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ABSTRACT 

 

Asthma has been reported in children as a leading chronic illness in the US and around 

the world. It is also the third leading cause of hospitalization among children under the age of 15, 

and is also one of the most common causes of school absenteeism. Children are at higher risk of 

asthma attacks and they pose a higher burden on health care system. Nearly 20.6% of middle and 

high school children in Florida have been told they have asthma, this prevalence has grown over 

3% from 2006 to 2012.  Changes in air pollutant levels are often related to health outcomes, e.g. 

prevalence of chronic asthma.  Exposure to ambient air pollutants have been reported to 

exacerbate asthma attacks especially in children. Often agencies and governing bodies utilize 

national level health impact assessments (HIAs) to estimate local levels of health impacts. The 

US EPA (Environmental Protection Agency) developed the Benefit Mapping and Analysis 

Program (BenMAP) to estimate impacts on health due to changes in air pollution. Recent studies 

have shown that assessment of regional exposure is important to understand health impacts of 

pollutants at the local level. To use BenMAP effectively for HIA in Florida, one may have to 

update the prevalence rates and concentration response (CR) functions in BenMAP with Florida 

data.  

 

The main purpose of the research was to develop a method which can estimate impact of 

change in criteria pollutants on childhood asthma outcomes in Florida. The rates present in 

BenMAP are based on national estimates, which are higher than the rates for Florida. If these 
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rates are used for the HIA method then the change in asthma emergency department visits 

estimated by BenMAP may be an overestimate with higher uncertainties.  There are no baseline 

rates for asthma exacerbation ED visits in BenMAP, an asthma exacerbation is a more severe 

and poorly managed case of asthma. Asthma ED visit prevalence rates will tend to overestimate 

the asthma exacerbation rates by 64%, if used. Detailed review of US-EPA’s BenMAP software 

and peer reviewed literature was performed to identify the gaps in BenMAP for asthma 

assessments. The CR functions were developed using local pollutant and outcomes data. CR 

functions were added to BenMAP to bridge the gaps. The baseline prevalence and exacerbation 

rates at county level by age group, gender and race ethnicity were developed. 

 

This study highlights that an increase of 10 µg/m3 of PM2.5 contributes about 2% to 

asthma ED visit rate, in children 5-12 and is lower, for 13-18 olds (0.6%).   The baseline 

prevalence and exacerbation rates at county level for asthma in children differed by 

race/ethnicity.  This study publishes the ED rates by county and by gender, race and ethnicity 

from 2010 to 2014, which are recent rates and have not been published to such granularity by the 

State or by any other researcher. Current pollutant data in BenMAP is only available through 

2008, and EPA has recommended it should be updated for analysis purposes. This study has 

updated the monitor data in BenMAP for Florida counties for 2010-2014. 

 

There are three major contributions of this study. Firstly, the study contributes to 

publishing childhood emergency department prevalence rates for asthma and exacerbation in the 

State of Florida by age group, race/ethnicity and gender. Secondly, development of concentration 

response functions specific to Florida using the time series analysis to show the impact of PM2.5 



xi 

on asthma exacerbation emergency department visits, incorporating both temporal and spatial 

variability of PM2.5 during the study period.  Finally, the study demonstrates the utility of using 

local (county-level) baseline asthma prevalence rates and local pollutant data for State HIA in 

Florida. The local PM2.5 data in BenMAP can be used for other health outcome assessments, 

researchers will only have to update the prevalence rates for the health outcome used in their 

study. Estimation using local data will be less prone to uncertainties using National level data, 

the use of local data has been emphasized by several researchers. 

 

The study recommends future work in refining spatial grid resolution in BenMAP to zip 

code level to facilitate studies at neighborhood level. Another recommendation is to further 

design research to study SES in context to dietary changes and better understand social injustices 

in areas with diverse population. A population-based study in conjunction with Florida Asthma 

Coalition (FAC) asthma cases from doctors’ offices is recommended which will be able to 

control for misclassifications, and include weather and allergens in analysis while studying 

individual pattern of exposure and diet. 
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CHAPTER ONE: INTRODUCTION AND AIM 

1.1 Introduction 

Asthma has been reported as a leading chronic illness among children in the US and 

around the world. Asthma affects nearly 334 million people globally and 14% of children 

experience asthma symptoms. It often causes reduced quality of life among patients and their 

families and imposes physical, psychological and social effects (GAN, 2014). The estimates of its 

economic burden due to loss in productivity, disability, lost school days, absence from work and 

premature death, measured as disability adjusted life years (DALYs) are significantly high, 

placing asthma as the 14th most important disorder in the world. The burden of asthma is highest 

among children aged 10-14 and the elderly aged 75-79 (GAN, 2014). Low and middle-income 

countries have higher prevalence rates of acute asthma, and the rate of prevalence seems to be 

increasing at an alarming rate compared to high-income countries (GAN, 2014). 

 

Asthma is a major chronic disease in the United States, nearly 6.8 million children are 

affected by asthma (Bloom et. al., 2013). The prevalence of current asthma has increased from 

2001 to 2010. However, between 2005 to 2008 it seemed to have reached a plateau, but continued 

to grow since 2008 (Moorman et. al., 2012).   The number of person with an asthma attack in the 

previous 12 months has increased 2.6% per year from year 2003 to 2010, 11.0 million to 13.9 

million (Moorman et. al, 2012). With increasing asthma prevalence, the ambulatory care for 

asthma use has continued to grow since 2000 (Akinbami, 2007).   Asthma is also the third leading 
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cause of hospitalization among children under the age of 15; and has been known to be one of the 

most common causes of school absenteeism (Akinbami, 2007; Akinbami et. al., 2012).    

 

The prevalence of asthma for children in Florida was estimated to be 8.3% as compared to 

9.0% nationally in 2007 (CDC, 2008). It was estimated 32,007 children in Florida had asthma using 

the Behavior Risk Factor Surveillance System (BRFSS) 2007. The gender difference in Florida is 

higher than nationally, 10.5% of boys in Florida have current asthma compared to 10.1% 

nationwide, while only 5.9% of girls in Florida have current asthma compared to 7.9% nationally 

(CDC, 2008).   

 

Changes in air pollutant levels are often related to health outcomes, e.g. prevalence of 

chronic asthma.  High levels of air pollution, indoors and outdoors, can contribute to and possibly 

cause various health problems ranging from respiratory illness, heart disease, and cancer to death 

(Akinbami, 2006; Akinbami et. al., 2012).   In particular, exposure to ambient air pollutants may 

exacerbate asthma attacks especially in children (Akinbami, et. al., 2012).    

 

Air pollutants and health outcome data are available publicly or from agencies for research.  

Even though these data are available, the biggest challenge is linking air pollutant data with health 

outcomes. Several studies have combined health outcomes with US EPA exposure data but are 

aggregated to specific counties or zip codes, due to the unavailability of data for smaller levels of 

geographic detail (e.g. residence). A study by CDC elaborates the linkage methods for US National 

Health Interview Survey (NHIS) with US Environmental Protection Agency’s (EPA) air 

monitoring data. (Charleston et.al.,2008; Talbot et.al.,2009 ) 



3 

 

The US EPA developed the Benefit Mapping and Analysis Program (BenMAP) to estimate 

impacts on health due to changes in air pollution. BenMAP is a powerful tool, and its flexibility 

allows the users to input their own site-specific data on pollutant type, ambient concentrations, 

demographics, and health outcomes, to create visual maps of air pollution and incidence rate 

changes of health outcomes. It helps in economic evaluations and cost benefit analysis of air 

pollution control.  EPA regularly performs national-level health impact assessments (HIA) for 

regulatory purposes. Often agencies and governing bodies utilize national level HIAs to estimate 

local levels of health impacts. Recent studies have shown that assessment of regional exposure is 

important to understand health impacts of pollutants at the local level (Fann et. al., 2008; Hubbel 

et. al., 2009). National level HIAs are unlikely to describe true impacts of pollutants at a sub-

national scale or local-scale as they often assume distribution of exposure and outcome in all the 

sub regions similar to the national level and hence mask the true spatial variations (Fann et. al., 

2008). Recent research has indicated that there is a great need for developing local or regional level 

health impact assessments (Hubbel et. al., 2009; Fuentes 2009). 

 

1.2 Public Health Significance 

Asthma is an important public health problem.  Change in diagnosis or possible alterations 

in the population gene pool cannot explain the increase in asthma incidence or prevalence.   

Protection against environmental factors becomes a practical approach to reducing and controlling 

asthma. Thus, better understanding and quantifying the impact of environmental pollutants on 

pediatric asthma is critical. Children are at higher risk of asthma attacks and they pose a higher 

burden on health care system. Nearly 20.6% of middle and high school children in Florida have 
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been told they have asthma, this prevalence has grown over 3% from 2006 to 2012.  The increase 

in asthma prevalence imposes higher emergency department and hospital visits. In Florida, the 

number of asthma emergency visits, for children under age of 18, have increased from 34,855 in 

2005 to 48,674 in 2014. This poses a great financial burden on state and payer as the cost of care 

has had a sharp increase in the past decade. Current published studies focusing on asthma morbidity 

have shown health care disparities but few have national or state estimates of current asthma 

incidence or prevalence rates, the published rates are usually 3 or more years older.  

 

There are three major contributions of this study. First, the study will contribute to 

publishing childhood asthma emergency department prevalence and exacerbation rates in State of 

Florida. These rates will be age group, gender and race/ethnicity specific.   

 

Second, the study will contribute to the development of CR functions are local to Florida; 

and will show the impact of PM2.5 on asthma exacerbation emergency department visits while 

incorporating both temporal and spatial variability of PM2.5.   

 

Finally, the study demonstrates the utility of using local (county-level) asthma exacerbation 

rates, local pollutant data and localized CR functions for State Health Impact Assessments. Current 

published studies have not validated this for Florida. 

 

  



5 

1.3 Specific Aims 

There were five specific aims of this research study: 

 

Aim One:  To assess the efficacy/utility of Concentration Response (CR) functions and 

Asthma prevalence rates present in EPA’s BenMAP for estimating childhood asthma 

exacerbation rates due to changes in PM2.5 .  

The goal for this aim was to identify the appropriateness of the CR function incorporated in 

EPA’s assessment software BenMAP, while paying close attention to age and gender specificity.  

The CR functions are used to estimate asthma outcomes like exacerbation, due to changes in 

concentration of ambient air pollutants. BenMAP has built-in CR functions for estimating asthma 

exacerbation, these functions may not be age or gender specific. Since asthma rates vary with age 

and gender, using CR functions which are not age and gender specific will incorrectly estimate the 

asthma health impact due to air pollutants. This makes it necessary to develop age and gender 

appropriate CR functions. A detailed review of published peer reviewed literature, EPA’s 

published documentation and technical manuals were used to identify the gaps in the CR functions 

currently present in BenMAP. 

 

Aim Two: To determine the baseline emergency department asthma prevalence and 

exacerbation rates for childhood asthma at local county level in Florida. 

The goal of this aim was to develop baseline asthma outcome rates using local health data 

obtained from Florida Agency for Health Care Administration (FL-AHCA). The local region 

defined in this study was Florida county level. The asthma cases or asthma exacerbation cases 

identified using ICD-9 were used to estimate the quarterly rate of prevalence and exacerbation of 
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asthma for children seen in emergency departments in Florida counties by age and gender. 

Nationally representative health data are collected by The National Center for Health Statistics, 

Centers of Disease Control and Prevention (NCHS/CDC), while national/state representative data 

are collected by the Agency for Health Care Administration (AHCA).   

 

Even though the data are available at the national level, there are confidentiality restrictions 

and the geographic details on health outcome data are not available most of the time.  As a result, 

baseline asthma prevalence/ incidence or exacerbation rates at local or state levels are not available. 

Developing accurate baseline rates are critical for developing appropriate methods for health impact 

analyses (HIA) at the local county or State level.  

 

Aim Three:  To evaluate the temporal and spatial patterns of PM2.5 in Florida and incorporate 

for Florida into BenMAP for HIA estimations. 

The goal of this specific aim was to evaluate temporal and spatial patterns of PM2.5 across 

Florida and to incorporate air pollution monitoring data for Florida counties into BenMAP. This 

objective was accomplished by using Florida EPA’s monitoring data from 2010-2014, 24-hour 

average PM2.5, were averaged across all monitoring sites in a county to determine daily county 

level concentration of pollutant. The data was analyzed to see the temporal and spatial patterns of 

PM2.5 at county level across Florida. The data was also loaded into BenMAP to match the county 

level spatial grids in BenMAP. 
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Aim Four: To develop county-level CR functions to be used in HIAs performed by local or 

State agencies. 

The goal of this aim was to develop CR functions which can be used in HIA methods, for 

evaluating impact of ambient air pollutants PM2.5 on childhood asthma exacerbation in Florida. 

Often, local regulatory or State agencies perform local health impact assessments of air pollutants 

HIA methods with national level data. The CR functions used in these methods are derived from 

studies conducted nationally or at another location in the US and are not really local to a state. Local 

HIA require appropriate regional or robust CR function for regional HIA to be reliable (Hubbell 

et.al., 2009).  

This aim was achieved by linking local daily asthma exacerbation outcomes to local daily 

PM2.5 concentrations at county level and using Poisson model in Generalized Linear Estimating 

Equations (GEE), to estimate CR function. The CR function estimated from this study was pooled 

with CR functions from peer reviewed studies to increase the reliability of the HIA method (Fuentes 

et. al., 2009). 

 

Aim Five: To estimate age and gender specific asthma exacerbation rates in children due to 

change in PM2.5 concentrations at the county level. 

My final objective was to estimate asthma exacerbation rates in Florida at county level due 

to changes in local air pollutants, while controlling for age and gender using the HIA method in 

BenMAP. This objective was accomplished by incorporating results from specific aims two, three 

and four in BenMAP software and estimating the asthma exacerbation rates at county level due to 

the change in PM2.5. 

 



8 

1.4  Hypotheses 

 

Hypothesis One:  

It is hypothesized that rates for prevalence and exacerbation of asthma at the National level 

cannot be generalized to county levels. 

 

Local county level rates will be compared to State of Florida and National rates available 

for age and gender. These comparisons will highlight differences in county-specific and national-

level rates by age and gender. 

 

Hypothesis Two:  

It is hypothesized that using aggregated National levels of pollutant concentration for local level 

pollutant concentrations will mask true estimates of asthma exacerbation rates in children due to 

changes in level of criteria pollutants at the county level.  

 

Developing the required spatial grids at the county level and inserting monitor data of PM2.5 

in BenMAP will reveal the importance of air quality management at the local area to control asthma, 

and the costs associated with changes in air pollution. 

 

Hypothesis Three:  

It is hypothesized that if CR functions, corresponding to asthma exacerbation and levels of  air 

pollutants, are derived from national or global research studies then the reliability of local HIAs 

will be low. 
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Local HIA methods use CR functions developed from national or international research 

studies.  However, estimates of CR functions from just one study may be accompanied with low 

reliability of HIA. To improve reliability of air quality HIA, it is necessary to select CR functions 

which have been derived from peer-reviewed studies (Hubbell et. al, 2009). CR functions using 

local and peer reviewed studies can be pooled to further increase the reliability (Fuentes, 2009).  

 

Hypothesis Four: 

It is hypothesized that using local CR functions and asthma prevalence rates will result in reliable 

estimates of the impact of PM2.5  on ED visits for childhood asthma/asthma exacerbation in Florida. 

 

HIA methods using local response functions, and asthma prevalence rates  

1. will have lower uncertainties:  

a) lower variability; b) smaller confidence intervals c) greater precision,  and 

2.  will be able to better estimate the asthma exacerbation rate due to change in PM2.5 in 

Florida.  

 

1.5  Definition of terms 

 

Please see Appendix 1 for definitions of terms used throughout this dissertation.  
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CHAPTER TWO:  REVIEW OF THE LITERATURE 

 
2.1 Background 

Asthma is a complex pulmonary disease known to have many triggers, including allergens, 

infections, exercise, abrupt changes in the weather, and exposure to air pollutants (O3, NO2, 

Particulate Matter (PM)) and smoke (ALA,2012; Akinbami 2007). It is characterized by recurrent 

episodes of chest tightness, coughing and wheezing.  Many environmental and genetic factors play 

an important role in the induction and exacerbation of asthma. Exacerbation or recurrent asthma 

episodes range in severity from inconvenient to life threatening situations, and involve shortness of 

breath, coughing, wheezing, chest pain or tightness, or a possible combination of these symptoms 

(ALA, 2007).  

 

Current asthma prevalence during 2006-2010 was estimated to be 8.0% among the US 

population. Asthma prevalence varied by demographics, it was higher among females (9.0%) than 

males (6.9%), and children had higher prevalence than adults (9.4% versus 7.6% ) (Moorman et. 

al. 2013) . Children are also more susceptible to asthma incidence and exacerbation than adults. In 

2005, 9 million children younger than 18 (12.7% of US children) had a life time diagnosis of 

asthma; among them 6.5 million had current asthma, and 3.8 million had asthma attacks in the past 

12-months (Akinbami 2006; Akinbami 2007).   Nearly 60% of children had experienced greater 

than one asthma attack in past year (Akinbami 2007).  Asthma led to about 3.5 million visits to 

physicians, 0.5 million visits to hospital outpatient departments, 593,000 emergency department 



11 

(ED) visits, and 155,000 hospitalizations in children under the age of 18 (Akinbami 2007; Akinbami 

et.al. 2009). 

 

2.2 Definition Of Asthma 

 Asthma is defined by WHO as “a heterogeneous disease, usually characterized by chronic 

airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness 

of breath, chest tightness and cough that vary over time and in intensity, together with variable 

expiratory airflow limitation.” (WHO, 1999). The natural history of this disease includes 

exacerbations or acute episodes in addition to chronic persistent inflammation and reduced lung 

function. (Reddel et. al.,2009). The ICD-9 definition and codes of asthma are given in Appendix 2.  

These codes help in clinical diagnosis of asthma and help in differentiating between intrinsic 

asthma, extrinsic asthma, chronic obstructive asthma, other forms of asthma and asthma 

unspecified.  

 Asthma exacerbations are defined as “episodes characterized by a progressive increase in 

symptoms of shortness of breath, cough, wheezing or chest tightness and progressive decrease in 

lung function, i.e. they represent a change from the patient’s usual status that is sufficient to require 

a change in treatment.” (GINA, 2016).  The ICD9 definition and codes of asthma exacerbation are 

given in Appendix 2. The codes help in diagnosis and differentiating intrinsic asthma with acute 

exacerbation, extrinsic asthma with acute exacerbation, Chronic obstructive asthma with acute 

exacerbation, other forms of asthma exacerbations and asthma unspecified with acute 

exacerbations.  
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2.3 Asthma Etiology 

 Development of asthma has been associated with family history, which is not sufficient 

explanation for development of asthma (Burke et. al., 2003). Phenotypes characterizing asthma 

differ in etiology and pathophysiology.  Geographical variation in prevalence, incidence and 

magnitude of increases in asthma over the past two decades have been suggestive of that 

environmental changes play an important role in asthma prevalence and incidence. Gene by 

environment interactions have been suggestive of probable cause of varying prevalence across the 

world. During a person’s lifetime the environmental triggers may affect differently at different time 

points and risk factors may change over a time. (Subbarao et. al., 2009). Short term and long term 

studies on risk factors of asthma have been suggestive of contrary results. Long term studies have 

shown asthma to be associated with risk factors like air pollutants with higher magnitude on the 

other hand short term studies have been suggestive of lower likelihood of asthma or even protective 

sometimes. Allergic sensitization, environmental tobacco smoke, exposure to animals, 

breastfeeding, decreased lung function in infancy, family size and structure, socio-economic status, 

antibiotics and infections, and gender have been suggestive factors influencing childhood asthma 

(Subbarao et. al., 2009). 

 

2.4 Trends in Childhood Asthma 

Asthma Prevalence, Incidence and Exacerbation 

Asthma is the leading serious chronic illness of children in the United States.  Since the 

early 1980’s, the number of children (<14 years) diagnosed with asthma has increased rapidly, 

making it the most common chronic disease among children (Akinbami, 2006).   In 2006, the 

American Lung Association (ALA) estimated 6.8 million children under the age of 18 currently 
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had asthma, 4.1 million of which had an asthma attack, and many others have "hidden" or 

undiagnosed asthma (ALA, 2007). In 2011, ALA estimated 8.7 million children ages 5-17 had been 

diagnosed with asthma in their lifetime, 7.1 million children had current asthma. (ALA, 2012). 

 

The prevalence of current asthma has increased from 2001 to 2010, and was highest in 2010 

(Akinbami et. al., 2012). Between 2005 to 2008 it seemed to have reached a plateau but continued 

to grow since 2008 (Moorman et. al., 2012). Despite the plateau in asthma prevalence between 

2005 to 2008, ambulatory care for asthma during this period had continued to grow (ALA, 2007).   

 

Based on data from the National Health Interview Survey (NHIS), incidence of asthma 

increased from 1980 to 1996 from 3.65% to 6.2%, but had reached a plateau between 1996 and 

2004 to 5.4% (Akinbami et. al., 2006).  

 

  The number of person with an asthma attack among those with current asthma in the 

previous 12 months has increased 2.6% per year from year 2003 to 2010, 11.0 million to 13.9 

million (Moorman et. al, 2012). With increasing asthma prevalence, the ambulatory care for asthma 

use has continued to grow since 2000 (Akinbami, 2007).    

 

Asthma Morbidity  

Asthma is also the third leading cause of hospitalization among children under the age of 

15. Hospitalization rates for asthma have a similar trend to prevalence rates.(ALA, 2007; ALA, 

2012).  Asthma is one of the most common causes of school absenteeism. (Akinbami, 2007; Meng  

et,al;2012).   In 2003, children aged 5 to 17 years who reported at least one asthma attack in the 
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previous year, missed 12.8 million school days (Akinbami, 2007).  Asthma inpatient admission 

rates have strong seasonal variation, for all the subgroups stratified by race, age and ethnicity 

(Johnston  et al, 2006a;2006b). Asthma hospital admissions decrease in summer months (May-

Sep) in comparison to the rest of year. (Johnston  et al, 2006a;2006b ; Winquist et al, 2016)  Another 

study indicated that lower admission rates were seen during rainy season (Valença et.al, 2006)    

Patients with any pulmonary infection showed a different seasonal pattern, having significant 

variation from January through March (USEPA, 2008).    

 

Asthma Mortality 

Asthma mortality rates illustrated a sharp rise from 1980 to 1990’s but have declined 

recently; however, they are still higher than the rate in 1980.( (Akinbami, 2006) Asthma mortality, 

deaths per 1,000 persons has declined from 2001to 2009 (Akinbami et. al., 2012). The average 

annual death rate for 2007-2009 was 0.15 per 1,000 persons with asthma. For children under the 

age of 18 it was lower than 0.05, however, annual death rate was higher for females and blacks for 

all ages (Akinbami et. al., 2012). 

 

2.5 Race, Gender and Age Differences in Asthma 

Racial disparity in Asthma  

 Racial disparity for asthma has been well documented in many studies (CDC, 2008; FAP, 

2014).  Higher asthma prevalence is reported among non-Hispanic black children as compared with 

non-Hispanic white children (Blixen 1999; CDC, 2008; ALA, 2007; and FAP, 2014).  African 

Americans are more susceptible to asthma attacks with change of weather than non-African 

Americans (Blaisdell,et.al, 2002).  A recent study showed that national estimates of current asthma 
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prevalence among the children in the selected minority subgroups ranged from 4.4% in Asian Indian 

children to 13.0% in American Indian/Alaska Native children (Brim et.al., 2008; CDC, 2008).    

Adverse outcomes, like emergency department visits, hospitalizations and  mortality, were also 

higher for non-Hispanic black children (Blixen et.al., 1999)  Recently, the disparity has increased 

significantly between white and black children for asthma mortality (Akinbami, 2007; Akinbami 

et. al., 2016) 

 

Gender Disparities and Asthma  

 Asthma occurrence, prevalence and mortality vary with gender.  Among younger 

children, boys have a higher risk of asthma development than girls and this difference diminishes 

with increasing age (Bloom et.al., 2007).  The influence of gender on asthma has a different trend 

among teenagers and adults. The prevalence of asthma is predominant in boys in early ages of life 

and appears higher in girls after puberty (Horwood et.al.,  1985). Under the age of 15 years, more 

boys than girls have been admitted to hospitals for asthma (Bloom et.al.,  2007).  The differences 

in asthma risk by gender disappear during teenage years, as girls surpass boys with more asthma 

attacks (Akinbami 2007; ALA 2007; Akinbami et.al., 2016). How hormones or sex related 

hormones contribute to asthma incidence or asthma prevalence is not well understood yet. Overall 

boys have a higher asthma prevalence, hospitalizations and death rate as compared to girls 

(Blaisdell 2002;  Akinbami 2007; ALA 2007; Akinbami 2016)  

 

Age and Asthma   

In 2006, the rate in those under 18 years of age (92.8 per 1,000) was much greater than those 

over 18 (72.4 per 1,000), and the highest rate of 106.3 per 1,000 populations was seen in those 5-
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17 years of age (Akimbani et al, 2016)  In 2005, it was reported that approximately 32.6 percent of 

hospitalizations due to asthma were in children under the age of 15 years (Akimbani et al,  2016; 

Akimbani ,2006).  The current prevalence rates and mortality seemed to increase with age for those 

under the age of 18 (Akimbani, 2007; Akimbani et al, 2016). While, hospitalizations and emergency 

visits decreased with age (ALA, 2007; Akimbani et al, 2016). 

 

2.6 Asthma and Genetics 

 Many genes have been linked to asthma and asthma exacerbation but the role of genetics in 

asthma remains unclear (Ober 2005, Holgate 1999). Genetics plays a major role in regulation of 

inflammatory mediators, like cytokines and growth factors, and IgE production. The clinical 

diagnosis, etiology and pathophysiology have been of onset of clinical asthma, the complexity of 

IgE and genetic environment involvement in clinical asthma is noted by linkages to certain 

phenotypic characteristics, but not necessarily the pathophysiologic disease process or clinical 

picture itself. The relevance of polymorphisms in the beta-adrenergic and corticosteroid receptors 

in determining responsiveness to therapies is of increasing interest, but the widespread application 

of these genetic factors remains to be fully established. 

 

2.7 Air Pollutants and Asthma 

Outdoor and indoor air pollutants have been associated with asthma. Outdoor pollutants 

affect indoor air concentration and are also used to define the Air Quality Index (AQI). Regulated 

outdoor air pollutants in the US can be categorized as criteria pollutants and hazardous air 

pollutants. 
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Criteria pollutants 

Criteria pollutants are a group of very common air pollutants regulated by EPA on the basis 

of health and/or environmental effects. They are particle pollution often referred to as particulate 

matter (PM), ground-level ozone (O3), carbon monoxide (CO), sulfur oxides (SOx), nitrogen oxides 

(NOx) and lead (Pb). These pollutants are considered to be the most widespread nationally and the 

most immediately dangerous to human health (Rodriguez, 2007). According to the Clean Air Act 

(“Act”), the USEPA is responsible for setting the National Ambient Air Quality Standards 

(NAAQS), and must use health-based criteria and cannot consider estimates of compliance cost. 

Two sections of the Clean Air Act (“the Act”) govern the establishment and revision of  NAAQS. 

Section 108 (42 U.S.C. 7408) directs the Administrator to identify pollutants that “may reasonably 

be anticipated to endanger public health or welfare” and to issue air quality criteria for them. These 

air quality criteria are intended to “accurately reflect the latest scientific knowledge useful in 

indicating the kind and extent of all identifiable effects on public health or welfare which may be 

expected from the presence of [a] pollutant in the ambient air.” PM is one of six pollutants for which 

the EPA has developed air quality criteria.  Section 109 (42 U.S.C. 7409) directs the Administrator 

to propose and promulgate “primary” and “secondary” NAAQS for pollutants identified under 

section 108. Section 109(b)(1) defines a primary standard as “the attainment and maintenance of 

which in the judgment of the Administrator, based on [the] criteria and allowing an adequate margin 

of safety, [are] requisite to protect the public health.” A secondary standard, as defined in section 

109(b)(2), must “specify a level of air quality the attainment and maintenance of which in the 

judgment of the Administrator, based on [the] criteria, [are] requisite to protect the public welfare 

from any known or anticipated adverse effects associated with the presence of [the] pollutant in the 

ambient air.” Welfare effects as defined in section 302(h) [42 U.S.C. 7602(h)] include but are not 
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limited to “effects on soils, water, crops, vegetation, manmade materials, animals, wildlife, weather, 

visibility and climate, damage to and deterioration of property, and hazards to transportation, as 

well as effects on economic values and on personal comfort and well-being.” 1-2 Section 109(d) of 

the Act directs the Administrator to review existing criteria and standards at 5-year intervals. When 

warranted by such review, the Administrator is to retain or revise the NAAQS. After promulgation 

or revision of the NAAQS, the standards are implemented by the states.  

EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-

level O3, PM, CO, sulfur dioxide (SO2), and nitrogen dioxide (NO2). Four of these pollutants (CO, 

Pb, NO2, and SO2) are emitted directly from a variety of sources. Ozone is not directly emitted, but 

is formed when oxides of nitrogen (NOx) and volatile organic compounds (VOCs) react in the 

presence of sunlight.  PM can be directly emitted, or it can be formed when emissions of NOx, SOx, 

ammonia (NH4), organic compounds, and other gases react in the atmosphere. Ground-level ozone 

and airborne particles are the two pollutants that pose the greatest threat to human health in the US 

(USEPA, 2008).  Criteria air pollutants are responsible for many adverse effects on human health, 

causing thousands of cases of premature mortality and tens of thousands of emergency room visits 

annually (USEPA,2008).  Since 1980, emissions of the six criteria pollutants have declined 

significantly, with the greatest drop in lead (EPA,2008).    NOx emissions have dropped by one 

third, whereas, SOx and CO emissions have been cut roughly by one half.  Since 1980, ambient 

concentrations of CO, Pb, SO2, and NO2 have decreased steadily, and currently are below the 

National Ambient Air Quality Standards (NAAQS) in most parts of U.S (USEPA, 2012a).  

Concentrations of ozone (O3) and Particulate Matter less than 2.5µm (PM2.5) have exceeded the 

NAAAQS at several places within the United States (USEPA, 2008).  In 2005, concentrations of 

O3 and/or PM 2.5 did not meet the standards in 68 Metropolitan Statistical Areas (MSA) where 
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approximately 128 million people live.  The majority of the days in which AQI exceeded 100 were 

mostly due to O3 or PM2.5 (USEPA, 2008). 

 

Particulate matter (PM)  

PM is a complex mixture of solid or liquid particles that are airborne and dispersed. These particles 

include dust, dirt, soot, smoke, acids (e.g. nitrates and sulfates), organic chemicals, metals, etc.  PM 

originates from a variety of anthropogenic sources, including diesel trucks, power plants, wood 

stoves, industrial processes, windblown dust, construction sites, and burning waste (Jacobson, 

2002). Particles are also formed in the atmosphere by condensation or the transformation of emitted 

gases such as sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs) 

(Jacobson, 2002). PM also have a seasonal pattern, increased operations of power plants in the third 

quarter of the year leads to a higher concentration of PM in the eastern half of the U.S. (USEPA, 

2008).  Use of wooden stoves and fireplaces during winter months leads to increased PM 

concentration in the western US during the fourth quarter (USEPA, 2008). The size of particles is 

directly linked to their potential for causing health problems (Godish, 2002).  PM10 known as 

“inhalable coarse particles” (particulate matter with an aerodynamic diameter less than 10 μm and 

greater than 2.5 μm), provides a better correlation of particle concentration with human health.  A 

significant portion of PM2.5 known as “fine particles” (particulate matter with an aerodynamic 

diameter less than 2.5 μm) are secondary in nature, and are especially detrimental to human health 

as they can perforate deep into the lungs (USEPA, 2008).  Exposure to PM is unfavorable for 

vulnerable populations, especially those with chronic heart and lung disease, young children, 

elderly and pregnant women.  Long-term exposure may cause reduced lung function, development 

of chronic bronchitis and even premature death (USEPA, 2008).  Short-term exposures to particles 
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(hours or days) can aggravate lung disease causing asthma attacks and acute bronchitis and may 

also increase susceptibility to respiratory infections (USEPA, 2008). 

 

In 2006, the EPA’s final PM rule established NAAQS 35 µg/m3 as 24-hour standard and 

retained the annual standard of 15 µg/m3. The EPA revised the secondary standards for fine particles 

by making them identical in all respects to the primary standards. In 2009, several agencies and 

state governing bodies signed a petition for review of 2006 standards, as stated below. This resulted 

in investigation and clarification by US EPA in a form of written document known as Regulatory 

Impact Assessment (RIA), outlines detail analysis and explanation of  standards for public welfare 

(USEPA, 2012b). 

 
 

Source : https://www3.epa.gov/ttn/ecas/docs/ria/naaqs-pm_ria_proposed_2012-06 (USEPA 
2012b) 
 
 
Mixtures of Pollutants  

A number of pollutants may be present in the atmosphere. These tend to form complex 

mixtures, such as smog from fine particulate matter and smoke.  The nature and activity of 

pollutants in the environment pose a challenge to investigators to study the health effects of air 

pollutants.  Complex mixtures of pollutants can be classified into three groups that 1) originate from 

single sources (e.g., environmental tobacco smoke from active smoking);  2) result from physical 

“Following promulgation of the final rule in 2006, several parties filed petitions for its 

review. On February 24, 2009, the U.S. Court of Appeals for the District of Columbia Circuit 

remanded the primary annual PM2.5 NAAQS to the EPA citing that the EPA failed to 

adequately explain why the standard provided the requisite protection from both short- and 

long-term exposures to fine particles, including protection for at-risk populations. The court 

remanded the secondary standards to the EPA citing that the Agency failed to adequately 

explain why setting the secondary PM standards identical to the primary standards provided 

the required protection for public welfare, including protection from visibility impairment.” 
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mixing of primary emissions from multiple sources (e.g., a range of volatile organic compounds 

[VOCs] emitted from building furnishings);  or 3) result from physical mixing of emissions from 

multiple primary sources with agents created by chemical transformations of those emissions (e.g., 

precursors of smog [like nitrogen oxides, hydrocarbons, and sulfur oxides] reacting to form ozone 

and acid particles mixed with other oxidants and metals).  Complex mixtures have been associated 

with increased respiratory symptoms and hospital admissions for asthma.  Several investigators 

have postulated that measurements of criteria pollutants may serve as exposure surrogates for a 

complex mixture of criteria pollutants mixed with regional hazardous air pollutants (HAPs) (Fujita 

et.al. 2014; Fujita et.al. 2016; Scheffe et.al. 2016; Santamaría et.al. 2017).  Some studies have 

investigated the association of asthma surrogates, i.e. hospital admission, to levels of multiple air 

pollutants (Thurston 2007; Burnett 1990), but little on the cumulative effects of pollutant mixtures 

was found in the published literature. 

 

 

2.8 Seasonality, Air Pollution and Asthma 

Air pollution, during photo-chemically active periods, has been associated with respiratory 

morbidity (Tresende et. al., 2005).  Seasonal variations in asthma are widely recognized (Khot, 

et.al.1984; McCormick et.al., 1995; Marks et.al,1997; Sears 1997; Fleming et. al., 2000; Buckley 

et al.2012) Seasonal trends in hospitalization for asthma peaked in January through March, followed 

by a sharp decline beginning in April through June among adults is well documented in peer 

reviewed literature (Fleming et. al., 2000; Chen  et.al., 2006).  The seasonal trend for asthma was 

significantly correlated with peaks in air pollution and climate. (Grech et. al., 2002; Chen  et.al., 

2006; Johnston et.al., 2006)  A study reported that childhood asthma admissions increased from 
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May–Oct by 2.7% with an increase of 12 µg/m3 in PM10 with a 3 day lag (Blixen et.al., 1999).  

Asthmatic children exhibit much higher variations in asthma exacerbations and larger sensitivity to 

air pollution over time (Johnston et.al., 2006). 

 

2.9 Asthma in Florida 

The prevalence of asthma has been shown to be increasing among all ages nationally as well 

as in Florida. The prevalence of lifetime asthma has increased from 17% in 2006 to 20.5%  in 2012 

among Florida public middle and high school going children (FDOH, 2014, FAP 2014; Appendix 

3:Table1). Figure 1 shows by 2012,  lifetime asthma in school going children increased to nearly 

21% .   Nearly 17% of middle and high school students reported an asthma attack in the past twelve 

months. (FAP 2014)  

 

 
Source: FAP 2014, Asthma in school aged children, Florida 2013. 

Figure 1 Lifetime Asthma Prevalence, FYTS 2006-2012 

 

The lifetime asthma prevalence for middle and high school students increased for all the 

race/ ethnicity categories from 2006 to 2012, however the highest increase was in non-Hispanic 

Black and Hispanic categories, which increased from 17.7 to 21.8 in year 2012. Approximately 
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21.7% public high school students (165,000) reported lifetime asthma in Florida for 2011, this was 

lower than national prevalence which is 25% (FAP 2014).   

 

Females in Florida had a significantly lower prevalence of lifetime asthma than their 

national counterparts. Nationally, non-Hispanic Black public high school students had the highest 

prevalence of lifetime asthma. However, Florida Hispanics have the highest lifetime asthma 

prevalence. This prevalence is higher than US counterparts. (FAP 2014) 

 

The gender difference in Florida is higher than the gender difference nationally. In  Florida, 

a higher percentage of boys (10.5%), have current asthma prevalence than nationwide (10.1%), 

while only 5.9% of girls in Florida have current asthma as compared to 7.9% nationally (CDC 

2008).   The analysis of Youth Risk Behavior Surveillance System (YRBSS) by FLDOH shows 

that ethnic difference in Florida are different than that of US. In US, Hispanic have lower current 

asthma prevalence than White and Black. While in Florida White non-Hispanics have the least 

current asthma prevalence rate, and Hispanics have the  highest prevalence rate in Florida. 

(FLDOH, 2014). 

  

ED visits for asthma in age group 5-17 was 29,150 for 2012, the highest among all age 

groups in Florida. For the age group 5-17 females (8.01 per 1, 000) had lower ED visit rates than 

males (11.7 per 1,000). The asthma ED visit rates increased from 6.82 per 1,000 in 2008  to 9.89 

per 1,000 in 2011  (FAP 2014). The asthma ED rate for non- Hispanic Blacks was three time that 

of non Hispanics Whites and twice that of Hispanics. 
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The Florida Youth Tobacco Survey (FYTS) 2012 shows that middle and high school 

lifetime asthma prevalence and current asthma prevalence by county differs between Florida 

counties. Alachua, Duval, Flagler, Hernando, and Wakulla had prevalence greater than Florida for 

lifetime and current asthma (Figure 2). The current adolescent asthma prevalence for Florida was 

11.2% in 2012 (FAC 2013, Appendix 3). 

 
Source: FAP 2014: Asthma burden 2013. 

Figure 2 Lifetime Adolescent Asthma Prevalence by County, FYTS 2012 

 

 
Source: FAP 2014: Asthma burden 2013 

Figure 3 Current Adolescent Asthma Prevalence by County, FYTS 2012.  
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2.10  Health Impact Assessment and BenMAP 

 There is enough evidence that factors outside the health care delivery system affect 

human health.  Our economic, social and physical environments have been shown to affect public 

health. (WHO, 2007).  Several environmental factors including criteria air pollutants have been 

linked to risk of disease and an impact on human health. As this evidence, has accumulated over 

time, quantification of impact of air pollution on the public health has also increased (WHO, 2000). 

Quantitative estimates of these health impacts have become critical input components in policy 

decisions, establishment of environmental regulations and research planning around the world. 

(WHO 2002; Martuzzi et. al. 2003; Harris et. al. 2012; Hebert et. al. , 2012; Fakhri et. al. 2015).  

Often global, national and local agencies and governing bodies assess the risk or impact of changes 

in air pollution on health using quantitative methods like Health Risk Assessments (HRA) or Health 

Impact Assessments (HIA).  As per the Clean Air Act (“ACT”) for setting NAAQS the USEPA 

must use health-based criteria. For this purpose, USEPA uses Regulatory Impact Analysis (RIA) to 

estimate the human health and welfare costs and benefits of attaining NAAQS for criteria pollutants 

nationwide. 

 

HRA is an analytical process which is used to quantify and estimate the risk of adverse 

human health effects associated with exposure to contaminants or pollutants. HRA and HIA are 

interchangeably used by agencies and researchers in the process to quantity the effects of air 

pollution on public health. HRA looks at the risk associated with air pollutants at the population 

level, whereas HIA is the impact on public health outcomes due to changes in an air pollutant level, 

due to policy changes or higher air quality control regulations. Results from HRA can be used 

within an HIA to predict human health effects of specific exposures. 
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HIA can be understood as a tool that is used by decision makers to improve public health 

through community design. It estimates the health impact on an entire population, or selected 

subpopulation as a result of exposure and by decisions and activities that created them. The WHO 

defines HIA as “A combination of procedures, methods and tools by which a policy, programme or 

project may be judged as to its potential effects on the health of a population, and the distribution 

of those effects within the population” (WHO, 1999).  HIA methods identify the actions or policies 

to manage the health effects on the population (Quigley et. al., 2006). Thus, HIA methods use 

available results from epidemiological studies with data from environmental and health outcomes 

to assess impact on health, and to help policy makers plan and implement measures to protect public 

health.   

  

There is no single assessment method of HIA, as assessments may vary across projects 

depending on particular questions under consideration. The HIA could be integrating other 

assessments like Environmental Impact Assessment (EIA) or Sustainability assessment (SA) or the 

scope of assessments vary from international to local projects. In general, HIAs have five stages 

namely screening, scoping, risk assessment, reporting to decision makers, and monitoring and 

evaluation of the consequences of implementation. 

 

HRA Methodology 

The main steps involved in an air pollution HRA (AP-HRA) as recommended by WHO 

guidelines on Assessment and Using Epidemiological Evidence for Environmental Health Risk 

Assessment (WHO 2000a, 2000b) are: 
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• Specify exposure which is hazardous to health 

• Define health outcomes 

• Specify the exposure response relationship 

• Derive population baseline frequency measures for health outcomes 

• Calculate the number of cases or lives that can be saved or attributed to the exposure. 

 

The overview of AP-HRA is given in Figure 4, which starts with defining the policy 

question, then planning the HRA, next selecting the appropriate tool for the HRA, then conducting 

a HRA using the selected tool and finally responding to policy question and making informed 

decisions using the results of the HIA. 

 

To conduct an HRA appropriate data, resources and the selection of appropriate 

tools/methods are required.  Several computer based tools are available for AP-HRA, most of these 

tools are similar in approaches and rely on CR functions derived from epidemiological studies 

(Anenberg et. al., 2016).   Simple tools like Epi-Info or ESRI’s Arc-GIS can be used to visualize 

the results from HIA. A WHO expert meeting on methods and tools for assessing the health risks 

of air pollution at local, national and international level has described twelve tools across the world 

to assess the health risks of air pollution (WHO, 2014). USEPA’s   Benefits Mapping and Analysis 

Program (BenMAP) is one of the twelve tools in the WHO expert meeting. BenMAP is used in 

Regulatory Impact Analysis to quantify health impacts associated with changes in exposure, and 

these estimates may be expressed as Attributable Risk (AR) estimates (USEPA, 2014b; USEPA, 

2015). 
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Source: WHO (2016) “Health-risk-assessment-air-pollution-General-principles”  

Figure 4 An Overview of AP-HRA  

 

Role of Risk Impact Assessment (RIA) in the Process of Setting the NAAQS 

Legislative Roles 

 In setting primary standards for NAAQS, USEPA has responsibility under the law of the 

United States of America to establish criteria that protect public health, regardless of 
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implementation cost. The Act requires USEPA, “for each criteria pollutant , to set a standard that 

protects public health with an adequate margin of safety.”  (USEPA 2012b). The Act requires that 

these standards are based on health consideration only. The USEPA believes that “ consideration 

of cost and benefits is essential to making efficient, cost-effective decisions” for implementing 

NAAQS.  The RIA’s are intended to inform the public about potential cost and benefits of 

implementing new standards (USEPA 2012b). 

  

The RIAs also are used to create public documentation of cost benefit analysis, performed 

to satisfy statutory and executive orders before implementing NAAQS.  RIA illustrate cost benefit 

analysis different scenarios of ambient pollutant concentration, it gives selected regulatory scenario 

and alternative combinations of primary standards that could be implemented by State 

Implementation Plans (SIP) or Federal regulations. 

 

Illustrative Nature of RIA 

 The RIA for setting or revising NAAQS is basically an illustrative analysis that provides 

insights of hypothetical control scenarios if implemented federally or by individual states.  RIA 

analysis mainly attempts to estimate the costs and human welfare benefits of new proposed 

implementation strategies, which a governing body may use as cost-effective control. (USEPA 

2012b). 

Overview and Design of USEPA’s RIA 

 A typical RIA evaluates the costs and benefits of hypothetical national strategies to attain 

several alternative standards for criteria pollutant in question. It follows the following steps: 

1. Models the levels of criteria pollutant (i.e. PM2.5) in the future analysis year. 
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2. For a criteria pollutant it reviews existing air quality standards and compares it to alternative 

proposed standards. 

3. Benefits analysis approach – under this approach USEPA estimates human health outcomes  

under alternative pollutant concentrations as compared to current standards. USEPA 

considers an array of health impacts attributable to changes in air pollutant for this type of 

analysis.  

4. Cost analysis approach– under this approach USEPA estimates total cost under partial and 

full attainment of several alternative standards.  

5. Comparison of benefit and cost- estimates the total benefit and cost and summary of net 

benefit of several alternative standards. 

6. Economic impacts-  a qualitative discussion of economic impact, i.e. employment, of air 

quality regulations.  

Benefit analysis approach and HIA 

Under a benefit analysis approach, USEPA quantifies the health related benefits of pollutant 

related air quality improvements, to attain an alternative proposed NAAQS level in the future year, 

e.g. 2020. For an RIA, health impact analyses are normally limited to health effects, that are directly 

linked to ambient levels of air pollution, specifically linked to the pollutant in question (USEPA, 

2012b). HIA quantifies the changes in the incidence of adverse health impacts resulting from 

changes in human exposure to concentration of air pollutant. HIAs are a well-established approach 

for estimating the retrospective or prospective change in adverse health impacts expected to result 

from population-level changes in exposure to pollutants (Levy et. al.., 2009). 
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Source:  USEPA 2015 

Figure 5 Health Impact Assessment method used in US-EPA’s BenMAP 

 

 
Estimating health impacts typically utilizes data on an exposed population, changes in 

ambient air pollution levels, baseline incidence rate of the health endpoint, and, a health effect 

estimate.  A typical HIA estimation has the following four key components (Figures 4 and 5): 

1. Population estimates- through population data from census, local estimates or projections 

2. Exposure estimates - estimate a change in air quality or pollutant concentration and combine 

air quality data with population information to determine changes in exposure.  

3. Health function- Combine changes in population exposure to ambient air pollution with 

concentration response functions or impact functions.                                                                                                                        

4. Quantification of health risk from exposure to ambient pollutant through the use of summary 

statistics.  
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A typical health impact assessment equation using a log-linear form looks like:  

Δy  = (1- e β * Δx ) y 0* Pop  --- equation 1 

Where,   

Δy:  is the estimated change in health outcome (i.e. morbidity or mortality) 

β: is the concentration response coefficient drawn from epidemiological studies, it is the slope 

of RR/OR in epidemiological studies. 

y 0: is the baseline incidence/ prevalence rate of adverse health outcome being quantified 

Pop: the potentially affected population by change in air quality or pollutant  

Δx : is the estimated change in ambient pollutant concentrations. 

 

A HIA equation depends on the functional form of CR function from which it is derived. 

The research literature and epidemiologic studies help to identify the relationship between the 

criteria pollutant and health outcome measure in question.   

 

Concentration Response Functions 

 
 CR functions, also known as effect estimates or health impact functions, relate one unit 

change in air pollution (Δx) to one unit change in incidence or prevalence of health outcome (Δy). 

CR functions are obtained from published epidemiologic studies, where they are published as odds 

ratios (OR) or relative risk ratios (RR). The OR/ RR measures the odds or risk of the change in 

population health outcome with a specific change in pollutant concentration. Epidemiologic studies 

have several forms of CR functions, the most commonly published forms in the literature for PM2.5 

are linear regression, Poisson regression, logistic regression and conditional logistic regression.  
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Linear Regression Model 
A linear regression model defines the relationship between the adverse health outcome rate 

(prevalence rate) and pollutant concentration, i.e. PM2.5, to be linear: 

  y=α +β*PM 

The change in adverse health outcome rate (Δy) from baseline y0 to yi can be defined as 

Δy = y0 - yi  = β*(PM0-PMi) 

Δy = β*ΔPM 

The linear relationship is reported in literature for asthma and PM2.5 exposure in several time series 

models (Ostro et. al., 1991; Loftus et. al., 2015 ; Freitas et. al., 2016). 

 

Logistic Regression Model  

A logistic regression model is used to estimate the probability of occurrence of adverse 

health event in some epidemiological studies.  The logistic regression gives the probability of 

occurrence as: 

  
y= prob (event | x*β) =        e x* β =         1  

          1+ e x* β        1+ e -x* β 

Where, β is the vector of coefficients of explanatory variables x. In epidemiology the results are 

often represented as odds ratio (OR)  or relative risks (RR). The odds of adverse event can be given 

by  

 Odds =     y  =  1  =  e x* β 
    1-y  e -x* β  

  

 
The odds ratio for control or alternate scenario versus baseline (odds0) can be written as   
  

Odds Ratio (OR) = oddsi =   e x* β  
       odds0  e x0

* β 
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The change in probability of adverse health event  from baseline to ith scenario , Δy , can be derived 

from odds ratio and can be expressed by  

 Odds Ratio (OR) = e β* Δx = e β *ΔPM  
          

 
Log-Linear  

 The prevalence rate (y) is exponentially dependent on the outcome in a log linear 

relationship, and is defined as : 

 y=  a*e β x ;  

 where x is the matrix of outcomes and the equation can be written as  

y=  A*e β *PM ; 

or  ln(y)= α+ β *PM 

where A is the prevalence rate of y when the concentration of PM is zero, β is coefficient of PM 

and  α= ln( A) ;  

A is matrix of other covariates affecting prevalence, that are evaluated at their means 

  A = A0 * e β1
 x

1+
 β

2
 x

2+….+ β
n
 x

n 

 A0 Is the prevalence of y when all the covariates in the model are zero.  

The change in PM can rewritten as  

Δy= yo-yc = A*(e β *PM
0

 - e β *PM
c) 

= A*e β *PM
0 (1- e β *(PM

c
 PM

0
))  

= y0 ( 1-eβ *ΔPM) 

Where y0 is the baseline prevalence rate.    
 
The relative risk (RR) is simply a ratio of two risks and can be written as  

 
RR =  yo   =   eΔPM*β 

yc  
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Taking natural log of both the sides, the coefficient of PM or coefficient of CR functions can be 
derived as  

 
β     =  ln(RR) ;   

  ΔPM 
 

 
Poisson Regression Model 

Poisson regression is commonly used when the dependent variable is the count of a rare 

event (e.g. number of cases of asthma or number of deaths), or studying the hazard using Cox 

proportional hazards model and is believed to be Poisson distributed. The CR function for Cox’s 

model is believed to be log-linear in form, which is the natural logarithm of health response and is 

a linear function of pollutant concentration. The most commonly used form of CR function for 

PM2.5 to estimate the association between health outcome is the log-linear form of the model.   

The proportional hazard model is based on a hazard function, and is defined as the 

probability of adverse event at time t, conditional on having survived up to time t (Collet 1994).  

The proportional hazard model takes the form:  

h(X, t) = h0(t) eX*β 

Where h0(t) is the baseline hazard, it is the hazard or risk when the all the covariates (X) are 

set to zero, and β is the vector of coefficients.  Relative risk (RR) can be calculated using ratio of 

hazard functions for baseline and ith scenario.  

 
RR =  yi   =    h(Xi, t)      =  h0(t) eXi*β  =  e(Xi-Xo)*β- 

y0  h(X0, t)  h0(t) eXo*β 

 
=  eΔPM*β 
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For this functional form, it is assumed that the only difference between baseline and the ith 

scenario is the level of pollutant, ΔPM and everything else (h0)  is constant. For the above equation 

β can be estimated by taking the natural log on both sides  

β     =  ln(RR) ;   
  ΔPM 

 

The above equation shows that the natural logarithm of Δy, change in health outcome,  is 

linearly related to ΔPM or change in pollutant concentration    

  ln( yi-y0) = ln (Δy)= β* ΔPM ; 

 

Choosing Functional Form Of CR Function 

A functional form of the CR function is often chosen by a researcher and the parameters of 

this function are estimated from the literature using data on pollutant and health outcome. In the 

epidemiologic literature RR or OR are normally presented as measures of association rather 

coefficient β. Hence, it becomes necessary to estimate β before developing the functional 

relationship between pollutant change (ΔPM) and change in health outcome, Δy for CR functions. 

The underlying relationship assumed in epidemiological studies affects the estimation of CR 

functions. 

 

Role of the Shape of CR Functions 

 

 The magnitude, shape, and degree of certainty in the association between population 

exposure to an ambient pollutant (PM2.5) and the risk of health outcome is one of the most intensely 

studied issues in environmental health (Fann et. al. 2016; Pope et. al. 2006; Burnett et. al. 2014). 
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The shape of CR functions may influence the overall estimates of risk or benefits from HIA 

analysis. The shape of these functions is particularly important at lower concentrations of ambient 

pollutant as a larger number of population may be exposed at lower concentrations, and hence the 

overall impact may be much higher (NRC 2002). There is sufficient evidence in literature that the 

shape of CR functions is curvilinear for adverse outcomes of mortality and long term exposure to 

high concentrations of PM2.5  (Krewski et. al. 2000, Burnett et. al. 2014; Nasari et. al. 2016). 

However, short term exposure studies, and acute health outcomes studies typically use time series 

models. For time series studies which analyze a large number of repeated measurements, linearity 

of CR functions has been reported with reasonable power (NRC 2002; Dominici et. al. 2003b; 

Dominici 2004). For PM10 the slope of CR functions increases with concentration of pollutant, and 

appears to be fairly linear for acute health outcomes (Samet et. al. 2000a,b,c; Pope et. al 2006; Pope 

et. al.2015). For PM2.5, there is no evidence of departure from linearity for CR functions over a 

range of short term exposures and acute outcomes (NRC2002). Current epidemiologic studies do 

not support non-linearity of CR functions at low concentrations of pollutants in the world’s cleanest 

places like the US. Instead these CR functions are prone to higher uncertainties at low and very 

high concentrations of pollutants (Pope et. al.2015).  The uncertainties in the CR function may 

impact conclusions when conducting HIA (Fuentes, 2009) 

 

CR Functions in BenMAP 

  BenMAP has the capability to aggregate CR functions from multiple studies using Pooling.  

It is a type of meta-analysis that combines beta estimates from different studies while accounting 

for heterogeneity across studies. BenMAP offers several options of pooling i.e., addition, 

subtraction, user-assigned weights, random-effect model, fixed effect model. (USEPA, 2014b; 
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USEPA, 2015). The individual studies in the literature report individual risk estimates from that 

distribution. Random effects pooling accounts for heterogeneity in the individual risk estimates to 

generate a single mean risk estimate 

 

BenMAP software has many preloaded CR functions for PM2.5 and ozone and many 

common health outcomes, two of which are asthma and asthma exacerbation. The preloaded CR 

functions can be selected by the user or may add new functions. CR functions can be identified by 

short and long term epidemiologic studies, and can be added to the existing functions.  However, 

current CR functions in BenMAP are only for O3 and PM2.5, and are based on older literature and 

need updating as recommended in the provisional assessment for ozone and PM2.5 (Researcher was 

selected for National Network for Environmental Management Studies (NNEMS) 2009 Fellowship 

at USEPA, North Carolina). CR functions for chronic asthma are not present in BenMAP, hence 

intense literature review needs to be performed and the functions need to be developed using the 

odds ratio and relative risk estimates in the literature. The current CR functions present in BenMAP 

were developed by the EPA for national assessments from published literature and may need 

modification for local or regional assessments. 

 
 
 
 
Uncertainties due to CR functions 
  

 CR functions extracted from epidemiology studies or estimated through local 

models may be associated with uncertainties inherent in the epidemiologic model used. These may 

include uncertainties present in the choice of statistical model, arising from lag structures, 

meteorological variables included in the model and or adjustments of seasonality.  The uncertainties 
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in epidemiology studies can be quantified by using confidence intervals, standard errors and 

distribution analysis.  The errors quantified by experts using distribution analysis has been shown 

to vary largely due to factors which may have influenced uncertainties while developing the 

association (Roman  et.al., 2008). 

 

  

Population Estimates 

 The population estimates used in HIA are baseline incidence or prevalence rates and the 

exposed population.  

  

The Exposed population is the number of people, living with in a geographic area, who are 

affected by changes in air quality. The exposed population information is used to determine changes 

in population exposure, see in Figure 5.  The government census office is a good source for this 

information. The census could be used to obtain populations at the local level, like county, census 

tract or zip-code level. Projections incorporating population growth are used for future estimations.  

The exposed population data available in BenMAP are the census 2010 data at county level. When 

conducting an HIA at the National or State level, county data are aggregated to National or State 

level with the software. For resolution below county level, users have a choice of importing the 

data in BenMAP. However, this step requires extensive cleaning and aggregation to local resolution 

level like zip-code or block level prior to importing into BenMAP, and requires creating spatial grid 

cells to match the other input data, i.e. air quality and case data. 
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Baseline rates can be obtained from published literature or should be determined by the 

researcher using available health outcomes data. These rates are generally available at the national 

level, and in the US the rates are published by CDC. Local baseline rates for health outcomes may 

be available from local governing body, and should be used instead of national baseline rates when 

estimating health impacts at local levels. Using national level baseline incidence/prevalence rates 

could bias the results of local HIA. Recent research shows that using national incidence rates could 

underestimated the asthma hospital- admissions from changes in PM2.5,  and could not identify the 

spatial and demographic differences in the health outcome. The prevalence rates have been shown 

to differ by race/ethnicity, gender and age (ALA2007; Akinbami 2007; Akinbami 2016). These 

could be effect modifiers when estimating health impacts. One should utilize age, gender and 

race/ethnicity specific baseline incidence/ prevalence rate when available, for estimating population 

exposure to ambient air pollution. 

 

In BenMAP baseline rates are present at the national level and match the year of census 

information in it.  Local baseline rates for health outcomes may be available through local agencies 

and can be easily incorporated in BenMAP for local analysis. 

 
Uncertainties due to population estimates 
 

The exposed population estimates normally come from Census or surveys conducted in the 

areas for housing or other area development projects. The estimates obtained from the census or 

other surveys are innate with uncertainties, some of which could be due to design or sampling.  The 

sampling errors and variations can be estimated standard errors. The standard errors represent 

uncertainty due to several sources, mainly due to sampling variation between counties or lowest 

unit of analysis. In addition to sampling, uncertainties may be present due to non-sampling 
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variations, i.e. errors made in data collection, administrative errors, high non-response, failure to 

represent all units in the sample. The non-sampling errors can be random or non-random, for non-

sampling error the agency conducting the survey makes imputations at the lowest available unit. 

(Census Bureau 1995).  These imputations add to the uncertainties if the analysis unit is not similar 

to that in the data, meaning if the data is in census tract then getting data to zipcode level without 

using weights will add uncertainties which cannot be controlled in analysis.  

 

The health outcomes baseline rates are estimates based on either survey data (i.e NHIS or 

NSCH) or from hospital admission/discharge records. These estimates from surveys are also bound 

to have uncertainties due to sampling and non-sampling errors. The sampling errors can be 

estimated using standard errors while non-sampling errors are best estimated by sensitivity analysis.  

  

Exposure Assessment Estimates  

 Estimating changes in population exposures to air pollutants is an essential component of 

health impact analyses. It provides the link between anticipated air pollution changes and resulting 

changes in health outcomes. The goal is to provide the necessary input for a health impact equation. 

Change in population exposure can be assessed or calculated by multiplying the observed changes 

in concentration of air pollutant to exposed population. Changes in air pollutant can be obtained 

through the use of simulated exposure models, or the use of actual monitoring data or a combination 

of modeling and monitoring data.  

 

Simulated exposure modeling is a complex process that depends on many assumptions 

about the future, including pollution emissions reductions resulting from proposed regulation, 
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changes in emissions due to factors other than the proposed regulation, meteorological conditions, 

the physical and chemical processes in the atmosphere affecting pollution dispersion, 

transformations, and deposition, and the nature and degree of pollutant contact with future human 

populations. (USEPA, 2014b) 

 
Estimating Change in Ambient Pollutant Concentration in BenMAP  

 

The change in ambient pollutant concentration can be calculated as the difference between 

two air pollution levels at different points in time. The starting air pollution levels are also called 

the baseline level, and the second air pollution levels are normally calculated after some change, 

such as that caused by a regulation. 

 

The exposure to air pollution at two different points can be estimated several ways, using 

air quality monitoring data or air quality modeling data or a combination of modeling and 

monitoring data.  The four broad categories BenMAP uses to estimate exposure for HIA are model 

direct, monitor direct, model and monitor relative, and model rollback. ( US EPA, 2015)  

 

Model Direct uses modeling data that project air quality spatially and temporally when 

studying the effect of chronic health outcomes. BenMAP converts the input air modelled data into 

a spatial grid file that matches the grid structure of the population input data and baseline health 

outcome data. The model data can be easily entered in BenMAP come from  Community Multi-

Scale Air Quality (CMAQ), Comprehensive Air Quality Model with Extensions (CAMx), Regional 

Modeling System for Aerosols and Deposition (REMSAD), or air quality models generated by 

researcher. The spatial grid resolution available in BenMAP are 12x12km or 36x36km grids. The 
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appropriate methodology, scale, and resolution of air quality assessment is dependent on available 

pollutant data and research context. 

 

Monitor Direct method uses ambient air quality data from EPA’s local monitoring stations. 

Data can be interpolated from point based monitor values to grid cell based exposure estimates 

using Closest Monitor and Voronoi Neighbor Averaging (VNA). The VNA method was used by 

the Florida DEP to estimate the pollution removal by trees and its effect on human health (Nowak 

et. al., 2013). The closest monitor approach is a location specific approach, in which monitor data 

are used to estimate concentration level of exposure are recorded at the nearest (i.e. shortest 

distance) monitor location within the study area. This approach is used to estimate county level 

population exposure in epidemiological studies (Brauer et al., 2008; Jerrett et al., 2005; Ritz et al., 

2002).  For closest monitor approach BenMAP assigns the closet monitor to the population grid-

cell, the annual and daily air pollution metrics are calculated using monitoring data and then used 

in the health effects estimations (USEPA, 2015). 

 

Voronoi  Neighbor Average (VNA) algorithm uses monitor data directly. It interpolates air 

quality of every population grid cell by first identifying the set of monitors in adjacent polygon 

cells that surround the center of population grid cells, the values from neighboring monitors are 

used to interpolate air pollutant value for the population grid cells. Using the VNA method, 

BenMAP draws “Voronoi” cells or polygons around the center of each population grid cell, and 

identifies the neighboring monitors. The “Voronoi” cells have a special property that the boundaries 

of the polygon are the same distance from the two closest points.   BenMAP then chooses those 

monitors that share the boundaries to the grid cell, and uses these neighboring monitors to estimate 
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the air pollution level for the grid cell. To estimate the air pollution exposure in each grid cell, 

BenMAP calculates the inverse distance weighted average of the neighboring monitors.   The 

inverse distance weighting interpolation is based on an assumption that the degree of influence of 

nearby monitors should be greater than the effect of distant points. The interpolant is weighted 

average of the sample point values and the weights wi  are expressed as an inverse function of 

distance and is expressed as :  

𝑤𝑖 = 1 𝑑𝑖 ⁄∑ 1𝑁1 /𝑑𝑖  
Where N is the number of sample points, d is the distance of  target point from each of the monitors. 

 

 The  VNA method is highly advantageous, it uses monitor data and provides clear and 

consistent definition of spatial relationships between unconnected points. The method can be 

applied to estimate temporal and spatial interpolations when using scaling. Also the shape and size 

of “Voronoi” cells are adaptive to spatial distribution of population and monitors(USEPA, 2015. 

Du et. al., 2002). Also the distance to the monitors can be defined by the user, so the user has the 

flexibility to use monitors which are within a certain distance. The VNA method is highly reliable, 

and replicable; and is currently  being used by FL- DEP in several evaluations and studies (Tolbert 

et al., 2007Sarnat et. al 2008; Sarnat et. al 2010; Nowak et. al 2013).   

 

Model and Monitor relative: Uses ambient air quality data from EPA’s local monitoring 

stations in combination with modeling to get local pollutant levels.  This is the method used by the 

EPA to quantify the burden of O3 and PM2.5 on health in the United States (Fann, et. al., 2011).  

The modeling data can be combined with monitoring data using VNA method, to give better 

predictions. This method provides predictions in areas or time periods when monitoring data are 
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not available. The method is highly recommended by EPA, air monitoring and risk analysis unit. 

There are several published studies promoting the model and monitor combination method 

(Kheirbek et. al 2013; Kheirbek et. al 2016; Fann et. al. 2008).   

 

Monitor Rollback method is used to reduce or increment the available monitor data in 

BenMAP by a certain value, this method is referred as rollback. The monitor data can be rolled back 

using three methods: percentage rollback, incremental rollback, and rollback to a standard. 

Percentage rollback reduces all monitor observations by the same percentage. Incremental rollback 

increases all observations by the same increment.  This method is useful in studying the effect of 

change in pollutant concentration on health outcomes. (USEPA, 2014b; USEPA2015) 

 

All four methods mentioned here group individuals spatially into grid cells in BenMAP. 

The grid cells help to estimate the average exposure to ambient air pollution of persons living in 

some specified area. These spatial estimating grid cells are referred to as “air quality” grids in 

BenMAP. The “air quality” grids can be regular shape, such as 12 x 12 km  grid cell, or domain, 

such as delineated by models like CMAQ, CAMX, REMSAD, as well as irregular shapes like 

counties or zipcode. It is assumed that all persons in a spatial grid cell are exposed to the same 

pollution levels. 

 

Uncertainties due to Exposure Assessment 
 

As in all other stages of the benefits analysis, the assumptions and methods used in the 

exposure assessment should be well-justified and clearly described, with careful attention paid to 

assessing and communicating key sources of uncertainty. Measurement error is inherent in 
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estimates of exposure based on ambient pollutant monitors. Data for exposure to pollutants is 

typically based from monitors at central sites and do not adequately represent personal exposure 

(Haran et. al. 2002). Uncertainties arise using central sites because of spatial variations in ambient 

concentrations across cities, wide ranges of personal activity patterns, and differences in ambient 

air penetration indoors. On the contrary, single city studies have shown that in time series studies 

central-site fine-particle measurement correlate well with average population exposure over time 

(Samat et. al. 2000; Dominici et. al., 2003b). The measured ambient concentrations at a central site 

may differ across cities, and little is known about reliability of population exposure averages 

measured from central-site across cities.  The penetration of ambient PM to indoor environments 

has been shown to vary with weather conditions (Samat et.al., 2000). Including weather 

components will help decrease these uncertainties but can remain inherent and limitations should 

be clearly stated in the analysis.  

 

The use of statistical models or air quality numerical models used to help in exposure 

assessment of PM can add more sources of uncertainty to health risk assessments as these models 

have their own uncertainties. Evaluation of air quality models help to quantify the different sources 

of error in the models.  Using monitoring data in conjunction with CMAQ model data helps to 

amount uncertainty (Fuentes, 2009). In most cases probabilistic models can help characterize the 

uncertainties. In Bayesian approach models the joint distribution of exposure rather than just means 

of the distribution and can help characterize uncertainties better (Fuentes,  2009). Sensitivity 

analysis can be conducted to understand the impact of uncertainty in the exposure on HIA (Fuentes, 

2009).  
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Health Benefits Analysis using BenMAP 

Health benefits are calculated by linking the impact function and the modeled changes in 

air pollution (Charleston et.al.,2008; Talbot et.al.,2009). The commonly used health benefits are 

changes in mortality, chronic illness, hospitalizations, emergency department visits, acute illnesses 

not requiring hospitalization, exacerbations and repeat episodes, work/school loss days, and minor 

restricted activity days (MRADs). In BenMAP these health endpoints have unit values available to 

calculate the cost associated or to monetize the benefits (Fann et. al. 2008; USEPA 2015).  

 

 

Uncertainties and Sources of Uncertainties 

Confidence intervals generated using standard errors associated with effect estimates have 

been used traditionally to characterize the overall uncertainties in the HIA. This describes a narrow 

range of the total uncertainty. There is no comparable information available for the baseline 

incidence/prevalence rates, exposure estimates and air quality changes. The local HIA imposes 

additional uncertainties due to lack of comparable information—which are difficult to characterize 

quantitatively. Sensitivity analyses, which vary key input parameters such as effect estimates and 

baseline incidence rates, may be useful substitutes to traditional confidence intervals. Uncertainties 

may be alleviated by careful selection of effect estimates, baseline incidence rates and other input 

data. 

 

2.11 Developing HIA functions for Local Scale 

National HIA functions do not describe impacts of pollutants at the local or on the sub-

national scale accurately.  Development of national HIA functions use pooling techniques. Under 
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this approach, studies are weighted by the inverse of their variance, and can generate more robust 

national effect estimates.   These pooled functions developed for national level HIA are less useful 

for generating local effect estimates as they induce heterogeneity in populations and exposures 

across all local areas. Local-scale HIAs require more geographically resolved air quality data, CR 

functions, and baseline incidence rates than are often used.  However, comprehensive local data 

may not be available or may be incomplete for developing CR functions, since small-scale local 

epidemiologic studies will often be underpowered.  

 

Recent epidemiologic studies on PM2.5 and adverse health outcomes (Levy et. al. 2000; Fann 

et. al. 2008; Hubbell et. al. 2009) indicate that national mean estimates may need to be adjusted to 

account for local factors that are related to the effect estimate. Epidemiologic studies conducted in 

Detroit have generated city specific estimates, but suffer from poor statistical power, and do not 

cover the different health outcomes typically assessed in a benefits analysis. The process for 

selecting appropriate effect estimates for HIA requires development of profile characteristics of the 

study locations (e.g. demographics, disparity, weather , population density, etc), and finding the 

closest match along a range of attributes that can impact effect estimates. However, in cases where 

local estimates lack statistical power, it may be best to apply national effect estimates (Fann et. al. 

2008; Hubbell et. al.  2009). 

 

BenMAP is a powerful computer based tool for HIAs at the national level, and is recognized 

to be a reasonable approach for cost benefits analysis with some inherent uncertainties by the 

National Research Council (NRC, 2002, 2008). However, for local or state level HIA’s, it needs 

modification to minimize the uncertainties of the assessments.  Local baseline incidence and 
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prevalence rates by age, gender and race/ethnicity are not available for Florida presently, and need 

to be developed for local Florida assessments.   
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CHAPTER THREE:  METHODOLOGY 

3.1 Study Design 

 A population-based ecological study was conducted to study the impact of ambient PM2.5 

concentrations on childhood asthma exacerbation emergency department rates. 

 

3.2 Data Sources 

Florida Agency of Health Care Administration Emergency Department Claims Data  

 Emergency Department (ED) discharge data extract files for state of Florida for 2010, 2011, 

2012, 2013 and 2014 were obtained from Florida AHCA. The data obtained contained variables 

such as zip code of patient residence, patient county, age of patient and dates of service, however 

other identifiers like the residence address, patient name and SSN were not provided by Florida 

AHCA. The data obtained from AHCA was at patient record level with a record of each visit of a 

patient.  

  

Study Subjects 

Based on Florida Emergency department data the study populations were created as children 

between the age of 5-18 who were seen for asthma in emergency departments in Florida counties 

and who resided in Florida counties. The records with patients residing in counties out of Florida 

(patient county=99) were excluded in the analysis stage. 
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An asthma case was defined as a case with emergency department record having a primary 

diagnosis of asthma (ICD-CM, 9th revision =493, 493.0, 493.00, 493.01, 493.02, 493.1, 493.10, 

493.11, 493.12, 493.22, 493.8, 493.81, 493.82, 493.9, 493.90, 493.91, 493.92). An asthma 

exacerbation was defined as having primary diagnosis of exacerbation (ICD-CM, 9th revision 

=493.02, 493.12, 493.22, 493.92). Individual subjects could have multiple emergency department 

visits during the study period. However, since the subject unique identifier were not shared by 

AHCA due to HIPAA regulations, a repeat visit of the patient could not be identified in this study. 

There is not direct method to account the repeat measure of patient, the only way to account is to 

use percentages of repeat measurements from the published literature. FAP had estimated that in 

2011, nearly 17.2 % have repeated asthma visits to ED or inpatient hospitalizations. These 

accounted for 36.0% of all asthma ED visits or hospitalizations and 36.1% of the total charges for 

all asthma ED visits or hospitalizations in general Florida population. (FAP, 2014). These estimates 

can be used to calculate repeated measures. However, these estimates are for overall population 

ages 0-99 and not specific to 5-18 years. It is estimated that for 5-18 the repeated visits will be 

higher since asthma visit are higher for 5-12 age group.  

 

Population Estimates 

 The demographic estimates for population in each county for 2010, 2011, 2012, 2013 and 

2014 were obtained from Florida Health Charts via a web query accessed on June 05, 2015, through 

the link : http://www.flhealthcharts.com/FLQUERY/Population/PopulationRpt.aspx. Population 

estimates for Florida Health Charts are provided by the Department of Health, Office of Health 

Statistics and Assessment in consultation with the Florida Legislature's Office of Economic and 

Demographic Research (EDR). The population data for 2010 for Florida Health Charts, along with 
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rates affected by the population data were updated in 2012 by EDR based on information from the 

2010 census. Age-group data estimates available from Florida Health Charts were in 1-year age 

intervals. The population estimates for each county were obtained for each age year and age groups 

were then calculated by summing across the categories within gender and race/ethnicity. Two age 

group categories 5-12 and 13-18 were calculated, 5-12 are elementary and middle  school children 

and 13-18 are middle school and high school children. The race /ethnicity categories where 

combined to White not Hispanic, Black not Hispanic, Hispanic (any race) and Other. 

 

U.S. Environmental Protection Agency – Ambient Air Monitoring Data 

PM2.5 measurements for 2010, 2011, 2012, 2013 and 2014 were obtained from publicly 

available U.S. EPA Air Quality System (AQS) DataMart. Data were available from 24 PM2.5 

monitors in 17 counties across Florida. Daily summary data for 24-hour mean for PM2.5 retrieved 

from DataMart, using AQS Application Programming Interface (API). It is noticed that sampling 

data collection varied from daily to every three days. Nearly, 80% of  locations were every 3 days. 

Temperature and Precipitation data were also obtained from AQS Data mart, these data are grouped 

under meteorological section.  

 

The data downloaded for PM2.5, were measured by USEPA under federal reference methods 

or federal equivalent method (FRM/FEM, 88101). The FRM/FEM are monitoring data used for 

checking atmospheric air quality, and for purposes of determining compliance with the US. 

National Ambient Air Quality Standards (NAAQSs) – specified in 40 CFR Part 50.  While the data 

retrieved for temperature were reference number 62101 (AQS,2015).  The relative humidity is the 
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ratio (percent) of actual pressure of water vapor in air to the saturation vapor pressure at the same 

temperature, this is also summarized as average daily values by USEPA (AQS,2015).  . 

 

The data for temperature, precipitation and PM2.5 are listed by the year and data tables were 

linked to each other by county. The files downloaded were comma separated text with a header. 

These files were daily summary and were downloaded from AQS API, using the following link 

https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html  (AQS,2015).  Similar to PM2.5 

data the temperature data is submitted by tribal, state and local agencies and goes through several 

quality control steps and is certified annually by the submitting agency. The data from AQS were 

already aggregated to daily averages (approximately foe every third day) by USEPA.  

 

3.3 Procedures 

The procedures to the specific aims were 

Aim One: To assess the efficacy/utility of Concentration Response (CR) functions and Asthma 

prevalence rates present in EPA’s BenMAP for estimating childhood asthma exacerbation 

rates due to changes in PM2.5 . 

This was evaluated by performing a detailed review of documentation of user’s manual and 

appendices for BenMAP-community edition (BenMAP-CE).  Publicly available documents were 

downloaded from the EPA’s website (USEPA, 2015); and more detailed documentations which 

included details on studies in BenMAP were obtained in Summer 2009 during my NNEMS 

Fellowship at EPA, RTP, and from personal communication with EPA staff , Neal Fann at US EPA-

RTP. BenMAP-CE training sessions hosted by the US-EPA Air Pollution Training Institute were 

also attended to help understand calculation of health impacts using CR (USEPA, 2014b). These 

https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
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documentations gave details on CR functions that are already present in BenMAP for health 

outcomes and PM2.5 (USEPA, 2014b; USEPA, 2015). CR functions for only O3 and PM2.5  are 

currently present in BenMAP-CE and are accessible in the publicly available version (USEPA, 

2014b). 

 

To assess the efficacy of CR functions in BenMAP a detailed review of peer reviewed 

published literature was performed. The published literature CR functions were compared to those 

already present in BenMAP.  The CR functions for asthma exacerbation and PM2.5 which are not 

present in BenMAP, or are based on older studies will be the focus of objectives 2 -5. 

 

Aim Two: To estimate annual baseline emergency department asthma and asthma 

exacerbation prevalence rates for children at the local county level in Florida from 2010-

2012.  

This objective was addressed by analyzing emergency department data received from 

Florida AHCA, and incorporating baseline emergency department asthma and asthma 

exacerbation prevalence rates into BenMAP.  These data were analyzed and descriptive statistics 

for each year were calculated using Statistical Analysis Software (SAS® , Version 9.4). Annual 

emergency department visits for Florida and baseline ED visit prevalence rates for Florida were 

calculated. In addition, rates specific to age groups (5-12, 13-18), gender, race/ethnicity, season 

and county were calculated. The stratified rates by race/ethnicity, age and gender for asthma and 

asthma exacerbation were also calculated. These stratified rates were compared to overall rates by 

age group (5-12, 13-18), gender, race/ethnicity. 
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The annual emergency department visits for all causes, asthma and asthma exacerbation for 

school age children (i.e. ages 5-18) were calculated. This was done by aggregating the visits  in 

each category for each year, i.e. 2010, 2011, 2012, 2013 and 2014.   

 

    Annual EDa Visits for Florida in ‘yth’ year =   ∑ 𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝐷𝑎  𝑉𝑖𝑠𝑖𝑡𝑖𝑦67𝑖=1  

 Where, i =  1- 67 counties in Florida  

 y  𝜖  {2010, 2011, 2012, 2013, 2014} 

 a 𝜖 {All visits, Asthma visits, Asthma Exacerbation visits}  

 

Average visits per county was calculated using sum of all the visits across Florida in a year and 

dividing it by number of counties in Florida, i.e. 67. These stratified rates by county give the 

variance of average annual visits in Florida. 

 

Average Annual Visit per County= Annual EDb Visits for Florida in ‘yth’ year /67 

Where,  y  𝜖  {2010, 2011, 2012, 2013, 2014} 

 b  𝜖 {Asthma visit, Asthma Exacerbation}  
 

The annual trends over time 2010-2014 for Florida were tabulated and were presented graphically 

for comparison.  

 

A prevalence rate is defined by the CDC as “the proportion of persons in a population 

who have a particular disease or attribute at a specified point in time or over a specified period  

of time”  (CDC, online).  Hence, the annual prevalence rate for asthma ED visits is defined as the 

proportion of children (5-18)  residing in Florida who had ED visits for asthma within a year.  The 
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annual prevalence rate for asthma exacerbation ED visits is defined as the proportion of children 

(5-18)  residing in Florida who had ED visits for asthma exacerbation within a year.   

 

The overall prevalence rates for Florida were calculated for each year using the following 

formula: 

 

Annual Prevalence for Asthma Visits per 1,000  =     All asthma ED visits in a given year x1000 
        Population of children in the same year 

 

Annual Prevalence for Asthma Exacerbation per 1,000    

 

=        All asthma exacerbation in a given year       x1000 
                Population of children in the same year 

 Baseline annual averages were calculated using 2010-2012 data,  by averaging the annual visits 

over the three years. The data was averaged over three years to smooth the variance due to 

between the years. 

 

Baseline EDa Visit for Florida  

=   (Annual EDa Visit2010 + Annual EDa Visit2011 + Annual EDa Visit2012) 
  3 

Where, a 𝜖 {All visits, Asthma visit, Asthma Exacerbation}  

 

Baseline prevalence rate for asthma ED visits was calculated using the baseline asthma 

ED visits as numerator and population of children in the 2010 Census year as denominator. 

Baseline prevalence rate for asthma exacerbation ED visits was calculated using the baseline 

asthma ED visits as numerator and population of children in the 2010 Census year as 

denominator.  
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Baseline Florida Specific Rates 

Baseline Prevalence 𝑬𝑫𝒃 Asthma Rate𝑗𝑘𝑙 = Baseline 𝑬𝑫𝒃 Asthma Visit×1000 2010 𝐶𝑒𝑛𝑠𝑢𝑠 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑙𝑜𝑟𝑖𝑑𝑎 

  

Where, b 𝜖 { Asthma visit, Asthma Exacerbation} 

  j = age group, i.e. 5-12, 13-18 

 k = gender, i.e. Male, Female 

l = race/ ethnicity, i.e. White, Black, Hispanic, Other 

  

Baseline Prevalence rates were calculated for gender, age group (5-12, 13-18), race/ethnicity 

(White non-Hispanic, Black non-Hispanic, Hispanic, all other). 

 

For each county, total annual visits were obtained by adding all visits within  gender, 

race/ethnicity and age group specific for the county in a specific year (ie. 2010, 2011, 2012).  

County Specific Rates  𝐀𝐧𝐧𝐮𝐚𝐥 𝑬𝑫𝒃 𝐀𝐬𝐭𝐡𝐦𝐚 𝐕𝐢𝐬𝐢𝐭𝒊 = ∑  𝐸𝐷𝑏   Asthma Visit𝑖𝑗𝑘𝑙𝑗𝑘𝑙  

Where, b 𝜖 { Asthma visit, Asthma Exacerbation} 

 i =  1- 67 counties in Florida 

 j = age group, i.e. 5-12, 13-18 

 k = gender, i.e. Male, Female 

l = race/ ethnicity, i.e. White, Black, Hispanic, Other 
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Baseline EDb Annual Visit for Countyi 

=   (Annual EDb Visiti,2010 + Annual EDb Visiti,2011+ Annual EDa Visiti,2012) 
  3 

Where, b 𝜖 {Asthma visit, Asthma Exacerbation}  

Baseline EDb Prevalence ith  County 

Baseline Prevalence 𝑬𝑫𝒃 Asthma Rate𝑖 = Baseline Annual ED𝑏  Visit×1000 2010 𝐶𝑒𝑛𝑠𝑢𝑠 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 
  

The baseline annual rates for emergency department visits which were specific for gender, 

race/ethnicity and age group for state of Florida were calculated by dividing the baseline annual 

ED visits in each group with the population estimates in each group level obtained from Florida 

Health Charts(http://www.flhealthcharts.com). The baseline annual ED visits in each group was 

the average of annual ED rates for years 2010-2012, similar to the county level shown above. 

These annual county level rates were compared to rates at the State and National level rates. 

These comparisons highlight the differences between county and national level rates, specific to 

age, race/ethnicity and gender. 

 

Aim Three:  To evaluate the temporal and spatial patterns of PM2.5 in Florida and 

incorporate PM2.5 data monitor for Florida into BenMAP for HIA estimations. 

 The goal of this specific aim was to define temporal and spatial patterns of PM2.5 across 

Florida, and to incorporate air pollution monitoring data for Florida counties into BenMAP. 

Temporal and spatial patterns of PM2.5, were defined using data from Florida EPA’s monitoring 

data from 2010-2012. This objective was accomplished by using Florida EPA’s 24-hour average 

PM2.5 daily summary data for all monitoring sites operating during 2010-2012.  
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The data downloaded from Florida EPA, for 24 monitoring locations in 17 counties were 

used for this analysis.  The monthly trend of daily PM2.5 concentration (µg/m3) in Florida were 

obtained by averaging daily concentrations across all operational monitoring sites in Florida 

during the month in these years. These daily PM2.5 concentrations help in understanding monthly 

temporal trends and any seasonal variations.  The descriptive analysis of these trend included in 

averaging of daily PM2.5, minimum, maximum and standard deviation in the month across all 

monitoring stations, and are given in the results section.   

 

To study the spatial and temporal patterns of  daily PM2.5 concentrations monthly averages 

of daily PM2.5 concentrations for each county were calculated. The monthly PM2.5 concentrations 

were calculated by averaging daily concentrations across all monitoring sites in that county 

during that month. Comparing the county level data of monthly averages contributed to the 

spatial trends at county level.  

 

Time series analysis were performed to study the temporal and seasonal trends of  PM2.5 in 

Florida.   Peer  reviewed literature over the past two decades has reported time series analysis as 

one of the major methods used to study long-term variation in the mean concentration (trend) 

and periodic components (season) (Slini, et. al. 2002; Peng et.al., 2004, 2006; Andria et. al., 

2008).  PROC TIMESERIES procedure in SAS© was used to study the trend analysis of PM2.5 

while testing for differences in monthly averages for the three years of data, and any seasonal 

pattern.  This analysis was also run for each county to see if there were any visual differences 

between counties.  
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The temporal and spatial trends at county level were further studied by Panel Design for 

time series (Hsiao, 2014). The panel data analysis is used when time series and cross sectional 

data are combined. Panel data have been extensively used in linear econometric models when 

analyses included observations in time on households, countries, trade and air pollution (Hsiao, 

2014). A Panel is similar to stratifying the data by location group. In this study,  panel was 

synonymous with county of diagnosis or ED visits. The PROC SGPANEL procedure was used 

in SAS© to perform panel analysis.     The time series regression procedure in SGPANEL was 

used to study the temporal trend for each county. For Florida the county estimates are pooled by 

the size of the county. The weights used in the pooling of the county was the area in square 

miles. The area size versus population size was used in this study. The main reason to use area 

was to see the spread of pollutants in the counties versus the number of people affected. The 

monitoring locations are mandated by federal regulations and are based on population density of 

an area. Using area weights adds to the knowledge of distribution of PM2.5 concentrations in 

counties with lower population density.  The weight matrix, W=(wij) is NxN positive matrix in 

which the rows and columns correspond to the cross-sectional county units, and wii=0. The 

weights were standardized so that the sum of each row, ∑ 𝑤𝑖𝑗 = 1𝑁𝑗=1 . 

 

Aim Four: To develop county-level CR functions to be used in HIAs performed by local or 

State agencies. 

The goal for this objective was to develop county level CR functions using local ambient 

pollutant concentrations and asthma emergency department visits during 2010, 2011 and 2012.  

Counts of rare events are discrete numbers and are not normally distributed (Schwartz and Morris, 

1995) and have been analyzed using Time-Series models to study the effect of environmental 
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exposures on rare events (Samet et. al. 2000a,b; Dominici et. al., 2004;  Bell et. al., 2005; 

Fuentes, 2009).  

 

Generalized Poisson linear regression models which can account for over-dispersion of 

health outcome data was used (Fuentes, 2009). Over-dispersion generally happens when the 

variance in the population is more than expected (McCullagh et. al., 1989). Over dispersion can 

be due to unaccounted covariates in the model. For this study the other allergens and multi-

pollutants were not included, these could introduce over-dispersion.   When an over-dispersion is 

present it tends to distorts the standard error and test statistics (McCullagh et. al., 1989). 

Generalized Estimating Equations (GEE) using generalized Poisson distribution, were used to 

investigate the association between different timescales of PM2.5 and childhood asthma /asthma 

exacerbation ED visits.  

 

GEE is an iterative process which uses iterative estimating equations that use estimates of 

regression parameters and their variance under time dependence assumptions. (Liang and Zeger, 

1986). The parameter estimates from GEE are consistent and insensitive to covariance structures. 

The estimators are known to be robust as they rely on the first two moments (i.e mean, variance). 

GEE tend to focus on  estimating the average response or “population -averaged effects” rather 

than effect on individual of changing covariates  ( Zeger et. al.,1985) 𝒀𝑵(𝒕) = ∑ 𝒀𝒋(𝒕)𝑵  

Where N are number of estimating equations, ranging from 1 to n. 

If Yj(t) is the number of asthma/ asthma exacerbations ED visits of county  j for day t  and  

j=1,…,J and t=1,…,T. It is was assumed that Yj(t) follows a generalized Poisson distribution 
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(GPoi) with dispersion parameter ϕ, mean parameter μj(t)  

 

Yj(t) ∼GPoi(ϕ, µ j(t)), 

log(µ j(t)) = βjPM(t-l)+S(tempj(t), λ1)+S(precpj(t), λ2)+ γ1*k + γ2*weekend + γ3*month 

+τjnZjn(t) 

 

and variance for Yj(t) is given by 𝑽𝒂𝒓[𝒀𝑱(𝒕)] = 𝝁𝒋(𝒕)∅ 

Where : 

j refers to county (1-67 for Florida Counties);  

k refers to the Season, 

 k=1 is cold season (November – April) and  

k=2 is warm season (May-October) 

 weekend =Yes/No 

 month= January to December 

 t refers to time, is day 1-365 for each year 

 l  refers to lag of PM2.5  which varies from 0-2 days 

γ1, γ2 ,γ3– refer to the coefficients of season , weekend and month 

Z  refers to matrix of independent variables, confounders and effect-modifiers 

τjn refers to the coefficients of confounders. 

 

The effect of each orthogonal decompositions of PM2.5 time-series is allowed to vary by 

county (j) and by season(k). The  S (w , λ) are smooth functions of the weather covariates and 
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w=(temperature, and precipitation); λ  is the smoothing parameter and represents  the degrees of 

freedom (df). For temperature and precipitation the splines with df=2 were used. These weather 

variables are important covariates in explaining air pollution. 

 

The confounders and effect modifiers considered in this study were: 

gender (male, female);  

race/ethnicity (White, Black, Hispanic, Other); 

age groups 5-12 and 13-17  

counties 1-67 Florida counties 

 

The gender and ethnicity were controlled in the GEE models, while to control for age 

group, separate models were used to get the beta estimates. The PROC GENMOD procedure was 

used in SAS© to perform GEE.  For each age group the models were separately run for comparing 

them with those obtained from peer-reviewed studies and those present in BenMAP. The CR 

functions from this aim are local to Florida.  

 

In addition, a detailed literature review of epidemiological and environmental studies was 

performed. The CR functions or the odds ratios from the peer-reviewed studies, which analyzed 

the change in childhood asthma associated with change in pollutant concentration, were tabulated. 

This analysis evaluated studies using selection criteria including its location, design, study 

population and if the study was peer-reviewed. The priority was given to the US based 

studies that have focused on PM2.5 pollutant and childhood asthma as health effect. The CR 

functions from peer-reviewed studies were compared to CR functions local to Florida and effort 



64 

was made to pool the results using BenMAP (USEPA, 2015; Fuentes 2007). 

 

Aim Five:  To estimate age and gender specific asthma exacerbation rates in children due 

to change in PM2.5 concentrations at county level. 

In BenMAP one can estimate the pollution concentration in a specific year using the 

Monitor Rollback method (USEPA, 2015).  This method uses available monitor data in BenMAP 

incremented or reduced by a certain value. This value can be the percentage increase or decrease 

as expected for a future period. The rollback method increases/decreases all observations by the 

same percentage. This method is useful in studying the effect of change in pollutant concentration 

in future years on health outcomes.  

 

 Currently, data for PM2.5 present in BenMAP are for 2000-2008. USEPA has 

acknowledged that the pollution data in BenMAP are not current and should be updated by users 

periodically for analysis. The data were uploaded into BenMAPfor Florida counties using monitor 

data from FLEPA for 2010 to 2014. The monitor data was cleaned and entered in BenMAPusing 

the instructions from the BenMAP manual. (USEPA, 2015) 

 

 The 2008 data for Florida counties in BenMAP were used to estimate average daily PM2.5 

concentration (in µg/m3) at the county-level for 2011, by using percentage change for each 

county. The percentage change from 2008 to 2011 for county was obtained using the data from 

EPHT (FLDEP, 2016). The average annual data for PM2.5 by Florida counties that were extracted 

from EPHT are given in Appendix 4. The percentage changes were calculated for each county, 

and the results were tabulated. These values of percentage change were entered in BenMAP and 
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were used to estimate the PM2.5 concentrations. The observed concentration values of PM2.5 from 

BenMAP were compared to expected values using EPHT data. The error and % difference were 

calculated. 𝐸𝑟𝑟𝑜𝑟 = |𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑   

  
The ED prevalence rates at the county level for asthma and exacerbation were calculated 

using log linear formulae built into BenMAP by the USEPA (USEPA, 2014a; USEPA, 2015).  

For this aim the ED prevalence rates at county level were estimated using:  

a. National prevalence rates and CR functions already present in BenMAP, and are 

considered standard values by the EPA for regulatory HIAs 

b. Florida count-level prevalence rates from Aim 2 and  CR functions from Aim 4 to 

estimate asthma /asthma exacerbation rates in Florida at the county-level while controlling 

for gender and race/ethnicity and stratifying for ages groups 5-12 and 13-18. 

Prevalence rates based on different combinations were examined for lower uncertainties utilizing 

error analysis. The county level data were aggregated to Florida by each method and the means 

were tested using T-test.  
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CHAPTER FOUR:  RESULTS 

4.1 Aim One: Functions and Prevalence Rates Present in EPA’s BenMAP   

 

To assess the efficacy/utility of Concentration Response (CR) functions and Asthma 

prevalence rates present in EPA’s BenMAP   

USEPA’s BenMAP has CR functions pre-loaded in the software for estimation health 

outcome changes due to changes in the concentration of criteria pollutant PM2.5. The derivation  

 

Table 1.  Asthma Related Health Effects Prevalence Rates in BenMAP 

Endpoint Age Parameter Annual Rate  
per 100  

Source 

Asthma Exacerbation, 
Shortness of Breath 

8-13 Prevalence 7.40 
Ostro et. al.. 

(2001) 

Asthma Exacerbation, Wheeze 8-13 Prevalence 17.30 
Ostro et. al.. 

(2001) 

Asthma Exacerbation, Cough 8-13 Prevalence 14.50 
Ostro et. al.. 

(2001) 
Asthma Prevalence Rates, US 
population 

All 
ages 

Prevalence 7.8 
American Lung 

Association (2008) 
Asthma Prevalence Rates, US 
population 

<5 Prevalence 6.14 
American Lung 

Association (2008) 
Asthma Prevalence Rates, US 
population 

<18 Prevalence 9.41 
American Lung 

Association (2008) 
Asthma Prevalence Rates, US 
population 

5-17 Prevalence 10.7 
American Lung 

Association (2008) 
Asthma Prevalence Rates, 
African American 

<5 Prevalence 9.98 
American Lung 

Association (2008) 
Asthma Prevalence Rates, 
African American  

5-17 Prevalence 17.76 
American Lung 

Association (2008) 
Asthma Emergency Department 
Visits 

0-17  0.865 
HCUP and 
NAMCS (2007) 

Source BenMAP Community Edition Manual, USEPA, 2015 (pages:55, 58,59) 
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and estimation of these functions and rates are explained in detail in the Appendices D and E of 

BenMAP’s Users manual  (USEPA, 2015). The relevant prevalence and exacerbation rates 

present in manual are given in Table 1 and CR functions are outlined in Table 2. 

 

Table 1 shows that asthma prevalence rates being used in BenMAP are much lower than 

the published rates for Florida by FLDEP (Appendix 3.1). Using CDC’s BRFSS, the asthma 

prevalence for middle and high schoolers ages 10-20 is “defined as those who have been told that 

they have asthma” (Appendix 3.1).  For 2006. The annual asthma prevalence rate was 17 per 100 

cases in Florida, this rate has increased nearly 4% by year 2012 (Appendix 3.1). The results also 

shows that the rate varies by county. Counties with lower African American population seem to 

have lower prevalence rates (Appendix 3.1).  

  

The crude rate for Asthma emergency visits in Florida for 2006 was 0.85 per 100, but this 

rate has shown a gradual increase since 2006 and has reached 1.18 per 100 in 2014 (Appendix 

3.1). The 3% increase in emergency visit rates could be due to population growth in certain age 

groups or ethnicities with higher asthma rates, or simply a surge in severe asthma cases due to 

increase general awareness of asthma in schools, through asthma education programs 

implemented by the Florida Asthma Coalition (FAC), or due higher access to care during Obama 

Health Care. Hence, using the prevalence or asthma emergency rates present in BenMAP for HIA 

will underestimate the asthma rates in BenMAP, due to two main reasons.  Firstly, these rates are 

derived using rates across the nation and do not represent true Florida population. Secondly, with 

an increase in asthma prevalence and emergency department visits in Florida using older 
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prevalence or asthma emergency rates will underestimate the rates.  There are baseline rates for 

asthma exacerbation in  BenMAP, asthma exacerbation is a more severe case and the prevalence 

for exacerbation ED visits is seen to be lower than asthma ED visits, similar to asthma prevalence 

is higher than asthma exacerbation prevalence in general population. 

 

 Table 2, highlights the already present CR functions in EPA’s BenMAP. Different studies 

are used to estimate asthma hospital visit, asthma emergency rates and asthma exacerbation rates. 

Each of the studies are based in different locations, have different endpoints and have used 

different statistical models for analysis. The CR functions for asthma emergency room visits, 

which are based on studies from the west coast and are not representative of the east coast due to 

several factors. The main differences between the west coast populations and Florida population 

are the size of population, age, gender and race/ethnicity distribution, geographical location, 

weather, and pollutant concentration. The three studies are based in Seattle or nearby areas, which 

are at higher altitude than any area in Florida. The west coast climate patterns are more defined by 

four season while Florida is more tropical with just warm and cold seasons. Florida is more prone 

to hurricane and heavy rainfall during the summer season while Seattle is during winter and early 

spring season.  Average humidity and due point is higher in Florida than in Washington state. The 

population density in Seattle and its neighboring areas is higher than in metropolitan cities of 

Florida, like Miami. 

  

Norris et. al. (1999) studied the relationship between asthma hospital visits for ages <18 

and air pollutants. They converted PM10 to PM2.5 concentrations and saw significant association 

between PM2.5 and emergency room visits. The study used Poisson regression model with 
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adjustments for day of week, time trend, temperature and dew point.  Using a multiplier to 

convert PM10 to PM2.5; overestimates the PM2.5 concentrations, hence introducing uncertainty in 

the analysis and  masking the true effect of PM2.5 on asthma emergency room visits. The study 

population was 1995-1996 which is over 20 years ago, the populations and the risk has changed in 

20 years.    

 

Slaughter et. al. (2005) used log linear generalized liner model to study the effect of PM2.5 

and emergency room visit for asthma in Spokane, Washington, from 1995-2001 using log linear 

generalized regression models. The study population included all ages and was not specific to 

children.  Mar et. al. (2010) studied the effect of PM2.5 and asthma emergency room visits in 

Tacoma area, from 1998-2002 using Poisson regression models and GAM models. The 

population was all ages and was controlled for season trends, daily temperatures and relative 

humidity.  Asthma prevalence rates are highest in children and elderly over ages 65, using all age 

estimation may underestimate the asthmas emergency rates.  

 

Mar et. al. (2004) studied the effect of PM2.5 on asthma exacerbation cough and shortness 

of breath as a sub-study of a main study to determine the effect of pollen allergy on asthma in 

children and adults. This study was designed in a small area of Spokane and included nine 

children and sixteen adults from 1997 to 1999.  Ostro et. al. (2001)    studied the relationship of 

air pollution and asthma exacerbation in African American children ages 8-13 living in LA during 

August to November 1993.  
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The detail review of the studies in Tables 1 and 2, shows that all the studies used for 

prevalence and CR functions base their estimates on population studies conducted 15 or more 

years ago. The prevalence and incidence rates have changed for asthma and asthma exacerbation  

 

Table 2 CR Functions for PM2.5 and Asthma-Related Effects 

Effect  Author 
Study 
Year 

Study 
Location Age β Std. Err Form 

Asthma, 
Emergency 
Room Visit 

Norris et. 

al., 1999 
1995-
1996 

Seattle, WA 0-17 0.0165 0.0041 Log- 
linear 

Asthma, 
Emergency 
Room Visit 

Slaughter 
et. al., 
2005 

1995-
2001 

Spokane, 
WA 

0-99 0.0029 0.0027 Log- 
linear 

Asthma, 
Emergency 
Room Visit 

Mar et. 

al., 2010 
1998-
2002 

Greater 
Tacoma, 
WA 

0-99 0.0056 0.0021 Log- 
linear 

Asthma 
Exacerbation 
Cough 

Mar et. 

al., 2004 
1997-
1999 

Spokane, 
WA 

6-18 0.0191 0.0098 Logistic 

Asthma 
Exacerbation 
Shortness of 
Breath 

Mar et. 

al., 2004 
1997-
1999 

Spokane, 
WA 

6-18 0.0122 0.0138 Logistic 

Asthma 
Exacerbation 
Cough 

Ostro et. 

al., 2001 
1993 Los 

Angeles, 
CA 

6-18 0.0010 0.0008 Logistic 

Asthma 
Exacerbation 
Shortness of 
Breath 

Ostro et. 

al., 2001 
1993 Los 

Angeles, 
CA 

6-18 0.0026 0.0013 Logistic 

Asthma 
Exacerbation 
Wheeze 

Ostro et. 

al., 2001 
1993 Los 

Angeles, 
CA 

6-18 0.0019 0.0008 Logistic 

Asthma,  
Hospital 
Admissions 

Babin et. 

al., 2007 
2001-
2004 

Washington, 
DC 

0-17 0.0020 0.0043 Log- 
linear 

Source BenMAP Community Edition Manual, USEPA 2015 (pages:101,107) 
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in the past ten years. In Florida, the rates are showing a general increase and do not match the 

rates in the data used for these studies. The location where the studies were conducted and timing 

of these studies makes it a valid argument that to use BenMAP effectively for HIA in Florida one 

should update the prevalence rates and CR functions in BenMAP with Florida data.  

 
4.2 Aim Two:  Childhood Asthma Prevalence and Exacerbation rates in Florida  

  

To determine the baseline emergency department prevalence and exacerbation rates for 

childhood asthma in Florida from 2010-2012. 

A total of  2,668,100  pediatric emergency department (ED) visits of school-aged children 

(ages  5-18) occurred in the State of Florida between January 01, 2010 and December 31, 2012, of 

which 76,576 (2.87 %) were asthma visits (ICD-9=493), and  44,503  (1.67%) were asthma 

exacerbation visits (ICD-9= 493.02, 493.22, 493.92). (Table 3). 

 

Table 3 Emergency Department Visits in Florida for children ages 5-18 

Year ED Visits  ED Visits for Asthma ED Visit for Asthma 

Exacerbation  

2010 834,240 24,020 14,626 

2011 871,551 24,139 14,068 

2012 962,309 28,417 15,809 

2013 977,896 29,045 16,706 

2014 1,049,057 30,713 18,698 

2010-2012 2,668,100  76,576 44,503 

Average 

Annual * 

889,367 25,525 14,834 

*Uses only data for 2010-2012, for this study the average for 2010-2012 is considered baseline 
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Average annual ED visits for childhood asthma were 25,525 and for childhood asthma 

exacerbations were 14,834. The overall average prevalence for childhood asthma is 8 cases per 

1,000 children aged 5-18 residing in Florida (Table 4).  The annual trend for asthma and asthma 

exacerbation ED visits are shown in Figure 6 and Figure 7. The total asthma visits for children 

have increased from 2010 to 2014. The total visits in Florida (as shown by line graph) were 

steady from 2010 to 2011 and then there was a sharp increase from 2011 to 2012 (24,139 to 

28,417), however, total visits gradually increased to 30,713 by  2014.  

 

The annual asthma and asthma exacerbation rates increased from 2010 to 2014 by 27.8%  

(Table 4).  The average baseline prevalence averaging over 2010 to 2012 for asthma exacerbation 

is 4.7 cases per 1,000 children aged 5-18 residing in Florida. 

 

Table 4 Emergency Department Rate in Florida for children ages 5-18  

Year 
Annual Asthma 

Visit Rate per 1000 

Annual Asthma 

Exacerbation Rate per 

1000 

2010 7.55 4.60 

2011 7.59 4.42 

2012 8.93 4.97 

2013 9.13 5.25 

2014 9.66 5.88 

Average Annual * 8.0 4.7 

*Uses only data for 2010-2012, for this study the average for 2010-2012 is considered baseline 
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Figure 6 Trend of Asthma ED Visits in Florida for school age children  

 
 
 

  

Figure 7  Trend of Asthma Exacerbation ED Visits in Florida for school age children  
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The prevalence of ED visit for childhood asthma and asthma exacerbation by 

demographic characteristics and by county of residence are given inTable 5 andTable 6 

respectively.  Table 5 shows that males have a higher prevalence rate than females for asthma 

exacerbation and all asthma ED visits. The difference between male and female asthma ED rates 

is 2.8 per 1,000 for childhood asthma and is 1.9 per 1,000 for childhood exacerbation. The 

difference between age groups 5-12 and 13-18 is 6.9 per 1,000 for ED visit rates. However, this 

disparity was lower for exacerbation where the difference between age group 5-12 and 13-18 

was 2.8 per 1,000. 

 

There are high disparities in prevalence of asthma and asthma exacerbations among 

different race/ethnicity groups. The Black not Hispanic group is 3.6 times more likely to have 

higher prevalence of asthma rates and four times more likely to have higher asthma 

exacerbations then the White non-Hispanic group. On the other hand, asthma ED visits and 

asthma exacerbation visits in the Hispanic group are nearly twice that of White non-Hispanics, 

and half that of Black non-Hispanics. 

 

Asthma and exacerbation ED visit rates were higher for urban counties than rural counties. 

The ED visit rate for urban counties was 8.02 per 1,000 while for rural counties was 7.15, the 

difference for exacerbation rates between urban and rural counties was lower, 0.3 cases per 1,000 

residents.  The ED visit rates for asthma and asthma exacerbations were about two times higher 

for cold season versus for warm season. Cold season were categorized as months between 

November and April, while the warm seasons included months between May to October.  
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Table 5 ED Visit Rates for Childhood by Demographic Characteristics (2010-2012) 

 

     Asthma Visit Rate per 1,000 Asthma Exacerbation Rate per 1,000 

Florida 7.57  4.51 

Gender   

Female 6.14 3.56 

Male 8.93 5.42 

Age Groups   

5-12 10.66  6.31 

13-18 3.77  2.29 

Race/Ethnicity    

White Not 
Hispanic 

4.35 2.45 

Black Not 
Hispanic 

15.79 9.78 

Hispanic 7.60 4.51 

Other 4.47 259 

Location   

Urban 8.02 4.72 

Rural 7.15 4.48 

Season   

Warm 4.89 2.94 

Cold 11.13 6.45 

 

 

Annual average asthma ED visit rates among ten rural counties, i.e.  Madison, Gadsden, 

Franklin,  Liberty, Suwannee, Jackson, Hardee, Calhoun, Hendry, Union, were higher than 

average ED visits for Florida. The urban counties with the higher annual ED asthma visits than 

Florida were Polk, Escambia, Marion, Volusia, Miami-Dade, Duval, Broward, Osceola, Orange, 

and Flagler.  
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Results in Table 6 show that the counties with higher asthma visits also had higher 

exacerbation rates. Annual average asthma exacerbation ED visits rates among ten rural counties 

higher than  the average Florida counties were Madison, Gadsden, Hendry, Liberty, Taylor, 

Jackson, Suwannee, Holmes, Franklin, and Monroe. The urban counties higher than annual ED 

exacerbation visits were Escambia, Duval, Polk, Osceola, Volusia, Orange, Broward, Miami-

Dade, Pinellas, and Marion.    



77 

Table 6 Prevalence of ED Visit for Childhood Asthma and Asthma Exacerbation by County 

of Residence (2010-2012) 

County 
Asthma Visit 

Rate per 1000 

Asthma 

Exacerbation 

Rate per 1000 
 County 

Asthma Visit 

Rate per 1000 

Asthma 

Exacerbation 

Rate per 1000 

Florida 7.57 4.51     

Alachua 5.44 3.77  Lee 7.21 4.18 
Baker 5.55 2.46  Leon 5.80 4.48 
Bay 5.90 2.84  Levy 3.85 2.32 

Bradford 6.38 3.95  Liberty 9.89 5.65 

Brevard 4.91 2.61  Madison 17.80 15.19 
Broward 8.83 5.23  Manatee 5.13 2.58 
Calhoun 8.15 2.72  Marion 10.04 4.54 
Charlotte 5.21 3.40  Martin 4.42 2.22 

Citrus 3.83 2.05  Miami Dade 9.64 5.18 
Clay 3.98 2.67  Monroe 6.90 4.60 

Collier 5.02 3.58  Nassau 5.91 2.43 
Columbia 6.73 3.51  Okaloosa 6.40 4.28 
DeSoto 5.73 3.03  Okeechobee 7.03 4.11 
Dixie 1.21 0.81  Orange 8.58 5.58 
Duval 8.88 6.43  Osceola 8.75 5.97 

Escambia 10.30 6.87  Palm Beach 6.29 4.11 

Flagler 7.87 2.48  Pasco 5.03 2.71 
Franklin 14.50 4.72  Pinellas 7.47 4.70 
Gadsden 15.77 11.61  Polk 11.31 6.14 
Gilchrist 2.34 1.67  Putnam 6.91 3.76 
Glades 5.47 4.10  St. Johns 5.30 3.96 
Gulf 6.74 2.41  St. Lucie 4.80 2.90 

Hamilton 5.75 4.05  Santa Rosa 5.25 3.37 
Hardee 8.33 2.86  Sarasota 3.92 2.16 
Hendry 7.99 6.44  Seminole 6.57 3.74 

Hernando 4.98 2.86  Sumter 6.63 4.05 
Highlands 6.40 3.27  Suwannee 9.12 5.00 

Hillsborough 6.67 3.72  Taylor 7.02 5.56 

Holmes 7.23 4.87  Union 7.83 4.45 
Indian River 5.85 2.60  Volusia 9.99 5.69 

Jackson 8.67 5.30  Wakulla 2.89 2.16 
Jefferson 4.22 2.81  Walton 5.83 2.92 
Lafayette 2.49 2.13  Washington 6.85 3.61 

Lake 5.53 3.87     
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 The Tables 7 and 8 give the baseline prevalence rates for state of Florida stratified by race 

ethnicity for age groups and gender. Baseline rates for this study are the average rates over three 

years 2010-2012. The asthma ED visits prevalence rate is 10.66 per 1,000 for age group 5-12 , 

while it is 3.77 per 1,000 for age group 13-18. The asthma exacerbation ED prevalence rates 

which is for more chronic cases is lower than asthma ED visits and is 6.31 for age group 5-12 , 

while it is 2.29 per 1,000 for age group 13-18.  The prevalence rates of asthma ED visits for age 

group 5-12 years was almost three times higher than age group 13-18. The prevalence rate for 

asthma exacerbation ED visits was also almost three time higher for the 5-12 age group than the 

13-18 age group.  The overall rates are adjusted over ethnicity and gender.  

  

Table 7 Prevalence Rate per 1,000 for Childhood Asthma ED visit Stratified by 

Race/Ethnicity for Age and Gender (2010-2012) 

 Race/Ethnicity  All 

Races/ 

Ethnicity       

White not 

Hispanic 

Black not 

Hispanic Hispanic           Other              

Age group Per 1,000 Per 1,000 Per 1,000 Per 1,000 Per 1,000 

5-12 5.82 22.76 10.92 6.02 10.66 

13-18 2.61 7.38 3.34 2.25 3.77 

     Gender      

Female 3.72 12.46 6.11 3.31 6.14 

Male   4.95 19.01 9.01 5.62 8.93 

Overall 4.35 15.79 7.60 4.47 7.57 
 

 

The asthma ED visits prevalence rates is 6.14 per 1,000 for females of all ages and 

race/ethnicity, while it is 8.93 per 1,000 for males. The asthma exacerbation ED prevalence rates 

which is for more chronic cases is lower than asthma ED visits and is 3.56  for females, while it is 

5.42  per 1,000 for   males.  The prevalence rates of asthma ED visits for males was 1.4  higher 



79 

than females. The prevalence rate for asthma exacerbation ED visits for males was 1.5 times 

higher than females. The overall rates are adjusted over ethnicity and age groups.  

 

The results in Table 7 show that for asthma ED visits the prevalence for the Black not 

Hispanic persons in the 5-12 age group was 22.76 per 1,000, while for Hispanic children it was 

10.92 and for White not Hispanic was only 5.82 per 1,000 children in this age group. For age 

group 13-18 for Black not Hispanic the childhood prevalence was 7.38  per 1,000 , while for 

Hispanic children was the prevalence was 3.34 and for White not Hispanic the childhood 

prevalence was only 2.61 per 1,000 children in this age group. For both the age groups Black not 

Hispanics had the highest prevalence rates for ED visit for asthma of any race/ethnicity. In the 

younger age group this was almost 4 times higher than White not Hispanic and two times higher 

than Hispanic. Also, in this age group prevalence rated for asthma among Whites on Hispanic was 

not very different other from not Hispanic races. For the older age group this diversity was little 

less pronounced, Black not Hispanic have a prevalence rate only three times higher than White 

non-Hispanics. In this age group the prevalence rates among White non-Hispanic, Hispanic and 

other races were very similar.  

 

Gender differences are observed across all race ethnicity groups, the prevalence rates were 

higher for males than females for asthma ED visits.  Black not Hispanic males were 1.5 times 

more likely to visit the ED for asthma than females, the prevalence rates for males Black not 

Hispanic was 19.01 per 1,000. Other race ethnicity females had the lowest prevalence rate for 

asthma ED visits, 3.31 per 1,000 (Table 7).  
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Table 8 Prevalence Rate per 1,000 for Childhood Asthma Exacerbation ED visit Stratified by 

Race/Ethnicity for Age and Gender (2010-2012) 

 Race/Ethnicity All 

Races/ 

Ethnicity       

White not 

Hispanic 

Black not 

Hispanic Hispanic           Other              

Age group Per 1,000 Per 1,000 Per 1,000 Per 1,000 Per 1,000 

5-12 3.25 14.06 6.40 3.42 6.31 

13-18 1.50 4.62 2.08 1.40 2.29 

     Gender      

Female 2.04 7.52 3.53 1.85 3.56 

Male   2.84 11.97 5.43 3.32 5.42 

Overall 2.45 9.78 4.51 2.59 4.51 
 

  

The results in Table 8 show that for asthma exacerbation ED visits the prevalence for 

Black not Hispanic for the 5-12 age group was 14.06 per 1,000, while for Hispanic children 

prevalence was 6.40 and for White not Hispanic 3.25 per 1,000 children. For age group 13-18 

Black not Hispanic prevalence was 4.62 per 1,000 , while for Hispanic children prevalence was 

2.08 and for White not Hispanic prevalence was only 1.5  per 1,000. For both the age groups 

Black not Hispanics had the highest prevalence rates for ED visit for asthma than any other race 

ethnicity. In the younger age group this was almost 4 times higher than White not Hispanic and 

two times higher than Hispanic. These results are similar to asthma ED visits in Table 7. Also, in 

the younger age group prevalence rates for exacerbation among Whites not Hispanic was not very 

different other non-Hispanic races. For the older age group this diversity was a little less 

pronounced, Black not Hispanics have a prevalence rate only three times higher than White not 

Hispanics. In this age group the prevalence rates among White not Hispanic, Hispanic and other 

races were very similar. This ethnicity difference is similar to that seen for asthma ED visits.  
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Gender differences are seen across all race ethnicity groups, the prevalence rates were 

higher for males than females for ED visits.  Black not Hispanic males were 1.5 times more likely 

to visit ED for asthma than females, the prevalence rates for males Black not Hispanic was 11.97 

per 1,000. Other race ethnicity females had the least prevalence rate for asthma ED visits, 1.85 per 

1,000.  

Table 9 and Table 10 give the baseline prevalence rates for the state of Florida stratified 

by race ethnicity for age groups and gender. For childhood asthma and asthma exacerbation ED 

visits previous analyses have shown that the younger age group has higher prevalence rates. 

Within gender the age group 5-12 has 3.5 times higher ED visits for asthma and exacerbation than 

age group 13-18.  

Table 9 Prevalence Rate per 1,000 for Childhood Asthma ED visit by Age and Gender (2010-

2012) 

 Gender  

All   Male Female 

Age group Per 1,000 Per 1,000 Per 1,000 

5-12 13.24 7.97 10.66 

13-18 3.67 3.87 3.77 

    All 8.93 6.14 7.57 
 

Table 10 Prevalence Rate per 1,000 for Childhood Asthma Exacerbation ED Visits by Age 

and Gender (2010-2012) 

 Gender  

All        Male Female 

Age group Per 1,000 Per 1,000 Per 1,000 

5-12 7.99 4.56 6.31 

13-18 2.27 2.31 2.29 

    All 5.42 3.56 4.51 
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The results in above Tables 5-10 lead to inference that the prevalence rates vary between 

Florida counties and for race ethnicity, gender and age group. The prevalence rates that are to be 

input into BenMAP should be adjusted for race ethnicity, gender and age group and Florida 

counties.  One option would be to stratify by race ethnicity, gender, age group and Florida 

counties, the stratification at this minuscule level will add extreme burden on the analysis in 

BenMAP software. It will decrease efficiency of the software and increase analysis run time using 

the software. Another option would be to adjust for race ethnicity, gender and age group at county 

level, i.e. Table 6. These prevalence rates were uploaded into BenMAP for baseline prevalence. 

The results will be used to predict overall county level change in Asthma or Asthma exacerbation 

when there is a change in PM2.5 after adjusting for race/ethnicity, gender and age group 

disparities. Using these rates will be helpful for Health Impact Assessments at county level to 

assess impact of PM2.5 on asthma and asthma exacerbation.   

 

Another option is to use the stratified rates for race/ethnicity, age group and gender for 

Florida adjusted for county. These prevalence rates are given in Table 11 and Table 12. These 

rates help to predict change in asthma or asthma exacerbation when there is a change in PM2.5 

after adjusting for county. It will be using adjusted Florida rates across all counties for an age 

group, gender or race ethnicity. Using these prevalence baseline rates will be helpful for HIAs 

when planning for a community or group of individuals based on race/ethnicity, age group and 

gender. These results in Table 11 and Table 12 were uploaded into BenMAP for baseline 

prevalence to be selected for studying differences based on race/ethnicity, gender and age group 

diversity. 
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Table 11 Prevalence Rate per 1,000 for Childhood Asthma ED visit stratified by 

Race/ethnicity, Age and Gender (2010-2012) for BenMAP input 
  Race/Ethnicity 

All Races/ 

Ethnicity Age  group Gender 

White 

not 

Hispanic 

Black 

not 

Hispanic Hispanic          Other             

  Per 1,000 Per 1,000 Per 1,000 Per 1,000 Per 1,000 

5-12  5.82 22.76 10.92 6.02 10.66 

 Female 4.48 16.89 8.12 3.93 7.97 

 Male   7.09 28.47 13.60 8.13 13.24 

13-18   2.61 7.38 3.34 2.25 3.77 

 Female 2.81 7.11 3.50 2.41 3.87 

 Male   2.42 7.64 3.19 2.08 3.67 

All age groups       

  Female 3.72 12.46 6.11 3.31 6.14 

  Male   4.95 19.01 9.01 5.62 8.93 

Overall  4.35 15.79 7.60 4.47 7.57 
 

 

Table 12  Prevalence Rate per 1,000 for Childhood Asthma Exacerbation ED visit stratified 

by Race/ethnicity, Age and Gender (2010-2012) for BenMAP input 
  Race/Ethnicity 

All Races/ 

Ethnicity Age  group Gender 

White 

not 

Hispanic 

Black 

not 

Hispanic Hispanic          Other             

  Per 1,000 Per 1,000 Per 1,000 Per 1,000 Per 1,000 

5-12  3.25 14.06 6.40 3.42 6.31 
 Female 2.41 10.14 4.57 2.15 4.56 
 Male   4.05 17.86 8.15 4.69 7.99 
13-18   1.50 4.62 2.08 1.40 2.29 
 Female 1.60 4.35 2.18 1.42 2.31 
 Male   1.41 4.89 1.98 1.38 2.27 

All age groups       
  Female 2.04 7.52 3.53 1.85 3.56 
  Male   2.84 11.97 5.43 3.32 5.42 
Overall  2.45 9.78 4.51 2.59 4.51 
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4.3 Aim Three: Temporal and spatial patterns of PM2.5 in Florida  

 To evaluate the temporal and spatial patterns of PM2.5 in Florida and incorporate for 

Florida into BenMAP for HIA estimations. 

 There are 67 counties in Florida but only 17 counties have PM2.5  monitoring system set up 

by Florida Department of Environmental Protection (FDEP)  using 24 monitor locations.  The 

counties with PM2.5 monitors are shown in Figure 8. 

 

 
* Monitor location by latitude and longitude were present in data extracted from EPA ( AQS, 2015) 

Figure 8  PM2.5 Monitor Locations* in Florida during 2010-2014 
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 The monthly trend of PM2.5 averaged over 2010 to 2012 by county and for Florida  is 

given in Figure 9.  Table 13 gives the monthly concentration of daily PM2.5 in Florida averaged 

across all the counties. The results show that PM 2.5 concentration varies during the year, the 

higher concentrations are observed in months of March to July.  

Table 13 Monthly Concentration of PM2.5 (µg/m3) in Florida  

  Month N MIN MAX MEAN STDDEV 

Florida January 1504 1.6 53.3 8.6 0.85 

Florida February 1380 2.3 38.7 8.9 0.86 

Florida March  1511 2.1 43.0 9.0 1.01 

Florida April 1459 0.9 66.3 9.2 1.73 

Florida May 1494 0.9 35.9 9.6 0.49 

Florida June 1427 0.5 94.4 9.9 2.72 

Florida July 1472 0.1 34.2 9.5 0.97 

Florida August 1480 1.7 62.0 8.7 1.31 

Florida September 1409 0.4 43.4 7.6 1.21 

Florida October 1476 0.5 35.2 8.3 0.77 

Florida November  1427 0 20.2 7.7 0.44 

Florida December 1500 0.8 22.7 7.7 0.42 
 

 Figure 9 shows that some counties show a very clear pattern of seasonal trend. The 

counties which show a clear seasonal pattern are Alachua, Bay, Brevard, Broward, Duval, 

Escambia, Leon, Miami-Dade, Palm Beach.  Escambia and Leon have a very high PM2. 5 

concentration as compared to the other counties. Escambia has high PM2.5 during May to 

September while Leon has high PM2.5 during February to May. Brevard, Broward, Lee, Miami-

Dade, Sarasota, Palm Beach, and Lee show a lowest concentration in the month of September. 
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Figure 9  Monthly Average of PM2.5 Concentration (µg/m3) by County in Florida 
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 Time series analysis by county or Panel Analysis was further conducted to understand the 

temporal and spatial trends of PM 2.5 in Florida.  Figure 10 gives the results of time series analysis 

for all seventeen counties and for Florida for January 2010 to Dec 2012. The top panel gives the 

regression time series analysis for Florida across all counties. The analysis shows that on average 

the PM2.5 concentration decreased by 1.32 µg/m3, the highest decrease was for Leon county by 

3.53 µg/m3 from January 01, 2010 to December 31, 2012. Decrease in PM2.5 was seen in all the 

Florida counties except for Miami- Dade which seems to increase by 0.078 µg/m3, however this 

increase was not statistically significant. Other counties where the decrease in PM2.5 was not 

statistically significant were Brevard, Palm Beach, Volusia.  

 

The weather condition, i.e. temperature and precipitation was also studied at county level 

to see temporal patterns and any correlation with PM2.5 concentrations in a county. The results are 

given in Figure 11 for Florida. The results showed a lot of variance in the three years studied in 

this analysis. The concentration of PM2.5 was highest in June 2011 and has somewhat decreased 

from January 2010 to December 2012. There are several spikes in the concentration pattern but 

there is no definite pattern. The spikes are all through but there are higher spikes during April to 

July every year, the higher values are not that prominent during rest of the year. This could be due 

to variability in the data at county level and different counties experiencing higher concentration 

spikes at different times as a result Florida level.  

 

Figure 11 also shows that temperature has a very clear pattern with highest temperatures 

in June, July and August. Mean daily precipitation also shows a pattern of higher rainfall from 

June to October. The mounds are not very high because the metric considered in the study is daily 

precipitation across Florida adjusted by county. If the metric of measurement was  
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total precipitation these mounds would be higher and more pronounced. Figure 11 shows that 

there is hardly any day during months of June to October which doesn’t have some rain in 

Florida. Since higher temperatures and higher precipitations are observed during the same months 

of the year, these will be used to control for confounding when calculating association between 

PM2.5 and asthma and asthma exacerbation ED rates.  

 

 

Figure 10  Time Series Analysis of PM2.5 Concentration (µg/m3)  by County in Florida 
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Figure 11 Time Series Analysis of PM2.5 Concentration (µg/m3) , Temperature (in O F) and 

Precipitation (in ml) in Florida 

 

All the seventeen counties are urban counties and will be chosen for this analysis. The 

total population density and density of children under the age of 18 for the seventeen counties is 

given Table 14, all the seventeen counties ranked in the top 50th percentile of all the counties in 

Florida.  The top five counties were Pinellas, Broward, Seminole, Orange and Hillsborough. 
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Table 14 Population Density By County For Children Under Of The Age Of 18 In Florida 

 
Area in 
square mile 

Percentage of 
Population 
under 
Age<18 

Population 
under 
Age<18 

Population 
under 
Age<18 per 
square mile 

Rank 

Florida 53,625 21.3 4,200,091 72  

Alachua 875 17.9 44,285 51 25 

Bay 758 22.0 37,076 49 26 

Brevard 1,016 19.8 107,686 106 13 

Broward 1,210 22.4 391,349 323 2 

Citrus 582 15.9 22,394 38 31 

Clay 604 26.3 50,170 83 17 

Duval 762 23.5 203,514 267 7 

Escambia 656 21.6 64,154 98 14 

Hillsborough 1,020 23.9 294,208 288 5 

Lee 785 19.5 120,869 154 8 

Leon 667 19.6 53,973 81 18 

Miami-Dade 1,898 21.9 545,728 288 6 

Orange 903 23.6 270,147 299 4 

Palm Beach 1,970 20.4 268,884 137 9 

Pinellas 274 17.8 162,888 595 1 

Polk 1,798 23.5 141,736 79 19 

Sarasota 556 15.7 59,735 107 12 

Seminole 309 23.0 97,181 314 3 

Volusia 1,101 18.9 93,273 85 16 

 



91 

4.4 Aim Four: Concentration Response Functions for HIA 

To develop county-level CR functions to be used in HIAs performed by local or State 

agencies. 

 

Local ambient PM2.5 concentrations from 24 monitors in 17 counties was analyzed with  

count data of asthma ED visits and exacerbation ED visits using a time series Poisson regression 

to develop odds ratio, also known as CR functions. These CR functions will used in BenMAP for 

assessing the impact of PM2.5 on asthma and asthma exacerbation in Florida at the county level.   

 

The sample size for each age group during each season used in time series models are 

given in Table 15. Sample size for time series model refers to total number of days in a season for 

which daily count data existed. The year was divided into season using inferences from analysis 

of temperature and precipitation in the previous aim (Figure 6). The warm season was considered 

to be the months of May to October when the temperature and precipitation was highest across 

Florida counties. The cold season was considered to be the months of November to April when 

temperature are lower and precipitation was below annual average for Florida. Table 5 in aim two 

shows that asthma and asthma exacerbation ED visits differ significantly by season, the ED visit 

prevalence rates were higher for the cold season than the warm season. 

  

  

Asthma ED visits  

 Table 16 presents the ORs and 95% confidence interval for association between asthma 

Ed visits and PM2.5 unadjusted and adjusted for lag, weather, season , gender and ethnicity, 

stratified for age groups 5-12 and 13-18. The unadjusted OR for age group 5-12 is 1.023 (1.008-
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1.039) and the adjusted OR for age group 5-12 is 1.020 (1.09-1.034). The adjusted OR suggests 

that among 5-12 year olds there was 2% (0.9%-3.4%) average increase of asthma ED visits per 10 

µg/m3 increase of PM2.5 .  

 

Table 15 Sample Size for time series models for each age group, in Florida (January 01, 

2010-December 31, 2012) 

 

Age Group 

Season 
N 

5-12 years   

Warm 552 

Cold 544 

13-18 years   

Warm 552 

Cold 544 

All Age Groups  

Warm 552 

Cold 544 

 
  

The unadjusted OR for age group 13-18 is 1.007 (1.001-1.013) and the adjusted OR for 

age group 13-18 is 1.006 (1.001-1.012). The results of the adjusted OR among 13-18 year olds 

suggest that there was 0.6% (0.1%-1.2%) average increase of asthma ED visits per 10 µg/m3 

increase of PM2.5 . The low association of PM2.5 with 13-18 year olds could be possible as these 

are ED visit rates which are indicative of severity and asthma management. These rates suggest 

that asthma in middle school and high school kids is more manageable and probable less exposure 

to outdoor air pollution and less cases in ED visits.   
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Table 16 Odds Ratio (OR) and 95% confidence intervals for Asthma ED visits and PM2.5 

concentrations 

 Age group 5-12 Age group 13-18 

 OR 95%CI OR 95%CI 

Unadjusted  1.023 1.008-1.039 1.007 1.001-1.013 

Adjusted for 

 Lag* 
    

Day One and Day Two 1.018 1.008-1.028 1.005 1.002-1.009 

Lag* and Weather     

Day One, Day Two 
Temperature and 
Precipitation 

1.015 1.007-1.023 1.005 1.001-1.009 

Lag*,  Weather and 

Season 
    

Day One, Day Two 
Temperature and 
Precipitation, Season, 
month, weekend  

1.012 1.004-1.020 1.004 1.00-1.008 

Lag*,  Weather, Season 

and Gender 
    

Day One, Day Two 
Temperature and 
Precipitation, Season, 
month, weekend, 
Gender (Male/ 
Female) 

1.012 1.004-1.020 1.004 1.00-1.008 

Lag*, Weather, Season, 

Gender  and Ethnicity 
    

Day One, Season, 
month, weekend, 
Gender (Male/ 
Female) and 
Ethnicity 

1.020 1.009-1.034 1.006 1.001-1.012 

* The lag PM2.5 concentration from previous day or two days before, day one and day two concentrations were added when both lag days were considered in the model 
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Asthma Exacerbation ED visits  

 Table 17 presents the ORs and 95% confidence interval for association between asthma 

exacerbation ED visits and PM2.5 unadjusted and adjusted for lag, weather, season, gender and 

ethnicity, stratified for age groups 5-12 and 13-18. The unadjusted OR for age group 5-12 is 1.017 

(1.005-1.028) and the adjusted OR for age group 5-12 is 1.014 (1.004-1.025). The adjusted OR 

suggests that among 5-12 year olds there was 1.4% (0.4%-2.5%) average increase of exacerbation 

ED visits per 10 µg/m3 increase of PM2.5 . 

 

 The unadjusted OR for age group 13-18 is 1.005 (1.001-1.009) and the adjusted OR for 

age group 13-18 is 1.004 (1.001-1.008). The results suggest that the adjusted OR among 13-18 

year old there was 0.4% (0.1%-0.8%) average increase of exacerbation ED visits per 10 µg/m3 

increase of PM2.5 . The low association with PM2.5 could be due to the fact that majority of asthma 

exacerbations are reported to be mostly virus-induced (Skyes 2008). Literature has also shown 

that role of bacterial infections in exacerbations is also increasing (Sasaki 2015).   Another reason 

for the low PM2.5 associations with exacerbation could be due to the strong association of 

exacerbation to exposure of seasonal allergens (Murray 2004). 
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Table 17 Odds Ratio (OR) and 95% confidence intervals for Asthma exacerbation ED visits 

and PM2.5 concentrations 

  

 Age group 5-12 Age group 13-18 

 OR 95%CI OR 95%CI 

Unadjusted  1.017 1.005-1.028 1.005 1.001-1.009 

Adjusted for  

 Lag* 
    

Day One, Day Two 1.014 1.006-1.021 1.004 1.001-1.007 

Lag* and Weather     

Day One, Day Two, 
Temperature and 
Precipitation 

1.010 1.004-1.015 1.004 1.001-1.007 

Lag*, Weather and 

Season 
    

One Day and Two 
Day, Temperature and 
Precipitation, Season, 
month, weekend  

1.007 1.002-1.013 1.004 1.001-1.007 

Lag*, Weather,  Season 

and Gender 
    

Day One, Day Two, 
Temperature and 
Precipitation, Season, 
month, weekend, Gender 
(Male/ Female) 

1.007 1.002-1.013 1.004 1.001-1.007 

Lag*,  Weather, Season, 

Gender  and Ethnicity  
    

Day One, Season, 
month, weekend, Gender 
(Male/ Female) and 
Ethnicity 

1.014 1.004-1.025 1.004 1.001-1.008 

* The lag PM2.5 concentration from previous day or two days before, day one and day two concentrations were added when both lag days were considered in the model 
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The CR functions or the odds ratios from the peer-reviewed studies, which analyzed the 

change in childhood asthma associated with change in pollutant concentration were reviewed and 

are tabulated in Table 18. There were 33 peer reviewed studies published between 2000 and 2015, 

the outcome for these studies was ED visits or ED and hospital admissions for childhood asthma 

Several of these studies were from locations outside of the United States, while eighteen studies 

were from US cities. The study design of nineteen published studies was time series, while ten 

were cross sectional, one was logistic regression and three were meta-analyses. Most of the 

studies looked at single pollutant model for PM2.5, while nine studies looked at two or multi-

pollutant models. The age group in the studies varied from 0 to 18, while there were seven studies 

which looked at all ages. These studies did stratify by age groups, groups of 5-11 and <18 years.   

 

Only thirteen out of 33 studies in Table 18 reported that PM2.5 was positively associated 

with pediatric asthma. The ten studies are tabulated in Table 19 and the three meta-analyses are 

tabulated inTable20. The tables give the odds ratio as measure of association between PM2.5 with 

pediatric asthma ED visits. In Table 19, one study was based in Canada and will not be included 

in BenMAP. Also, the studies showing association between asthma and PM2.5 and published by 

2010 have been already evaluated by EPA and will not be entered in BenMAP. In fact, Mar et. 

al.. 2010 study observed association is already present in BenMAP. The rest of the studies except 

one were part of three meta-analyses listed in Table 20. All the meta-analyses studies were 

selected to enter in  BenMAP.  
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Table 18 Summary Of Studies Evaluating Association Of Ambient Pollutants On Pediatric Asthma, 2000-2015 

Source Location Study Design Sample Size 
Age 

group 
Definition of 

Exposure 
Outcome Definition 

Lin et. al.  
2002 

Toronto, 
Canada 

Time series 
and case 
crossover 

7319 patients 6-12 Daily predicted 
model using 6d 
period data 

Hospital admissions for 
Asthma 

Barnett et. al., 
2005 

5 cities in 
Australia and 2 
cities in New 
Zealand 

Case 
crossover 

Hospital 
Admission 
between 1998-
2001 

0, 1-4y, 
5-14y 

Daily PM2.5, 
PM10, NO2 and  
SO2  

Hospital admissions for 
Respiratory condition and 
Asthma using ICD codes 

Slaughter et. 

al. 2005et. al.  
Spokane, 
Washington 

Time Series 2373 All ages 24hr daily 
average for 
PM10, PM2.5 and 
PM1 

ED and Hospital Admission 
for Respiratory Conditions 
with Asthma defined by 
ICD-9 code of 493 

Lee et. al. 2006 Seoul, Korea Time Series, 
GAM 

8.09 patients 
per pay 

0-15y Daily 24-h 
average PM10, 
SO2, NO2,  8h 
average CO and 
O3 

Hospital admissions for 
Asthma, ICD-10 codes J45-
J46 

Akinbami et. 

al., 2007  
NHIS survey 
sampled in 
U.S. MSA’s 
2001-2004 

Cross 
sectional 

34,073  children  3-17y Rolling 12 
month average 
based on 
quarterly 
measures for 
PM2.5 retrieved 
from EPA’s 
AIR. 

Current asthma: yes 
response to “ Has doctor 
ever told you that your 
child has asthma?” and “ 
Does your child still have 
asthma?” 
Asthma attack : Yes 
response to “ During the 
past 12 months has your 
child has an episode of 
asthma or asthma attack?” 
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Table 18 Summary Of Studies Evaluating Association Of Ambient Pollutants On Pediatric Asthma, 2000-2015(continued…) 

Source Location Study Design Sample Size 
Age 
group 

Definition of 
Exposure 

Outcome Definition 

Ito et. al. 2007 New York City Time series 5-11y-133,141 
12-17y- 55,143 

All ages Daily 24-h 
average 

Emergency department 
visits for asthma using ICD-
9 code of 493 

Vilineuve et. 

al., 2007 
Edmonton, 
Canada 

Case 
crossover 

2-4 y- 7247  
5-14y- 13145  

2-14y 24 hour average 
PM2.5 

ED visit ICD-9 code of 493   

Andersen et. 

al. 2008 
Copenhagen, 
Denmark 

Time series 559 in single 
pollutant model, 
318 in two 
pollutant model 

5-18y Daily 24-h 
average 

Hospital Admissions ICD-9 
code 493 

Babin et. al. 
2008 

Washington 
DC Area 
Medicaid 
Beneficiaries, 
1994-2005 

Time series  11 year 
Medicaid data 

5-12 y Daily 
concentration 
PM2.5 and O3 

Asthma exacerbations 
observed in acute care visits 

Halonen et. al. 
2008 
 

Helsinki, 
Finland  
 

Time series 
 

4807 cases 0-15y Fixed 
Monitoring site 

Emergency department 
visits for asthma using ICD-
9 code of 493 

1972 cases 0-15y Daily 24-h 
average, during 
warm season  

Emergency department 
visits for asthma using ICD-
9 code of 493 

Jalaludin et. al.  
2008 

Sydney, 
Australia 

Time- 
Stratified case 
crossover 

317,724 visits 
to Asthma ED 
visits 

1-14 Daily 24-h 
average 

Emergency department 
visits for asthma using ICD-
9 code of 493 

Stieb et. al. 
2009 

Seven 
Canadian 
Cities 

Time series 
Analysis  

400, 000 ED 
visits;  
83563 Asthma 
cases 

All ages 24hr daily 
average for 
PM2.5 , PM10, , 
CO, NO2, SO2 

ED visits for cardiac and 
respiratory, ICD-9 or 10 
code of 493, J45  for 
asthma  
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Table 18 Summary Of Studies Evaluating Association Of Ambient Pollutants On Pediatric Asthma, 2000-2015(continued…) 

Source Location Study Design Sample Size 
Age 
group 

Definition of 
Exposure 

Outcome Definition 

Andersen et. 

al. 2010 
105 ISAAC 
centers in  51 
countries in 
arcoss world 

Cross 
sectional 

322529 with 
range of 1056–
5521 in each 
center 

13-14y Annual 
concentration of 
PM10 at city 
level 

Prevalence of self-reported 
asthma  

Mar et. al. 
2010 

Tacoma, 
Washington 

n/a  All ages Daily 24-h 
average 

ED visits Asthma defined 
by ICD-9 code of 493 

Meng et. al. 
2010 

San Joaquin 
Valley, 
California 

Logistic 
regression 

1502 
respondents of 
CHIS 2001 

All ages 24-h daily 
average 

Self -reported physician 
diagnosed asthma who 
resided in SJV, California 

Silverman et. 

al. 2010 
New York, 
USA 

Time  series <6y -15,185 
6-18 -10,322 

<6, 6-18y 24-h daily 
average 

Hospital admission for 
asthma ICD-9 code of 493 

Strickland et. 

al. 2010 
Atlanta, 
Georgia 

Time series 91, 386 cases 
seen in ED 
departments for 
Asthma or 
Wheeze 

5-17 24 hour average 
PM10, PM2.5 and 
PM2.5 

components 

ED visit as reported in ** 
system 
With ICD-9 code of 493  
for asthma or 786.07 for 
wheeze 

Li et. al.  2011 Detroit, USA Time series 
and case 
crossover 

7063 ED and 
HA visits 

2-18y Daily 24-h 
average 

Hospital admissions and 
ED visits based on ICD-9 

Glad et. al. 
2012 

Pittsburg, 
Pennsylvania 

Case 
crossover 

978 0-17y Daily 24h PM2.5 Emergency department 
visits for asthma using ICD-
9 code of 493 

Winquist et. al. 
2012 

St. Louis Time series 
Analysis 

0-1yr 12,236 ED 
visits 
1-18y 49.978 
ED visits 

01-8 y Daily 24 hour 
average PM2.5 

ED and HA visit ICD-9 
code of 493   

Gleason et. al. 
2014 

New Jersey  Case 
crossover 

21,854 cases 3-17y 12x12 grid 
multiscale air 
quality model 

Emergency department 
visits for asthma using ICD-
9 code of 493 
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Table 18 Summary Of Studies Evaluating Association Of Ambient Pollutants On Pediatric Asthma, 2000-2015(continued…) 

Source Location Study Design Sample Size 
Age 
group 

Definition of 
Exposure 

Outcome Definition 

Delfino et. al. 
2014 

California Case 
crossover 

11390 cases 0-18 y Daily 24h PM2.5 Emergency department  and 
Hospital visits for asthma 
using ICD-9 code of 493 

Strickland  et. 

al. 2014 
Atlanta, 
Georgia 

Time series 
Analysis  

109,758 
children seen in 
ED  

2-16 24 hour average 
PM10, PM2.5 
and PM2.5 
components 

With ICD-9 code of 493  
for asthma or 786.07 for 
wheeze 

Wendt et. al. 
2014 

Boston, 
Massachusetts  

Case 
crossover 

 0-17 yr Daily 24 hour 
average PM2.5 

HA visit ICD-9 code of 493   

Gleason et. al. 
2015 

Newark, New 
York  

Time series, 
Case 
crossover 

3,675 cases 3-17y 12x12 grid 
multiscale air 
quality model 

Emergency department 
visits for asthma using ICD-
9 code of 493 

Ostro et. al. 
2015 

8 metropolitan 
cities 
California 

Case 
crossover 

43,094 Asthma 
visits in ED 

All ages 24-h daily 
average 

ED visits Asthma defined 
by ICD-9 code of 493 

Zheng et. al. 
2015 

n/a Meta-analysis n/a all 10µg of PM2.5 Asthma emergency room 
and hospital admission 

Alharti et. al., 
2016 

Dallas, Texas Time series Mean daily 
counts  
0-4 16.91 
5-18y 25.75` 

0-18 Daily 24-h 
average using 
monitor data 

ED visit by ICD-9 code of 
493 and exacerbation 

Byers et. al. 
2016 

Indianapolis Time series 33,981 cases 5-17y Daily 24h PM2.5 h 

with population 
weighting across 
monitors 

Emergency department  for 
asthma using ICD-9 code of 
493 
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Table 18 Summary Of Studies Evaluating Association Of Ambient Pollutants On Pediatric Asthma, 2000-2015(continued…) 

Source Location Study Design Sample Size 
Age 
group 

Definition of 
Exposure 

Outcome Definition 

Ding et. al. 
2016 

China Time 
stratified case 
crossover 

2507 hospital 
visits in 2013 

0-18y, 
stratified 
by 6-18 

Daily 24h PM2.5 HA visits  

Fan et. al. 2016 n/a Meta analysis n/a all 10µg of PM2.5 Asthma emergency 
department visit 

Lim et. al. 
2016 

n/a Meta analysis n/a Pediatric 10 ug/m3 
increase of PM2.5 

Hospital admissions and 
ED visits 

Weichenthal et. 

al. 2016 
Ontario, 
Canada 

Case 
crossover 

127,386  <9y Daily 24 hour 
average PM2.5 

ED visit ICD-10 code of 
J45   
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Table 19 Measure of Association for PM2.5 On Pediatric Asthma ED Visits, 2000-2015 

Source 
Study Year/ 
Location Lag Season Age 

Measure of 
Association 

95% 
Confidence 
Interval 

Babin et. al. 
2008 

1994-2005/ 
Washington DC 

n/a All 5-12 OR=1.05 1.01-1.09 

Steib et. al. 
2009 

Early1990-2000/ 
Canadian Cities 

n/a Warm All OR=1.093 1.062-1.123 

Mar et. al. 
2010 
 

1999-2002/ 
Tacoma, 
Washington 

2 All All OR=1.058 1.014-1.102 

Tacoma, 
Washington 

3 All All OR=1.043 1.000-1.087 

Meng et. al. 
2010 

2001-2002/ 
San Joaquin 
Valley, California 

n/a All 1-17 OR=1.480 0.620-3.500 

Li et. al.  2011 Jan01,2004-
Dec31,2006/ 
Detroit, Michigan 

3 All 2-18 OR=1.032 1.007-1.057 

Glad et. al. 
2012 

/ 
Pittsburg, PA 

1 All All OR=1.036 1.001-1.073 

Winquist et. al. 
2012 

/ 
St. Lois 

n/a All 2-18 OR=1.054 1.023-1.086 

Strickland et. 

al. 2014 
 

2002-2010/ 
Atlanta, Georgia 

n/a All 5-17 OR=1.022 1.002-1.042 

2002-2010/ 
Atlanta, Georgia 

n/a Warm 5-17 OR=1.047 1.017-1.076 

Gleason et. al. 
2014 
 

Jan01,2004- Dec 
31, 2007/ New 
Jersey 

0 Warm 3-17 OR=1.035 1.023-1.047 

Jan01,2004- Dec 
31, 2007/ New 
Jersey 

1 Warm 3-17 OR=1.012 1.000-1.024 

Ostro et. al. 
2016 

2005-2009/ 
California 

2 All All OR=1.2 0.0-2.4 
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Table 20 Summary of Meta Analysis Studies Published Between 2000-2015   

Author  Number of 
Studies / 
Year of 
Studies List Studies and Published year Age 

Measure of 
Association 

95% Confidence 
Interval 

Fan et. al. 2015 
 
 

16 Published 
Between 2004-
2015 

Peel et. al..2005;  Slaughter et. al.. 
2005; Babin et. al.. 2008;  
Halonen et. al.. 2008; Paulu and 
Smith 2008;  Stieb et. al.. 2009; Mar 
and Koenig 2009; Mar et. al..2010; 
Meng et. al.. 2010;  Strickland et. al.. 
2010; ; Li et. al.. 2011; Winquist et. 

al.. 2012; Chen et. al.. 2013; Delfino 
et. al.. 2014; Glad et. al.. 2012; 
Gleason et. al.. 2014; 

All OR=1.015 1.012-1.017 

<18 OR=1.036 1.017-1.044 

Lim et. al. 2016 33 studies 
Published 
between 1999-
2016 

Norris et. al. 1999, Lin et. al. 2002, 
Lee et. al. 2006; Ko et. al. 2006;  
Villneneuve  et. al. 2007; Andersen 
et. al.. 2003; Halonen et. al. 2008; 
Jalaludin 2008; Tacer et. al. 2008; 
Halonen et. al. 2010; Silverman et. 

al.. 2010 ; Strickland et. al. 2010; Li 
et. al. 2011; Glad et. al. 2012; 
Iskinder et. al. 2012; Winquist et. al.. 
2012; Delfine et. al. 2014; Hua et. al. 
2014; Strickland et. al. 2014; Wendt 
et. al. 2014 

5-18 OR=1.027 1.011-1.043 

0-18 OR=1.048 1.028-1.067 
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Table 20 Summary of Meta Analysis Studies Published Between 2000-2015 (continued)  

Author  Number of 
Studies / 
Year of 
Studies List Studies and Published year Age 

Measure of 
Association 

95% Confidence 
Interval 

Zeng et. al. 2016 32 studies 
Published 
between 1999- 
2015 

Sheppard et. al. 1999; Lin et. al. 
2002; Barnet et. al. 2005; Sluaghter 
et. al.. 2005; Lee et. al. 2006, 
Chardon et. al. 2007; Chimonas et. 

al. 2007; Ito et. al. 2007; Ko et. al. 
2007; Andersen et. al. 2008; Babin 
et. al. 2008; Halonen et. al. 2008; 
Jalaludin et. al. 2008; Paulu et. al. 
2008; Szyszkowicz et. al. 2008; Stieb 
et. al. 2009; Lavinge et. al. 2010; 
Lim 2010; Mar et. al. 2010; 
Strickland et. al. 2010; Li et. al. 
2011; Iskandar et. al. 2012; Kim et. 

al. 2012; Santus et. al. 2012; 
Silverman et. al. 2012; Evans et. al. 
2013; Malig et. al. 2013; Yamazaki 
et. al. 2013; Cheng et. al. 2014;Raun 
et. al. 2014;Gleason et. al. 2014;Hua 
et. al. 2014;                                                                                                                                             

5-18 OR=1.023 1.015-1.031 
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CR functions for PM2.5 and Pediatric Asthma in BenMAP 

 

  The odds ratios and standard errors obtained for asthma (Table 16) and asthma exacerbation 

(Table 17) visits to ED due to visits per 10 µg/m3 of PM2.5 after controlling for lag, weather, season, 

gender and ethnicity, were be loaded in BenMAP. The odds ratios from the three meta-analyses 

(Table 20)  and Ostro (2016) were also entered in BenMAP for estimating health benefits. The odds 

ratio and standard deviations were converted to beta values to upload into BenMAP.   

 

The beta values and standard error for the studies to be uploaded in BenMAP are given in 

Table 21. The different CR functions were combined in BenMAP by pooling method using random 

effects models. The random effects model assigns each study a weight based on two factors; the 

spread of estimates reported by that study (i.e. the variance), and how much that spread of estimates 

differs from the other studies. The random effects model helps to calculate the weighted average 

across the studies, using the weights calculated from the variance and overlap of the studies.  These 

beta values were used in conjunction with preloaded beta values for asthma exacerbation in BenMAP 

to get a joint effect to be used in Aim 5 of this study. The goal of aim five is to estimate age and 

gender specific asthma rates in children due to change in PM2.5 concentrations at county level using 

BenMAP. 

 

  

  



106 

Table 21 CR-Functions for Input in BenMAP  

Effect  Author 
Study 
Year 

Study 
Location Age Beta Std. Err Form 

Asthma, 
Emergency 
Room Visit 

Current 
Study 

2010-
2012 

Florida all 
counties 

5-12 0.002 0.0002 Log- 
linear 

Asthma, 
Emergency 
Room Visit 

Current 
Study 

2010-
2012 

Florida all 
counties 

13-18 0.0006 0.0023 Log- 
linear 

Asthma 
Exacerbation, 
Emergency 
Room Visit 

Current 
Study 

2010-
2012 

Florida all 
counties 

5-12 0.0014 0.0007 Log- 
linear 

Asthma 
Exacerbation, 
Emergency 
Room Visit 

Current 
Study 

2010-
2012 

Florida all 
counties 

13-18 0.0004 0.0098 Log- 
linear 

Asthma, 
Emergency 
Room Visit 

Zeng et. 

al. 2016 

1999-
2015 

Meta-
analysis 

5-18 0.0023 0.0017 Log- 
linear 

Asthma, 
Emergency 
Room Visit 

Lim et. al. 
2016 

1999-
2016 

Meta-
analysis 

5-18 0.0027 0.0035 Log- 
linear 

Asthma, 
Emergency 
Room Visit 

Fan et. al. 
2015 

2004-
2015 

Meta-
analysis 

0-18 0.0035 0.0029 Log- 
linear 

Asthma, 
Emergency 
Room Visit 

Ostro et. 

al. 2016 

2005-
2009 

California 0-99 0.0182 0.3521 Log- 
linear 
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4.5 Aim Five : Age And Gender Specific Asthma Rates In Children At County Level 

To estimate age and gender specific asthma rates in children due to changes in PM2.5 

concentrations at county level. 

 Figure 12 displays the PM2.5 county level data for 2008 in BenMAP. This is the most recent 

year for pollutant input present in BenMAP. Using 2008 data already present in BenMAP one can 

estimate the 2011 data by using Monitor rollback (percentage or incremental) by knowing the 

change in PM2.5 concentrations at the county level as calculated using data from EPHT.  Table 22 

gives the comparison of PM2.5 concentration data present in BenMAP, and the concentrations data 

extracted from EPHT for 2008. The results also give the difference between these two 

concentrations for each county. The results show that the  PM2.5 concentrations from the two 

sources for the same county were different. The concentrations for all counties, except for 

Sarasota, were lower in BenMAP than those extracted from EPHT. The data sources for both 

methods was FLEPA. The reason for the difference could be the methodology used to calculate the 

daily average for each county. Details of the methods were not available to further analyze the 

differences. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 12 PM2.5 Florida county level data for 2008 present in BenMAP 
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Table 22 Comparison of PM2.5 Concentration in BenMAP to EPHT  

 
 
FIPS 
County 
Code 

County Name 

PM2.5 concentration for 2008 (in µg/m3) 

In BenMAP In EPHT Difference  

1 Alachua County 7.49 7.93 -0.44 

5 Bay County 9.67 9.9 -0.23 

9 Brevard County 7.31 7.43 -0.12 

11 Broward County 6.91 7.69 -0.78 

17 Citrus County 7.77 7.81 -0.04 

31 Duval County 8.69 9.24 -0.55 

33 Escambia County 9.41 9.47 -0.06 

57 Hillsborough County 8.09 8.51 -0.42 

71 Lee County 7.02 7.07 -0.05 

73 Leon County 10.12 10.64 -0.52 

86 Miami-Dade County 7.18 8.1 -0.92 

99 Palm Beach County 6.47 6.56 -0.09 

103 Pinellas County 7.94 8.05 -0.11 

105 Polk County 7.59 8.16 -0.57 

115 Sarasota County 7.1 6.9 0.2 

117 Seminole County 7.42 7.98 -0.56 

 

  

The percentage change in PM2.5 concentration for each county from 2008 to 2011 from 

EPHT data was calculated, and the results are given in Table 23. These results show that the 

change in PM2.5 concentrations varied for counties, which ranged from -12.5% to 4.7%. All of the 

counties except Alachua county showed decrease in PM2.5 concentrations. Alachua county had an 

increase by 4.7%. The reason for this increase in Alachua county was further investigated by 

checking news articles and published county health records for 2011. No public evidence was 

found to support this increase. It is also possible that the increase seen in Alachua county, while a 

decrease was seen in the other counties, could be an error or uncertainty of model data published 

by EPHT or due to the errors in reported data. This theory is supported by EPHT data in appendix 

4, which shows that there were decreases in concentrations from 2008 to 2010.  
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Table 23  Change in PM2.5 Concentration from 2008 to 2011 as per EPHT  

FIPS 
County 
Code 

County Name 

Concentration of PM2.5 
(in µg/m3)  Percentage 

Change  2008 2011 

1 Alachua County 7.93 8.3 4.7% 

5 Bay County 9.9 8.9 -10.1% 

9 Brevard County 7.43 6.5 -12.5% 

11 Broward County 7.69 6.8 -11.6% 

17 Citrus County 7.81 7.6 -2.7% 

31 Duval County 9.24 9 -2.6% 

33 Escambia County 9.47 9.5 0.3% 

57 Hillsborough County 8.51 7.8 -8.3% 

71 Lee County 7.07 7.2 1.8% 

73 Leon County 10.64 10.3 -3.2% 

86 Miami-Dade County 8.1 7.4 -8.6% 

99 Palm Beach County 6.56 6.4 -2.4% 

103 Pinellas County 8.05 7.6 -5.6% 

105 Polk County 8.16 7.5 -8.1% 

115 Sarasota County 6.9 6.9 0.0% 

117 Seminole County 7.98 7.6 -4.8% 
 

 

The percentage changes for each county were added to BenMAP (Table 23), to estimate the 

PM2.5 concentrations in 2011 for each county. The results are shown in Figure 13. The change in 

PM2.5 concentrations from 2008 to 2011 in BenMAP are given in Figure 14 and Table 24.  The 

results also give the error and percentage difference from the PM2.5 concentrations that were 

reported in EPHT (E), and that observed (O) in BenMAP. These differences range from 10.4% to 

0.8% across the 17 counties. Orange County was not used in this analysis as data for 2011 were not 

available in EPHT. The range of differences and of errors, highlights that EPHT was prone to 

differences in the concentration models used in the two source for PM2.5.  Figures 12-14  show that 
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BenMAP is helpful in estimating the pollutant concentration and changes in counties where no 

monitors are present using the VNA method. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 Estimated PM2.5 concentration (in µg/m3) at county level data for 2011 in BenMAP 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 14 Change in PM2.5 at Florida county level data from 2008 to 2011 in BenMAP 
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Table 24 Comparison of Estimated PM2.5 Concentrations from BenMAP and EPHT 

County Name 

Concentration of PM2.5 (in µg/m3)  

Error 
 (| E-O|/E) 

%Difference 
(Error/100) 

In EPHT 
(Expected)  

In BenMAP 
(Observed) 

Alachua County 8.3 7.44 0.1036 10.4% 

Bay County 8.9 8.59 0.0348 3.5% 

Brevard County 6.5 6.55 0.0077 0.8% 

Broward County 6.8 6.34 0.0676 6.8% 

Citrus County 7.6 7.32 0.0368 3.7% 

Duval County 9 8.21 0.0878 8.8% 

Escambia County 9.5 9.19 0.0326 3.3% 

Hillsborough County 7.8 7.47 0.0423 4.2% 

Lee County 7.2 6.85 0.0486 4.9% 

Leon County 10.3 9.79 0.0495 5.0% 

Miami-Dade County 7.4 6.65 0.1014 10.1% 

Palm Beach County 6.4 6.14 0.0406 4.1% 

Pinellas County 7.6 7.49 0.0145 1.4% 

Polk County 7.5 7.05 0.0600 6.0% 

Sarasota County 6.9 6.83 0.0101 1.0% 

Seminole County 7.6 6.9 0.0921 9.2% 
 

The results in Table 25 show that the estimated PM2.5 concentration values for all the counties 

using a simple rollback were under a 5% change except for Alachua County. Alachua County 

showed an increase instead of decrease as seen in other counties of Florida.  BenMAP uses the VNA 

method for estimating PM2.5 concentrations. The VNA method uses the inverse distance weighted 

average of the neighboring monitors. This can introduce uncertainties when estimating from 

neighboring counties, where change in PM2.5 concentrations is in the opposite direction than that of 

the county of estimation, (ie, decrease in neighboring counties while an increase in Alachua county). 

Mixing increase and decrease concentrations in neighboring counties in BenMAP using the VNA 

method can lead to results which are less reliable. To overcome this problem, further analysis is 

needed to assess how limiting the distance in VNA can increase accuracy.  Alachua County’s change 

was set to missing to assist in the software with more reliable estimates. The new results are tabulated 
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in Table 26. The results show that the difference between the estimated and observed value decreased 

to nearly 5%. Also this change had minimal effect on the other county estimates, except for Citrus 

County, where the % difference decreased from 8.47% (Table 25) to 3.18% (Table 26). 

 

Table 25 Comparison of Expected and Observed PM2.5 Concentrations (in µg/m3) using 

BenMAP  

County Name 

Concentration of PM2.5 (in µg/m3)  

2008 
  %Change   

2008 
Expected 

2011   
Observed 

2011 
%Difference  

Alachua County 7.49 4.70% 7.84 3.17 59.58% 

Bay County 9.67 -10.10% 8.69 8.59 1.19% 

Brevard County 7.31 -12.50% 6.40 6.55 2.40% 

Broward County 6.91 -11.60% 6.11 6.34 3.79% 

Citrus County 7.77 -2.70% 7.56 6.92 8.47% 

Duval County 8.69 -2.60% 8.46 8.21 3.00% 

Escambia County 9.41 0.30% 9.44 9.19 2.63% 

Hillsborough County 8.09 -8.30% 7.42 7.47 0.69% 

Lee County 7.02 1.80% 7.15 6.85 4.15% 

Leon County 10.12 -3.20% 9.80 9.79 0.06% 

Miami-Dade County 7.18 -8.60% 6.56 6.65 1.33% 

Palm Beach County 6.47 -2.40% 6.31 6.14 2.77% 

Pinellas County 7.94 -5.60% 7.50 7.49 0.07% 

Polk County 7.59 -8.10% 6.98 7.05 1.07% 

Sarasota County 7.10 0.00% 7.10 6.83 3.80% 

Seminole County 7.42 -4.80% 7.06 6.90 2.32% 
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Figure 15 Change in PM2.5  from 2008 to 2011 calculated using Rollback in BenMAP 

Table 26 Estimated PM2.5 Concentrations (in µg/m3) after Correction 

County Name 

Concentration of PM2.5 (in µg/m3)  

2008 
  %Change   

2008 
Expected 

2011   
Observed 

2011 
%Difference  

Alachua County 7.49 -  7.84 7.44 5.13% 

Bay County 9.67 -10.10% 8.69 8.59 1.19% 

Brevard County 7.31 -12.50% 6.40 6.55 2.40% 

Broward County 6.91 -11.60% 6.11 6.34 3.79% 

Citrus County 7.77 -2.70% 7.56 7.32 3.18% 

Duval County 8.69 -2.60% 8.46 8.21 3.00% 

Escambia County 9.41 0.30% 9.44 9.19 2.63% 

Hillsborough County 8.09 -8.30% 7.42 7.47 0.69% 

Lee County 7.02 1.80% 7.15 6.85 4.15% 

Leon County 10.12 -3.20% 9.80 9.79 0.06% 

Miami-Dade County 7.18 -8.60% 6.56 6.65 1.33% 

Palm Beach County 6.47 -2.40% 6.31 6.14 2.77% 

Pinellas County 7.94 -5.60% 7.50 7.49 0.07% 

Polk County 7.59 -8.10% 6.98 7.05 1.07% 

Sarasota County 7.10 0.00% 7.10 6.83 3.80% 

Seminole County 7.42 -4.80% 7.06 6.90 2.32% 

 

 Change in  µg/m3
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The difference between estimated values and observed values was equal to or less than 5% 

for all counties. A graphical representation of the change in PM2.5 data at Florida county level from 

2008  to 2011 using BenMAP is given in Figure 15.  

  

The results show that researchers can easily use the monitor rollback method for Florida to 

estimate PM2.5 concentrations, by using change in pollutant concentration from year to year by 

county level. In this method one has to be careful to use only one direction of change, either 

increase or decrease as mentioned in the BenMAP manual.   When using increase for some 

counties and decrease for other counties the results using VNA method with monitor rollback will 

give unreliable results. 

 

USEPA has acknowledged that the pollution data in BenMAP are outdated and should be 

updated by users periodically for analysis. Data were updated for Florida counties using monitor 

data from FLEPA for 2010 to 2012, which is considered as baseline for this analysis. Monitor data 

for Florida counties was also updated for 2013 and 2014.  The change in air pollution was 

calculated at the county level using VNA method in BenMAP.  The results for change in PM2.5 

concentration for years 2013 and 2014 from 2010, which is considered baseline for this analysis, 

are given in Figures 16 and 17 respectively.  
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Figure 16 Change in PM2.5 from Baseline(2010)  to 2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Change in PM2.5 from Baseline (2010)  to 2014 

 

  Table 27 gives the comparison of estimated asthma ED visits from BenMAP using beta (β) 

from this study-aim4 and pooled β-in BenMAP. The results show that the estimated change in annual 
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ED visits for asthma in Florida varied slightly by the two methods. The annual difference in the two 

methods was 6 asthma visits. The change in annual ED visits for asthma by the pooled method was 

2% higher than the estimates using beta from this study.  The pooled method using betas from studies 

already present in BenMAP, this study and three meta-analysis identified aim 4. Differences were 

also seen at each county level, these ranged from 0.3% - 6.7%, the statistics of difference is given in 

appendix 8.1.   

 

Table 28 gives the comparison of estimated asthma exacerbation ED visits from BenMAP 

using beta (β) from this study-aim 4 and pooled β-in BenMAP.   The results show that the estimated 

change in annual ED visits for asthma exacerbation varied slightly by the two methods. The annual 

difference in the two methods was asthma exacerbation visits. The change in annual ED visits for 

asthma exacerbation by the pooled method was 5% higher than the estimates using beta from this 

study. Differences were also seen at each county level, these ranged from 0% - 17%, the statistics of 

difference is given in appendix 8.2.   

 

Table 29 gives the comparison of estimated asthma ED visits from BenMAP using 

prevalence of ED visits for the State of Florida from this study-aim3 and prevalence rate-in 

BenMAP. The prevalence rates from this study are controlled for age group, gender and 

race/ethnicity. The results show that the estimated change in annual ED visits for asthma in Florida 

varied a lot by the two methods. 
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Table 27 Estimated Change in Asthma ED visits from BenMAP using Pooled Beta  

 

County 
Change in Annual Asthma ED Visits 

using Study β using Pooled  β  % Difference 

Florida -304 -310 2% 

Alachua County -5.8 -6.0 3.6% 

Baker County -0.5 -0.6 2.9% 

Bay County -1.7 -1.8 3.8% 

Bradford County -0.2 -0.3 4.1% 

Brevard County -5.6 -5.8 3.6% 

Broward County -32.4 -32.7 1.1% 

Calhoun County -0.3 -0.3 4.4% 

Charlotte County -1.1 -1.2 3.7% 

Citrus County -0.7 -0.7 3.7% 

Clay County -1.6 -1.6 3.0% 

Collier County -2.1 -2.2 2.6% 

Columbia County -1.1 -1.2 3.3% 

DeSoto County -0.2 -0.2 4.1% 

Dixie County 0.0 0.0 3.4% 

Duval County -30.4 -30.5 0.4% 

Escambia County -0.7 -0.8 2.8% 

Flagler County -0.5 -0.6 3.0% 

Franklin County 0.1 0.1 3.4% 

Gadsden County -0.4 -0.4 2.4% 

Gilchrist County 0.0 0.0 3.4% 

Glades County 0.0 0.0 2.3% 

Gulf County 0.0 0.0 3.6% 

Hamilton County -0.1 -0.1 3.4% 

Hardee County 0.5 0.5 3.5% 

Hendry County -0.1 -0.1 3.0% 

Hernando County -0.9 -1.0 4.4% 

Highlands County -1.0 -1.0 2.8% 

Hillsborough County -27.3 -27.2 0.3% 

Holmes County -0.2 -0.2 3.9% 

Indian River County -0.3 -0.4 3.6% 

Jackson County -0.8 -0.8 2.6% 

Jefferson County -0.1 -0.1 3.4% 

Lafayette County 0.0 0.0 6.7% 

Lake County -3.6 -3.7 3.6% 
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Table 27 Asthma ED visits from BenMAP using Pooled Beta Beta continued… 

County 

Change in Annual Asthma ED Visits 

using Study β using Pooled  β  
% Difference 

Florida -304 -310 2% 

Lee County -7.2 -7.4 2.8% 

Leon County -4.6 -4.7 3.1% 

Levy County 0.0 0.0 3.9% 

Liberty County 0.1 0.1 4.0% 

Madison County 1.0 1.1 3.4% 

Manatee County -2.9 -3.0 3.2% 

Marion County 2.5 2.6 3.0% 

Martin County 0.8 0.8 3.2% 

Miami Dade County -34.9 -35.8 2.5% 

Monroe County -1.1 -1.1 3.6% 

Nassau County -2.0 -2.1 3.6% 

Okaloosa County -2.3 -2.4 3.3% 

Okeechobee County -0.6 -0.7 3.4% 

Orange County -22.3 -22.4 0.3% 

Osceola County -6.0 -6.2 3.6% 

Palm Beach County -20.4 -21.0 3.1% 

Pasco County -5.7 -5.9 3.7% 

Pinellas County -28.0 -28.1 0.4% 

Polk County -38.1 -38.3 0.5% 

Putnam County -2.3 -2.4 3.3% 

Santa Rosa County -0.3 -0.3 4.1% 

Sarasota County -2.7 -2.8 3.1% 

Seminole County -3.0 -3.1 3.8% 

St. Johns County -4.2 -4.4 3.7% 

St Lucie County 2.3 2.4 3.2% 

Sumter County -0.3 -0.3 4.7% 

Suwannee County 0.4 0.4 4.0% 

Taylor County 0.1 0.1 4.7% 

Union County 0.1 0.1 4.6% 

Volusia County -1.9 -2.0 3.2% 

Wakulla County -0.4 -0.4 2.9% 

Walton County -0.9 -1.0 3.7% 

Washington County -0.3 -0.3 3.6% 
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Table 28 Estimated Asthma Exacerbation ED from BenMAP using Pooled Beta 

 

County 

Change in Annual Asthma Exacerbation ED Visits  

using Study β using Pooled  β  % Difference 

Total Change in Florida -183 -192 5% 

Alachua County -4.0 -4.3 7% 

Baker County -0.3 -0.3 8% 

Bay County -0.9 -0.9 6% 

Bradford County -0.2 -0.2 2% 

Brevard County -2.9 -3.0 3% 

Broward County -19.0 -19.8 4% 

Calhoun County -0.1 -0.1 5% 

Charlotte County -0.7 -0.8 3% 

Citrus County -0.4 -0.4 7% 

Clay County -1.0 -1.0 4% 

Collier County -1.5 -1.6 3% 

Columbia County -0.6 -0.6 1% 

DeSoto County -0.1 -0.2 12% 

Dixie County 0.0 0.0 13% 

Duval County -21.9 -23.8 8% 

Escambia County -0.5 -0.5 6% 

Flagler County -0.2 -0.2 15% 

Franklin County 0.0 0.0 2% 

Gadsden County -0.3 -0.3 13% 

Gilchrist County 0.0 0.0 13% 

Glades County 0.0 0.0 5% 

Gulf County 0.0 0.0 1% 

Hamilton County -0.1 -0.1 4% 

Hardee County 0.2 0.2 11% 

Hendry County -0.1 -0.1 2% 

Hernando County -0.5 -0.5 3% 

Highlands County -0.5 -0.5 2% 

Hillsborough County -15.0 -15.5 3% 

Holmes County -0.1 -0.1 8% 

Indian River County -0.2 -0.2 6% 

Jackson County -0.5 -0.5 2% 

Jefferson County -0.1 -0.1 8% 

Lafayette County 0.0 0.0 3% 

Lake County -2.5 -2.6 4% 
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Table 28 Estimated Asthma Exacerbation ED from BenMAP using Pooled Beta continued… 

 

County 

Change in Annual Asthma Exacerbation ED Visits 

using Study β using Pooled  β  % Difference 

Total Change in Florida -183 -192 5% 

Lee County -4.2 -4.2 1% 

Leon County -3.5 -3.7 5% 

Levy County 0.0 0.0 17% 

Liberty County 0.1 0.1 16% 

Madison County 0.9 0.9 0% 

Manatee County -1.5 -1.5 0% 

Marion County 1.2 1.2 0% 

Martin County 0.4 0.4 0% 

Miami Dade County -18.7 -19.9 6% 

Monroe County -0.7 -0.7 0% 

Nassau County -0.9 -0.9 2% 

Okaloosa County -1.6 -1.6 1% 

Okeechobee County -0.4 -0.4 0% 

Orange County -14.4 -15.6 8% 

Osceola County -4.0 -4.1 0% 

Palm Beach County -13.2 -13.4 1% 

Pasco County -3.0 -3.4 12% 

Pinellas County -17.4 -17.7 2% 

Polk County -20.2 -21.4 5% 

Putnam County -1.3 -1.4 8% 

Santa Rosa County -0.2 -0.3 15% 

Sarasota County -1.7 -1.7 3% 

Seminole County -1.9 -2.0 1% 

St. Johns County -2.3 -2.3 1% 

St Lucie County 1.3 1.5 9% 

Sumter County -0.2 -0.2 9% 

Suwannee County 0.2 0.2 12% 

Taylor County 0.1 0.1 2% 

Union County 0.1 0.1 3% 

Volusia County -1.1 -1.1 1% 

Wakulla County -0.3 -0.3 6% 

Walton County -0.5 -0.4 12% 

Washington County -0.2 -0.2 10% 
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The annual difference of change in asthma ED visits by the two methods was 134 asthma 

visits. The change in annual ED visits for asthma using study specific prevalence rates were 30% 

higher than the estimates using prevalence in BenMAP. Differences were also seen at each county 

level, these ranged from 21% - 69%, the statistics of difference is given in appendix 8.3.  The 

observed differences were higher for counties were monitors per not present or which were smaller 

in area, where the asthma ED visits are less. 

 

Table 30 gives the comparison of estimated asthma exacerbation ED visits from BenMAP 

using prevalence of ED visits for the State of Florida from this study-aim 3 and prevalence rate-in 

BenMAP.   The results show that the estimated change in annual ED visits for asthma exacerbation 

in Florida varied a lot by the two methods. The annual difference of change in ED visits by two 

methods was 82 asthma exacerbation visits. The change in annual ED visits for asthma exacerbation 

using study specific prevalence rates were 31% higher than the estimates using prevalence in 

BenMAP. Differences were also seen at each county level, these ranged from 13% - 69%, the 

statistics of difference is given in appendix 8.4.  The observed differences were similar to asthma 

visits and were higher for counties were monitors per not present or which were smaller in area, 

where the exacerbation  ED visits are less.  

 

The results show that estimating the health impact due to change in PM2.5 is highly dependent 

on the prevalence of the health outcome and less dependent on the CR functions. The dependence 

on the CR function was probably less as the beta estimate for asthma and asthma exacerbation are 

very small, to the forth decimal place.  
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Table 29 Estimated Asthma ED visits using Prevalence in BenMAP and Prevalence by 

County 

County 

Change in Annual Asthma ED Visits 

using Prevalence in 
BenMap 

using Study 
Specific 
Prevalence  % Difference 

Florida -304 -436 30% 

Alachua County -5.8 -8.9 35% 

Baker County -0.5 -0.8 28% 

Bay County -1.7 -2.8 37% 

Bradford County -0.2 -0.4 41% 

Brevard County -5.6 -8.6 36% 

Broward County -32.4 -45.6 29% 

Calhoun County -0.3 -0.4 43% 

Charlotte County -1.1 -1.7 36% 

Citrus County -0.7 -1.1 37% 

Clay County -1.6 -2.2 29% 

Collier County -2.1 -2.8 24% 

Columbia County -1.1 -1.6 32% 

DeSoto County -0.2 -0.4 40% 

Dixie County 0.0 0.0 33% 

Duval County -30.4 -40.6 25% 

Escambia County -0.7 -1.0 27% 

Flagler County -0.5 -0.8 29% 

Franklin County 0.1 0.2 33% 

Gadsden County -0.4 -0.5 23% 

Gilchrist County 0.0 0.0 33% 

Glades County 0.0 0.0 21% 

Gulf County 0.0 0.0 35% 

Hamilton County -0.1 -0.1 33% 

Hardee County 0.5 0.8 35% 

Hendry County -0.1 -0.2 29% 

Hernando County -0.9 -1.6 45% 

Highlands County -1.0 -1.3 26% 

Hillsborough County -27.3 -39.7 31% 

Holmes County -0.2 -0.3 38% 

Indian River County -0.3 -0.5 36% 

Jackson County -0.8 -1.0 25% 

Jefferson County -0.1 -0.2 33% 

Lafayette County 0.0 -0.1 69% 

Lake County -3.6 -5.5 35% 
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Table 29 Estimated Asthma ED visits using Prevalence in BenMAP and Prevalence by 

County continued… 

County 

Change in Annual Asthma ED Visits 

using Prevalence 
in BenMAP 

using 
Prevalence by 
County from 
Aim 3 

% Difference 

Florida -304 -436 30% 

Lee County -7.2 -9.9 27% 

Leon County -4.6 -6.5 30% 

Levy County 0.0 0.0 39% 

Liberty County 0.1 0.2 40% 

Madison County 1.0 1.5 33% 

Manatee County -2.9 -4.2 32% 

Marion County 2.5 3.5 29% 

Martin County 0.8 1.1 31% 

Miami Dade County -34.9 -45.8 24% 

Monroe County -1.1 -1.7 35% 

Nassau County -2.0 -3.2 36% 

Okaloosa County -2.3 -3.4 32% 

Okeechobee County -0.6 -1.0 33% 

Orange County -22.3 -31.4 29% 

Osceola County -6.0 -9.3 35% 

Palm Beach County -20.4 -29.2 30% 

Pasco County -5.7 -9.0 37% 

Pinellas County -28.0 -42.8 35% 

Polk County -38.1 -54.2 30% 

Putnam County -2.3 -3.3 32% 

Santa Rosa County -0.3 -0.5 41% 

Sarasota County -2.7 -3.9 30% 

Seminole County -3.0 -4.8 37% 

St. Johns County -4.2 -6.6 36% 

St Lucie County 2.3 3.4 31% 

Sumter County -0.3 -0.6 48% 

Suwannee County 0.4 0.6 40% 

Taylor County 0.1 0.3 47% 

Union County 0.1 0.2 46% 

Volusia County -1.9 -2.7 31% 

Wakulla County -0.4 -0.6 28% 

Walton County -0.9 -1.4 36% 

Washington County -0.3 -0.5 35% 
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Table 30 Estimated Asthma Exacerbation ED using Prevalence in BenMAP and Prevalence 

by County 

County 

Change in Annual Asthma Exacerbation ED Visits 
using Prevalence 
in BenMAP 
County 

using Prevalence by 
County from Aim3 % Difference 

Total Change in Florida -183 -265 31% 

Alachua County -4.0 -6.3 36% 

Baker County -0.3 -0.4 25% 

Bay County -0.9 -1.3 37% 

Bradford County -0.2 -0.3 44% 

Brevard County -2.9 -4.8 39% 

Broward County -19.0 -27.2 30% 

Calhoun County -0.1 -0.2 56% 

Charlotte County -0.7 -1.1 35% 

Citrus County -0.4 -0.7 45% 

Clay County -1.0 -1.5 31% 

Collier County -1.5 -2.0 25% 

Columbia County -0.6 -0.9 35% 

DeSoto County -0.1 -0.3 49% 

Dixie County 0.0 0.0 13% 

Duval County -21.9 -28.9 24% 

Escambia County -0.5 -0.7 29% 

Flagler County -0.2 -0.3 29% 

Franklin County 0.0 0.1 52% 

Gadsden County -0.3 -0.4 26% 

Gilchrist County 0.0 0.0 42% 

Glades County 0.0 0.0 26% 

Gulf County 0.0 0.0 42% 

Hamilton County -0.1 -0.1 33% 

Hardee County 0.2 0.3 27% 

Hendry County -0.1 -0.2 34% 

Hernando County -0.5 -1.0 48% 

Highlands County -0.5 -0.7 33% 

Hillsborough County -15.0 -22.5 33% 

Holmes County -0.1 -0.2 35% 

Indian River County -0.2 -0.2 35% 

Jackson County -0.5 -0.6 23% 

Jefferson County -0.1 -0.1 33% 

Lafayette County 0.0 -0.1 69% 

Lake County -2.5 -4.0 37% 
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Table 30 Estimated Asthma Exacerbation ED from BenMAP using Prevalence in BenMAP 

and Prevalence by County continued … 

County 

Change in Annual Asthma Exacerbation ED Visits 

using Prevalence in 
BenMAP County 

using Prevalence 
by County from 
Aim3 % Difference 

Total Change in Florida -183 -265 31% 

Lee County -4.2 -5.8 28% 

Leon County -3.5 -5.0 29% 

Levy County 0.0 0.0 34% 

Liberty County 0.1 0.1 52% 

Madison County 0.9 1.3 34% 

Manatee County -1.5 -2.2 32% 

Marion County 1.2 1.6 26% 

Martin County 0.4 0.7 37% 

Miami Dade County -18.7 -24.6 24% 

Monroe County -0.7 -1.1 38% 

Nassau County -0.9 -1.3 32% 

Okaloosa County -1.6 -2.3 33% 

Okeechobee County -0.4 -0.6 34% 

Orange County -14.4 -20.5 30% 

Osceola County -4.0 -6.4 37% 

Palm Beach County -13.2 -19.1 31% 

Pasco County -3.0 -4.9 38% 

Pinellas County -17.4 -26.6 35% 

Polk County -20.2 -29.9 32% 

Putnam County -1.3 -2.0 37% 

Santa Rosa County -0.2 -0.4 43% 

Sarasota County -1.7 -2.5 33% 

Seminole County -1.9 -3.0 36% 

St. Johns County -2.3 -3.7 39% 

St. Lucie County 1.3 2.1 36% 

Sumter County -0.2 -0.4 50% 

Suwannee County 0.2 0.4 38% 

Taylor County 0.1 0.2 49% 

Union County 0.1 0.1 49% 

Volusia County -1.1 -1.6 31% 

Wakulla County -0.3 -0.4 29% 

Walton County -0.5 -0.7 34% 

Washington County -0.2 -0.3 31% 
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CHAPTER FIVE: DISCUSSION 

 

5.1 Summary of Findings 

This study reviewed BenMAP manuals and published literature, and observed that the 

prevalence rates preloaded in BenMAP software varied from 7.4% to 17.3% for asthma 

exacerbation, 9.41%-17.76% for asthma prevalence rates and, asthma ED visit was 8.65 per 1,000.  

These prevalence rates for asthma differ from those published by FLDEP (20.59 %, Appendix 

3.1).  Asthma ED visit rates are 1.6 times higher than rates published by FLDEP (2016, 

Appendix1b). If rates present in BenMAP are used for the HIA method then the change in asthma 

ED visits estimated by BenMAP will be an overestimate.  There are no baseline rates for asthma 

exacerbation ED visits in BenMAP, asthma exacerbation is a more severe case. The prevalence for 

exacerbation ED visits is noted to be lower than prevalence of asthma ED visits. For Florida, the 

exacerbation rates have been reported to be only 36% of all asthma ED visits (FAP 2014), using 

asthma ED visit prevalence rates will tend to overestimate the exacerbation by 64%.  

 

CR functions in USEPA’s BenMAP were developed using different studies to estimate 

asthma hospital visits, asthma emergency rates, and asthma exacerbation rates (USEPA, 2015). 

Each of the studies are based in different locations, have different endpoints and have used 

different statistical models for analysis. CR functions for asthma emergency room visits, which are 

based on beta values, utilized studies from the US West coast, and are not representative of the US 

East coast due to several factors. The main differences between West coast populations and the 
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Florida population are the size of populations, age, gender and race/ethnicity distribution, weather, 

and pollutant concentrations. All three West coast studies were based in Seattle or nearby areas, 

which are at higher altitude than any area in Florida. The West coast climate patterns are defined 

by four seasons while Florida is more tropical with warm/wet and cold/ drier seasons. Florida is 

more prone to hurricanes and heavy rainfall during the summer season, while in Seattle it rains 

during winter and early-spring season.  Average humidity and dew points are higher in Florida 

than in Washington State. Population density in Seattle and its neighboring areas is higher than in 

metropolitan cities of Florida, like Miami. A detailed review of the BenMAP documentation and 

EPA’s-IRA reveal that the studies used for prevalence and CR functions base their estimates on 

population studies conducted 15 years ago or more. Prevalence and incidence rates have changed 

for asthma and asthma exacerbation over the past ten years. In Florida, asthma rates are showing a 

general increase. The observed trend in Florida is opposite that of published rates in BenMAP, 

which show a general decrease in trend using National data. The location where the studies were 

conducted, and timing of the studies used in BenMAP, makes a valid argument that to use 

BenMAP effectively for HIA in Florida, one may have to update the prevalence rates and CR 

functions in BenMAP with Florida data.  

 

The prevalence rate for asthma ED visits for school-aged children ages 5-18 for Florida 

was 7.57 per 1,000, and for exacerbation was 4.51 per 1,000. The rates varied by race/ethnicity 

where Black not Hispanic had higher prevalence rates for asthma and asthma exacerbation. This 

disparity is also seen in the report published by FAP (2014). Rates published by FAP are higher 

than in this analysis (21.7), since the FAC 2014 report considered primary and secondary diagnosis 

for asthma in the prevalence rates. The present analysis considers only primary diagnosis of 
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asthma. To overcome the variation in the prevalence rates, for this analysis the prevalence rates 

were averaged over three years 2010-2012. Prevalence rates have increased over time in Florida 

which is contrary to changing trends in asthma prevalence published by Akimbami et. al (2016).  

Akinbami et. al. (2016) have published that asthma prevalence rates will decrease in the North 

East region of USA. This further strengthens the reasoning why local level prevalence rates should 

be used when available to decrease uncertainties and improve estimation of change in health 

outcome like asthma ED visits or asthma exacerbation ED visits.  

 

The prevalence of asthma and asthma exacerbation is higher for the younger age group (5-

12) than the older age group (13-18). This is similar to the results published in FLDOH 2014. 

According to the report, elementary school children had higher rates of asthma attacks, and 

significantly higher lifetime prevalence than middle and high school children. These findings are 

similar to Gan et. al (2014), where the author described that the burden of asthma is highest for 

ages 10-14.  The asthma and exacerbation ED prevalence rates were higher for males than for 

females. Similar gender difference has been published in several studies (CDC 2008; ALA 2007; 

and FAC 2013). The gender disparity seems to diminish in older age groups similar to the 

published literature, which has documented that under the age of 15 years, boys have higher 

morbidity, hospital admission and emergency visits than girls (Bloom 2007, CDC 2008, FAP 

2014).  

 

Racial disparity for asthma has been well documented in several studies which is similar to 

the results found in this study (Akinbami 2002, ALA 2007, Akinbami 2016, FLDOH 2013). Non-

Hispanic Blacks have been documented to have higher asthma prevalence than non-Hispanic 
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White and Hispanics. The results of this analysis show that the prevalence rates used for 

calculating the impact of PM2.5 should be at the county level, and stratified by race/ethnicity, age 

group and gender for Florida. These rates help to predict change in asthma or asthma exacerbation 

when there is a change in PM2.5 after controlling for county. Using race ethnicity, age group and 

gender specific prevalence baseline rates will be helpful for Health Impact Assessments when 

planning for a community or group of individuals based on race ethnicity, age group and gender. 

Adjusting or controlling for county will help in decreasing uncertainties and variance across 

counties in Florida.   

 

Asthma exacerbation is a consequence of poor management of severe cases resulting in 

multiple visits to ED or hospitals. The analysis of FLDOH and FAC (2013) shows that 36% of all 

asthma visits are ED visits or hospitalization. The results of the present study show that almost 

60% of all asthma ED visits are coded as exacerbation visits. This study highlights that in the 

younger age group asthma management may be more crucial and important to control asthma and 

prevent exacerbations and repeat patient visits.    

 

Monitor data were used in the present study instead of model data, since the monitoring 

data were available for the same time frame as the asthma ED visit data from FLDEP. Model data 

in BenMAP is over 7-8 years old and needs to be updated. Using any other model data than 

CMAQ would require reconfiguring of the grid definitions in BenMAP, which compromise the 

accuracy of the grid analysis in BenMAP.  
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 In this study, using time-series analysis to study temporal and spatial variation, monthly 

concentration of PM2.5 varies over the year. The highest concentrations are found from March to 

July. The concentration of PM2.5 also varies across the counties, and has decreased over time. The 

decrease over time is due to more stringent air quality controls by EPA, and the result of ongoing 

emission reductions from industrial facilities and motor vehicles.  The downward trend has been 

reported by FL DEP since a decade. 

 

Time series Poisson models were used to develop odds ratios to estimate the association 

between asthma ED visits and PM2.5 concentrations. Since monitors are located in only 17 of the 

67 counties, and all of those are urban counties, the time series model only used asthma ED visit 

and exacerbation ED visits for these 17 counties. The location of these monitors is mandated by FL 

DEP, and is based on population orientation and multi-pollutant sites. Using the time series 

analysis of PM2.5 localized CR functions were obtained. These CR functions have a low 

association between PM2.5 (10µg /m3), asthma exacerbation odds ratio for age group 13-18 was 

1.004, (CI=1.001-1.008), while for 5-12 age group was 1.014, (CI=1.0004-1.025).  The lower 

association of PM2.5 in the older age group could be due to the fact that the majority of asthma 

exacerbations are reported to be virus-induced or stronger association of exacerbation to exposure 

of seasonal allergens (Murray 2004). This study did not evaluate exacerbation due to viral 

infections or seasonal allergens. However, it should be noted that asthma exacerbations are 

conditionally dependent on asthma prevalence. This study highlights that an increase of 10 µg/m3 

of PM2.5 contributes about 2% to asthma ED visit rate in children 5-12, and lower for 13-18 olds 

(0.6%).  One could estimate the change in asthma prevalence in Florida by age, gender and 

race/ethnicity, and use these to estimate asthma exacerbation in Florida counties, paying particular 
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attention to areas which have higher Black non-Hispanic populations.   The literature highlights 

that if asthma is not managed properly, then it can result in decrease of lung function and leading 

to respiratory failure, imposing asocial and medical burden (Kurai, 2013). 

 

5.2 Consistent with Literature 

 The prevalence rate for asthma ED visit for school-aged children ages 5-18 for Florida was 

7.57 per 1,000 and for exacerbation was 4.51 per 1,000; these rates are similar to those published 

by FAP (2014), where ED visit for 0-17 was 8.2 per 1,000 and exacerbation was 5.1 per 1,000. 

The rates published by FAC (2014) are higher since they include children below age of 5, who 

have been reported to been seen at a higher rate (Akinbami, 2007). 

 

National ED rates for asthma are 8.65 per 1,000; the CR function in BenMAP for asthma 

ED visits ranges from 0.0029 -0.0191 while in this study beta for asthma Ed visits was found to be 

0.0020 for 5-11year old and 0.0006 for 12-18year old.    The present study highlights that local 

Florida CR functions and local prevalence rates differ from national CR functions and local 

prevalence rates. These results are consistent with results published for a Detroit study by Hubbell 

et. al. (2006), which states that there is a need for regional CR functions for local HIA to be 

reliable and have lower uncertainties.  

 

Literature published by Murray (2004), Sykes (2008) and Kurai(2013) have indicated that 

viral and bacterial infections are major contributors to asthma exacerbations while air pollution is a 

minor contributor. The results of this study confirm that for exacerbation the association with 

PM2.5 is very weak, it may have stronger association with other lung irritants like NO2. However, 
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the literature has clearly documented that there are clear differences between gender and race 

ethnicity this is also highlighted in the results of the present study.  

 

5.3 Study Contributions  

 There are three major contributions of this study. Firstly, the study contributes to 

publishing childhood asthma emergency department prevalence and exacerbation rates in the State 

of Florida by age group, race/ethnicity and gender.  

 

The second contribution is, development of concentration response functions specific to 

Florida using the time series analysis to show the impact of PM2.5 on asthma exacerbation 

emergency department visits, incorporating both temporal and spatial variability of PM2.5 during 

the study period.   

 

Finally, the study demonstrates the utility of using local (county-level) asthma rates and 

local pollutant data for State Health Impact Assessments in Florida. The local PM2.5 data in 

BenMAP can be used for other health outcome assessments, researchers will only have to update 

the prevalence rates for the health outcome used in their study. 

 

This study supports recommendations to avoid high levels of PM2.5 concentration to avoid 

the financial burden of asthma on state and payer, as the cost of care has had a sharp increase in the 

past decade.   The results of this study inform the asthma management programs of the areas in 

Florida which have higher pollutant concentrations. This information is useful to asthma 

management programs to formulate recommendations for potentially susceptible groups such as 
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asthmatic school age children in communities with high rates of asthma ED visits and high air 

pollutant concentrations. Even though this study is based on a single pollutant model, it brings an 

important contribution to the medical society that knowing the pollutant measurements and surges 

of pollutant levels, physician offices can facilitate better planning for asthma management, and 

provide recommendations to established patients for management of asthma through medications 

or avoiding areas with higher pollutant surges to avoid ED or hospital visits. Alerts to physician’s 

offices can be generated via an application from FL-EPHT which monitors the air pollution surges 

issued by air pollution advisories of FL-EPA. 

  

5.4 Study Strengths 

 A major strength of this study is that it included a larger number of pediatric asthma and 

asthma exacerbation ED visits in comparison with other published studies. This study publishes 

the ED rates by county and by gender, race and ethnicity from 2010 to 2014, which are recent rates 

and have not been published to such granularity by the State or by any other researcher. The 

reported prevalence rates of childhood asthma and asthma exacerbation rates are also published for 

Florida counties. 

 

Another strength of this study includes the use of air pollution measurements from the 

monitors in Florida to quantity exposure at county level. The study uses USEPA’s BenMAP to 

quantify the PM2.5 exposure at the county level for counties which do not have monitors using 

Voronoi  neighbor averaging (VNA) spatial scaling method (Wang et al, 2013; EPA 2014). The 

study also contributes to input of PM2.5 monitor data for Florida during 2010-2014 in BenMAP. 

Current pollutant data in BenMAP is only available through 2008, and EPA has recommended it 
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should be updated for analysis purposes. These data can be used for other health outcomes 

measures estimations using PM2.5 as the exposure.  The study uses local air pollutant data and local 

asthma prevalence rates to estimate the effect of change in pollutant on asthma exacerbation. 

Estimation using local data will be less prone to uncertainties using National level data, the use of 

local data has been emphasized by Levy (2005), Fann et. al. (2008) and Hubbel et. al.  (2009). 

 

 Further, the study uses an established time series and GEE method to quantify the 

association between PM2.5 and asthma rates.  The CR from the present study were pooled with CR 

functions in BenMAP, and those identified in the peer reviewed literature, using a random effects 

method. The random effects model assists in combining overlapping estimates of health outcome 

from various models to generate a single mean effect while accounting for heterogeneity across 

studies. The random effects model helps to calculate the weighted average across the studies, using 

the weights calculated from the variance and overlap of the studies.  

5.5 Study Limitations 

Several limitations should be considered when interpreting this study. The limitations 

observed in this study are common to environmental and observational studies that have assessed 

the environmental predictors associated with childhood asthma or outcomes associated with 

criteria air pollutants including the uncertainties imposed by CR-functions, pollutant concentration, 

baseline incidence rates and estimates of the exposed population.  

 

This study relies mainly on AHCA ED visit data for asthma outcome data, and EPA’s air 

monitoring data for PM2.5. None of these data sources were collected for research purposes or with 

the intent of addressing research aims of this study. Hence, the data collection process, reporting 
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protocols, overall quality and timing of onset of outcome may have resulted in uncertainties and 

misclassification in analysis.  

 

Misclassification of Asthma and Asthma Exacerbation 

These analyses use ED visits as reported to Florida AHCA by the hospital, and the cases of 

asthma and asthma exacerbations were identified using the ICD-9-CM diagnosis codes available in 

ED discharge records.  There could be misclassification of asthma cases due to inaccurate 

diagnostics coding on medical records, distinguishing other respiratory illnesses, i.e. bronchitis, 

from asthma especially in the pediatric population (Brauer et. al.. 2007). ED claims records also 

reflect healthcare utilization patterns, which differ by income level, race or age (Boudreaux et. al. 

2003; Shields et. al.. 2004), and may have introduced selection bias in this study.  

 

Misclassification of Onset Asthma or Asthma Exacerbation Attack 

Onset of asthma and exacerbation attack is an important determination of exposure to 

pollutant in this study, its accuracy measurement is fairly important. Since the data were collected 

previously for administrative purposes, the exact date on onset of asthma or asthma exacerbation 

cannot be determined, and solely relies on when the patient is seen in the ED setting, the lag 

calculated in the study is delayed from true onset to actual recording of a case in ED.   

 

Misclassification of Exposure  

The study did not collect personal pollutant exposure, it rather relied on values averaged 

across monitor data in the county or to the nearest monitor to county near patient county. This 

method introduces potential uncertainties and exposure misclassification. This method assumes 
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same risk estimates across all neighborhoods within the county, and, in addition, the personal 

effects are not taken into account (i.e., the subject in same county are  assigned the same PM2.5 

level exposure). As within-county or city exposure variations are not considered in this study the 

misclassification to personal exposure, which are inherent, cannot be quantified in this study.  

 

Deviation from Temporal Overlapping Assumption 

The association models using GEE to calculate CR functions are based on the “temporal 

ordering assumption” (Diggle et. al., 2005). This assumption specifies that exposure must occur 

before the onset of outcome. It is assumed that asthma and exacerbation cases resided in the same 

county as they were admitted in and the onset of asthma or exacerbation was due to ambient air 

pollutant concentration before onset of outcome, inferring causality between outcome and 

exposure. Cox (2012) has questioned this assumption, whether any relationship should be seen as 

causal at PM2.5 level in environmental epidemiological studies, where evidence lacks the rigor to 

infer causality. 

 

Uncertainty of Risk Estimates due to CR functions 

The magnitude of pollutant attributable estimates is limited by uncertainty of risk estimates 

using CR functions derived from the epidemiological literature (Hubbell et. al., 2009). These risk 

estimates rely on multi-city or county level estimates, and introduce uncertainty in the risk 

estimates and cannot quantify how neighborhood-level CR functions vary across urban cities. This 

study minimized this uncertainty by using local Florida level CR function for counties. However, 

due to data limitations this study could not examine effect modification due to city-level 
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characteristics. It does, provide evidence that race/ethnicity, age group and gender may modify 

short-term risks attributable to asthma ED visits and exacerbation ED visits.  

 

5.6 Future Direction 

 
 The present research study highlights the need to further refine “air quality” or spatial grids 

in BenMAP to the zip code level in order to facilitate a study of childhood asthma at the 

neighborhood level. Subjects who grow up in poorer areas with lower SES may be more 

susceptible to air pollution-related asthma and asthma exacerbation. There is enough evidence 

from published literature that ethnicity, family income and education effect dietary intake among 

adolescents (Xie et. al,2003). The food intake will effect the vitamin and mineral intake and  

absorption into the body. Food habits and quality of food has been linked to body weight, 

cognitive skills and performance in children and adolescents (Rampersaud et.al., 2005). Observed 

changes in intake dietary trends among children and adolescents from 2000 to 2010 has lead to a 

change in intake of macronutrients and sources of energy in children (Ervin et. al.,2013). With 

changes  in dietary habits which have been published in literature the becomes even more 

important to study, how diet influences individual level reaction to change in pollutant levels. 

Vitamin B and its components have been known to help individual cells in body to perform many 

different jobs including release of energy and fight during infection. A recent published study 

states that vitamin-B supplementation prevents DNA methylation changes due to PM2.5 (Zhong 

et.al,, 2017).  More research is needed to understand the interaction between pollutant exposures, 

diet intake and individual-level  response to exposure leading to short-term asthma exacerbations.  

Studies designed to study diet and individual level response to air pollutnats may help us 

understand social injustices in areas with diverse populations.  
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  A population-based study in conjunction with Florida Asthma Collation (FAC) using asthma 

cases from doctor’s practices in different cities in Florida is needed to understand asthma case 

management at the community level.  Working with doctor’s offices directly,  researchers could 

quantify personal exposures, and decrease their misclassification. This method will also help in 

reducing misclassification of asthma outcome and deviations from the “temporal ordering 

assumption”.  Working with doctor’s offices will further minimize the misclassification of asthma 

cases due to inaccurate diagnostics coding on medical records, and help to distinguish other 

respiratory illnesses from asthma. This future work can include urban and rural area analyses to 

document how asthma differs with location, development and social factors.  

 

 Future work should include weather-related variables (e.g. wind speed, barometric pressure 

and relative humidity) and other allergen variables in the analyses. Wind speed, barometric pressure 

and relative humidity can affect exposure to the pollutant concentration and allergens. Resultant 

analyses should provide a better measure of the true association of the pollutants with asthma or 

asthma exacerbations. Effort should also be made to study multi-pollutant models to understand 

collinearity between pollutants and other markers of PM2.5. Experimental and observational studies 

can continue to provide indications of key exposure parameters, and PM sources associated adverse 

effects of asthma in a managed care setting. 
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APPENDICES 

Appendix 1: List of Acronyms 

AHCA- Agency of Health Care Administration 

BenMAP - Benefit Mapping and Analysis Program 

BRFSS - Behavior Risk Factor Surveillance System 

CDC -  The Center of Disease Control 

CR function–Concentration Response Function 

ED - Emergency Department 

EPA - Environmental Protection Agency 

EPHT- Environmental Protection Health Tracking 

FYTS – Florida Youth Tobacco Survey 

HIA -  Health Impact Analysis 

RTP- Research Triangle Park, North Carolina 

NAMCS - National Ambulatory Medical Care Survey  

NHAMCS - National Hospital Ambulatory Medical Care Survey  

NHIS - National Health Information Survey  

NNEMS- National Network for Environmental Management Studies Fellowship 

NSCH - National Survey of Children’s Health 

OR -  Odds ratio 

VOCs  - Volatile Organic Compounds. 
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VNA- Voronoi  neighbor averaging 

YRBSS- Youth Risk Behavior Surveillance System  



172 

Appendix 2: ICD9 Codes for Asthma 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source : ICD9data.Com by Alkaline Software  

http://www.icd9data.com/2015/Volume1/460-519/490-496/493/default.htm#493  

Asthma 493- > 

• A chronic disease in which the bronchial airways in the lungs become narrowed and swollen, making it 
difficult to breathe. Symptoms include wheezing, coughing, tightness in the chest, shortness of breath, 
and rapid breathing. An attack may be brought on by pet hair, dust, smoke, pollen, mold, exercise, cold 
air, or stress. 

• A chronic respiratory disease manifested as difficulty breathing due to the narrowing of bronchial 
passageways. 

• A form of bronchial disorder with three distinct components: airway hyper-responsiveness (respiratory 
hypersensitivity), airway inflammation, and intermittent airway obstruction. It is characterized by 
spasmodic contraction of airway smooth muscle, wheezing, and dyspnea (dyspnea, paroxysmal). 

• Asthma is a chronic disease that affects your airways. Your airways are tubes that carry air in and out of 
your lungs. If you have asthma, the inside walls of your airways become sore and swollen. That makes 
them very sensitive, and they may react strongly to things that you are allergic to or find irritating. When 
your airways react, they get narrower and your lungs get less air symptoms of asthma include 

o wheezing 

o coughing, especially early in the morning or at night 

o chest tightness 

o shortness of breath 
not all people who have asthma have these symptoms. Having these symptoms doesn't always mean that 
you have asthma. Your doctor will diagnose asthma based on lung function tests, your medical history, 
and a physical exam. You may also have allergy tests when your asthma symptoms become worse than 
usual, it's called an asthma attack. Severe asthma attacks may require emergency care, and they can be 
fatal asthma is treated with two kinds of medicines: quick-relief medicines to stop asthma symptoms and 
long-term control medicines to prevent symptoms. 

• Form of bronchial disorder associated with airway obstruction, marked by recurrent attacks of paroxysmal 
dyspnea, with wheezing due to spasmodic contraction of the bronchi. 

• 493 Asthma  

• 493.0 Extrinsic asthma  

• 493.00 Extrinsic asthma, unspecified convert 493.00 to ICD-10-CM 

• 493.01 Extrinsic asthma with status asthmaticus convert 493.01 to ICD-10-CM 

• 493.02 Extrinsic asthma with (acute) exacerbation convert 493.02 to ICD-10-CM 

• 493.1 Intrinsic asthma  

• 493.10 Intrinsic asthma, unspecified convert 493.10 to ICD-10-CM 

• 493.11 Intrinsic asthma with status asthmaticus convert 493.11 to ICD-10-CM 

• 493.12 Intrinsic asthma with (acute) exacerbation convert 493.12 to ICD-10-CM 

• 493.2 Chronic obstructive asthma  

• 493.20 Chronic obstructive asthma, unspecified convert 493.20 to ICD-10-CM 

• 493.21 Chronic obstructive asthma with status asthmaticus convert 493.21 to ICD-10-CM 

• 493.22 Chronic obstructive asthma with (acute) exacerbation convert 493.22 to ICD-10-CM 

• 493.8 Other forms of asthma  

• 493.81 Exercise induced bronchospasm convert 493.81 to ICD-10-CM 

• 493.82 Cough variant asthma convert 493.82 to ICD-10-CM 

• 493.9 Asthma unspecified  

• 493.90 Asthma,unspecified type, unspecified convert 493.90 to ICD-10-CM 

• 493.91 Asthma, unspecified type, with status asthmaticus convert 493.91 to ICD-10-CM 

• 493.92 Asthma, unspecified type, with (acute) exacerbation convert 493.92 to ICD-10-CM 

http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.0.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.0.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.00.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.00.htm
http://www.icd10data.com/Convert/493.00
http://www.icd10data.com/Convert/493.00
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.01.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.01.htm
http://www.icd10data.com/Convert/493.01
http://www.icd10data.com/Convert/493.01
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.02.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.02.htm
http://www.icd10data.com/Convert/493.02
http://www.icd10data.com/Convert/493.02
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.1.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.1.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.10.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.10.htm
http://www.icd10data.com/Convert/493.10
http://www.icd10data.com/Convert/493.10
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.11.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.11.htm
http://www.icd10data.com/Convert/493.11
http://www.icd10data.com/Convert/493.11
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.12.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.12.htm
http://www.icd10data.com/Convert/493.12
http://www.icd10data.com/Convert/493.12
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.2.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.2.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.20.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.20.htm
http://www.icd10data.com/Convert/493.20
http://www.icd10data.com/Convert/493.20
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.21.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.21.htm
http://www.icd10data.com/Convert/493.21
http://www.icd10data.com/Convert/493.21
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.22.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.22.htm
http://www.icd10data.com/Convert/493.22
http://www.icd10data.com/Convert/493.22
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.8.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.8.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.81.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.81.htm
http://www.icd10data.com/Convert/493.81
http://www.icd10data.com/Convert/493.81
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.82.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.82.htm
http://www.icd10data.com/Convert/493.82
http://www.icd10data.com/Convert/493.82
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.9.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.9.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.90.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.90.htm
http://www.icd10data.com/Convert/493.90
http://www.icd10data.com/Convert/493.90
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.91.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.91.htm
http://www.icd10data.com/Convert/493.91
http://www.icd10data.com/Convert/493.91
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.92.htm
http://www.icd9data.com/2015/Volume1/460-519/490-496/493/493.92.htm
http://www.icd10data.com/Convert/493.92
http://www.icd10data.com/Convert/493.92
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Appendix 3: Prevalence Of Childhood Asthma , 2006-2012 

Appendix 3.1 Prevalence of  Lifetime Asthma in Middle and High School student in Florida 

Percent of middle and high school students who have ever been told they have asthma 

Percent by County, All Genders, All Races, All Ethnicities, 10 to 20 Years old 

County 2006 2008 2010 2012 

Florida 17 18 18.4 20.59 

Alachua   21.23 19.93 23.56 

Baker 18.35 19.9 21.33 22.59 

Bay 17.33 18.53 19.64 19.71 

Bradford 21.39 16.09 21.97 22.1 

Brevard 17.77 17.95 20.5 19.92 

Broward 13.02 15.3 16.2 17.77 

Calhoun 19.62 21.06 24.04 20.64 

Charlotte 14.65 15.83 18.51 21.96 

Citrus 18.6 17.98 19.06 21.98 

Clay 19.05 18.9 19.15 19.97 

Collier 11.42 13.92 12.07 12.77 

Columbia 18.39 20.04 23.76 21.91 

DeSoto 13.36 12.15 15.77 16.78 

Dixie 21.07 21.95 22.48 27.56 

Duval 18.86 18.67 19.9 22.97 

Escambia 19.2 20.22 19.1 22.24 

Flagler 16.05 16.8 19.89 22.93 

Franklin 20.45 24.98 30.8 25.64 

Gadsden 18.99 16.94 17.58 21.91 

Gilchrist 21.94 20.29 22.39 22.23 

Glades 12.57 13.93 16.87 19.51 

Gulf 22.28 22.69 21.42 17.52 

Hamilton 16.43 20.6 24.91 16.02 

Hardee 16.06 13.89 16.43 18 

Hendry 16.14 17.15 20.51 19.44 

Hernando 19.51 20.53 21.96 25.65 

Highlands 16.78 21.68 20.11 21.13 

Hillsborough 18.95 21.15 18.39 23.17 

Holmes 15.93 15.62 17.36 18.91 

Indian River 16.94 17.36 14.7 18.36 

Jackson 18.74 21.98 21.76 22.24 

Jefferson 14.5 16.69 15.33 22.79 

Lafayette 17.02 13.42 23.97 19.94 

Lake 18 18.23 18.55 19.52 
Source: Florida Department of Health, Bureau of Epidemiology, June 2016 
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Appendix 3.1 Prevalence of  Lifetime Asthma in Middle and High School student in Florida 

 (continued) 

Percent of middle and high school students who have ever been told they have asthma 

Percent by County, All Genders, All Races, All Ethnicities, 10 to 20 Years old 

County 2006 2008 2010 2012 

Florida 17 18 18.4 20.59 

Lee 14.53 17.23 16.47 17.83 

Leon 16.47 17.97 21.17 19.53 

Levy 19.29 19.26 21.82 21.18 

Liberty 19.58 22.46 29.14 26.81 

Madison 15.65 16.18 20.29 16.11 

Manatee 17.4 15.74 18.25 20.02 

Marion 17.3 19 20.23 20.53 

Martin 15.41 16.21 17.3 16.74 

Miami-Dade 16.63 17.12 18.71 21.45 

Monroe 13.35 15.62 17.08 17.8 

Nassau 13.77 20.15 17.33 21.13 

Okaloosa   20.14 18.53 21.04 

Okeechobee 15.51 18.38   20.22 

Orange 14.83 17.95 17.92 20.48 

Osceola 15.27 19.86 22.19   

Palm Beach 16.04 16.29 16.08 19.37 

Pasco 17.25 18.58 20.9 22.14 

Pinellas 16.69 20.89 16.73 21.02 

Polk 18.35 20.51 20.51 22.7 

Putnam 20.06 22.36 20.17 21.98 

Santa Rosa 15.2 18.57 20.07 21.62 

Sarasota 15.38   19.51 19.46 

Seminole 16.56 17.36 18.37 19.86 

St. Johns 14.88 18.03 19.64 19.75 

St. Lucie 15.25 16.89 16.78 21.54 

Sumter 16.51 19.96 19.36 22.76 

Suwannee 18.82 18.9 18.76 20.3 

Taylor 19.01 22.05 22.62 24.69 

Union 20.28 20.71 20.24 23.31 

Volusia 17.63 17.53 19.12 22.22 

Wakulla 18.63 21.79 21.37 25.85 

Walton 13.71 16.66 19.17 18.79 

Washington 18.01 15.16 16.39 14.94 
Source: Florida Department of Health, Bureau of Epidemiology, June 2016 
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Appendix 3.2 Crude rate of asthma emergency department visits per 10,000 for Florida 

Crude rate of asthma emergency department visits per 10,000 

Rate by County, All Genders, All Races, All Ethnicities, 0 to 17 Years old 

County 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Florida 86.01 85.28 83.83 83.56 98.31 103.78 104.39 115.44 116.05 118.77 

Alachua 65.56 64.5 75.2 70.47 69.08 68.16 80.62 95.3 92.35 94.91 

Baker 94.92 97 114.07 90.41 85.01 77.73 77.24 92.42 102.87 101.09 

Bay 65.58 76.86 68.33 67.99 70.46 80.37 76.23 95.61 77.23 92.32 

Bradford 121.46 97.74 102.09 94.87 110.75 95.98 95.27 126.26 123.51 80.83 

Brevard 52.54 57.62 54.76 58.54 66.48 57.49 63.18 75.87 77.64 84.6 

Broward 95.32 97.4 97.48 97.38 111.28 123.82 129.27 156.7 146.42 145.04 

Calhoun 28.77 60.64 70.09 76.73 102.11 80.91 100.32 122.56 117.66 98.37 

Charlotte 64.7 48.96 51.99 45.37 70.49 62.11 75.97 78.51 80.83 94.7 

Citrus 54.04 45.67 56.17 44.4 52.31 41.97 47.61 55.48 50.88 65.66 

Clay 52.82 45.74 53.31 53.59 67.17 53.17 49.6 63.16 75.36 88 

Collier 54.3 59.58 54.07 60.34 66.83 66.1 65.34 71.47 81.73 86.26 

Columbia 69.49 74.39 80.33 61.31 65.85 58.62 74.21 101.08 101.21 111.57 

DeSoto 127.31 122.02 101.63 94.87 73.06 68.97 50.45 63.18 75.32 65.31 

Dixie 24.46 36.04 35.93 29.69 * 22.51 29.3 26.02 49.65 23.29 

Duval 114.01 105.4 109.76 110.49 121.17 109.55 112.05 132.86 151.22 151.81 

Escambia 125.75 126.16 125.15 124.65 139.69 142.67 133 140.62 142.94 153.52 

Flagler 70.95 104.42 90.69 91.46 91.16 107.91 104.86 88.84 86.86 89.37 

Franklin 131.39 124.2 128.63 132.68 192.8 205.97 129.87 108.3 114.4 71.83 

Gadsden 61.92 62.68 89.02 85.5 135.32 179.64 264.66 256.23 298.15 275.94 

Gilchrist 38.1 38.38 29.58 24.43 30.1 29.33 26.89 * 27.51 50.18 

Glades 46.86 62.45 79.65 62.4 62.57 74.1 45.85 * 49.27 53.15 

Gulf 44.28 27.56 24.36 42.25 46.56 111.55 68.63 81.09 86.31 123.46 

Hamilton 80.36 73.23 75.93 53.59 66.79 38.1 94.34 131.16 127.31 122.07 

Hardee 111.02 89.12 74.18 89.59 85.65 113.99 103.74 118.77 107.51 82.1 

Hendry 96.86 108.19 117.82 104.81 133.17 117.11 123.75 113.7 169.8 136.22 

Hernando 57.06 59.85 66.27 59.12 72.91 55.89 73.35 86.98 107.2 99.82 

Highlands 88.86 79.62 68.45 74.2 99.44 85.94 84.42 94.7 127.81 110.16 

Hillsborough 85.93 75.04 72.42 72.35 86.29 90.38 85.58 90 89.77 101.99 

Holmes 42.36 42.71 33.53 53.81 36.5 69.16 86.54 48.42 82.51 41.56 

Indian River 63.74 64.84 76.08 52.89 78.25 73.35 72.69 83.04 69.04 102.86 

Jackson 75.28 80.78 66.77 73.17 78.56 87.94 120.54 111.94 138.64 152.4 

Jefferson 52.5 41.61 52.14 41.54 55.54 44.63 71.35 108.1 129.81 136.45 

Lafayette 69.14 43.21 87.72 68.07 * 28.69 29.34 44.37 49.56 33.06 

Lake 61.83 60.53 63.09 59.48 66.71 68.36 66.22 72.87 61.9 68.73 

 Source: EPHT , Florida Agency for Health Care Administration June 2016 
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Appendix 3.2 Crude rate of asthma emergency department visits per 10,000 for Florida…continued  

Crude rate of asthma emergency department visits per 10,000 

Rate by County, All Genders, All Races, All Ethnicities, 0 to 17 Years old 

County 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Lee 70.61 75.51 71.04 75.53 94.59 107.1 113.91 118.85 106.45 104.33 

Leon 59.57 53.7 58.34 58.36 73.37 67.17 77.58 82.29 100.91 110.22 

Levy 76.34 60.86 63.28 41.95 57.76 49.2 64.95 79.6 67.84 107.79 

Liberty 59.95 164.51 91.95 67.64 119.39 127.98 140.52 107.43 122.69 148.28 

Madison 91.2 110.47 228.28 174.26 178.19 214.72 233.96 205.9 225.73 156.49 

Manatee 82.09 60.73 55.58 57.57 65.54 75.51 67.67 80.84 91.37 90.87 

Marion 117.31 84.82 80.77 85.93 120.96 136.75 119.54 132.32 120.78 111.4 

Martin 45.31 44.62 38.82 33.59 48.74 60.1 58.58 51.43 50.82 60.15 

Miami-Dade 116.05 122.81 104.12 102.03 121.91 147.97 146.4 155.13 144.86 142.03 

Monroe 40.15 63.79 44.68 62.31 87.11 84.46 92.87 81.78 82.07 108.73 

Nassau 61.74 53.05 61.6 81.04 78.83 67.01 73.8 81.55 86.18 93 

Okaloosa 51.35 55.83 55.56 58.73 63.25 66.22 97.46 122.38 143.51 129.36 

Okeechobee 90.7 60.35 90.78 79.83 78.03 84.75 96.81 87.09 107.21 93.59 

Orange 68.76 66.34 78.93 79.03 103.11 114.24 112.91 122.68 132.66 128.28 

Osceola 90.43 98.48 91.84 79.18 92.62 103.81 110.01 148.92 163.48 203.67 

Palm Beach 66.03 60.49 68.56 76.9 94.37 101.16 96.91 102.71 109.53 110.06 

Pasco 54.1 46.58 52.85 50.93 61.21 58.46 62.99 73.52 72.48 71.9 

Pinellas 90.17 93.71 82.55 80.72 101.28 101.41 101.72 108.26 99.29 103.6 

Polk 116.29 140.85 147.18 153.85 151.83 144.38 143 153.76 157.83 169.9 

Putnam 109.17 80.35 89.49 84.22 124.96 93.89 109.12 147.06 165.1 134.93 

Santa Rosa 60.48 57.17 56.74 56.81 67.59 60.28 64.76 73.19 66.27 68.38 

Sarasota 69 62.69 59.56 56.21 67.93 74.57 66.42 67.3 63.68 57.15 

Seminole 51.4 50.74 48.14 55.03 61.36 69.2 60.18 64.34 66.17 71.16 

St. Johns 51.12 43.83 43.19 53.54 68.93 53.94 46.88 53.6 57.32 44.49 

St. Lucie 68.54 58.05 57.89 56.37 75.64 78.66 81.59 88.07 94.98 103.71 

Sumter 77.36 50.15 52.3 38.49 52.42 105.93 73.96 82.52 73.05 81.63 

Suwannee 54.63 70.99 74.67 94.46 82 79.29 127.86 137.13 122.79 111.16 

Taylor 89.9 82.73 101.93 113.09 97.58 86.96 89.82 71.28 87.5 61.08 

Union 102.96 128.5 99.14 135.35 152.48 97.22 78.26 106.33 109.44 156.34 

Volusia 134.32 141 143.32 121.92 138.1 136.02 129.62 140 130.85 157.54 

Wakulla 35.84 40.7 42.02 44.16 37.09 29.46 39.9 50.03 68.22 97.41 

Walton 70.38 55.23 61.73 39.74 78.45 63.1 69.53 83.68 87.54 75.68 

Washington 76.44 73.04 74.93 64.87 69.82 80.41 83.58 59.61 110.79 68.88 

 
Source: EPHT , Florida Agency for Health Care Administration June 2016 
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Appendix 3.3  Lifetime Adolescent Asthma Prevalence by Race/Ethnicity, FYTS 2006 – 2012 

 

 
Source: FAP 2014: Asthma burden 2013. 

 

 

Appendix 3.4 Lifetime Adolescent Asthma Prevalence, YRBS 2011 

  
Source: FAP2014: Asthma burden 2013. 

 

 

Appendix 3.5 Current Adolescent Asthma Prevalence, YRBS 2011 

  
Source: FAP 2014: Asthma burden 2013. 
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Appendix 3.6 Current Adolescent Asthma Prevalence, YRBS 2007 – 2011 

 
 Source: FAP 2014: Asthma burden 2013. 

 

 

Appendix 3.7 Asthma ED Rates per 10,000 Ages 5-17, 2011 AHCA 

 

 

Source: FAP2014: Asthma burden 2013. 
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Appendix 4:  Ambient PM2.5  (in µg/m3) concentration by Florida Counties 

Average ambient concentrations of particulate matter (PM2.5 per ug/m3) 

Count by County 

County 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Alachua 9.88 9.68 9.45 9.74 9.34 10.63 7.93 7.2 7.8 8.3 

Bay 10.64 10.77 11.71 11.36 12.01 10.93 9.9 8.9     

Brevard 7.56 7.45 8.62 8.32 8.99 7.29 7.43 6.5 6.9 6.5 

Broward 8.03 8.16 8.38 8.32 8.51 8.19 7.69 7 7 6.8 

Citrus 8.63 8.68 9.42 9.16 9.27 8.59 7.81 6.9 7.7 7.6 

Duval 10.19 9.8 10.86 10.66 10.17 10.42 9.24 8.3 9.4 9 

Escambia 10.95 11.18 12.84 12.04 11.61 10.88 9.47 8.4 9.1 9.5 

Hillsborough 10.75 10.48 11.46 11.12 9.99 10.52 8.51 7.9 8.2 7.8 

Lee 7.81 7.98 8.59 8.7 8.28 8.22 7.07 6.6 7 7.2 

Leon 12.92 11.83 13.15 13.11 12.55 12.31 10.64 9.7 9.8 10.3 

Manatee 8.91 8.42 9.11 8.91 8.74 8.52         

Marion 9.82 9.3 10.62 10.5 9.51 10.01         

Miami-Dade 9.13 9.4 9.59 9.69 9.53 8.93 8.1 7.6 7.8 7.4 

Okeechobee               7 7.5 7.3 

Orange 9.69 9.44 10.05 9.79 9.33 8.99 7.52       

Palm Beach 7.31 8.1 8.13 8.07 8.17 7.3 6.56 6.1 6.4 6.4 

Pinellas 10.34 9.33 10.27 10.42 9.55 9.68 8.05 7.4 8.2 7.6 

Polk 10.09 9.19 10.34 9.86 9.51 9.36 8.16 7.3 7.8 7.5 

Santa Rosa   9.89                 

Sarasota 8.86 8.58 8.9 9.26 8.9 8.11 6.9 6.6 7.2 6.9 

Seminole 8.85 8.56 9.98 10 9.55 9.47 7.98 7.4 7.7 7.6 

St. Lucie 8.01 8.29 7.74 9.05 8.92 7.82 7.64 7.7 7.9   

Volusia 8.75 8.52 9.74 9.21 9.01 9.8     7.5 7.6 
Source : Environmental Public Health Tracking program, Florida Department of Health, 
http://www.floridatracking.com/HealthTrackFL/report.aspx, accessed on 06-06-2016 
 

http://www.floridatracking.com/HealthTrackFL/report.aspx
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Appendix 5:  Prevalence Of Asthma In Florida Gender And Ethnicity And County 

  Male       Female       All Races 

County  White Black Hispanic Other White Black Hispanic Other   

Florida          

Alachua County 2.97 15.43 5.24 4.83 2.21 8.38 0.61 1.09 5.46 

Baker County 3.32 13.30 0.00 0.00 2.60 6.62 0.00 0.00 3.57 

Bay County 2.53 12.75 0.90 5.19 3.05 7.94 0.86 0.00 3.68 

Bradford County 2.68 20.09 0.00 17.54 1.07 12.63 0.00 0.00 4.59 

Brevard County 2.85 12.08 3.36 3.53 1.79 6.64 2.75 1.36 3.41 

Broward County 4.76 16.54 7.11 5.17 3.22 9.27 3.75 2.36 7.39 

Calhoun County 2.69 0.00 0.00 0.00 3.01 0.00 0.00 0.00 2.17 

Charlotte County 5.62 8.64 6.26 0.00 3.58 8.27 3.03 3.28 4.77 

Citrus County 3.42 20.62 2.18 0.00 1.20 6.73 0.00 0.00 2.57 

Clay County 4.41 10.71 2.51 4.42 1.61 8.22 3.08 2.81 3.79 

Collier County 4.07 9.30 7.89 16.67 1.76 6.06 4.46 9.23 5.18 

Columbia County 4.11 14.41 2.51 2.99 2.22 6.35 4.55 3.07 4.66 

DeSoto County 1.38 4.69 3.13 15.15 6.36 2.99 0.79 0.00 3.16 

Dixie County 2.34 0.00 0.00 0.00 0.87 0.00 0.00 0.00 1.41 

Duval County 4.33 24.47 6.21 3.88 2.70 13.64 2.05 1.79 9.28 

Escambia County 5.65 30.18 5.90 2.90 2.17 17.10 3.85 0.00 9.98 

Flagler County 4.13 6.89 1.79 2.98 2.42 6.48 2.78 0.00 3.53 

Franklin County 7.73 28.57 0.00 0.00 1.42 0.00 0.00 0.00 5.13 

Gadsden County 8.70 22.57 19.02 11.11 1.29 20.09 2.52 0.00 16.60 

Gilchrist County 1.44 0.00 8.06 0.00 1.49 0.00 7.69 0.00 1.87 

Glades County 2.14 28.57 2.45 0.00 8.16 15.15 6.02 8.62 5.71 

Gulf County 3.24 13.51 0.00 0.00 2.17 0.00 0.00 0.00 3.11 

Hamilton County 7.25 10.96 0.00 0.00 5.47 4.90 0.00 0.00 5.90 

Hardee County 5.64 8.77 4.42 0.00 3.90 5.21 2.92 0.00 4.08 

Hendry County 12.43 33.87 5.47 9.90 0.93 17.67 6.08 10.53 8.74 
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Appendix 5:  Prevalence Of Asthma In Florida Gender And Ethnicity And County  (Continued) 

 

  
Male       Female       All Races 

County  White Black Hispanic Other White Black Hispanic Other   

Florida          

Hernando County 3.02 20.47 5.43 0.00 1.89 5.96 1.27 0.00 3.17 

Highlands County 5.10 18.84 5.05 0.00 1.89 3.50 2.15 4.33 4.61 

Hillsborough County 2.83 14.02 7.86 2.52 1.89 7.62 3.67 1.34 5.02 

Holmes County 9.24 21.74 0.00 11.63 3.81 20.00 0.00 0.00 6.85 

Indian River County 2.24 14.07 7.36 0.00 1.18 6.76 0.91 6.83 3.59 

Jackson County 3.68 33.45 0.00 0.00 2.88 11.40 6.10 0.00 8.12 

Jefferson County 3.55 5.62 9.62 0.00 0.00 3.73 15.15 0.00 3.66 

Lafayette County 3.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 

Lake County 3.84 21.56 5.22 4.73 2.31 8.02 3.07 1.66 4.91 

Lee County 4.50 15.77 7.83 4.39 3.33 8.86 5.77 1.06 5.83 

Leon County 2.93 16.05 0.69 2.18 1.95 12.84 0.74 0.54 6.75 

Levy County 1.72 25.32 0.00 6.76 1.58 2.06 0.00 7.14 3.18 

Liberty County 5.92 21.74 0.00 0.00 6.69 0.00 0.00 0.00 6.08 

Madison County 11.82 40.32 0.00 0.00 5.18 37.41 0.00 0.00 21.12 

Manatee County 3.60 10.09 4.40 2.57 1.22 8.49 1.87 0.00 3.46 

Marion County 4.95 20.67 7.78 3.79 3.95 10.37 4.20 3.80 6.63 

Martin County 3.24 9.28 5.69 2.02 0.93 6.58 2.75 2.06 2.96 

Miami-Dade County 2.85 13.03 10.30 10.30 1.45 7.80 5.94 5.89 7.71 

Monroe County 5.30 39.60 6.40 5.32 2.38 13.66 3.98 0.00 6.19 

Nassau County 3.74 13.57 0.00 3.65 2.70 4.02 0.00 0.00 3.42 

Okaloosa County 4.48 22.18 9.71 7.42 3.37 15.91 1.81 2.20 5.87 

Okeechobee County 8.15 10.71 5.26 4.63 5.41 6.80 2.65 9.09 5.88 

Orange County 4.82 18.60 10.34 4.83 2.54 11.15 6.07 2.17 7.85 

Osceola County 4.74 14.95 12.36 6.71 3.03 5.82 7.86 2.12 7.93 
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Appendix 5:   Prevalence Of Asthma In Florida Gender And Ethnicity And County  (Continued) 

 

  
Male       Female       All Races 

County  White Black Hispanic Other White Black Hispanic Other   

Florida          

Palm_Beach County 3.78 15.99 4.91 8.10 1.72 9.63 2.84 2.62 5.71 

Pasco County 3.57 9.68 3.63 2.77 2.36 12.36 2.69 1.97 3.43 

Pinellas County 3.95 26.24 5.27 4.72 3.40 14.18 2.95 3.22 6.46 

Polk County 6.15 26.35 10.03 2.61 3.72 12.61 5.40 1.17 8.25 

Putnam County 3.41 14.07 2.55 10.20 2.63 8.73 2.70 3.65 4.93 

Santa_Rosa County 6.21 16.20 0.00 1.68 3.58 9.09 2.16 0.00 4.78 

Sarasota County 3.25 16.70 8.45 3.11 1.83 11.84 3.71 1.78 4.08 

Seminole County 2.53 21.79 6.87 4.85 1.46 11.06 3.82 1.04 4.60 

St. Johns County 2.13 23.60 2.66 2.18 1.47 9.42 1.38 0.76 2.78 

St_Lucie County 3.35 13.14 5.30 4.63 1.39 7.27 2.03 3.77 4.86 

Sumter County 4.67 18.45 3.70 5.10 0.84 7.49 1.97 5.26 4.42 

Suwannee County 5.87 34.69 3.19 24.19 1.72 9.47 5.66 0.00 6.27 

Taylor County 6.23 19.02 0.00 0.00 0.75 12.95 0.00 0.00 5.73 

Union County 5.86 5.88 0.00 0.00 3.95 5.75 0.00 0.00 4.59 

Volusia County 6.62 34.51 10.02 4.28 3.54 15.33 4.58 1.25 8.12 

Wakulla County 2.92 15.71 0.00 0.00 1.27 3.09 8.93 0.00 2.99 

Walton County 5.14 10.58 3.03 3.45 1.53 14.04 0.00 0.00 3.77 

Washington County 4.95 23.12 0.00 0.00 1.25 13.33 11.90 0.00 5.27 
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Appendix 6:  Prevalence Of Asthma Exacerbation In Florida Gender And Ethnicity And County  

  Male       Female       All Races 

County  White Black Hispanic Other White Black Hispanic Other   

Florida          

Alachua County 2.97 15.43 5.24 4.83 2.21 8.38 0.61 1.09 5.46 

Baker County 3.32 13.30 0.00 0.00 2.60 6.62 0.00 0.00 3.57 

Bay County 2.53 12.75 0.90 5.19 3.05 7.94 0.86 0.00 3.68 

Bradford County 2.68 20.09 0.00 17.54 1.07 12.63 0.00 0.00 4.59 

Brevard County 2.85 12.08 3.36 3.53 1.79 6.64 2.75 1.36 3.41 

Broward County 4.76 16.54 7.11 5.17 3.22 9.27 3.75 2.36 7.39 

Calhoun County 2.69 0.00 0.00 0.00 3.01 0.00 0.00 0.00 2.17 

Charlotte County 5.62 8.64 6.26 0.00 3.58 8.27 3.03 3.28 4.77 

Citrus County 3.42 20.62 2.18 0.00 1.20 6.73 0.00 0.00 2.57 

Clay County 4.41 10.71 2.51 4.42 1.61 8.22 3.08 2.81 3.79 

Collier County 4.07 9.30 7.89 16.67 1.76 6.06 4.46 9.23 5.18 

Columbia County 4.11 14.41 2.51 2.99 2.22 6.35 4.55 3.07 4.66 

DeSoto County 1.38 4.69 3.13 15.15 6.36 2.99 0.79 0.00 3.16 

Dixie County 2.34 0.00 0.00 0.00 0.87 0.00 0.00 0.00 1.41 

Duval County 4.33 24.47 6.21 3.88 2.70 13.64 2.05 1.79 9.28 

Escambia County 5.65 30.18 5.90 2.90 2.17 17.10 3.85 0.00 9.98 

Flagler County 4.13 6.89 1.79 2.98 2.42 6.48 2.78 0.00 3.53 

Franklin County 7.73 28.57 0.00 0.00 1.42 0.00 0.00 0.00 5.13 

Gadsden County 8.70 22.57 19.02 11.11 1.29 20.09 2.52 0.00 16.60 

Gilchrist County 1.44 0.00 8.06 0.00 1.49 0.00 7.69 0.00 1.87 

Glades County 2.14 28.57 2.45 0.00 8.16 15.15 6.02 8.62 5.71 

Gulf County 3.24 13.51 0.00 0.00 2.17 0.00 0.00 0.00 3.11 

Hamilton County 7.25 10.96 0.00 0.00 5.47 4.90 0.00 0.00 5.90 

Hardee County 5.64 8.77 4.42 0.00 3.90 5.21 2.92 0.00 4.08 

Hendry County 12.43 33.87 5.47 9.90 0.93 17.67 6.08 10.53 8.74 
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Appendix 6:  Prevalence Of Asthma Exacerbation In Florida Gender And Ethnicity And County (Continued) 

 

  
Male       Female       All Races 

County  White Black Hispanic Other White Black Hispanic Other   

Florida          

Hernando County 3.02 20.47 5.43 0.00 1.89 5.96 1.27 0.00 3.17 

Highlands County 5.10 18.84 5.05 0.00 1.89 3.50 2.15 4.33 4.61 

Hillsborough County 2.83 14.02 7.86 2.52 1.89 7.62 3.67 1.34 5.02 

Holmes County 9.24 21.74 0.00 11.63 3.81 20.00 0.00 0.00 6.85 

Indian River County 2.24 14.07 7.36 0.00 1.18 6.76 0.91 6.83 3.59 

Jackson County 3.68 33.45 0.00 0.00 2.88 11.40 6.10 0.00 8.12 

Jefferson County 3.55 5.62 9.62 0.00 0.00 3.73 15.15 0.00 3.66 

Lafayette County 3.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 

Lake County 3.84 21.56 5.22 4.73 2.31 8.02 3.07 1.66 4.91 

Lee County 4.50 15.77 7.83 4.39 3.33 8.86 5.77 1.06 5.83 

Leon County 2.93 16.05 0.69 2.18 1.95 12.84 0.74 0.54 6.75 

Levy County 1.72 25.32 0.00 6.76 1.58 2.06 0.00 7.14 3.18 

Liberty County 5.92 21.74 0.00 0.00 6.69 0.00 0.00 0.00 6.08 

Madison County 11.82 40.32 0.00 0.00 5.18 37.41 0.00 0.00 21.12 

Manatee County 3.60 10.09 4.40 2.57 1.22 8.49 1.87 0.00 3.46 

Marion County 4.95 20.67 7.78 3.79 3.95 10.37 4.20 3.80 6.63 

Martin County 3.24 9.28 5.69 2.02 0.93 6.58 2.75 2.06 2.96 

Miami-Dade County 2.85 13.03 10.30 10.30 1.45 7.80 5.94 5.89 7.71 

Monroe County 5.30 39.60 6.40 5.32 2.38 13.66 3.98 0.00 6.19 

Nassau County 3.74 13.57 0.00 3.65 2.70 4.02 0.00 0.00 3.42 

Okaloosa County 4.48 22.18 9.71 7.42 3.37 15.91 1.81 2.20 5.87 

Okeechobee County 8.15 10.71 5.26 4.63 5.41 6.80 2.65 9.09 5.88 

Orange County 4.82 18.60 10.34 4.83 2.54 11.15 6.07 2.17 7.85 

Osceola County 4.74 14.95 12.36 6.71 3.03 5.82 7.86 2.12 7.93 
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Appendix 6:   Prevalence Of Asthma Exacerbation In Florida Gender And Ethnicity And County (Continued) 

 

  
Male       Female       All Races 

County  White Black Hispanic Other White Black Hispanic Other   

Florida          

Palm_Beach County 3.78 15.99 4.91 8.10 1.72 9.63 2.84 2.62 5.71 

Pasco County 3.57 9.68 3.63 2.77 2.36 12.36 2.69 1.97 3.43 

Pinellas County 3.95 26.24 5.27 4.72 3.40 14.18 2.95 3.22 6.46 

Polk County 6.15 26.35 10.03 2.61 3.72 12.61 5.40 1.17 8.25 

Putnam County 3.41 14.07 2.55 10.20 2.63 8.73 2.70 3.65 4.93 

Santa_Rosa County 6.21 16.20 0.00 1.68 3.58 9.09 2.16 0.00 4.78 

Sarasota County 3.25 16.70 8.45 3.11 1.83 11.84 3.71 1.78 4.08 

Seminole County 2.53 21.79 6.87 4.85 1.46 11.06 3.82 1.04 4.60 

St. Johns County 2.13 23.60 2.66 2.18 1.47 9.42 1.38 0.76 2.78 

St_Lucie County 3.35 13.14 5.30 4.63 1.39 7.27 2.03 3.77 4.86 

Sumter County 4.67 18.45 3.70 5.10 0.84 7.49 1.97 5.26 4.42 

Suwannee County 5.87 34.69 3.19 24.19 1.72 9.47 5.66 0.00 6.27 

Taylor County 6.23 19.02 0.00 0.00 0.75 12.95 0.00 0.00 5.73 

Union County 5.86 5.88 0.00 0.00 3.95 5.75 0.00 0.00 4.59 

Volusia County 6.62 34.51 10.02 4.28 3.54 15.33 4.58 1.25 8.12 

Wakulla County 2.92 15.71 0.00 0.00 1.27 3.09 8.93 0.00 2.99 

Walton County 5.14 10.58 3.03 3.45 1.53 14.04 0.00 0.00 3.77 

Washington County 4.95 23.12 0.00 0.00 1.25 13.33 11.90 0.00 5.27 
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Appendix 7: Summary Statistics of Comparison ED Visits by Rural and Urban 

Appendix 7.1: Distribution of  Asthma ED visits  per 1000 for Urban Florida Counties 

 
 
 
Appendix 7.2: Distribution of  Asthma ED visits  per 1000 for Rural Florida Counties 

Rural 
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Appendix 7.3: Distribution of  Asthma  Exacerbation ED visits  per 1000 for Urban Florida 

Counties 

 
 
Appendix 7.4: Distribution of  Asthma  Exacerbation ED visits  per 1000 for Rural Florida 

Counties Rural 
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Appendix 8: Summary Statistics of Comparison in BenMAP 

Appendix 8.1: Statistics for Estimated Asthma ED visits using Prevalence (Table 27) 

 
 

Appendix 8.2: Statistics for Estimated Asthma ED visits using Prevalence (Table 28) 
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Appendix 8.3: Statistics for Estimated Asthma ED visits using Prevalence (Table 29)

 
 

Appendix 8.4 :Statistics for Estimated Asthma Exacerbation ED visits using Prevalence 

(Table 30) 
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Appendix 9: USF-IRB Approval Letter 
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