluded from the behavioral equation.  

Finally, we look at some simulation results when the data are generated à la HMR. 

The first source of potential omitted-variable bias comes from the standard sample 

selection problem: similar factors determine the volume of trade (y1i) and the probability 

(Prob(y2i>1)) that trade occurs between two countries. The second source of omitted 

variable bias results from exclusion of a variable for the number of exporting firms (x3). 

Like the firm number proxy used by HMR, x3 is uncorrelated with the error term in the 

trade equation. 

From Table 7 and Appendix Table 4, it is clear that the truncated PPML estimator 

has the lowest average absolute bias of the standard estimators. The truncated OLS 

estimator in logs has the next lowest average absolute bias, and its standard errors are lower 

than for the truncated PPML, but the average absolute bias is four times as large as for 

truncated PPML. The NLS estimators perform extremely poorly, as do the GPML and 

NBML standard estimators. 

The coefficient on x2 is of particular interest when the DGP is based on a Heckman 

sample selection with omitted variable bias. Since, by construction Cov(x2,x3)=0.5>0, we 

expect upward bias in the estimated coefficient on x2 when omitted-variable bias is not 

controlled for.  

From Table 8 and Appendix Table 4, it is clear that the ZIP2 estimator with the 

firm number variable included has by far the lowest average absolute bias. The ZIP 

estimator without this variable is the next best-performing in terms of bias, with the 

truncated PPML coming next. The HMR estimator follows in terms of bias, although it has 

much higher bias on the important β2 coefficient. ZIP2 type estimators assume that 

                                                 
12 We also considered the case with a normally distributed variable and reached the same conclusions. 
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researchers have available estimates of firm numbers, and have the ability to deal with the 

potential endogeneity of such a variable. If the available variable for firm numbers suffers 

from endogeneity, the approaches suggested by Wooldridge (2010, section 18.5) are likely 

to be useful. One concern with all of the Poisson-based estimators is that they have 

somewhat higher standard errors than the HMR estimator. 

  

VI. Empirical Estimation 

While we are very conscious of the importance of the multilateral resistance terms 

emphasized by Head and Mayer (2013), and hence concerned about the empirical validity 

of traditional gravity models, we consider the implications of different estimators for 

parameter estimates from both traditional (including GDP as explanatory variables) and 

Anderson-van Wincoop (using country fixed effects) specifications. The results for these 

analyses are presented in Tables 9 and 10.16 Since the specification with country fixed 

effects controls for the multilateral resistance terms the results in Table 10 are our preferred 

ones.  

The results in Table 9 are very informative about the coefficients on GDP and the 

log of distance. The truncated PPML has very similar but slightly smaller coefficients than 

the censored PPML. But a more striking feature of the table is that all of the Poisson-based 

estimators have quite similar coefficients on GDP and distance that are well below (in 

absolute value) those of traditional estimators such as Truncated OLS and the Heckman 

estimators. A striking feature of these results is that the ZIP coefficient estimates are 

identical to those from the truncated PPML estimator. Two important points are noteworthy 

with respect to this result. First, the fact that the coefficient estimates of the two estimators 

are the same hides the fact that the marginal effects from each model are different. Second, 

while the coefficient estimates of the truncated Poisson and the ZIP estimators are the same 

and equal to the elasticities (i.e. ⁄ ) they are evaluated at different predicted 

values of the dependent variable.17  The ZIP2 estimator, which performed the best in our 

                                                 
16 Note that our truncated sample contains 8857 observations and our full sample 17028. Both are smaller 

than SST’s truncated sample (9613) and full sample (18360) because we used common religion as our 

excluded restriction variable. Data for this variable are not available for all the samples used by SST (2006). 

For comparison purpose the sample sizes for our truncated OLS and Poisson estimator were kept the same 

as for our Heckman estimator.  
17 Specifically, the elasticities are evaluated at 18644.519 for the truncated Poisson and 1704.81for the ZIP.  
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Monte-Carlo tests with an HMR-based DGP, yields coefficient estimates above those of 

the other Poisson estimators, but still well below those for traditional estimators. The HMR 

estimator is an outlier in the other direction, with much lower coefficients on GDP, and 

somewhat lower coefficients on distance, than the PPML-based estimators.  

The results for the Anderson-van Wincoop formulation are presented in Table 10 

with model estimates when we control for firm heterogeneity à la Helpman, Melitz and 

Rubinstein. The results on the log of distance variable are very similar with this model to 

those for the traditional gravity model. The PPML model results for this coefficient are 

clustered around -0.8, while those for the traditional model are around -1.4. The HMR 

Model is again an outlier with a coefficient of -1.14.  

 

VII. Reconciling Monte Carlo and Empirical Findings 

The contrast between the empirical results and those from the Monte Carlo analysis raises 

important questions. Why, in particular, is there so little difference between the results from 

the PPML model and the truncated PPML, and why are the truncated PPML and the ZIP 

model results identical? One possible explanation lies with the distribution of the 

continuous explanatory variable used in the Monte Carlo analysis. By using a standard 

normal variable, we have ensured that, with the unit coefficient used in the Monte Carlo 

analysis (and assuming a zero value for the 0-1 variable, a relatively small fraction of the 

Xiβ values have values near zero. For any given distribution of the error term this reduces 

the frequency of zero observations and requires larger adjustment terms such as the –k in 

the ET-Tobit model to obtain any given frequency of these observations.  

One simple approach—consistent with the Leung-Yu approach of ensuring that the 

distribution of the explanatory variables in a Monte Carlo analysis is consistent with the 

parameters of the empirical distribution being studied—is to examine the distribution of a 

composite, continuous explanatory variable consistent with the empirical data set. To do 

this for the SST empirical dataset of, we combined the three signature explanatory variables 

of the SST empirical data set into a composite variable 18 

Log[(GDP_Exporter*GDP_Importer)/(Bilateral distance)1.3], where the coefficients on 

GDP and on distance are based on averages of the estimates in SST (2006, p650). To allow 

                                                 
18 We performed the same experiment with the parameters of the PPML model and found qualitatively 

similar results. 
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comparability of the density and distribution functions of this variable and the log standard 

normal, we rescaled this composite driving variable to have the same mean as the log 

standard normal. We found that the distribution of this variable was well-represented by a 

log-normal distribution with mean -5.728896 and standard deviation 3.523514, rather than 

0 and 1 as assumed with the log standard normal. To provide a visual comparison of the 

two distributions, we compare their cumulative distribution functions19 (CDFs) in Figure 

3. The figure reveals that the empirically-based distribution has a much higher fraction of 

the explanatory variable near zero than the standard normal variable. 

 

Figure 3. CDFs for the Log Standard Normal and the Empirical Distribution  

 

Note: Generated using MS EXCEL with 50000 data points per distribution at a spacing of 0.0001. 

 

A focus on a couple of data points in Figure 3 highlights the stark differences between the 

two distributions. With the empirical distribution, 80 (90) percent of the observations are 

below 0.06 (0.27). With the log standard normal distribution, only 0.3 (11) percent of the 

                                                 
19 We had intended to compare their density functions but it proved to be impossible to plot these on the 

same scale. 
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observations lie within this range. The very large fraction of empirical observations near 

zero has important implications for the limited-dependent data-generating process of 

interest to us. For any given distribution of errors, the presence of a large share of the 

observations of the driving variable near zero makes it much more likely that the outcome 

will be transformed into a zero observation.  

We next use a continuous explanatory variable with this distribution and the 

simplest model previously examined—the ET Tobit model—and repeat our Monte Carlo 

analysis. When we do this, we find that the absolute value of the k parameter needed to 

obtain any given share of zeros falls precipitously. Specifically, with a tiny value for k of 

0.01, the percentages of zero observations in heteroscedasticity cases 1, 2, 3 and 4 are 71 

percent, 64 percent, 53 percent and 64 percent, respectively. The 53 percent share with 

heteroscedasticity of type 3 is almost exactly the share of zeros observed in the SST data 

for total trade between 136 countries. It is much higher than the fraction of zeros reported 

in Table 1 using k values of 1.0 and 1.5 with the log standard normal distribution. Moving 

to slightly larger values of k would allow us to replicate the shares of zeros observed in 

studies using disaggregated trade data.  

More importantly, we obtain results, shown in Table 11, that have features that are 

consistent with our empirical findings. The estimated values on the continuous variable are 

very similar for both the PPML and the truncated PPML models. And the ZIP and the 

truncated PPML models are identical. Another interesting feature of these results is that 

the Negative Binomial model—which performed so poorly in our earlier analysis appears 

to perform very well, although it remains subject to the concerns expressed by SST (2006) 

about its parameter estimates depending upon the units of measurement. 

 

VIII. Conclusions 

The purpose of this paper was to evaluate the performance of different estimators of the 

gravity equation in the presence of zero trade flows, which are a common feature of  trade 

data both at the aggregate and disaggregate level. We adopt two different data-generating 

processes in our Monte Carlo simulations— the Tobit and the Heckman sample-selection 

models. For the Tobit DGP we used Monte Carlo simulations based on the design of Santos 

Silva and Tenreyro (SST 2006), modified to include a threshold level of trade that must be 

surmounted before positive trade levels are observed. For the Heckman sample selection 
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DGP, an additional equation determines which observations of the outcome equation are 

included. We also analyze a data set generated for consistency with the Helpman, Melitz 

and Rubinstein (2008) model.  

In our initial simulations, we follow SST in using Monte-Carlo simulations with a 

log standard normal distribution of the continuous driving variable. These tests confirm the 

importance of heteroscedasticity and the prevalence of zeros as sources of bias with many 

estimators. However, estimators such as the censored PPML that are known to perform 

well in the presence of heteroscedasticity are found to be potentially susceptible to limited-

dependent variable bias when a substantial fraction of the observations are censored.  

When the data are generated using an Eaton-Tamura Tobit model, the smallest 

biases were sometimes found with Eaton-Tamura Tobit estimators consistent with the data 

generating process, but only when the functional form was consistent with the form of 

heteroscedasticity, or an appropriate correction had been made to deal with 

heteroscedasticity. On average across the four cases considered, the truncated PPML had 

the lowest mean absolute bias, including relative to the explicitly limited-dependent 

estimators consistent with the data-generating process.  

When the data are generated by a Heckman sample-selection DGP, the truncated 

PPML estimator outperformed all other models that do not explicitly account for the 

limited-dependent nature of the data set. The Zero-inflated Poisson (ZIP) model appeared 

to have the lowest bias of the models considered, and particularly for the continuously-

distributed variables that are frequently of greatest interest in a gravity-model context.   

Applying a range of estimators to the SST empirical dataset on international trade 

resulted in a number of surprising findings. In particular, we found very little difference 

between the PPML estimator and its truncated version. Further, the results from the 

truncated PPML estimator were identical with those from the ZIP estimator. To try to better 

understand the relationship between our Monte Carlo results and our empirical findings, 

we repeated the Monte Carlo analysis with a continuous explanatory variable distributed 

like a composite of the key explanatory variables in the gravity model, with a much higher 

fraction of the explanatory variables clustered near zero. This analysis helped explain two 

key findings in the empirical analysis—that the PPML and truncated PPML estimates were 

similar, and the truncated PPML and the ZIP were almost identical. 
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Our results, in an important sense, restore the SST findings about the importance 

of heteroscedasticity in the gravity model and in favor of the PPML model over traditional 

estimators for the gravity model of international trade. However, they also highlight the 

potential risks of limited-dependent variable bias. They also highlight the importance for 

Monte-Carlo testing of taking into account the characteristics of the distribution of the 

driving variables as well as of the residuals. Using a driving variable that is distributed as 

a log standard normal variable resulted in a relatively qualified recommendation for the 

PPML estimator as a least-bad option. When we moved to Monte-Carlo testing with a 

driving variable based on the empirical distribution of the key explanatory variables for 

trade, we were able to easily explain the large shares of zeros observed in real-world trade 

data and to validate the recommendation of the PPML as a good estimator for the gravity 

model, at least for models of aggregate trade flows.  
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Table 1. Monte Carlo results from Least-Absolute-Deviations Estimators, ET-Tobit DGP with k=1 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias     Bias Std Error.   Bias     Bias   

  (k=1.0)  (k=1.5) 

    Case 1: V[yi|x]=1   Case 1: V[yi|x]=1 

Truncated LAD Log 0.2289 0.048  0.219 0.034  0.291 0.056  0.283 0.039 

Censored LAD Log 0.507 0.067  0.491 0.050  0.690 0.028  0.670 0.020 

  Case 2: V[yi|x]=exp(xiβ)  Case 2: V[yi|x]=exp(xiβ) 

Truncated LAD Log 0.195 0.079  0.190 0.045  0.211 0.092  0.211 0.053 

Censored LAD Log 0.561 0.035  0.531 0.024  0.734 0.043  0.711 0.027 

  Case 3: V[yi|x]=(exp(xiβ))2  Case 3: V[yi|x]=(exp(xiβ))2 

Truncated LAD Log 0.028 0.127  0.029 0.075  -0.013 0.151  -0.017 0.090 

Censored LAD Log 0.531 0.063  0.515 0.042  0.715 0.086  0.703 0.053 

 
 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) 

(exp(xiβ))2  

Case 4: V[yi|x]=exp(xi β)+exp(x2i) 

(exp(xiβ))2 

Truncated LAD Log -0.184 0.155  -0.192 0.092  -0.186 0.177  -0.250 0.107 

Censored LAD Log 0.125 0.245    0.575 0.186   0.014 0.139   0.018 0.178 
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Table 2. Monte Carlo results with standard estimators, ET-Tobit DGP with k=1 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias Std Error.   Bias Std Error.  Bias Std Error.   Bias Std Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

Truncated OLS Log 0.220 0.085  0.205 0.059  0.197 0.093  0.190 0.058 

OLS (ln(y+0.1)) Log 0.354 0.058  0.268 0.029  0.315 0.064  0.233 0.030 

Truncated NLS Level 0.110 0.027  0.098 0.022  0.099 0.074  0.089 0.043 

Censored NLS Level 0.169 0.036  0.138 0.034  0.143 0.076  0.120 0.046 

PPML Level 0.280 0.045  0.251 0.036  0.288 0.062  0.258 0.039 

Truncated PPML Level 0.098 0.041  0.096 0.028  0.081 0.057  0.082 0.030 

GPML Level 0.416 0.236  0.424 0.206  0.571 0.215  0.593 0.186 

NBML Level 0.083 0.033  0.069 0.016  0.124 0.049  0.116 0.026 

 Case 3: V[yi|x]=(exp(xiβ))2  Case 4: V[yi|x]=exp(xiβ)+exp(x2i) (exp(xiβ))2 

Truncated OLS Log 0.057 0.115  0.059 0.067  -0.158 0.137  -0.189 0.079 

OLS (ln(y+0.1)) Log 0.162 0.077  0.096 0.036  0.152 0.0900  0.012 0.041 

Truncated NLS Level 0.091 2.814  0.396 20.469  0.236 7.112  0.668 25.202 

Censored NLS Level 0.190 2.160  0.503 24.282  0.324 6.364  0.819 24.46 

PPML Level 0.290 0.144  0.255 0.090  0.258 0.189  0.198 0.122 

Truncated PPML Level 0.029 0.146  0.028 0.028  0.032 0.196  -0.127 0.151 

GPML Level 0.864 0.206  0.922 0.156  0.558 0.247  0.499 0.179 

NBML Level  0.254 0.090   0.247 0.049   0.210 0.136   0.203 0.073 
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Table 3. Monte Carlo results with limited dependent variable estimators, ET-Tobit DGP with k=1 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias Std Error.   Bias Std Error.   Bias Std Error.   Bias Std Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

ET-Tobit Level 0.034 0.03  0.034 0.025  0.159 0.085  0.148 0.076 

ET-Tobit Log -0.252 0.045  -0.251 0.038  -0.16 0.055  -0.151 0.043 

Poisson-Tobit Level 0.28 0.044  0.251 0.034  0.288 0.062  0.258 0.038 

Heckman-ML Log 0.302 0.077  0.284 0.048  0.288 0.087  0.278 0.048 

Heckman-2SLS Log 0.624 0.098  0.598 0.073  0.596 0.116  0.578 0.085 

Heckman-ML Level 0.11 0.209  0.078 0.101  0.105 0.117  0.069 0.056 

Heckman-2SLS Level -0.163 0.013  0.04 0.005  -0.169 0.039  0.04 0.023 

ZIP Level 0.222 0.045  0.195 0.022  0.215 0.063  0.195 0.027 

 Case 3: V[yi|x]=(exp(xiβ))2  Case 4: V[yi|x]=exp(xiβ)+exp(x2i) (exp(xiβ))2 

ET-Tobit Level 0.668 0.171  0.657 0.182  0.727 0.302  0.685 0.084 

ET-Tobit Log 0.062 0.089  0.067 0.062  0.008 0.114  0.064 0.075 

Poisson-Tobit Level 0.281 0.138  0.242 0.079  0.203 0.161  0.163 0.092 

Heckman-ML Log 0.14 0.119  0.14 0.074  -0.142 0.147  -0.029 0.108 

Heckman-2SLS Log 0.303 0.175  0.299 0.145  0.239 0.231  0.358 0.262 

Heckman-ML Level 0.209 22.808  0.263 1.646  0.26 6.736  0.43 4.001 

Heckman-2SLS Level -0.179 0.161  0.021 0.153  -0.194 0.227  0.001 0.196 

ZIP Level 0.168 0.171   0.142 0.119   0.195 0.232   -0.031 0.189 
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Table 4. Monte Carlo Results: ET Tobit Adjusted for Heteroscedasticity: ET Tobit DGP 

with k=1 

 β0  β1  β2 

  
Bias Std Error   Bias  

Std 

Error 
  Bias Std Error 

Logs         

Case 1 0.022 0.337  -0.027 0.163  -0.057 0.209 

Case 2 -0.063 0.404  -0.041 0.238  -0.122 0.35 

Case 3 -0.333 0.497  -0.008 0.264  -0.066 0.359 

Case 4 -0.257 0.419  -0.182 0.39  -0.275 0.4 

Levels         

Case 1 0.083 0.38  -0.019 0.12  -0.021 0.12 

Case 2 0.513 0.251  -0.166 0.101  -0.177 0.12 

Case 3 0.782 0.688  -0.263 0.265  -0.271 0.311 

Case 4 1.358 0.961  -0.472 0.317  -0.366 0.487 

Levels, β0 =0         

Case 1 - -  -0.005 0.159  -0.038 0.615 

Case 2 - -  0.007 0.015  0.037 0.032 

Case 3 - -  0.037 0.047  0.058 0.078 

Case 4 - -   -0.024 0.065   0.347 0.084 
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Table 5. Monte Carlo results with standard estimators, Heckman DGP 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias Std Error.   Bias Std Error.  Bias Std Error.   Bias Std Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

Truncated OLS Log -0.099 0.032  -0.029 0.040  -0.112 0.033  -0.017 0.047 

OLS (ln(y+0.1)) Log 0.438 0.013  -0.031 0.057  0.420 0.015  -0.067 0.059 

Truncated NLS Level -0.007 0.006  -0.008 0.019  -0.010 0.036  -0.006 0.050 

Censored NLS Level 0.021 0.006  -0.002 0.019  0.022 0.032  -0.001 0.051 

PPML Level 0.134 0.014  0.023 0.029  0.145 0.020  0.032 0.047 

Truncated PPML Level -0.058 0.018  -0.047 0.028  -0.062 0.025  -0.036 0.042 

GPML Level 0.863 0.279  0.223 0.227  1.053 0.221  0.350 0.197 

NBML Level 0.118 0.017  0.128 0.136  0.191 0.026  0.190 0.054 

 Case 3: V[yi|x]=(exp(xiβ))2 
 

Case 4: V[yi|x]=exp(xiβ)+exp(x2i) 

(exp(xiβ))2 

Truncated OLS Log -0.242 0.047  -0.089 0.066  -0.345 0.059  -0.258 0.086 

OLS (ln(y+0.1)) Log 0.330 0.022  -0.171 0.068  0.253 0.026  -0.350 0.077 

Truncated NLS Level 0.096 1.196  -0.172 1.172  0.311 2.464  -0.468 2. 5481 

Censored NLS Level 0.144 1.186  -0.168 1.173  0.376 2.450  -0.475 2.547 

PPML Level 0.141 0.087  0.038 0.107  0.090 0.114  0.022 0.150 

Truncated PPML Level -0.083 0.119  -0.021 0.113  -0.157 0.165  -0.015 0.154 

GPML Level 1.186 0.167   0.474 0.178   0.762 0.198   0.316 0.222 

NBML Level 0.244 0.047  0.244 0.088  0.204 0.068  0.220 0.130 
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Table 6. Monte Carlo results with limited-dependent estimators, Heckman DGP 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias Std Error.   Bias Std Error.   Bias Std Error.   Bias Std Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

ET-Tobit Level -0.059 0.013  -0.095 0.025  -0.133 0.054  -0.202 0.057 

ET-Tobit Log -0.398 0.018  -0.435 0.024  -0.353 0.026  -0.408 0.034 

Poisson-Tobit Level 0.135 0.015  0.024 0.03  0.145 0.02  0.032 0.047 

Heckman-ML Log -0.001 0.029  0.029 0.039  0.034 0.032  0.056 0.047 

Heckman-2SLS Log 0.105 0.029  0.077 0.039  0.102 0.037  0.082 0.05 

Heckman-ML Level 0.013 0.127  0.082 1.478  0.028 0.312  -0.051 0.59 

Heckman-2SLS Level 0.076 0.006  0.051 0.025  0.083 0.03  0.053 0.06 

ZIP Level -0.023 0.017  -0.01 0.027  -0.027 0.025  0.001 0.043 

 Case 3: V[yi|x]=(exp(xiβ))2 
 

Case 4: V[yi|x]=exp(xiβ)+exp(x2i) 

(exp(xiβ))2 

ET-Tobit Level -0.229 1.738  -0.546 0.933  -0.244 2.642  -0.662 1.504 

ET-Tobit Log -0.171 0.051  -0.285 0.061  -0.097 0.108  -0.076 0.06 

Poisson-Tobit Level 0.108 0.065  0.01 0.12  0.031 0.081  -0.036 0.157 

Heckman-ML Log 0 0.045  -0.002 0.064  0.033 0.057  -0.168 0.085 

Heckman-2SLS Log -0.002 0.058  -0.002 0.07  0.042 0.078  -0.162 0.09 

Heckman-ML Level 0.196 1.392  0.155 10.93  0.502 2.546  -0.408 2.996 

Heckman-2SLS Level 0.223 1.17  -0.116 1.17  0.448 5.548  -0.434 2.567 

ZIP Level -0.054 0.117   0.008 0.113   -0.12 0.165   0.017 0.154 
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Table 7. Monte Carlo results with standard estimators, Heckman DGP à la HMR 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias Std Error.   Bias Std Error.  Bias Std Error.   Bias Std Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

Truncated OLS Log 0.02 0.021  0.067 0.019  0.041 0.035  0.086 0.023 

OLS (ln(y+0.1)) Log 0.036 0.027  0.204 0.014  0.036 0.033  0.202 0.015 

Truncated NLS Level -0.002 0.029  0.05 0.015  -0.002 0.04  0.05 0.023 

Censored NLS Level 0.01 0.079  0.36 0.042  0.01 0.085  0.359 0.047 

PPML Level -0.003 0.071  0.407 0.014  -0.003 0.073  0.407 0.017 

Truncated PPML Level -0.001 0.017  0.039 0.006  -0.001 0.027  0.039 0.011 

GPML Level 0.002 0.113  0.62 0.054  0.002 0.119  0.619 0.054 

NBML Level -0.009 0.094  
-

0.009 
0.101  -0.009 0.101  0.586 0.031 

 Case 3: V[yi|x]=(exp(xiβ))2  Case 4: V[yi|x]=exp(xiβ)+exp(x2i) (exp(xiβ))2 

Truncated OLS Log 0.001 0.092  0.037 0.045  0.026 0.114  -0.228 0.064 

OLS (ln(y+0.1)) Log -0.046 0.055  0.104 0.023  0.001 0.064  -0.065 0.033 

Truncated NLS Level 0.13 3.739  0.382 5.925  0.183 8.807  2.324 19.734 

Censored NLS Level 0.165 3.683  0.656 5.79  0.393 10.134  2.985 21.05 

PPML Level -0.006 0.171  0.402 0.104  -0.011 0.35  0.369 0.243 

Truncated PPML Level -0.004 0.156  0.033 0.108  -0.011 0.343  -0.003 0.263 

GPML Level -0.003 0.158  0.619 0.069  -0.002 0.166  0.613 0.084 

NBML Level -0.011 0.145  0.589 0.057  -0.001 0.157  0.582 0.076 
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Table 8. Monte Carlo results with limited-dependent variable estimators, Heckman DGP à la HMR 

  Dependent   β1    β2    β1    β2 

Estimator Variable Form Bias Std Error.   Bias Std Error.   Bias Std Error.   Bias Std Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

ET-Tobit Level -0.082 0.036  -0.023 0.027  -0.124 0.048  -0.058 0.038 

ET-Tobit Log -0.072 0.025  -0.044 0.021  -0.21 0.041  -0.178 0.032 

Poisson-Tobit Level ~ ~  ~ ~  ~ ~  ~ ~ 

Heckman-ML Log 0.019 0.021  0.067 0.019  0.041 0.035  0.086 0.023 

Heckman-2SLS Log 0.035 0.021  0.821 0.059  0.045 0.030  0.787 0.079 

Heckman-ML Level 0.020 0.021  0.067 0.019  0.041 0.035  0.086 0.023 

Heckman-2SLS Level -0.016 0.072  0.313 0.040  -0.016 0.079  0.314 0.046 

ZIP Level 0.001 0.014 
 

0.011 0.005 
 

-0.001 0.029 
 

0.011 0.015 

ZIP2 Level 0.005 0.005 0.001 0.003 0.006 0.021 0.001 0.110 

HMR  Level 0.018 0.021  0.042 0.022  0.041 0.035  0.084 0.026 

 Case 3: V[yi|x]=(exp(xiβ))2  Case 4: V[yi|x]=exp(xiβ)+exp(x2i) (exp(xiβ))2 

ET-Tobit Level -0.500 0.248  -0.323 0.246  -0.834 1.391  -0.644 0.252 

ET-Tobit Log -0.327 0.091  -0.044 0.07  -0.323 0.126  -0.043 0.07 

Poisson-Tobit Level ~ ~  ~ ~  ~ ~  ~ ~ 

Heckman-ML Log 0.002 0.091  0.037 0.045  0.026 0.114  -0.229 0.064 

Heckman-2SLS Log 0.002 0.091  0.037 0.045  0.026 0.115  -0.227 0.064 

Heckman-ML Level 0.123 0.734  0.216 0.767  0.935 14.708  3.048 25.905 

Heckman-2SLS Level 0.154 3.686  0.637 5.802  0.344 9.704  2.909 20.398 

ZIP Level -0.01 0.233 
 

-0.001 0.154 
 

-0.025 0.508 
 

-0.064 0.352 

ZIP2 Level 0.002 0.157 -0.006 0.106 -0.005 0.343 -0.047 0.252 

HMR Level 0.001 0.093   0.224 0.052   0.032 0.119   0.113 0.072 

Note: ~ denotes cases in which either the maximum likelihood estimator does not converge or it does but yields unreasonably huge bias 

and standard errors.  
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Table 9: Traditional Gravity Equation 

 Truncated PPML Truncated  Heckman Heckman ZIP ZIP2 ET-Tobit HMR 

Independent Variables OLS  PPML 2SLS ML     

Log exporter's GDP 0.959c 0.715c 0.702c 1.079c 1.002c 0.702c 0.792c 1.091c 0.922c 

 (0.012) (0.030) (0.030) (0.019) (0.015) (0.030) (0.050) (0.012) (0.074) 

Log importer's GDP 0.827c 0.740c 0.729c 0.908c 0.856c 0.729c 0.795c 0.917c 0.721c 

 (0.012) (0.032) (0.032) (0.015) (0.013) (0.032) (0.049) (0.011) (0.053) 

Log exporter's GDPC 0.199c 0.185c 0.183c 0.213c 0.204c 0.183c 0.211c 0.216c 0.134c 

 (0.018) (0.060) (0.059) (0.018) (0.017) (0.059) (0.061) (0.017) (0.020) 

Log importer's GDPC 0.082c 0.150c 0.148c 0.103c 0.089c 0.148c 0.173c 0.137c -0.119c 

 (0.018) (0.051) (0.050) (0.018) (0.018) (0.050) (0.049) (0.016) (0.023) 

Log distance -1.195c -0.764c -0.755c -1.289c -1.229c -0.755c -0.859c -1.243c -0.922c 

 (0.035) (0.060) (0.060) (0.037) (0.036) (0.060) (0.069) (0.032) (0.078) 

Contiguity 0.284a 0.341b 0.351b 0.153 0.239c 0.351b 0.207 -0.142b -0.071c 

 (0.133) (0.124) (0.125) (0.152) (0.150) (0.125) (0.140) (0.129) (0.230) 

Common language 0.736c 0.692c 0.698c 0.830c 0.780c 0.698c 0.737c 0.856c 0.646c 

 (0.067) (0.153) (0.152) (0.067) (0.066) (0.152) (0.152) (0.064) (0.083) 

Colonial tie 0.374c 0.023 0.018 0.414c 0.389c 0.018 0.055 0.364c 0.334c 

 (0.073) (0.160) (0.160) (0.071) (0.071) (0.160) (0.158) (0.067) (0.076) 

Landlocked_exporter -0.050 -0.807c -0.814c -0.048 -0.049 -0.814c -0.812c -0.238c -0.079b 

 (0.065) (0.183) (0.184) (0.066) (0.066) (0.184) (0.190) (0.058) (0.051) 

Landlocked_importer -0.682c -0.789c -0.795c -0.710c -0.692c -0.795c -0.828c -0.744c -0.384c 

 (0.063) (0.152) (0.152) (0.065) (0.064) (0.152) (0.158) (0.054) (0.053) 

Exporter’s remoteness 0.533c 0.745c 0.736c 0.563c 0.543c 0.736c 0.756c 0.442c 0.464c 

 (0.082) (0.141) (0.142) (0.081) (0.080) (0.142) (0.135) (0.073) (0.085) 

Importer’s remoteness -0.196b 0.548c 0.539c -0.207c -0.201b 0.539c 0.511c 0.120 -0.120 
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 (0.088) (0.122) (0.123) (0.084) (0.083) (0.123) (0.119) (0.078) (0.088) 

FTA 0.488c 0.218b 0.214b 0.470c 0.483c 0.214b 0.341c -0.082b -0.765c 

 (0.101) (0.097) (0.099) (0.112) (0.110) (0.099) (0.104) (0.082) (0.215) 

Openness -0.217c -0.154 -0.182 -0.112 -0.179b -0.182 -0.133 0.060 -0.234c 

 (0.054) (0.132) (0.134) (0.052) (0.051) (0.134) (0.140) (0.051) (0.063) 

Z       0.867  15.247c 

       (0.700)  (0.377) 

Z2       -0.282  -4.766c 

       (0.225)  (0.136) 

Z3       
0.022 

(0.023) 

 

 

0.471c 

(0.017) 

Inverse Mills ratio 

 
        

3.326c 

(0.159) 

Number of observations 8857 17028 8857 17028 17028 17028 17028 17028 17028 

Excluded variable: No No No Yes Yes No No No Yes 

  Common religion          

Hetero. correction No No No No No No Yes Yes No 

          ɣ 
 

       
2.418c 

(0.042) 
 

         δ 
 
 

       
-0.090c 

(0.004) 
 

Notes: (1) a, b and c denote 10%, 5% and 1% level of significance, respectively. (2) For the HMR estimator a polynomial with degree 3 in z 

(i.e. z1, z2 and z3) are included in order to control for the firm heterogeneity. Specifically, we first estimate the Probit equation predicting 

whether or not country j and country k have trade with each other. From the Probit equation estimates we obtain
jkp̂ the predicted probability 

of exports from j to k. For exporter j and importer k, the inverse Mills ratio is equal to )ˆ()ˆ(ˆ ***

jkjkjk zzv    where Φ and Φ denote the density 

and the cdf. of the unit-normal distribution, respectively and )ˆ(ˆ 1*

jkjk pz  . The variable controlling for firm heterogeneity, z, is defined 

as .ˆˆ **

jkjkjk zvz   The ZIP2 model includes the firm number variable from the HMR model.  
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Table 10: Anderson-vanWincoop Gravity Equation 

 Truncated PPML Truncated Heckman Heckman ZIP ZIP2 ET-Tobit HMR 

Independent Variables OLS   PPML 2SLS ML         

Log distance -1.366c -0.747c -0.768c -1.378c -1.371c -0.768c -0.693c -1.302c -0.945c 

 (0.032) (0.043) (0.045) (0.032) (0.032) (0.045) (0.069) (0.031) (0.045) 

Contiguity 0.179 0.632c 0.605c 0.164 0.172 0.605c 0.821c -0.067 0.089c  

 

Common language 

 

(0.132) 

0.432c 

(0.071) 

(0.107) 

0.144 

(0.099) 

(0.106) 

0.191b 

(0.102) 

(0.125) 

0.443c 

(0.067) 

(0.131) 

0.437c 

(0.067) 

(0.106) 

0.191b 

(0.102) 

(0.168) 

0.417c 

(0.133) 

(0.049) 

0.532c 

(0.061) 

(0.192) 

0.322c 

(0.068) 

Colonial tie 0.639c 0.164  0.117 0.916c 0.643c 0.117c -0.027 0.635c 0.398c 

 (0.074) (0.140) (0.141) (0.055) (0.070) (0.141) (0.168) (0.064) (0.070) 

FTA 0.370b 0.390c 0.383c 0.291c 0.361b 0.383c 0.500c -0.197 0.623c 

 (0.103) (0.083) (0.082) (0.098) (0.103) (0.082) (0.133) (0.095) (0.140) 

Importer F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Exporter F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes 

No of Obs. 8857 17028 8857 17028 17028 17028 17028 17028 17028 

Excluded Res. 

Variable 
  

      
 

   Common religion No No No Yes Yes No No No  Yes 

Hetero. Correction No No No No No No No Yes No 

          ɣ 
 

       
1.948c 

(0.049) 
 

          δ 
 

       
-0.066c 

(0.005) 
 

Inverse Mills ratio         2.077c 

         (0.073) 

Control for firm 

hetero. 
No No No No No No Yes No Yes 
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Table 10: Anderson-vanWincoop Gravity Equation 

 Truncated PPML Truncated Heckman Heckman ZIP ZIP2 ET-Tobit HMR 

Independent Variables OLS   PPML 2SLS ML         

z         12.564c 

         (0.298) 

z2         -3.720c 

         (0.115) 

z3         0.360c 

                  (0.013) 

Notes: (1) a, b and c denotes 10%, 5% and 1% level of significance, respectively. (2) For the HMR estimator a polynomial with 

degree 3 in z (i.e. z1, z2 and z3) are included in order to control for the firm heterogeneity. Specifically, we first estimate the Probit 

equation predicting whether or not country j and country k have trade with each other. From the Probit equation estimates we 

obtain
jkp̂ the predicted probability of exports from j to k. For exporter j and importer k, the inverse Mills ratio is equal to 

)ˆ()ˆ(ˆ ***

jkjkjk zzv    where Φ and Φ denote the density and the c.d.f. of the unit-normal distribution, respectively and 

)ˆ(ˆ 1*

jkjk pz  . The variable controlling for firm heterogeneity, z, is defined as .ˆˆ **

jkjkjk zvz  The ZIP2 estimator includes the 

firm number variable from the HMR model 

  



 

 44 

 

Table 11. Monte Carlo Simulation Results with x Values Concentrated near Zero  

Estimator   
Bias 

 

Std. 

Error 

Bias 

 

Std. 

Error 

Bias 

 

Std. 

Error 

Bias 

 

Std. 

Error 

 

Variable 

form 
Case 1 Case 2 Case 3 Case 4 

Standard Estimators         

Truncated OLS Level 0.0874 0.0096 0.0394 0.0074 0.0635 0.0051 -0.2838 0.0081 

OLS (ln(y+0.01) Log -0.5264 0.0018 -0.5097 0.0012 -0.4966 0.0013 -0.5532 0.0021 

Truncated NLS Level -0.0003 0.0008 -0.0027 0.034 -1.4765 5.7881 -3.9862 18.9271 

Censored NLS Log -0.0003 0.0008 -0.0027 0.034 -1.4765 5.7881 -3.9857 18.9265 

PPML Log 0.0013 0.0016 0.0017 0.0016 0.0079 0.0649 -0.0274 0.3547 

Truncated PPML Level -0.0039 0.0016 -0.0013 0.0017 0.0068 0.0653 -0.0341 0.3531 

GPML Level 0.1727 0.1242 0.1622 0.0794 0.9248 0.0399 0.1619 0.0794 

NBML Level 0.0001 0.0052 0.0018 0.0016 0.0188 0.0085 0.0106 0.0318 

Lim. Dep. Estimators         

ET-Tobit Log 0.0691 0.0827 0.0404 0.0786 0.0536 0.1229 -0.0623 0.0179 

Heckman-ML Log 0.1692 0.0071 0.1163 0.0053 0.0644 0.0048 -0.0505 0.0104 

Heckman-2SLS Log 0.3353 0.0105 0.0268 0.0086 0.0653 0.0056 0.0009 0.0153 

ZIP Level   0.0013 0.0016  0.0017 0.0016 0.0079 0.0649 -0.0274 0.3547 

Above are the simulation results when y=exp(1+x1)*η where x1 has mean -5.161901 and standard deviation  3.503101. Please 

note that x1 has the same mean and the same standard deviation as Log[(GDP_Exporter*GDP_Importer)/(1.3 Bilateral 

distance)]. GDP_Exporter, GDP_Importer and Bilateral Distance are the real data GDPs of exporting countries and importing 

countries and their bilateral distance normalized by their respective mean. Each simulated sample has 18360 observations, 

which is equal to the empirical sample used by SS&T.  
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Appendix Table 1: Indicators of the degree of censoring for the ET-Tobit 

DGP 

Percentage of Zero Trade Values 

 k = 1.0 k= 1.5 

  % % 

Case 1 41 51 

Case 2 44 54 

Case 3 49 60 

Case 4 55 64 

Percentage change in Mean  

Case 1 15 38 

Case 2 15 40 

Case 3 16 43 

Case 4 19 50 

Notes: the results are the averages we obtain after we simulate 10000 samples of 

1000 observations for each pattern of heteroscedasticity.  
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Appendix Table 2. Monte Carlo results with standard estimators, ET-Tobit DGP with k=1.5 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias Std Error.   Bias Std Error.  Bias Std Error.   Bias Std Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

Truncated OLS Log 0.227 0.072  0.236 0.102  0.187 0.069  0.188 0.109 

OLS (ln(y+0.1)) Log 0.230 0.031  0.329 0.062  0.186 0.033  0.278 0.069 

Truncated NLS Level 0.143 0.031  0.160 0.035  0.124 0.050  0.135 0.083 

Censored NLS Level 0.210 0.052  0.262 0.053  0.173 0.055  0.205 0.087 

PPML Level 0.356 0.049  0.400 0.056  0.258 0.039  0.288 0.062 

Truncated PPML Level 0.151 0.035  0.153 0.049  0.111 0.030  0.107 0.065 

GPML Level 0.532 0.269  0.521 0.315  0.781 0.266  0.749 0.266 

NBML Level 0.345 0.034  0.369 0.048  0.487 0.043  0.490 0.078 

 Case 3: V[yi|x]=(exp(xiβ))2  Case 4: V[yi|x]=exp(xiβ)+exp(x2i) (exp(xiβ))2 

Truncated OLS Log 0.015 0.079  0.008 0.135  0.248 0.091  -0.161 0.156 

OLS (ln(y+0.1)) Log 0.026 0.040  0.097 0.082  0.091 0.044  0.189 0.092 

Truncated NLS Level 0.432 22.881  0.090 3.070  0.676 27.516  0.241 6.858 

Censored NLS Level 0.559 23.806  0.250 2.195  0.903 24.749  0.391 6.292 

PPML Level 0.337 0.100  0.384 0.164  0.258 0.132  0.351 0.208 

Truncated PPML Level 0.009 0.118  0.009 0.166  -0.169 0.167  0.034 0.2167 

GPML Level 1.255 0.248  1.179 0.311  0.644 0.239  0.7508 0.3229 

NBML  Level  0.635 0.075  0.6488 0.1413  0.4629 0.1123  0.5805 0.2041 
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Appendix Table 3. Monte Carlo results with limited dependent variable estimators, ET-Tobit DGP with k=1.5 

 

 Dependent   β1   β2   β1   β2 

Estimator Variable Form Bias 
Std 

Error. 
  Bias 

Std 

Error.  
Bias 

Std 

Error. 
  Bias 

Std 

Error. 

 Case 1: V[yi|x]=1  Case 2: V[yi|x]=exp(xiβ) 

ET-Tobit Level 0.0368 0.0303  0.0414 0.0348  0.1847 0.0836  0.1980 0.0889 

ET-Tobit Log -0.2401 0.0435  -0.2494 0.0507  -0.1884 0.0494  -0.1908 0.0613 

Poisson-Tobit Level 0.3570 0.0471  0.3998 0.0549  0.3562 0.0492  0.3983 0.0739 

Heckman-ML Log 0.3446 0.0568  0.3584 0.0906  0.3109 0.0548  0.3158 0.1012 

Heckman-2SLS Log 0.7749 0.0960  0.8052 0.1242  0.7081 0.1094  0.7274 0.1438 

Heckman-ML Level 0.1805 0.1270  0.2008 0.9312  0.1002 0.1287  0.405 4.6382 

Heckman-2SLS Level 0.0523 0.0045  -0.2292 0.0126  0.0532 0.0226  -0.235 0.0378 

ZIP Level 0.2620 0.0230  0.2920 0.0450  0.2290 0.0350  0.2460 0.0810 

 Case 3: V[yi|x]=(exp(xiβ))2 
 

Case 4: V[yi|x]=exp(xiβ)+exp(x2i) 

(exp(xiβ))2 

ET-Tobit Level 0.5731 0.3302  0.6209 0.2696  0.7267 0.0919  0.7688 0.0894 

ET-Tobit Log 0.0131 0.1628  0.0741 0.0770  0.0809 0.0915  0.0525 0.1304 

Poisson-Tobit Level 0.3279 0.0881  0.3752 0.1591  0.2047 0.088  0.2271 0.1239 

Heckman-ML Log 0.1255 0.1041  0.1211 0.1518  -0.0739 0.1779  -0.1264 0.1939 

Heckman-2SLS Log 0.3477 0.1999  0.3492 0.2336  0.4101 0.3653  0.3465 0.3172 

Heckman-ML Level 0.3870 3.5500  2.6472 72.202  0.4410 2.5477  1.1797 17.435 

Heckman-2SLS Level 0.0329 0.1489  -0.2386 0.1501  0.0096 0.1932  -0.2572 0.2202 

ZIP Level 0.0960 0.1310  0.1180 0.1860  -0.1130 0.2000  0.1447 0.2366 
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Appendix Table 4   Average Absolute Bias and Standard Errors Across the Four Cases 

    β1 SE β2 SE βAve SE 

ET DGP- Standard Estimators        

Truncated OLS Log 0.16 0.11 0.16 0.07 0.16 0.09 

OLS (ln(y+0.1)) Log 0.25 0.07 0.15 0.03 0.2 0.05 

Truncated NLS Level 0.13 2.51 0.31 11.43 0.22 6.97 

Censored NLS Level 0.21 2.16 0.4 12.21 0.3 7.18 

PPML Level 0.28 0.11 0.24 0.07 0.26 0.09 

Truncated PPML Level 0.06 0.11 0.08 0.06 0.07 0.08 

GPML Level 0.6 0.23 0.61 0.18 0.61 0.2 

NBML Level  0.17 0.08 0.16 0.04 0.16 0.06 

ET DGP-Limited Dependent Estimators 

ET-Tobit Level 0.4 0.15 0.38 0.09 0.39 0.12 

ET-Tobit Log 0.12 0.08 0.13 0.05 0.13 0.07 

Poisson-Tobit Level 0.26 0.1 0.23 0.06 0.25 0.08 

Heckman-ML Log 0.22 0.11 0.18 0.07 0.2 0.09 

Heckman-2SLS Log 0.44 0.16 0.46 0.14 0.45 0.15 

Heckman-ML Level 0.17 7.47 0.21 1.45 0.19 4.46 

Heckman-2SLS Level 0.18 0.11 0.03 0.09 0.1 0.1 

ZIP Level 0.2 0.13 0.14 0.09 0.17 0.11 

Heckman DGP-Standard Estimators 

Truncated OLS Log 0.2 0.04 0.1 0.06 0.15 0.05 

OLS (ln(y+0.1)) Log 0.36 0.02 0.15 0.07 0.26 0.04 

Truncated NLS Level 0.11 0.93 0.16 0.41 0.13 0.67 

Censored NLS Level 0.14 0.92 0.16 0.95 0.15 0.93 

PPML Level 0.13 0.06 0.03 0.08 0.08 0.07 

Truncated PPML Level 0.09 0.08 0.03 0.08 0.06 0.08 

GPML Level 0.97 0.22 0.34 0.21 0.65 0.21 

NBML Level 0.19 0.04 0.2 0.1 0.19 0.07 

Heckman DGP-Limited Dependent Estimators 

ET-Tobit Level 0.17 1.11 0.38 0.63 0.27 0.87 

ET-Tobit Log 0.25 0.05 0.3 0.04 0.28 0.05 

Poisson-Tobit Level 0.1 0.05 0.03 0.09 0.07 0.07 

Heckman-ML Log 0.02 0.04 0.06 0.06 0.04 0.05 

Heckman-2SLS Log 0.06 0.05 0.08 0.06 0.07 0.06 

Heckman-ML Level 0.18 1.09 0.17 4 0.18 2.55 

Heckman-2SLS Level 0.21 1.69 0.16 0.96 0.19 1.32 

ZIP Level 0.06 0.08 0.01 0.08 0.03 0.08 

HMR DGP-Standard Estimators 

Truncated OLS Log 0.02 0.07 0.1 0.04 0.06 0.05 

OLS (ln(y+0.1)) Log 0.03 0.04 0.14 0.02 0.09 0.03 

Truncated NLS Level 0.08 3.15 0.7 6.42 0.39 4.79 

Censored NLS Level 0.14 3.5 1.09 6.73 0.62 5.11 



 

 

49 

Appendix Table 4   Average Absolute Bias and Standard Errors Across the Four Cases 

    β1 SE β2 SE βAve SE 

PPML Level 0.01 0.17 0.4 0.09 0.2 0.13 

Truncated PPML Level 0 0.14 0.03 0.1 0.02 0.12 

GPML Level 0 0.14 0.62 0.07 0.31 0.1 

NBML Level 0.01 0.12 0.44 0.07 0.22 0.1 

HMR DGP- Limited-Dependent Estimators 

ET-Tobit Level 0.39 0.43 0.26 0.14 0.32 0.29 

ET-Tobit Log 0.23 0.07 0.08 0.05 0.16 0.06 

Poisson-Tobit Level 0.14 0.52 0.13 0.16 0.13 0.34 

Heckman-ML Log 0.02 0.07 0.1 0.04 0.06 0.05 

Heckman-2SLS Log 0.03 0.06 0.47 0.06 0.25 0.06 

Heckman-ML Level 0.28 3.87 0.85 6.68 0.57 5.28 

Heckman-2SLS Level 0.13 3.39 1.04 6.57 0.59 4.98 

ZIP Level 0.01 0.2 0.02 0.13 0.02 0.16 

ZIP with x3 Level 0 0.13 0.01 0.12 0.01 0.12 

HMR Level 0.02 0.07 0.12 0.04 0.07 0.06 
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Annex A 

Patterns of Zeros in Trade Data 

Since the purpose of this paper is to investigate the performance of different estimators 

when trade is characterized by frequent zero flows it is important to know what patterns of 

zeros are observed in real trade data. In particular, we are interested in how frequently zeros 

appear and whether they appear to be distributed independently of the variables that 

determine levels of nonzero trade flows. We look at the frequency of zeros using two 

samples of trade data at different levels of disaggregation. The first is the SST (2006) data 

set of 18360 observations on bilateral aggregate trade flows for 136 exporters and 135 

importers in 1990. The second data set, developed under the leadership of Robert Feenstra 

and available from the NBER website, is for product-level US exports to more than 100 

countries for more than 9000 ten-digit HS classifications. 20 We use the average of U.S. 

exports from 2002 to 2006 to identify consistently zero trade flows.  

The percentage of zero trade flows in the SST (2006) data set is 47.6%. Only 40% of 

the sample involves trade in both directions while 7.4% of the sample involves trade flows 

in only one direction. Table A.1, which shows in detail the features of the country-level 

trade data, reveals that smaller and poorer economies export to a much smaller number of 

destinations than other countries. Twenty-six such countries have zero trade with over 100 

countries. Figure 1 presents a histogram and a kernel density for the percentages of zeros 

in the exports of the 136 exporters. It shows that 26 countries of the  

 
Notes:  (1) The kernel density estimate shown by the solid line is calculated using the 

Epannechnikov kernel function with a band width equal to 0.0822. 

                                                 
20 See for example Feenstra, Romalis and Schott (2002). The link to the data is: 

 http://cid.econ.ucdavis.edu/data/sasstata/usxss.html .   
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Figure 1: Frequency of Zeros in Country-Level Export Data
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 (2) The total number of possible positive trade flows is 135. 

 
Notes:  (1) The kernel density estimate is calculated using the Epanechnikov kernel 

function with a band width equal to 0.025.  

(2) The total number of 10-digit products the U.S. exports is 9037. 

 

sample—all of which are high-income economies—have zero exports to under 8% of their 

possible foreign markets. However, many other countries have zero exports to between 

40% and 90% of their potential trading partners.  

In U.S. product-level exports at the 10 digit level, zero trade flows are also very 

frequent. This is despite the fact that the U.S. is the largest economy in the world and one 

of the largest exporters, so the frequency of zeros is likely much lower than in the exports 

of other countries at this level of disaggregation.21 Zero observations represent 63% of the 

total 1346513 (149 destinations * 9037 products) possible export flows. Figure 2 provides 

a histogram and a kernel density for the percentages of zeros in U.S. exports in the 9037 

10-digit H.S. classifications. It shows that for 7702 of the 9037 H.S. classifications (i.e. 

85%), the U.S. had zero exports to 40% or more of the 149 foreign destinations for the 

period 2002 - 2006.  

Table A.2 presents the patterns of zero trade flows in both samples by groups of 

exporters’ GDP, by importers’ GDP, and by groups of bilateral distances. These are 

standard explanatory variables for bilateral trade in gravity regressions. For both samples, 

the GDP of exporters and importers and the bilateral distance are clearly important 

determinants of the likelihood of zero bilateral trade. On average, larger exporters and 

larger importers have positive exports to a larger number of foreign markets. Countries are 

                                                 
21 Note that the average presence of zero exports for the period 2002-2006 is less than the presence of zero 

exports we would expect to observe using annual export data.   
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Figure 2: Frequency of Zeros in U.S. Product-Level Export Data
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on average less likely to trade with distant markets as evidenced by the fact that the 

percentages of zero trade flows are increasing in distance.   

To shed more light on the determinants of positive bilateral trade flows we turned to 

regression techniques. For the aggregate country-level data set we ran a Probit regression 

to predict nonzero trade flows. For US exports, we used a linear probability model (LPM) 

because STATA does not allow us to include the 9037 product-specific dummies needed 

to control for product-specific factors in the disaggregated model.22 Table 3 shows that 

variables such as GDP, GDPC (per capita GDP) and bilateral distance are important and 

statistically significant determinants of the likelihood of positive bilateral trade. A common 

border is found to reduce the probability of positive trade. This surprising result was also 

obtained by HMR (2008) in their first-stage Probit regressions. Potential explanations 

include: (a) that countries sharing borders are more likely to be involved in conflicts that 

disrupt their bilateral trade, and (b) that the dummy variable on contiguity is strongly 

negatively correlated with bilateral distance, and may be confounding the effect of sharing 

a common border. As a rough tie-breaker, we ran the same regressions excluding the 

bilateral distance variable, and found that the contiguity variable became positive and 

statistically significant.23   

The detailed analysis of the patterns of zeros in both aggregate and very 

disaggregated trade data suggests that—as might be expected from economic theory—zero 

trade flows are not randomly determined. They are the result of fundamental economic 

determinants such as the inability of any exporter from a particular country to meet the cost 

threshold for positive trade. The resulting relationships between the decision to trade and 

the resulting volume of trade are likely to have implications for estimation strategies. 

  

                                                 
22 We also ran a Probit regression for each of the 9037 10-digit products and on average the results are 

quantitatively and qualitatively the same. These results are available upon request. 
23 The strong correlation between bilateral distance and common border dummy may also explain why the 

common border dummy is not found to have a robust and significant positive effect on the volume of trade 

once trade takes place in the empirical results presented in Section VII.  Results for both the Probit and the 

LPM models excluding the bilateral distance variables involved positive and statistically significant effects 

of a common border on the probability of positive bilateral trade. These results are available from the authors 

upon request.  
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Table A.1: Frequency of Zero Trade Flows 

 

Santos Silva & 

Tenreyro’s Sample of 

Country-Level Trade 

Data 

 

 

 

 

Sample of U.S. 

Product-Level Export 

Data 

 

 

Distance    

   1st to 33rd percentile 41%  46% 

   34th to 66th percentile 45%  71% 

   67th to 100th 

percentile 57%  71% 

Exporter GDP     

   1st to 33rd percentile 66%   

   34th to 66th percentile 50%   

   67th to 100th 

percentile 25%   

Importer GDP    

   1st to 33rd percentile 62%  85% 

   34th to 66th percentile 50%  69% 

   67th to 100th 

percentile 23%  34% 

     

Notes: (1) The numbers are the percentages of zero trade flows in the total number of 

possible trade/export flows.  
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Table A.2: Determinants of Positive Trade Flows 

Independent Variables 

 

 

Probit Regression 

(Sample of Country-Level 

Bilateral Trade)   

LPM 

(Sample of U.S. 

Product-Level 

Exports) 

Log exporter's GDP 0.458 ***   

 (51.49)   

Log importer's GDP 0.330 ***  0.0945 *** 

 (42.13)  (15.66) 

Log exporter's GDPC 0.097 ***   

 (9.73)   

Log importer's GDPC 0.104 ***  0.0389 *** 

 (10.25)  (4.20) 

Log distance -0.461 ***  -0.232 *** 

 (-18.14)  (-10.07) 

Contiguity -0.490 ***  -0.315 *** 

 (-4.40)  (-3.64) 

Common language 0.310 ***  0.032 

 (7.99)  (0.87) 

Colonial tie 0.185 ***  0.045 

 (4.54)  (1.20) 

Landlocked_exporter 0.043    

 (1.31)   

Landlocked_importer -0.076 **  -0.021 

 (-2.23)  (-0.83) 

Exporter’s remoteness 0.080    

 (1.56)   

Importer’s remoteness -0.093 **  0.234 *** 

 (-1.80)  (6.58) 

FTA 1.210 ***  0.035 

 (7.25)  (0.44) 

Openess 0.322 ***  -0.036 

 (11.83)  (-1.27) 

Product dummies   Yes 

Constant -15.714 ***  -2.102 *** 

 (-21.54)  (-4.75) 

 N. of obs. 18360   1102514 

Notes: (1) Probit regression results report the coefficient estimates and z-statistics in the 

parentheses  

(2) LPM is the Linear Probability Model. T-statistics computed using the robust 

standard error with allowance for clustering on the exporter-importer pairs are in 

parentheses.  
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(3) Note that the number of observations of the LPM regression is not1346513 

(i.e. 149 destinations * 9037 products) because the data on GDP, GDP per capita 

and importer’s remoteness are not available for all countries. 
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Annex B 

 

Generation of the HMR DGP for Monte Carlo Simulations 

Step 1 

Generate a uniformly distributed random variable x3 with 1000 observations.  

Sort x3 from lowest to highest value.  

Create an indicator variable name order that is equal to 1, 2…1000. So order is strongly 

correlated with x3. This indicator variable will be used to merge x3 with the data set of y2 

and other variables. 

Save this data file under file name Uniform. 

Step 2  

Generate random variables x1, x2, y2 with correlation matrix [1, 0, 0\0, 1, 0.5\0, 0.5, 1]. In 

other words, the correlation between x1 and x2 and x1 and y2 is zero while the correlation 

between x2 and y2, which is the dependent variable of the equation that determines the 

sample selection rule, is 0.5. By construction, all of these variables are normally distributed 

with mean zero and variance 1.  

x1 then is transformed into a dummy variable with 40% of zeros. Specifically, for x1 with 

values below the 40th percentile x1 is replaced by 0 and for x1 with values above the 40th 

percentile x1 is replaced by 1.  

Sort the data by y2 from lowest to highest values. The order of the other variables changes 

accordingly and their correlations remain intact.  

Create an indicator variable order that is equal to 1, 2…1000. So variable order is strongly 

correlated with y2. This indicator variable will be used to merge with the data set of x3 in 

the Uniform file we saved in Step 1. 

Step 3 

Merge those variables x1, x2, y2 and x6 above with the data file Uniform including x3 by 

indicator variable order. Note that the correlation between x2 and y2 remains intact. 

Transform the normally distributed variable y2~N(0,1) so that y2 has 25% of its values less 

than zero. Note that all the correlations remain intact as the transformation only shifts the 

distribution of y2 to the right.  

Replace the values of x3 below the 25th percentile by order with zeros. This means that the 

observations with zero trade always have zero firms.  
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Step 4 

Generate exp(xiβ)=exp(1+x1+x2+x3) and multiplicative error term (η) with its variance a 

function of exp(xiβ). Note that y1=exp(xiβ). η and that the log of the multiplicative error 

term is ln(η) in the paper. 

Step 5 

Generate a random variable ln(η*) that has a correlation of 0.5 with ln(η).  

Step 6 

Generate the excluded restriction variable x4: x4= y2-[1+x1+x2+ln(η*)]. 

Step 7 

Apply the selection rule to generate zeros of y1 as follows: for y2 with values less than zero, 

replace y1 with zero. For y2 with values greater than zero, y1 remains the same. 
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Appendix C 

 

Non-Nested Test for the Nature of the Data Generating Process 

 

Because we have found that the best estimator for the gravity model may depend upon the 

nature of the data-generating process, it may be important to try to identify the nature of 

the process giving rise to the observed data before proceeding to estimation. Our first step 

in applying the estimators to real-world data is therefore to try to assess whether real-world 

trade data such as those used in the SST (2006, p649) study are more consistent with the 

ET-Tobit model or the Heckman model.24 Once we have completed this step, we turn to a 

comparison—along the lines of that reported by SST--of the empirical estimates arising 

from the different models.  

Since the ET-Tobit and the Heckman models are non-nested we use the Vuong 

test—based on comparison of the log-likelihoods of alternative models—to discriminate 

between them.25 The distance (or the closeness) between the true and unknown model and 

any model is measured using the Kullback-Leibler information criteria (KLIC). This 

criterion is defined as follows:  

    ≡ ∗  

 

where  is the log of the conditional density of the dependent variable y given X, the 

vector of explanatory variables (i.e. the true but unknown model) and ∗ is the log of the 

conditional density of  the dependent variable y given X when an untrue but known model 

is applied to estimate y. Thus, minimization of the KLIC is equivalent to maximization of 

E[L*]. Vuong (1989) showed that determining which of the two models is closer to the 

true model is asymptotically equivalent to determining which model has an average log-

likelihood statistically greater than its rival. Specifically, Vuong’s test involves the 

likelihood-ratio statistic: 

              , √⁄ ≡ ⁄ √ (*)    

                                                 
24 We follow Helpman et al. (2008) in using common religion as our excluded restriction variable for the 

Heckman model.  
25 See Vuong (1989) for a more technical and detailed discussion of this test.  
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where Ln stands for the log-likelihood of the ET-Tobit and the Heckman model, while  

is the estimated variance of the pointwise log-likelihood ratio. , the estimated variance 

of the likelihood-ratio statistic is computed as follows: 

             ≡ ∑ ∑ 	                                          (**) 

 

where 	  are the individual log likelihoods of the ET-Tobit model and the 

Heckman model, respectively.  

 

The numerator of the likelihood-ratio statistic needs correction for degrees of freedom. 

Following Clark (2001)26 we define Kn, the degrees of freedom correction, as follows: 

              	 18360 18360 =9.81793 

 (***)                         

where p=16, q= 14and N=18360 are the number of estimated coefficients in the ET-Tobit 

model and the Heckman model and the number of observations, respectively.  

Given the results for the ET-Tobit and Heckman ML model, the likelihood-ratio 

statistic of the Vuong test is: 
. . .. ∗√ 66.496 where the values 

of  ,  and are -97237.926, -26790.961 and 7.818637, respectively.  

Since the z-statistic is significantly less than zero we conclude that it is more likely that 

this data set was generated by the Heckman sample-selection model than by a threshold-

Tobit model. This suggests that we should place more emphasis on the ZIP models found 

in the Monte-Carlo simulations to be better estimators for Heckman-based data than on 

other models. We are, however, conscious of the more specific test result from Santos Silva, 

Tenreyro and Windjmeijer (2014) that a single-index model such as the ET-Tobit model 

might better represent the characteristics of this particular dataset.  

 

                                                 
26 Clark’s paper is available at: http://www.rochester.edu/college/psc/clarke/450315.pdf.  


