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Abstract: Urban air pollution is one of the most visible environmental problems to have 

accompanied China’s rapid urbanization. Based on emission inventory data from 2014, 

gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial 

autorrelation of Air Quality Index (AQI) values at the city level, and employed Ordinary 

Least Squares (OLS), Spatial Lag Model (SAR), and Geographically Weighted Regression 

(GWR) to quantitatively estimate the comprehensive impact and spatial variations of 

China’s urbanization process on air quality. The results show that a significant spatial 

dependence and heterogeneity existed in AQI values. Regression models revealed 

urbanization has played an important negative role in determining air quality in Chinese 

cities. The population, urbanization rate, automobile density, and the proportion of 

secondary industry were all found to have had a significant influence over air quality. Per 

capita Gross Domestic Product (GDP) and the scale of urban land use, however, failed the 

significance test at 10% level. The GWR model performed better than global models and 

the results of GWR modeling show that the relationship between urbanization and air 

quality was not constant in space. Further, the local parameter estimates suggest significant 

spatial variation in the impacts of various urbanization factors on air quality. 
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1. Introduction 

The outdoor air pollution which accompanied China’s urbanization and industrial development 

presently constitutes one of the country’s most serious environmental problems [1]. In fact, sufficient 

evidence now exists to prove that exposure to outdoor air pollution in itself constitutes a health hazard 

in China [2]. Contributing to 1.2 million premature deaths in 2010 and 1.6 million premature deaths  

in 2014, ambient particulate matter pollution has become the fourth greatest risk factor in all deaths in 

China, behind only dietary risks, high blood pressure, and smoking [3–5]. Beyond the unacceptable 

cost in human lives, between 2000 and 2010, the economic cost of air quality degradation in China 

amounted to approximately 6.5% of Chinese GDP annually [6]. Given these worrying statistics, China 

faces an arduous task in addressing the challenges presented by air pollution. 

A complex process involving significant demographic change, intensified economic activity, and 

induced variations in extensive land cover and traffic patterns, urbanization plays a significant role in 

relation to air quality, especially in developing regions [7–10]. China underwent rapid urbanization as 

the result of the country’s shift towards an industrial economy following the reform and “opening up” 
policies of the 1980s. The permanent urban population in China increased from 17.9% to a staggering 

54.77% between 1978 to 2014; ten million people a year migrated from rural areas to China’s large 

cities during this period, a movement of people that probably constitutes the largest migration in 

human history [11]. In association with this growth, in 2010, the country became the world’s second 

largest economy in terms of its gross domestic product (GDP), after only the year before becoming the 

world’s biggest energy consumer. This unprecedented scale and accelerated rate of China’s 

urbanization, linked to the country’s energy consumption, has led to serious resource, energy, and 

environmental crises, and significant increases in air pollutant and carbon dioxide emissions in the  

past three decades [1,12]. Given that China’s urbanization trend is likely to continue for another  

30 years [13,14], the conflict between urbanization and the atmospheric environment is likely to 

continue into the foreseeable future. 

The presence of persistent smog and high levels of fine particulates (PM2.5) have acted as a tipping 

point for China’s clean air movement in recent years, which has been increasingly active in stimulating 

debates about these issues among the urban Chinese public, the government, academia, and the  

media [15,16]. The current Chinese government has begun to realize the seriousness of the country’s 

environment problems, and has proposed a “people-oriented, new-type urbanization strategy” for 

balancing the speed and the quality of urbanization and coordinating the relationship between  

human and nature [17,18]. In 2013, the government’s environment department issued the Air Pollution 

Prevention and Control Action Plan (2013–2017) and the Chinese new Air Quality Index, or AQI.  

The AQI considers six pollutants (PM10, PM2.5, NO2, SO2, CO, and O3), which—compared with its 

predecessor, the API (Air Pollution Index)—added PM2.5, O3, and CO. China’s AQI is divided into 

six grades: good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, and hazardous. 
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Regrettably, there were, on average, 73 days characterized by “unhealthy” or worse air quality (i.e., 

AQI > 150) in 70 major cities in 2014, and the dominant pollutants present were PM2.5, PM10,  

and O3. 

Air quality exhibits marked regional differences at the city scale [19]. What, then, are the factors 

that are behind these differences and what role does urbanization play? Scholars undertaking work in 

fields spanning from the humanities to the physical sciences have begun to engage with these critical 

questions through studies of natural and human factors on air quality. Having reviewed this previous 

literature, we contend that existing studies have focused excessively on natural factors in recent years. 

A number of studies regarding, for instance, the impact of local climate and meteorological parameters 

on air quality—either more generally [20,21] or specifically in terms of factors like temperature, wind 

speed, mixing height, and relative humidity [22–24], or changes in mid-latitude cyclone and synoptic 

weather patterns with climate change [25–27]. 

This is not to say that human factors have not been addressed in research on air quality—for 

instance, studies have been undertaken on the potential impacts of city vehicles [28,29], energy  

use [30,31], population gathering [19,32,33], anthropogenic heat [34], industrial activities [35], urban 

sprawl [36,37], and urbanization rate [38]. Similarly, the urban landscape and land cover have also 

been identified as important factors [39], along with changes in land-use patterns [40] and urban 

impervious surface [24,41]. However, these existing studies are highly specific, considering limited 

aspects of urbanization. A comprehensive evaluation of the impact of urbanization on air quality is 

thus required. In particular, we note that imbalances in urban development affect urban air quality 

indexes [42]; most of the current research has, however, ignored the spatiality of such imbalances, 

thereby failing to address spatial dependence and heterogeneity. 

In response to this identified deficiency, in the present study, we collected air quality index (AQI) 

records and urbanization indexes for 289 Chinese cities, posing the following research questions in 

relation to this data: (1) What is the spatial pattern of China’s air pollution at the city level? (2) How 

can we evaluate the comprehensive influence of urbanization and identify the impact of significant 

variables on air quality, quantitatively? (3) To what extent does the spatial contribution made by 

various urbanization factors account for variations in AQI values? The results from this study,  

we argue, could constitute a valuable reference for mid-to-long-term environmental policy making  

in diverse parts of China, and could further assist in improving the quality of the results of future 

Chinese urbanization. 

2. Data 

2.1. AQI Record 

An Air Quality Index (AQI) integrates a range of air pollutant measures. This dimensionless index 

is widely used to comprehensively reflect atmospheric pollution, as well as potential effects on 

citizens’ health, in a range of countries. Air quality monitoring systems in China have been installed  

in 338 cities, including 1436 monitoring sites in 2015. The new version of AQI was made available in 

about 300 prefecture-level cities in 2014 [43]; these values represent the maximum pollution sub index 

of six individual pollutants (SO2, NO2, PM10, PM2.5, O3, CO), and are calculated as follows:  
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where IAQIp is the air quality sub index for pollutant p; Cp is the concentration of pollutant p; Clo is the 

concentration breakpoint that is ≤C; Chi is the concentration breakpoint that is ≥C; IAQIlo is the index 

breakpoint corresponding to Clo; and IAQIhi is the index breakpoint corresponding to Chi. 

It is necessary to note that different countries each have their own air quality indices, which 

correspond to specific national air quality standards. In the process of formulating such standards,  

the World Health Organization (WHO) Air Quality Guidelines are usually referenced [44], which 

focus on minimum particle concentrations. Considering the developmental stage of socioeconomic 

conditions in China, as well as the priority that is placed upon public health [45], the concentration 

breakpoint of China’s IAQI is set at the WHO’s recommended interim target (Table 1). Considering 

the availability and consistency of data, this study used the annual mean AQI value for each of the 289 

cities (285 prefecture-level cities and four municipalities) for the year 2014. The raw daily data of AQI 

came from ministry of environmental protection of China [43]. What we should note here is that 

because the monitoring sites are concentrated in the urban area, the AQI value reflect the air 

environment of population exposure region. On the other hand, there are likely errors with the 

measurements if we want to know the average value within the whole area. 

Table 1. Pollutant-specific sub-indices of the Air Quality Index (AQI) in China. 

AQI Categories  

(Index Values) 

SO2 (μg/m3, 

24-h) 

NO2 (μg/m3, 

24-h) 

CO (μg/m3, 

24-h) 

O3 (μg/m3, 

1-h) 

PM2.5 (μg/m3, 

24-h) 

PM10 (μg/m3, 

24-h) 

Good (Up to 50) 0–50 0–40 0–2 0–160 0–35 0–50 

Moderate (51–100) 51–150 41–80 3–4 161–200 35–75 51–150 

Unhealthy for Sensitive 

Groups (101–150) 
151–475 81–180 5–14 201–300 75–115 151–250 

Unhealthy (151–200) 476–800 181–280 15–24 301–400 115–150 251–350 

Very Unhealthy (201–300) 801–1600 281–565 25–36 401–800 150–250 351–420 

Hazardous (301–500) 1601–2620 566–940 37–60 801–1200 250–500 421–600 

Note: Daily urban air quality uses 24-h average concentration limit of pollutants except O3, and the IAQI of O3 uses 1-h 

average concentration. 

2.2. Urbanization Index 

Urbanization is a comprehensive and complex process, and the interactive coupling between air 

pollution and urbanization reflects this complexity. The raw data came from the China City Statistical 

Yearbook 2014 [46] and China’s Regional Economic Statistical Yearbook 2014 [47]. In accordance 

with previous research [48,49], we divided urbanization into four subsystems: demographic urbanization, 

economic urbanization, spatial urbanization, and social urbanization. As shown in Table 2,  

12 indicators (including the proportion of urban population, per capita GDP, private car ownership, 

amongst others) were selected in order to build a primary index system able to quantitatively depict  

the urbanization process as it impacts air quality. These indicators are organized within the  

four aforementioned urbanization subsystems. Energy-related indicators were deliberately not included 
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in this research due to the strong statistical collinearity. Whilst energy consumption acts as  

an important index with respect to urbanization and is the primary source of many pollutants [31,50], it 

affects many aspects of urbanization, including population, GDP, and the proportion of secondary 

industry [51,52]. 

Table 2. The primary index system used to reflect the impact of urbanization on air quality. 

The Subsystem of Urbanization Index Acronym Index 

Demographic urbanization 

The proportion of urban population (%) UR 

Total population (104 people) TP 

Non-agricultural population (104 people) NP 

Economic urbanization 

Proportion of the added value of secondary 

industry to GDP (%) 
SI 

GDP (104 Yuan) GDP 

GDP per capita (Yuan) PGDP 

Spatial urbanization 

Urban development land (sq km) UL 

Population density (people/sq km) PD 

Urban development land per capita (m2/people) PUL 

Social urbanization 

Private car ownership PC 

Private cars per unit of urban development land PPC 

Total retail sales of consumer goods (108 Yuan) TG 

2.3. Variable Selection and Data Pre-Processing 

Multicollinearity is a state of very high intercorrelation or inter-association among the independent 

variables in a regression model; it can play havoc with an analysis, generating misleading results for 

regression coefficients and standard errors [53]. Multicollinearity can be detected with the help of a 

variance inflation factor (VIF). A VIF value of 10 or above indicates that the level of multicollinearity 

is problematic. In order to ensure that proper explanatory variables were used in the ordinary least 

squares (OLS) regression, we removed the independent variables whose VIF > 10, one by one, until 

multicollinearity disappeared entirely. We were then left with seven explanatory variables (UR, TP, SI, 

PGDP, UL, PD, PPC), between which there existed no obvious correlation (Table 3). We subsequently 

undertook a correlation analysis of each of these seven variables and the AQI values for the 289 cities, 

the results of which suggested that Spearman’s correlations were all significant at the 5% significance 

level (Table 4). 

Table 3. Descriptive statistics of the independent variables. 

Variables Minimum Maximum Mean Standard Error Standard Deviation 

AQI 41.15 175.70 84.53 1.47 25.06 

UR 10.46 100.00 38.52 1.20 20.36 

TP 20.00 2970.00 440.82 17.71 301.06 

UL 13.00 2915.56 133.65 13.30 226.16 

SI 17.48 79.36 50.78 0.59 9.99 

PD 14.57 8248.04 901.04 50.15 852.51 

PGDP 8404.47 466,996.14 51,233.46 2834.88 48,192.94 

PPC 310.00 15,426.00 3595.79 139.27 2367.57 
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Table 4. Spearman’s correlation of the independent variables and AQI. 

 AQI UR TP UL SI PD PGDP PPC 

AQI 
Spearman’s correlation 1.00 0.199 ** 0.367 ** 0.254 ** 0.171 ** 0.459 ** 0.207 ** 0.134 * 

sig.(2-tailed)  0.00 0.00 0.00 0.00 0.00 0.00 0.02 

UR 
Spearman’s correlation 0.199 ** 1.00 −0.09 0.437 ** 0.08 0.08 0.611 ** −0.326 ** 

sig.(2-tailed) 0.00  0.15 0.00 0.18 0.16 0.00 0.00 

TP 
Spearman’s correlation 0.367 ** −0.09 1.00 0.483 ** −0.177 ** 0.351 ** −0.06 0.194 ** 

sig.(2-tailed) 0.00 0.15  0.00 0.00 0.00 0.35 0.00 

UL 
Spearman’s correlation 0.254 ** 0.437 ** 0.483 ** 1.00 −0.155 ** 0.244 ** 0.456 ** −0.151 * 

sig.(2-tailed) 0.00 0.00 0.00  0.01 0.00 0.00 0.01 

SI 
Spearman’s correlation 0.171 ** 0.08 −0.177 ** −0.155 ** 1.00 0.149 * 0.149 * −0.03 

sig.(2-tailed) 0.00 0.18 0.00 0.01  0.01 0.01 0.57 

PD 
Spearman’s correlation 0.459 ** 0.08 0.351 ** 0.244 ** 0.149 * 1.00 0.09 0.09 

sig.(2-tailed) 0.00 0.16 0.00 0.00 0.01  0.13 0.11 

PGDP 
Spearman’s correlation 0.207 ** 0.611 ** −0.06 0.456 ** 0.149 * 0.09 1.00 −0.06 

sig.(2-tailed) 0.00 0.00 0.35 0.00 0.01 0.13  0.29 

PPC 
Spearman’s correlation 0.134 * −0.326 ** 0.194 ** −0.151 * −0.03 0.09 −0.06 1.00 

sig.(2-tailed) 0.02 0.00 0.00 0.01 0.57 0.11 0.29  

Note: **, or * indicates significance at 1% or 5% levels respectively. Number of samples: 289. 

In addition, we also undertook a Z-score normalization in relation to the raw data in order to 

eliminate the influence of unit and order of magnitude, making the data accord better with a normal 

distribution. The Z-score normalization used can be expressed as: 

2

-

( ) / ( 1)

i

i

x
Z

x n






 
 

(3) 

where xi is the raw value of city i, and µ represents the mean of the indicator. 

3. Methodology 

Many studies have shown that air pollution emissions exhibits an inverted-U relationship in relation 

to both economic development and urbanization—this is referred to as the Environmental Kuznets 

Curve, or EKC [54,55]. Despite this general pattern, most parts of China have not reached the 

inflection points of an EKC [56], and whilst levels of sulfur dioxide and particulate pollution show 

some signs of diminishing, nitrogen dioxide levels have in fact increased [57]. This illustrates that both 

air quality and the impact of urbanization exhibit obvious “spatial heterogeneity” (i.e., the presence of 

variation or instability in space) and complexity. In addition, from existing experience, we know that 

air pollution has a strongly trans-regional character: it inevitably affects neighboring regions, a quality 

which can be described in terms of “spatial autocorrelation” in the data. All of these characteristics 

break with the basic precondition for classical regression analysis, which holds that the samples 

analyzed must be independent. If we undertake OLS estimation under these circumstances, the results 

are in fact likely to be biased [58]. 
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3.1. Measures of Spatial Dependence and Heterogeneity 

According to Tobler’s first law of geography, everything is related to everything else, but near 

things are more related than distant things [59]. Spatial dependence (or autocorrelation) is thus  

a fundamental property of all attributes located in space. Global Moran’s I and local Moran’s I are 

measures of spatial autorrelation that indicate whether a variable exhibits significant spatial dependence 

and heterogeneity quantitatively at a given scale—in this case, whether an AQI value does so at the 

city scale [60]. Global Moran’s I can be expressed as: 
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where, n is the number of cities; xi, xj is the AQI of spatial location i, j; and S denotes the standard 

deviation of samples. 

Formally, the membership of observations in the neighborhood set for each location is expressed  

by means of a spatial weights matrix (i.e., Wij). The range of values of global Moran’s I is [–1, 1].  

The Z-score is used to test the significance of any spatial autocorrelation. When Z > 2.58(1.96), this 

usually indicates a positive autocorrelation in the observations at the confidence coefficient of 99% 

(95%)—i.e., the existence of either high-value or low-value clustering. A significant and negative 

value, Z < −2.58(−1.96), usually indicates a negative autocorrelation—e.g., a tendency toward the 

juxtaposition of high values with low values. If I and Z are both close to 0 if n is large, this indicates 

that the observations display qualities of spatial randomness (i.e., there is no spatial dependence 

between variables). 

To measure and test the spatial heterogeneity and the abnormal value of our results, and given the 

focus of our study, we adopted Anselin’s LISA (Local Indicators of Spatial Association) technique, 

using local Moran’s I to measure significant spatial autocorrelation for each location [61,62]. We  

then visualized the spatial clusters, hot-spots, and outliers using ArcGIS 10.2 [63]. A local Moran’s I 

autocorrelation statistic at the location i can be expressed as: 

2

( )
 ( )i

ij j

j

x x
Local I W x x

S


   (6) 

The same significance test was used in relation to local and global clusters. Spatial clusters include 

high–high clusters (high values in a high-value neighborhood) and low–low clusters (low values in  

a low-value neighborhood). LISA can thus reveal the presence of hot spots (high–high clusters) and of 

cool spots (low–low clusters) in terms of the values being studied (in this case, AQI values). 

3.2. Spatial Regression Models 
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If spatial autocorrelation and heterogeneity exist in the spatial units being addressed, an appropriate 

spatial regression model must be chosen. Spatial regression models allow researchers to account for 

dependence among their observations, which often arises when observations are collected from points 

or regions located in space [64]. The spatial lag model (SAR) and spatial error model (SEM) are 

spatially constant coefficient models that can be used to produce a spatial extension of OLS, thereby 

correcting certain spatial dependence problems. The geographically weighted regression (GWR) can 

be used to produce a spatially varying coefficient model, thereby solving spatial non-stationarity. 

3.2.1. Spatial Lag Model (SAR) and Spatial Error Model (SEM) 

Choosing the most appropriate spatially constant coefficient model for this research was not without 

its problems. Formally, the conventional global regression model (that is, using the OLS method of 

estimation) is the most well known of all regression techniques. This type of regression is known as 

“global” because of the spatial stationarity of its coefficient estimates, meaning that a single model can 

be applied equally to different areas of interest. The OLS can be expressed as: 

2

1

~ 0
k

o i i

i

y x N    


   ， （， ） (7) 

where xi and y are, respectively, the independent and dependent variables; k is the number of 

independent variables; β0 is the intercept; βi is the parameter estimate (coefficient) for the independent 

variable xi; and ɛ is the error term. In Equation (7), the parameter estimates βi are assumed to be 

spatially stationary. 

When spatial dependence is suspected in the error terms, the SEM is particularly suitable [65].  

The SEM model can be expressed as Equation (8). 

2, ~ 0,y X Wu N       （ ） (8) 

where y is a (N × 1) vector of the dependent variable; X is a (N × K) matrix of the K explanatory 

variables; β is a (K × 1) vector of parameters; u is a (N × 1) vector of residuals; λ is the spatial 

autocorrelation parameter; W is a (N × N) spatial-weight matrix or neighborhood connectivity matrix; 

and ε is a vector of normally distributed errors. 

Use of the SAR model is appropriate when spatial dependence is suspected in the values of the 

dependent variable, an occurrence that can give rise to auto-regressive problems. The SAR model can 

be expressed as: 

2, ~ 0,y Wy X N       （ ） (9) 

where ρ is the auto-regressive parameter, and spatial lag (W) as a smoother is the weighted average of 

neighboring values. 

For the spatial econometric models of SAR and SEM, maximum likelihood (ML) estimation allows 

for efficient estimation of cross-section data in a spatial econometric model [66]. To determine which 

model is more appropriate, two Lagrange Multiplier tests are possible: LM (lag) can be used in relation 

to an autoregressive spatial lag variable, and LM (error) in relation to the spatial autocorrelation of 

errors. The two robust tests R-LM (lag) and R-LM (error) have a good power against their specific 

alternative [67]. 
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3.2.2. Geographically Weighted Regression (GWR) 

To address the issue of complex spatial parametric variation or spatial heterogeneity,  

Fotheringham et al. have proposed a simple but powerful method called geographically weighted 

regression (GWR), which extends the OLS to give all the elements and diagnostics of a regression 

model—such as parameter estimates, goodness-of-fit measures (R2), and t-values—on a local  

basis [68]. An effective, spatially varying coefficient model, GWR has been widely used in both 

socioeconomic [69,70] and eco-environmental fields [71–73], generating results that can be displayed 

in a spatial map through use of GIS [74]. The GWR model extends the conventional global regression 

of Equation (7) by adding a geographical location parameter, and can be expressed as: 

0

1

( , ) ( , )
p

j j j i j j ij j

i

y u u x    


    (10) 

where uj and vj are the coordinates of location j; β0 (uj, vj) acts as intercept for location j; and βi (uj, vj) 

is the local estimated coefficient for independent variable xi. 

Based on the established concept of distance decay, GWR is calibrated by weighting all 

observations around a sample point, assuming that the observations closer to the location of the sample 

point have a higher impact on the local parameter estimates for the location [74]. A Gaussian distance 

decay weighting can be used to express the weight function: 

2 2exp(- / )ij ijW d h
 (11) 

where Wij is the weight for observation j within the neighborhood of observation i; dij denotes the 

distance between observations i and j; and h represents the kernel bandwidth, which controls the 

smooth degree of local regression. If the distance is greater than the kernel bandwidth, the weight 

rapidly approaches zero. GWR is sensitive to kernel bandwidth, and the optimal bandwidth can be 

chosen by minimizing the corrected Akaike Information Criterion, or AIC [64]. 

In this study, when we compared the different models, goodness of fit tests, Log likelihood (LK), 

and Akaike’s Information Criteria were all used. OLS, SAR, and SEM were carried out using  

Geoda 1.6. GWR and map visualization was made using ArcGIS 10.2. 

4. Results and Interpretations 

4.1. Spatial Pattern of AQI 

Using the six grades that make up China’s AQI (good, moderate, unhealthy for sensitive groups, 

unhealthy, very unhealthy, and hazardous) as a basis (Table 1), considering the range of AQI value is 

41.15–175.7, the spatial distribution of urban air quality in China’s 289 cities (285 prefecture-level 

cities and four municipalities) was divided into four levels (marked in four colors—green, yellow, 

pink, and red—in Figure 1). From the results of this study, as expressed in terms of this division, we 

can see very clearly that the AQI distribution displays definite spatial clustering characteristics. Of the  

289 cities that were considered in this study, there were five cities that maintained an AQI value 

greater than 150 in 2014—these were all located in the Hebei province. The 72 cities with an AQI 

value of between 100 and 150 were mainly distributed across the North China Plain, within the 
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Sichuan Basin, along the Longhai railway, and in parts of Northeast China. Most cities (70.24% of the 

total) were found to maintain an AQI value of between 50 and 100. It is regrettable that only nine cities 

reached the “Good” level (i.e., AQI < 50). In order to further explore the spatial autocorrelation of 

urban air quality, we built a spatial weight matrix that used inverse distance weighting (IDW), giving 

greater weight to points closer to the prediction location, and diminishing weight to points as a 

function of their distance from the prediction point. We subsequently used this matrix to calculate the 

global Moran’s I and local Moran’s I using Equations (4)–(6). The results returned a global Moran’s I 

of 0.22 and a Z-score of 26.56; the fact that the latter was greater than 2.58 (p = 0.01) suggests the 

existence of a significant and strongly positive spatial autocorrelation (a clustering of similar values) 

with respect to AQI values when analyzed at the city level. 

The results of a LISA analysis, which measures spatial clustering and heterogeneity, are depicted 

visually at Figure 2. The specific cluster and outlier areas are also provided in this figure. Hot spot 

regions (H-H clusters) were found to include and surround the cities of Beijing, Tianjin, Hebei, Henan, 

and Shandong. Seriously polluted cities gathered closely together in these areas. Cool spot region (L-L 

cluster) were found to be located in three main areas: Heilongjiang, Yunnan-Guangxi, and the hilly 

areas of the southeast, suggesting that air quality was good in these cities and neighboring areas. Some 

outlier cities also formed L-H clusters. Overall, both the hot and cool spots indicate that the AQI 

values of Chinese cities exhibit both global spatial autocorrelation and also local spatial 

autocorrelation. As such, the data can be said to reflect spatial non-stationarity. 

 

Figure 1. Spatial grade distribution and Moran’s I output of AQI. 
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Figure 2. Clusters and outliers of AQI. 

4.2. Estimation Results and Model Comparisons 

The above analysis indicates significant spatial dependence in the AQI values of Chinese cities.  

In order to avoid model error and to improve the fitting precision, the spatiality of the factors studied 

should be taken into account. To compare to ordinary linear regression, we set up three global 

regression models using OLS, SAR, and SEM (Table 5). Through the OLS estimation, the R2 

(goodness of fit) of the model was found to be 0.338, the adjusted R2 was 0.321, and the F-value  

was 20.484. The OLS model thus passed the significance test at the 1% level. The significance tests of 

the coefficients showed all the regression coefficients to be positive—that is to say, the selected 

explanatory variables were shown to all have a positive effect in relation to AQI values, a finding 

which was consistent with our expectations. Among the variables, TP, SI, and PD passed the 

significance test at the 1% level, meaning that these three urbanization factors exerted the greatest 

impact in relation to AQI. UR and PPC were also found to have significant influence in relation to 

AQI, clearing significance tests at the 5% level. Urban development land and per capita GDP, in 

contrast, failed the significance test at the 10% level. The diagnostic tests (i.e., Moran’s I, LM lag and 

LM error, p < 0.01) indicate clear problems with autocorrelation. Given this condition, the estimation 

results obtained from the OLS model may have led to biased parameter estimation, which in turn can 

cause problematic or even misleading conclusions. 
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Table 5. Ordinary least squares (OLS) estimation and spatial dependence. 

Model Coefficient t-Statistic Probability 

constant 0.002 0.048 0.961 

UR 0.171 ** 2.447 0.015 

TP 0.254 *** 3.246 0.001 

UL 0.074 0.532 0.595 

SI 0.163 *** 3.073 0.002 

PD 0.302 *** 5.602 0.000 

PGDP 0.045 0.584 0.559 

PPC 0.129 ** 2.291 0.023 

R2 0.338   

Adjusted R2 0.321   

F-statistic 20.484   

P(F-statistic) 0.000   

AIC 715.992   

Spatial Dependence MI/DF Value Probability 

Moran’s I (error) 0.056 7.016 *** 0.000 

LM (lag) 1.000 42.059 *** 0.000 

Robust LM (lag) 1.000 14.105 *** 0.001 

LM (error) 1.000 28.963 *** 0.000 

Robust LM (error) 1.000 1.009 0.315 

Note: UR = The proportion of urban population; TP = Total population; UL = Urban development land;  

SI = Proportion of the added value of secondary industry to GDP; PD = Population density; PGDP = GDP 

per capita; PPC = Private cars per unit of urban development land; LM = Lagrange Multiplier; AIC = Akaike 

Information Criterion; ***, **, or * indicates significance at 1%, 5%, or 10% levels respectively. 

The Lagrange Multiplier test, including LM (lag) and LM (error), passed the significance test at the 

1% level, but the LM (lag) value was larger than latter. Meanwhile, the robust LM (lag) test was found 

to maintain significance at the 1% level, but the robust LM (error) failed the test of significance. 

Moreover, by comparing the goodness of fit of the SAR and SEM models—here, the R-square of SAR 

was found to be 0.390 and the R-square of the SEM was 0.374, and the AIC of the SAR was 700.132 

and of the SEM was 703.372—and following the decision rule introduced above, the SAR model was 

considered the more appropriate model. Hence, we chose the SAR as the constant coefficient spatial 

regression model to study further. 

Table 6 provides the detailed results of the GWR, OLS, and SAR estimation undertaken in this 

study. The AIC tests we conducted indicated the optimal bandwidth to be 857,196 m. The GWR 

model’s goodness-of-fit statistic was found to be much larger than that of either the OLS or the SAR 

models, and the GWR model was also found to have the lowest AIC value (36 points less than that of 

the OLS model and about 20 points less than that of the SAR model). Further, W_AQI was found to be 

0.603 significant at the 1% level using the SAR model, that is to say: there existed an obvious spatial 

lag, meaning that the AQI value of a given city could be attributed not only to the influence factors of 

itself but, importantly, could be affected by the AQI values of neighboring cities. Compared to the 

OLS technique, SAR is more appropriate when dependent variables exhibit spatial autocorrelation. 

The GWR model performed the best of the three with respect to the issues addressed by this study. 
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Table 6. Parameter summary of geographically weighted regression (GWR), OLS, and 

spatial lag model (SAR) estimation. 

Variables Min. 
Lower 

Quartile 
Median Mean Global (OLS) SAR (ML) 

Upper 

Quartile 
Max. 

UR −0.006 0.128 0.253 0.225 0.1708 ** 0.171 ** 0.336 0.381 

TP 0.040 0.166 0.233 0.267 0.254 *** 0.246 *** 0.311 0.774 

UL −0.110 −0.069 −0.035 0.000 0.074 0.066 0.062 0.932 

SI 0.067 0.112 0.133 0.132 0.163 *** 0.110 ** 0.148 0.219 

PD 0.186 0.239 0.259 0.273 0.302 *** 0.272 *** 0.296 0.497 

PGDP −0.212 0.019 0.075 0.087 0.045 0.037 0.143 0.257 

PPC −0.201 0.054 0.175 0.149 0.129 ** 0.118 ** 0.253 0.321 

Intercept −0.269 −0.075 0.091 0.053 0.002 −0.037 0.192 0.238 

W_AQI    n.a. n.a. 0.603 ***   

No. of 

observations 
   289 289 289   

Bandwidth    857196 n.a. n.a.   

R2    0.495 0.338 0.380   

Adjusted R2    0.431 0.321 n.a.   

AIC    679.866 715.992 700.132   

Note: The Min., Max., Lower quartile, Upper quartile, Median, Mean are base statistics for the GWR model’s 

parameters. ***, **, or * indicates significant at 1%, 5%, or 10% levels respectively. UR = The proportion of 

urban population; TP = Total population; UL = Urban development land; SI = Proportion of the added value 

of secondary industry to GDP; PD = Population density; PGDP = GDP per capita; PPC = Private cars per 

unit of urban development land; AIC = Akaike Information Criterion. 

Table 6 also presents base statistics for the models’ parameters across the entire sample of 289 cities. 

These include the minimum and the maximum values of GWR model’s parameters, as well as the 

values by quartiles. The OLS and SAR estimations are also listed for comparison purposes. On the 

whole, the value of the parameters estimated using OLS were higher than those obtained using SAR.  

If we take the mean value as the coefficient of the explanatory variables of the GWR model, the 

parameter estimations generated from all three models produced similar results: (1) Population density 

had the strongest effect on air quality, with this parameter being greater than 0.27 in all three models. 

Total population also proved to be significant, as the parameters for this variable were larger than 0.24; 

(2) At the 5% significance level, the parameters of urbanization rate and private car density reached 

0.17 and 0.11 respectively; (3) per capita GDP and the area of urban development land, reflecting 

economic power and urban scale respectively, both failed to pass the significance test at 10%. Thus, 

we remain cautious about characterizing the relationship between the scale of urban land uses, 

economic conditions, and air quality. Finally, the parameter estimation of the proportion of secondary 

industry was different in each of the three models, reaching 0.163 at the 1% significance level with 

OLS model, while it was 0.11 significant at the 5% level in the SAR model, and had a mean of 0.132 

in the GWR model. 

Parallel coordinate plots of estimated GWR coefficients are visualizations that can be used for 

diagnosing correlation in estimated regression coefficients in typical, spatially varying coefficient 

model estimations [75]. As is shown in Figure 3, we took the intercept as the reference axis, with 
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coefficients gradually getting larger, from the left to the right. One line represents one city, and the 

lines’ color changes from cool to warm in the axis so as to easily observe the parameters’ change of 

every city. The parallel coordinate plot at Figure 3 clearly shows correlation amongst the five groups 

of regression coefficients between different cities (for instance, there exists a strong consistency 

between the coefficients of the variables UR and PPC). It can also be observed that the distribution of 

the regression coefficients is unbalanced between the different axes. The coefficients of UR and SI are 

uniformly distributed in all cities, while the coefficients of TP and PD are centered in the low range for 

most cities. The results of GWR thus show that most of the regression coefficients spanned a wide 

range; with respect to their standard deviation, the minimum (SI) was 0.028 and the maximum (TP) 

reached 0.145. Wider ranges of variable parameters imply greater spatial variation in the contribution 

and explanatory effects in the model. To a large extent, the contribution of SI had no obvious spatial 

heterogeneity and dependence. Moreover, the regression coefficients of four explanatory variables in 

the GWR model in fact presented as negative values, with the minimum coefficient of PPC reaching 

−0.201. This further illustrates the appropriateness of the GWR model in providing a better 

explanation and more detailed results with respect to local estimation. 

 

Figure 3. Parallel coordinate plot of the estimated GWR coefficients for intercept and  

five significant explanatory variables. Note: s.d. = standard deviation; UR = The 

proportion of urban population; TP = Total population; SI = Proportion of the added value 

of secondary industry to GDP; PD = Population density; PPC = Private cars per unit of  

urban development land. 
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4.3. Spatial Distribution of GWR Estimation 

The OLS model explains 33.8% of the variance of AQI values in Chinese cities, which is lower than 

the 49.5% obtained through GWR global R-Squared. In Figure 4, GWR local R-Squared values are 

mapped, yielding a number of interesting results. The local R-square was found to vary between 0.17 

and 0.91 with the spatial variation, which means that some local models had a better fit than the OLS 

model, while some did not. Figure 4 demonstrates an obvious regularity in the spatial distribution of  

R-Squared: clearly, the northern and western region have higher R-square values. This illustrates that 

the relationships between various urbanization factors and air quality were much better captured by the 

regression model in the northern and western areas. AQI values in the southeast region may, in 

comparison, be rather more affected by other factors—for instance, temperature or vegetation fraction. 

 

Figure 4. The spatial distribution of GWR Local R-Squared. 

Figure 5 depicts the spatial distribution of intercept terms in relation to the five significant 

explanatory variables. In principle, the intercept term measures the fundamental level of AQI, 

excluding the effects of all factors on urbanization. We can see clearly that the intercept values 

increase gradually from the south to the north. This implies that, under the same urbanization factors, 



Sustainability 2015, 7 15585 

 

 

the air quality (measured in terms of AQI values) of cities in the southern region is better than of those 

located in the northern areas of China. 

 

Figure 5. The spatial distribution of GWR local coefficients. Note: UR = The proportion 

of urban population; TP = Total population; SI = Proportion of the added value of 

secondary industry to GDP; PD = Population density; PPC = Private cars per unit of urban 

development land. 

The relationships between the AQI values of Chinese cities and the coefficients of the five 

significant urbanization factors (as calculated in this study) displayed considerable spatial variability. It 

can be observed from the spatial distribution of UR coefficients that the central areas had greater 

coefficient estimates, the northeastern region maintained average coefficient estimates, and the 

southwestern region lower estimates. The proportion of urban population thus played a more important 

role in the North China Plain. The spatial pattern of PPC coefficients was similar to those of UR, and 

the traffic factor was found to have the most important effect on air quality in the Bohai Bay Rim area. 

Further, both UR and PPC had a negative effect on AQI in some southwestern Chinese cities, and this 

might be related to their limited social and economic development, which is related to the retention of 

a natural environment that has not been affected by urbanization trends. The spatial distribution of TP 

coefficients displayed a laddered distribution which varied with latitudinal zonality, i.e., highest 

(>0.42) in the north to lowest (<0.17) in the south. This indicates that the population size of cities in 
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the north of China had a greater impact on their AQI values than in the cities of the south. What is 

interesting is that the spatial distribution of PD coefficients displayed a pattern of longitudinal zonality. 

The impact of population density on air quality in eastern coastal China was thus found to be lower 

than that in western cities, although the population density of the eastern cities was in fact higher. The 

spatial distribution of SI coefficients also demonstrated relatively higher values in the cities of the 

northeastern region and the Yangtze valley, compared to other areas, a result which can be attributed to 

the presence of more heavy industries in these cities. Further, whilst the proportion of secondary 

industry is very high in the areas that are shown in dark blue in Figure 5 (these coincide with the coal 

production base of China), the SI coefficients were in fact found to be lower than 0.1, a finding which 

implies that coal production does not exert large impacts in relation to AQI, even though coal 

consumption is the main source of many pollutants. 

Overall, the relationships between air quality and urbanization factors were shown to be spatially 

non-stationary, and the spatial distribution pattern of each local parameter very different from the 

other, even though each parameter showed some zonal regularity. The local regression coefficients 

generated by the analysis also reveal that the explanation power of variable does not increase in 

strength in response to changes in the value of urbanization indicators. 

5. Conclusions and Policy Implications 

5.1. Conclusions 

This study first analyzed the spatial pattern of air quality in 289 cities in China, based on Air 

Quality Index (AQI) records from 2014. Using OLS, SAR, and GWR models, we quantitatively 

estimated the impact of China’s urbanization processes on air quality, highlighting and exploring  

the spatial contribution made by a range of urbanization factors in relation to variations in AQI values. 

We found the AQI of 96.89% of the cities studied to be larger than 50 in 2014, subsequently 

identifying a significant and strongly positive spatial dependence and heterogeneity in AQI values at 

the city level. Seriously polluted cities were found to be gathered closely together in Beijing, Tianjin, 

Hebei, Henan, and Shandong, which presented as hot spots on the visualizations. 

Regression models revealed that all the seven explanatory variables used to depict the urbanization 

process in fact exerted a negative effect in relation to air quality. The interpretation degree of the R2 

reached between 38% and 49.5%, confirming that, with the exclusion of natural factors, urbanization 

plays an important role in determining air quality. Among the variables, the population, urbanization 

rate, automobile density, and the proportion of secondary industry were all found to have had  

a significant influence over air quality. The area of urban development land and per capita GDP, in 

contrast, failed the significance test at 10% level although they maintained a remarkable correlation 

with AQI. The results of Moran’s I and SAR modeling indicated that the AQI value of a city can be 

attributed not only to influencing factors stemming from the city itself but also that of neighboring 

cities. The GWR results showed that the relationship of urbanization to air quality was not constant 

over space, but rather varied, with relations being more accurately captured by the regression model in 

the northern and western areas. The visualization of local parameter estimates highlighted the great 

spatial variation, which exists in the impact exerted by different urbanization factors in relation to 
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different regional AQI values. These results also reinforce the complementary nature of these methods: 

the OLS (and SAR) results provided needed context for the GWR model, and the GWR was able to  

be used for simulating air quality in a manner that could take into account spatial dependence  

and heterogeneity. 

In addition, these results should be generalized with caution, and it is emphasized that the present 

study only addresses the Chinese context. Whether the results of the study are suitable for other 

developing countries constitutes a matter for further examination. Considering the strong linkage 

exposed here between natural factors and air quality, it recognized that is also necessary to integrate 

natural and urbanization-related factors, and a comprehensive mechanism should thus be developed for 

such an operation through the future research. 

5.2. Policy Implications 

With the rate and scale of urbanization expected to drastically increase in the next 30 years, Chinese 

government officials face serious challenges in addressing the issue of air pollution. Through this 

paper, we propose several suggestions based on the empirical results: 

Firstly, this study provides scientific validation for the presence of a strong spatial dependence in 

air quality at the city scale mainly because of the atmospheric flow. On the other hand, the pollutants 

are generated not only stationary sources (e.g., industry) but also non-stationary sources (e.g., 

vehicles). As such, we should take into full account spatial factors and policies must be directed at the 

source, increasing awareness of regional environmental systems. Air pollution prevention and control 

should be coordinated, with complementary measures undertaken across adjacent regions, especially in 

the urban agglomerations (e.g., Beijing-Tianjin-Hebei). 

Secondly, because overall population density and total population play the most important roles in 

determining air quality, from the perspective of improving the country’s urban air quality, China  

must strictly control the scale of megacities and actively develop small and medium-sized cities. 

Automobile density and the proportion of secondary industry has significant impacts in relation to  

AQI values: thus, on the one hand, China must promote intelligent traffic management, increase the 

proportion of green public transport and reasonably controlling the vehicle population in order to 

reduce emissions from transport; on the other, more attention needs to be paid to accelerating the 

adjustment and transformation of the country’s industrial structure, accelerating the elimination of 

lagging productivity, and reducing dependence on coal. 

Thirdly, we should fully acknowledge the spatial dependence and heterogeneity present in the 

relation between various parameters of urbanization and air quality in different geographic areas in 

China. Regional inequality between Chinese cities in terms of both urbanization and economic 

development is very large [76], and regionally specific policy analysis should be undertaken by local 

governments with respect to the various influence mechanisms exerted by urbanization on the 

atmospheric environment. The macroscopic environment policy of the central government should 

ultimately act to balance these regional differences on the basis of the understanding that “one size 

does not fit all”. 
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