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Abstract

The purpose of this paper is to estimate the patent equation, an empirical counter-
part to the `knowledge production function'. Innovation output is measured through the
number of European patent applications and the input by research capital, in a panel of
French manufacturing ¯rms. Estimating the innovation function raises speci¯c issues re-
lated to count data. Using the framework of models with multiplicative errors, we explore
and test for various speci¯cations: correlated ¯xed e®ects, serial correlation and weak
exogeneity. We also present a ¯rst extension to lagged dependent variables.

Keywords: count data, generalized method of moments, innovation, panel data,
patents, research and development, serial correlation, weak exogeneity.

JEL Classi¯cation: C23, C25, L60, O31, O32

R¶esum¶e

Cet article examine les problµemes d'estimation associ¶es µa l'¶equation de brevet, con-
trepartie empirique de la fonction d'innovation. L'extrant de l'innovation est mesur¶e ici
par le nombre de d¶epôts de brevets europ¶eens et l'intrant par le capital de recherche
et d¶eveloppement, sur un panel d'entreprises fran»caises de l'industrie manufacturiµere.
L'estimation de cette fonction d'innovation implique le recours µa l'¶econom¶etrie des donn¶ees
de comptage sur panel. A l'aide du modµele µa erreur multiplicative nous estimons diverses
sp¶eci¯cations: e®ets ¯xes, autocorr¶elation des r¶esidus et exog¶en¶eit¶e faible. Nous e®ec-
tuons ¶egalement un premier examen de l'introduction du nombre de brevets pass¶es dans
la relation.

Mots-clef : brevets, donn¶ees de comptage, exog¶en¶eit¶e faible, innovation, m¶ethode des
moments g¶en¶eralis¶es, panel, recherche et d¶eveloppement, r¶esidus autocorr¶el¶es.

Classement JEL : C23, C25, L60, O31, O32
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1 Introduction

Numerous ¯rms devote large amounts of resources to research investment. In order to im-
prove their products, to launch new products or to lower their unit production cost ¯rms
may invest in innovation activities. The innovation process can then be decomposed into
several steps allowing for some feedback loops. Investment in research and development,
both casual and formal, endows ¯rms with new technical knowledge which can be trans-
formed into an economic value. This knowledge is used to improve on products and
production processes, thus it generates growth that can be used for future innovation
funding. But measures of the economical value of knowledge are not available, only some
of its inputs and outputs are (Griliches, 1994, [8]). So that in most of the cases, we obtain
information on knowledge through the research and development expenditures input and
the patent numbers output.
Patent equations could be used to evaluate the rate of technical progress since there

is an equivalence between the duration of the search leading to an innovation and the
number of innovations achieved during a given period of time. The more the number of
innovations for a given time period the less the average research lag, the more the rate of
technical progress. Then, one could think to use patent numbers to evaluate the speed
of technical advance. In fact, this would be true if patents were an unbiased measure
of the number of innovations. In practise, we have good reasons to believe that patents
embed measurement errors (Levin et al., 1987, [12]). Among them, all innovations are not
patented and all patents do not have the same value. This suggest that the use of panel
data could improve on our estimates, by allowing for ¯rm-level ¯xed e®ects. The basic
relationship we consider links the number of patent to research capital. A growth rate
model would thus explain the growth of patent numbers by the research accumulation
rate. But research is not the only input in the innovation process. Important discoveries
may enable ¯rms to improve the productivity of their innovation process itself. Thus, in
this work, past patents are used to reveal e±ciency shifts in the knowledge production
function.
Starting from previous works on panel count data by Hausman et al. (1984, [11]),

we introduce some extensions about the robust estimation issue of multiplicative error
models. Four points will be considered: ¯xed e®ects, exogeneity, serial correlation and
lagged dependent variables. We will make a systematic use of the Generalized Method of
Moments throughout all the paper (Hansen, 1982,[10]), so that our estimates do not rely
on stringent distributional assumptions.
Section 2 presents the basic econometric models for panel count data and their lim-

itations. The robust estimation methods covering various cases are developed in section
3. Section 4 presents the data and section 5 gives the estimation results. The conclusion
is given with some comments in the last section.

2 Panel count data models

Count data have several salient aspects that require speci¯c econometric methods. They
include numerous zero counts and are integer valued. This implies that convenient distri-

1



butional assumptions are to be made when estimating the patent equation. Among them,
the Poisson distribution is the simplest. But this distribution has limitations discussed in
this section. Answering these criticisms leads to the multinomial regression by Hausman
et al. (1984, [11]), closely linked to GMM applied to count panel data.

2.1 The basic Poisson model

Let ni;t be the endogenous count data variable for individual i at time t, with mean
¸i;t > 0, a Poisson homogenous model is de¯ned by:

ni;t=xi;1; : : : ; xi;T
iid
; P (¸i;t) 8i; t (1)

This implies that the probability to observe ni;t patents given the right hand variables
(xi;1; : : : ; xi;T ) , xi;T is equal to:

Pr
¡
ni;t=xi;T

¢
=
exp (¡¸i;t) ¸ni;ti;t

ni;t!
(2)

The only parameter of a Poisson distribution is its mean, denoted ¸i;t; which depends
on explanatory variables xi;t where i denotes individuals and t time. To ensure the
positivity of this parameter, a natural feature of counts expectations, the mean is set
under the exponential form: ¸i;t = exp (xi;tb) ; where b is the coe±cient to be estimated.
Thus the conditional expectation of our counts, given our exogeneous variables equals:

E
¡
ni;t=xi;T

¢
= exp (xi;tb) : In fact, one can show that the conditional variance of our count

data equals its conditional expectation. This property is closely related to the fact that
the Poisson distribution does not account for a residual in the relationship between ni;t
and xi;T :
As noticed by several authors, the Poisson model does not account explicitly for het-

erogeneity in the relationship between the expected counts and the right-hand variables.
Extensions have been made. The parametric case is examined by Hausman et al. (1984,
[11]). The authors do not assume anymore that the relationship between expected counts
and the right hand variables is homogeneous, but that a residual "i;t enters this rela-
tionship, so that now: E

¡
ni;t=xi;T ; "i;T

¢
= exp (xi;tb+ "i;t) = exp (xi;tb)ui;t: When the

distribution of the residual ui;t = exp ("i;t) is gamma, the distribution for ni;t given xi;T
has a closed form, it is negative binomial and estimation proceeds by maximum likeli-
hood. An interesting feature is that this heterogeneous Poisson model implies that there
is a conditional overdispersion in the count variable since the conditional variance is here
always higher than the corresponding mean. The semi parametric case, where no dis-
tributional assumption is made about ui;t, has been treated by Gouri¶eroux et al. (1984,
[7]). They show that the relationship between the conditional expectation and the con-
ditional variance of ni;t does not depend on the distribution chosen for the residual (i.e.,
heterogeneity). Thus, estimation can be carried out by pseudo maximum likelihood.
The weakness of the simple Poisson model lies in the three following restrictions: ¯rst,

it does not allow for individual e®ects possibly correlated with the right-hand variables;
second, it assumes strict exogeneity of the right-hand variables and, last, it does not allow
for serial correlation in the residual.
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2.2 Robust regressions with individual e®ects

The basic Poisson speci¯cation does not allow for individual e®ects given the exogeneous
variables. The xi;T are assumed to summarize all individual deviations. And it is clear
that the existence of ¯xed e®ects at the individual or sectoral level are likely to exist
in innovation relationships. We can think there exist elements that a®ect the return on
research investment like di®erent operating skills, appropriability conditions, demand pull
or technological opportunities. These variables should remain relatively constant for each
¯rm and end up into an individual e®ect. It remains that one can choose between a
random and a ¯xed e®ect formulation.

2.2.1 The multinomial regression

The individual e®ect problem can be partly solved by assuming that there exist a random
individual e®ect ®i entering the mean of the Poisson distribution. In this case serial
correlation in the residuals arises when this e®ect is omitted. It modi¯es the Poisson
model such that:

ni;t=xi;T ; ui
iid
; P (¸i;t £ ui) 8i; t (3)

where ui = exp(®i) > 0 is the multiplicative individual e®ect. A way to solve for this
problem consists in assuming a distribution for ui and integrate it out. This is a part of
the work by Hausman et al. (1984, [11]), henceforth referred as HHG. They show that if
ui is gamma distributed and independent from the explanative variables xi;T , the count
variable ni;t has a negative binomial distribution and estimation of the random e®ect
Poisson model proceeds by maximum likelihood. However, this estimator may be biased
if the distribution of the individual e®ect is not gamma1. Therefore the authors introduce
the ¯xed e®ect Poisson model (FEP).
The FEP model has two advantages over the REP model: ¯rst, it does not assume that

the heterogeneity term ui is gamma distributed and, second, the ¯xed e®ect is not required
to be independent from the right-hand variables xi;T : Moreover it is possible to obtain
consistent estimates of the FEP model by using the conditional maximum likelihood
framework of Andersen (1970, [1]). The important result is that the observed counts ni;t,

given the right-hand variables xi;T and the individual sums of counts ni: =
PT

s=1 ni;s, have
a multinomial distribution:

ni;t=xi;T ; ni:
iid
;M (ni:; pi;1; : : : ; pi;T ) (4)

where pi;s is the theoretical share of year s in ¯rm i's total patenting over years 1 to

T : pi;s = ¸i;s=
PT

t=1 ¸i;t; that is the share obtained by replacing patent numbers by their
expectations. The probability of observing the counts (c1; : : : ; cT ) for ¯rm i is thus given

1The negative binomial distribution has two parameters (b; µ), the second of which intervenes in the
conditional variance only. When this parameter µ is ¯xed, the negative binomial distribution belongs
to the linear exponential family and the pseudo maximum likelihood estimator for b is consistent. The
problem comes from the fact that, on the one hand, the maximum likelihood approach estimates b and
µ simultaneously and, on the other hand, the negative binomial distribution does not belong to the
quadratic exponential family. For a more comprehensive treatment, see Gouri¶eroux et al. (1984, [7]).
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by:

Pr
£
ni;1 = c1; : : : ; ni;T = cT =xi;T ; ui; ni:

¤
=

³PT
s=1 cs

´
!

QT
s=1 cs!

TY

s=1

pcsi;s (5)

Standard estimation proceeds by maximum likelihood, that is through the maximization
of:

L (b) =
NX

i=1

TX

s=1

cs ln pi;s (6)

The estimator is consistent and asymptotically normal:

p
N

³
bb¡ b

´
d¡!

N!+1
N

¡
0; A¡1

¢

with A , E

µ
¡@

2L(b)

@b@b0

¶
: In fact, the multinomial regression is robust to weaker assump-

tions.

2.2.2 The multinomial regression as GMM estimation

Wooldridge (1990, [14]) has given a re-interpretation of the HHG model. He showed that
the multinomial regression is in fact robust. The multinomial model implies that the
conditional mean of counts ni;t given the explanative variables and the individual sum of
counts equals:

E
¡
ni;t=xi;T ; ni:

¢
= ni: £ pi;t (7)

Then, as the multinomial distribution belongs to the exponential family, we can apply
the result by Gouri¶eroux et al. (1984, [7]) and conclude that the multinomial estimator
is consistent. As with the Poisson model however, the robust (i.e., the pseudo maximum
likelihood) covariance matrix has to be computed. We now have:

p
N

³
eb¡ b

´
d¡!

N!+1
N

¡
0;A¡1BA¡1

¢
(8)

with A de¯ned previously and B , E

µ
@L(b)

@b

@L(b)

@b0

¶
:

But Wooldridge also showed that the consistency of the multinomial regression holds
under another set of conditional mean restrictions. If the following restrictions hold:

E
¡
ni;t=xi;T ; ui

¢
= ¸i;t ui (9)

then the multinomial estimator remains a consistent estimator of b and the covariance
matrix is similar to (8) : This new set of conditional mean restrictions (9) is di®erent from
the previous one (7). They are both implied by the FEP model but none is a consequence
of the other. The second one is, however, a more direct consequence of the FEP model.
One can show that when (9) holds:

E
¡
ni;t ¡ ni: pi;t=xi;T

¢
= 0 (10)
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which is a key condition for the robustness of the multinomial regression2. In fact, relation
(10) can be interpreted as a way to eliminate the individual ¯xed e®ects from the semi
parametric model (9) in order to obtain a set of orthogonality conditions, here :

E
£
xi;T £ (ni;t ¡ ni: pi;t)

¤
= 0 (11)

Thus this set of conditions can be used in the generalized method of moments (GMM)
framework. As the estimator is based on deviations of the counts from an expression of
their theoretical means, the corresponding GMM estimators will be henceforth referred
as `within' estimators3.
In this di®erent approach to the estimation problem, we seek to minimize the distance

between our orthogonality conditions and the nul vector according to a metric : That
is, we estimate the parameter b by b :

b = argmin
b
h
0
h

where h is the sample counterpart of equation (11) expectation, a column vector with as
many elements as instruments4, h = 1=N

PN
i=1 hi;with :

hi , h
¡
ni;T ; xi;T ; b

¢
, x0i;T 

0
BBBBB@

ni;1 ¡ ni: pi;1
...

ni;t ¡ ni: pi;t
...

ni;T ¡ ni: pi;T

1
CCCCCA

The estimation proceeds in two steps. First, we set  = Id to get a ¯rst estimate b
of b that enables us to compute a consistent estimate of the optimal metric given by
¤ = V (h)

¡1 = E(hh0)
¡1 : We can take the sample counterpart of it as a consistent

estimate : 
¤
=

³
1=N

PN
i=1

bhibh0i
´¡1

with bhi = h
¡
ni;T ; xi;T ; b

¢
. Second, we estimate

b again with  = 
¤
; which gives us the estimates b

¤
presented in the tables. The

asymptotic distribution of b
¤
is given by :
p
N

³
b
¤ ¡ b

´
d¡!

N!+1
N (0;ª¤) (12)

with the consistent estimate of ª¤:

ª
¤
=

"Ã
1

N

NX

i=1

@h0i
@b

³
ni;T ; xi;T ; b

¤´
!

¤
Ã
1

N

NX

i=1

@hi
@b0

³
ni;T ; xi;T ; b

¤´
!#¡1

2The key condition is that the objective we maximize converges uniformly in probability to a function
that reaches its maximum at the true value of the parameter b0; say. The ¯rst order condition for the
multinomial regression is: 1

N

PN
i=1

PT
t=1 (ni;t ¡ ni:pi;t)rb exp (xi;tb) /exp(xi;tb) = 0 and by the law of

large numbers the left hand side converges to Eb0

hPT
t=1 (ni;t ¡ ni:pi;t)rb exp (xi;tb) /exp (xi;tb)

i
:

This requires only (10) to be true at the true value of the parameter and therefore the multinomial
regression to be consistent.

3Notice it is not the deviation from the empirical mean with count data.
4To simplify the exposition, we consider the case with one explanative variable. The extension is

straightforward, by stacking.
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In fact, we can extend a little this is standard way of estimation. For any function G
of explanatory variables xi;T , the following orthogonality conditions hold:

E
£
(ni;t ¡ ni: pi;t)£G

¡
xi;T

¢¤
= 0 (13)

Moreover, as (13) is true for any function G
¡
xi;T

¢
a simple manipulation allows for

re-writing these conditions as:

E

µ
ni;t ¡ ni;t+1

¸i;t
¸i;t+1

¶
£G

¡
xi;T

¢¸
= 0 (14)

which is the quasi-di®erentiation proposed by Chamberlain (1992, [3]) for panel data
models with multiplicative errors. We will henceforth refer to this estimator equivalently
as `¯rst di®erence' or `correlated e®ect'.
This raises the issue of the optimal choice of instruments, namely of function G: This

also falls into the framework studied by Chamberlain (1992, [4]) of e±ciency bounds
for semi parametric regressions. It is possible to derive the theoretical semi parametric
e±ciency bound and to exhibit the optimal choice of instruments G to use. However this
function of observations has the form of theoretic conditional expectation and must also be
estimated. Newey (1990, [13]) achieves this through a non parametric step by using series
estimators and the k-nearest neighbors method to determine the optimal instruments.
We will not developp this approach in this study. Instead, we will just try to get an idea
about the magnitude of possible e±ciency gains by comparing the results achieved through
two sets of instruments. The ¯rst instrument set is the simplest: a constant term5 and
the explanative variables for all time periods. The second instrument set includes both
the former one and the independent cross products from this ¯rst set variables. With
one explanatory variable and T time periods (i.e., years), the ¯rst set of instruments
includes T +1 instruments which support (T + 1) (T ¡ 1) orthogonality conditions6. The
second instrument set includes the T (T + 1) =2 cross-products instruments: this gives
T (T + 1) (T ¡ 1) =2 additional orthogonality conditions. In this application, the number
of time periods is T = 6 so that the numbers of orthogonality conditions are respectively
35 and 105 + 35 = 140.

3 Robust estimation with panel count data

The FEP model assumes that the counts, given the explanatory variables and the ¯xed
e®ect, are independently and identically Poisson distributed. Thus nor does it relax the
conditional variance-to-mean ratios neither does it allow for serial correlation. In their
paper, HHG (1984, [11]) proposed a negative binomial ¯xed e®ect model that relaxes this
assumption, they allow for a ¯rm-speci¯c conditional variance-to-mean ratio given the
right hand variables and the ¯xed e®ect. This has interesting economic interpretations: on
the one hand, uncertainty in the production of innovation is more or less important across
¯rms for a given mean and; on the other hand, the propensity to patent di®ers among

5Or, alternatively, a full set of time dummies.
6There are T + 1 instruments and T ¡ 1 quasi di®erences.
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¯rms in the sample. However, their modeling implies a variance-to-mean ratio greater
than one, that is overdispersion. Thus, in this setting, uncertainty in the production of
innovations should increase monotonically with the number of discoveries. Looking for
models with more °exibility is thus interesting. We can keep the same basic framework
by relaxing both the Poisson and overdispersion assumptions.

3.1 Weak exogeneity

The previous quasi di®erentiation can be extended easily to the weak exogeneity case.
Under this assumption the relationship (9) is no more valid but the di®erent conditioning
with xi;t , (xi;1; : : : ; xi;t) depending on the date t at which the expectation is taken:

E
¡
ni;t=xi;t; ui

¢
= ¸i;t ui (15)

In fact, the expectation is conditional on both ui and xi;t so that we have both weak
exogeneity and correlated ¯xed e®ects. Here also estimation stems from the elimination
of ¯xed e®ects which provides a set of orthogonality conditions available to the GMM
approach. We use the chamberlinian di®erentiation again. The key idea here is that the
¯xed e®ect can be expressed as:

ui = E
¡
ui

±
xi;t; ui

¢
= E E

µ
ni;t+a
¸i;t+a

±
xi;t+a; ui

¶±
xi;t; ui

¸
= E

µ
ni;t+a
¸i;t+a

±
xi;t; ui

¶

8 a = 0; : : : ; T ¡ t; 8 t = 1; : : : ; T
Thus as the ¯xed e®ect is time independent by de¯nition, it is possible to exclude a
part of the x0s lags out of the instruments set. We use this result for a = 1; derive the
corresponding expression for ui and substitute it in (15) to get the following expected
quasi di®erence :

E
¡
½it/xi;t

¢
= 0 with ½it = ni;t ¡ ni;t+1

¸i;t
¸i;t+1

(16)

From this expression, GMM estimation is implemented by using the corresponding or-
thogonality conditions of the form:

E
£
½it £G

¡
xi;t

¢¤
= 0; 8 t = 1; : : : ; T ¡ 1 (17)

Once more, the issue of the optimal instruments sets arises. Chamberlain (1992, [4])
derives the corresponding expression of the semi parametric e±ciency bound and that of
the optimal instrument to use. They are more complicated than in the `within' case since
now the instrument set changes with the date t. As for the strict exogeneity case, a ¯rst
non parametric step would be needed. So, we use here the same two sets of instruments
as before and refer to these estimators as `weak exogeneity with correlated e®ects'.
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3.2 Restricted serial correlation

The previous GMM estimators require the simple conditional mean restrictions (9) and
(15) only. For that reason, they are consistent even when the three restrictions of the
Poisson model are relaxed: they allow for ¯xed e®ects correlated with the right hand
variables, for any relationship between the mean and variance of the count distribution
and for any pattern of serial correlation. In the previous sections we explained how it is
possible to move away from parametric models that embed restrictions we would like to
get rid of. On the one hand, semi parametric estimation is less demanding than maximum
likelihood by only keeping the basic interesting properties of the parametric models. But,
on the other hand, we lose e±ciency if some constraints are wrongly excluded. Thus we
would like to impose more structure on the previous GMM estimators, especially on the
existence of restrictions in the correlations of the residuals, these constraints being tested.
The canonical situation for linear models is the case in which the time varying parts

of the perturbations are uncorrelated. The interesting features associated with it is that
past values of the dependent variable can be used as instruments. We introduce similar
models for count panel data, in two di®erent ways. The ¯rst method consist in adding
past values of the count variable in the list of conditioning variables. The second method
to restrict serial correlation imposes less restrictive assumptions since it uses conditional
covariance constraints only.

3.2.1 Lagged dependent variable as an instrument

We keep the weak exogeneity with correlated e®ects basic framework. Depending on the
x0s are strictly or weakly exogenous, this gives the respective moment conditions:

E
¡
ni;t=xi;T ; ni;t¡a; ui

¢
= ¸i;t ui (18)

E
¡
ni;t=xi;t; ni;t¡a; ui

¢
= ¸i;t ui (19)

We will instrument by all convenient past values of patents so that in our applications
a = 1: Notice here that both the random and ¯xed e®ects models of HHG imply such
restrictions. In these cases the orthogonality conditions are obtained in the same way as
the previous estimates under weak exogeneity with correlated e®ects. Strict exogeneity
with correlated e®ects imply the restrictions:

E
¡
½i;t=xi;T ; ni;t¡1

¢
= 0; 8 t = 1; : : : ; T ¡ 1

while weak exogeneity with correlated e®ects relies on

E
¡
½i;t=xi;t; ni;t¡1

¢
= 0; 8 t = 1; : : : ; T ¡ 1

3.2.2 Covariance restrictions

Strict exogeneity. Consider ¯rst strict exogeneity with correlated e®ects; if ni;t and ni;s
are independent for all s 6= t then for any function g we have Cov

¡
ni;t; g (ni;s)

±
xi;T ; ui

¢
=

0; although the reverse is not necessarily true. Then using these covariances lead to
less restrictive conditions. Strict heterogeneity implies T (T ¡ 1) =2 ¡ 1 orthogonality
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conditions since ui is to be eliminated. The absence of serial correlation can thus be
represented by

E
¡
ni;tni;s=xi;T ; ui

¢
= E

¡
ni;t=xi;T ; ui

¢
E

¡
ni;s=xi;T ; ui

¢
= ¸i;t¸i;su

2
i ; 8 s 6= t

) E

µ
ni;t
¸i;t

ni;s
¸i;s

¡ ni;t0

¸i;t0

ni;s0

¸i;s0

±
xi;T

¶
= 0; 8 s 6= t; 8 s0 6= t0 (20)

A ¯rst set of orthogonality conditions is obtained by setting s0 = s and t0 = t + 1 in
the previous relationship (20), after some simpli¯cations we get:

E
¡
ni;s½i;t=xi;T

¢
= 0; 8 s < t = 2; : : : ; T ¡ 1 (21)

This makes (T ¡ 1) (T ¡ 2) =2 constraints7. Let s0 = t+1 and t0 = t+2 in the relationship
(20) and we have the additional independent constraints:

E

�
ni;t+1

µ
ni;t ¡ ni;t+2

¸i;t
¸i;t+2

¶±
xi;T

¸
= 0; 8 t = 1; : : : ; T ¡ 2 (22)

Weak exogeneity. The case of weak exogeneity is more restrictive since this time the
conditioning is made on the past and current values of the right-hand variables only.
This suppresses a number of orthogonality conditions. More precisely the second set of
conditions (22) cannot be employed anymore. We have: Cov

¡
ni;t; ni;s

±
xi;t; ui

¢
= 0; 8 s <

t = 2; : : : ; T: Then:

E

µ
ni;t
¸i;t
ni;s

±
xi;t; ui

¶
= E

µ
ni;t
¸i;t

±
xi;t; ui

¶
E

¡
ni;s=xi;t; ui

¢
= ui E

¡
ni;s=xi;t; ui

¢

As the individual e®ect ui is time independent by de¯nition, we can write:

ui = E

µ
ni;t+1
¸i;t+1

±
xi;t+1; ui

¶

thus:

E

µ
ni;t
¸i;t
ni;s

±
xi;t; ui

¶
= E

¡
uini;s

±
xi;t; ui

¢

= E E

µ
ni;t+1
¸i;t+1

ni;s
±
xi;t+1; ui

¶±
xi;t; ui

¸

= E

µ
ni;t+1
¸i;t+1

ni;s
±
xi;t; ui

¶

) E
¡
ni;s½i;t=xi;t

¢
= 0; 8 s < t = 2; : : : ; T ¡ 1

As in the previous sections we use the x0s and a constant term as instruments. Then,
we add the cross products of the x0s to form the second instrument set. The corresponding
overidenti¯cation tests are also provided.

7Thus, there remains T (T ¡ 1) =2¡1¡ (T ¡ 1) (T ¡ 2) =2 = T ¡2 independent constraints to exhibit.
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3.3 Lagged dependent variables

It is possible to embed lagged dependent variables in the previous models both in the
weak exogeneity and in the correlated e®ects cases. For weak exogeneity with correlated
e®ects the orthogonality conditions can be written:

E
¡
ni;t=xi;t; ni;t¡1; ui

¢
= h (ni;t¡1; °)¸i;tui (23)

where h (:; :) > 0 is any given function describing the way by which past patents are
to a®ect current innovations and ° is the associated vector parameter summarizing the
link between ni;t and its past. To be consistent with the previous models we add the
constraint: h (ni;t¡1; 0) = 1; without loss of generality provided xi;t includes a constant
term. It ensures that when ° = 0 the model reduces to the ones of the previous sections8.
This model can easily be extended to allow for more lags.
There are two innovation sources in this new setting: on the ¯rst hand, endogenous

shifts in the patent equation with h (ni;t¡1; °) that is the weight of past discoveries in
current innovation and, on the other hand, innovations stemming from research invest-
ment ¸i;t: Both innovation sources combine in h (ni;t¡1; °)¸i;t to produce innovations ni;t,
together with a ¯xed e®ect ui: The correlated e®ects with strict exogeneity version is
achieved through:

E
¡
ni;t=xi;T ; ni;t¡1; ui

¢
= h (ni;t¡1; °)¸i;tui (24)

The way we introduce past patents here is the simplest and does not imply stringent
assumptions on function h. First, a dummy di;t¡1 indicating if ¯rm i has applied for a
patent in the previous year, de¯ned as di;t =1Ini;t¡1¸1: The second model is a simple exten-
sion of the ¯rst one; we allow for di®erent coe±cients corresponding to di®erent values of
the past number of patents, the model is now made ofM dummies d(m)i;t =1I®m¡1�ni;t¡1�®m;
m = 1; : : : ;M; with ®0 = 1 and ®M = f+1g by convention. These dummies have a direct
interpretation.
To see this, consider the ¯rst case:

h (ni;t¡1; °) = exp
¡
°1Ini;t¡1¸1

¢

The parameter ° is approximately equal to the percentage performance advantage for
¯rms that have patented the previous year:

E
¡
ni;t=xi;T ; ni;t¡1; ui; di;t¡1 = 1

¢

E
¡
ni;t=xi;T ; ni;t¡1; ui; di;t¡1 = 0

¢ ¡ 1 = exp (°)¡ 1 ' °

with ° close to zero. The extension to several dummies is straightforward.
However, the orthogonality conditions like (23) or (24) are only a part of the spe-

ci¯cation of autoregressive models. As is well-known from studies of the linear model,
the speci¯cation of the initial conditions is also important. Here, we do not observe the

8Other speci¯cations are available, for example: E
¡
ni;t=xi;T ; ni;t¡1; ui

¢
= (h (ni;t¡1;°) + ¸i;t)ui; with

h (ni;t¡1; 0) = 0: In this case, past patenting `adds' to current research. A direct generalization is to allow
for a cross product so that the impact of past patents depends on the amount of research capital.
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number of past patents for the ¯rst period so that these numbers are to be treated as
additional ¯rm speci¯c e®ects. For instance, in the correlated e®ects model, we have:

E
¡
ni;1=xi;T ; ni;0; ui

¢
= h (ni;0; °)¸i;0ui = ¸i;0eui (25)

with eui = h (ni;0;°) ui: De¯ning the quasi di®erence ½i;t in the same way as (16) :

½i;t = ni;t ¡ ni;t+1
h (ni;t¡1; °)¸i;t
h (ni;t; °)¸i;t+1

(26)

we get the following set of orthogonality conditions after the ¯xed e®ects are eliminated:

E
¡
½i;t=xi;t; ni;t¡1

¢
= 0; 8 t = 2; : : : ; T ¡ 1

in the weak exogeneity with correlated e®ects case, and:

E
¡
½i;t=xi;T ; ni;t¡1

¢
= 0; 8 t = 2; : : : ; T ¡ 1

in the strong exogeneity one. Notice that here the `residual' can be used from date t = 2
only, since it is not possible to form a valid residual for the ¯rst period. In the followings,
we use the notation ui instead of eui.
The previous set of orthogonality conditions make an explicit use of restricted serial

correlation. In the context of linear panel data we know it is possible to estimate autore-
gressive models without assumptions on serial correlation. One just needs to assume that
enough past values of the explanatory variables are used as instruments. Here, there is an
equivalence although estimation practise appears to be more troublesome. Let the model:

E
¡
ni;t=xi;t; ni;t¡1; ui

¢
= h (ni;t¡1; °)¸i;tui (27)

instead of (23) in which instruments where all past values of patents. Using the fact that
the initial value ni;0 is embedded in the ¯xed e®ect9, we can write down:

E

µ
ni;t

h (ni;t¡1; °)¸i;t

Á
xi;t; ni;t¡1; ui

¶
= E

µ
ni;t

h (ni;t¡1; °)¸i;t

Á
xi;t; ui

¶

= E
¡
ui/ xi;t; ui

¢

= E

µ
E

µ
ni;t+1

h (ni;t; °)¸i;t+1

Á
xi;t+1; ui

¶Á
xi;t; ui

¶

= E

µ
ni;t+1

h (ni;t; °)¸i;t+1

Á
xi;t; ui

¶

) E

µ
ni;t

h (ni;t¡1; °)¸i;t
¡ ni;t+1
h (ni;t; °)¸i;t+1

Á
xi;t

¶
= 0

which could be used to form orthogonality conditions. Unfortunately, it does not seem
possible to transform the previous relationships in a way that give them the shape of the

9This implies that the information on ni;t is summarized by
¡
xi;t; ui

¢
instead of

¡
xi;t; ni;t¡1; ui

¢
:
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previous `residual' like in (26) : In fact, the residual obtained here is the one proposed by
Wooldridge (1991, [15]).
A practical problem appears: this way to write down the orthogonality conditions

leads to spurious maxima. More precisely, if there is a right-hand variable that takes on
the same sign for all the observations, then it is possible to make the previous `residual'
arbitrarily close to zero by increasing the value of the corresponding coe±cient. In this
case, it is necessary to impose concretely the compactness of the parameters set. This is
the reason why we do not use this elimination device in this paper but conditioning on
the past endogenous variables.

4 The sample

The data we use are similar to that of previous works ([5], [6]). Our sample is made of
698 ¯rms in French manufacturing other 6 years 1984-1989 (i.e., 4188 data points). It
includes informations on the number of European patent applications as well as in°ation
corrected research and development expenditures. It is build from two sources: the R&D
survey and the European patent (EPAT) data base.

4.1 Research and development capital

In order to build our research capital, we use the answers to the R&D survey. This survey
has been carried out in France since the early 1970's and gives various informations about
research expenditures for ¯rms satisfying the Frascati criteria10. This allows us to start
our research sample in year 1974. We then compute a research capital ki;t by the perpetual
inventory method. That is, research capital for ¯rm i at the end of year t is obtained from
the formula: ki;t = (1¡ ±) ki;t¡1 + ri;t; where ± is the annual depreciation rate and ri;t the
in°ation corrected total research expenditures, including the ones purchased from outside
the ¯rm11. The research capital is computed assuming an annual obsolescence rate of
15% like in Hall and Mairesse (1995, [9]) on similar data. For the ¯rms that we observe
since 1974 we assumed a pre-sample annual growth rate of 5% so that the starting value
of their capital is k0 = r0= (0:05 + ±) = 5 £ r0: For the other ¯rms, the initial research
capital is assumed to be zero.

4.2 Patent numbers

Patent data come from the European PATent (EPAT) data base which records patents
since 1978. However, these data did not include the French national identi¯cation codes12

of ¯rms so that a speci¯c work had to be done at INSEE (Bussy et al., 1995, [2]). The
matched sample covers the years 1980-1989 but we use it from 1984 only. The reason

10Mainly, at least one employee working full time on research.
11The de°ation index for R&D is computed from the decomposition of internal research expenditures

between materials, wages and investment. We weighted the corresponding macroeconomic prices by the
corresponding average shares in the R&D survey.

12The so-called SIREN code (SIREN: Service Informatique de R¶epertoire des ENtreprises) allows to
match French ¯rm-level data coming from all public surveys.
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is that the European registration progressively developed at the expense of the French
patent data base (FPAT) to reach a steady state around 1984, year in which about 70%
of French patents are registered in EPAT13. This speci¯city of our dependent variables,
the number of patents ni;t; could appear as problematic. In fact, panel data allows us to
circumvent this problem. If we model the number of patents registered in EPAT ni;t as a
proportion Ái;t of the total number of patents zi;t; say, we have: E (ni;t=zi;t; Ái;t) = Ái;tzi;t:
Provided that the choice of the registration mode is independent from both the number
of innovations zi;t and the explanatory variables xi;t, only is the intercept of our model
changed: ln E (ni;t=zi;t; Ái;t) = ln Ái;t + ln zi;t: We can account for this heterogeneity in the
intercept by allowing both the intercept to change with time Ãt and an individual ¯xed ui
e®ect in the equation. In the multiplicative framework we use this leads to Ái;t = ui £Ãt;
so that:

E (ni;t=zi;t; Ái;t) = Ái;t E
¡
zi;t=xi;T ; ui; Ãt

¢
= uiÃt¸i;t

, ln E
¡
ni;t=xi;T ; Ái;t; ui; Ãt

¢
= lnui + lnÃt + xi;tb

Another problem often encountered with patent panel data is the fact that ¯rms do not
patent all their innovations. It can be solved exactly as above, so that the ¯xed e®ect
summarizes both incomplete patenting of innovations and the link between European and
total patenting.
We have included a full set of time dummies in all the regressions so that the average

probability to register in EPAT as well as the patenting probability are allowed to change
with time.

5 The results

Several issues will be discussed in this section: the choice of the instruments, the level ver-
sus ¯rst di®erence estimates, exogeneity, restricted serial correlation and lagged dependent
variables.

5.1 Instruments selection

All our GMM estimators can be interpreted as the outcome of zero conditional expec-
tation conditions. These orthogonality conditions are valid conditional to a given set
of instruments: the products of the `residual' and any function of the instruments are
available for this purpose. We present two GMM estimators stemming from two di®erent
instrument sets. The ¯rst one is the conveniently lagged x variables and an intercept,
henceforth referred as GMM1: The second set of instruments includes the ¯rst set plus
all the independent cross products of the previous x0s: We will refer to it as GMM2: The
GMM2 estimators are introduced because they should be closer to the optimal GMM es-
timators than GMM1: Therefore we expect an e±ciency gain when we move from GMM1

to GMM2: We also test that the additional constraints from GMM2 are satis¯ed.

13FPAT is not accessible to us and cannot be matched at the ¯rm level since the SIREN codes are not
a available for this data base.
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The ¯rst result is that the accuracy gains are very important when passing from GMM1

to GMM2, the use of the latter instrument set leads to sharply lower standard errors. They
are nearly always divided by more than three, as can be seen from the estimation tables.
The second result is that the estimates obtained from the two instrument sets are

close. This was an expected result since both estimators are consistent. The changes are
always minor and within standard errors. In fact, we can test the adequacy of GMM1

and GMM2 in a more formal way. Using the overidenti¯cation statistics given in the
tables, we test for the validity of the additional constraints associated to GMM2. The
results are presented in table 3. In all but two cases we do accept the compatibility of
GMM1 and GMM2 at the 5% level. Moreover, when a rejection occurs, we are never far
from accepting the null. Actually, the worst case is for the within estimation, where the
statistics has a signi¯cance probability of 4.3%, quite close to 5%. The overall impression
is thus that introducing the cross-products in the instrument set is fruitful and allows for
increasing drastically the e±ciency of the estimates.

5.2 Levels versus correlated e®ects

An interesting and widespread comparison in panel data is between the level and ¯rst dif-
ference (or within) estimators. From HHG results we expect that the research elasticity
is to decrease when we pass from levels to ¯rst di®erences. We also perform the corre-
sponding speci¯cation test through the overidentifying statistics, since the estimators in
levels includes the constraints de¯ning the ¯rst di®erence one. Thus we can test for the
validity of the additional constraints implied by the estimator in levels.
As expected, the two estimators give very di®erent results (table 4). The levels esti-

mates ranges from 0.75 with GMM1 to 0.82 for GMM2, which increases the accuracy by
lowering the standard error from 0.04 to 0.01. This order of magnitude is compatible with
the results of HHG and lower than these of Cr¶epon and Duguet (1995, [5]) that obtained
constant returns to scale on a cross section14.
The correlated ¯xed e®ects estimators give very close results for the research elasticity,

between 0.25 and 0.26. As expected the values are lower than with levels but they remains
signi¯cant at the 5% level for the GMM estimators. The HHG pseudo maximum likelihood
estimate gives a comparable coe±cient but its standard error is much higher, so that we
accept it is not signi¯cant at the 5% level. Thus it appears that this latter estimator is
less accurate than the two GMM1 ones15.
The tests of levels versus ¯rst di®erence are obtained from the overidenti¯cation statis-

tics in table 4. The test statistic for GMM1 is equal to 34.23{21.79=12.44 with 35{29=6
degrees of freedom. The critical value at the 5% level for the Â (8) distribution is 12.59
so that the null is just accepted although we are close to rejection at the 5% level. This
can be a bad result if it means that introducing ¯xed e®ects in the modeling does not
changes the results signi¯cantly. If there was an individual opportunity factor other than

14The reason for this departure could be that the former study includes a full set of industry dummies
when estimating the cross section. We do not include it here since we focus on the ¯rst di®erence
estimates.

15We do not comment on GMM2 since this instrument set is rejected for the two GMM correlated
e®ects estimators (table 3).
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research, the null hypothesis should be rejected. It remains that, on the one hand, the
level elasticity strongly departs from the others estimates and, on the other hand, we are
close to rejection. An explanation to this could also be a poor power of the test.

5.3 Restricted serial correlation

Using the overidenti¯cation statistics,we test for the existence of serial correlation among
the residuals. These tests are linked to the following issue: a remaining correlation in the
residuals once accounted for ¯xed e®ects and research capital could indicate an importance
of correlated random shocks in the innovation function. Conversely, accepting restricted
serial correlation would suggest that innovation, as far as we can observe it, looks more
like a steady process within the period under study.
Under strict exogeneity (table 4) the statistic reaches 13.38 while it is 14.84 under

weak exogeneity (table 5), both with ten degrees of freedom. Thus we cannot reject the
hypothesis of no serial correlation at the 5% level (the probabilities are respectively 0.20
and 0.14). There is no evidence of correlated random shocks in the innovation function.
Here again, the estimates remain close among the di®erent estimation methods, from 0.26
to 0.30. We now look at the exogeneity issue.

5.4 Strict versus weak exogeneity

The less constrained estimator is the one obtained under weak exogeneity without re-
stricted serial correlation based on GMM1, the most constrained is obtained under strict
exogeneity with both restricted serial correlation and GMM2: To see this, notice that
the number of orthogonality conditions used by these estimators are respectively 14 and
224. Using these additional constraints allows for reducing the standard error of research
elasticity from 0.22 to 0.004 which is a strong gain. The size of the coe±cients are slightly
a®ected by these assumptions since they go from 0.26 to 0.32. Using GMM2 instead of
GMM1 improves the accuracy of weak exogeneity estimates. The tests of weak versus
strict exogeneity are presented in table 7. All the tests do not allow to reject the strict
exogeneity assumption at the 5% level, that is the simple correlated e®ects model. What
seems to matter here is clearly the instrument set used and GMM2 is accepted for the
two weak exogeneity estimates.

5.5 Models with past dependence

The main issue we want to address is to know wether past innovation induces shifts in
technological opportunities or not. The sign of the shift is also interesting: on the one
hand, new discoveries can lead to explore fertile research areas and therefore to an increase
of technological opportunities; on the other hand, if the technological basis is ¯xed, ¯rms
will experience an innovation shortage since the more they have discovered in the past the
less remains to be discovered. In this latter case, innovation is associated to a decrease in
technological opportunities.
We examine two di®erent functional forms for the e®ect of past innovation on research

productivity. The ¯rst one is a dummy variable indicating that ¯rm has applied for
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at least one patent in the previous year, the second model is a set of three dummies
representing di®erent number of patent applications in the previous years: between 1 and
5, 6 and 10 and more than 10. Table 6 gives the estimates obtained with restricted serial
correlation16. In all the cases, we ¯nd that one cannot reject there is a signi¯cant e®ect
associated with past patents.
For the di®erent speci¯cations we also perform the tests for instrument selection and

exogeneity. We always accept the strict exogeneity constraints as well as the GMM2

instrument set.
Consider the ¯rst model (table 6). The GMM1 estimates always conclude that the

research capital elasticity is not signi¯cant at the 5% level. Only the GMM2 estimates do
accept its signi¯cance. The coe±cient estimated in this ¯rst model is stable among esti-
mation methods, around 0.10. The e®ect of past patent is signi¯cant in all speci¯cations
at the 5% level, around 0.25. This implies that the average gain of past patenting is an
extra ° = 25% current patenting.
The second speci¯cation, with three dummies, is displayed in the same table. Here,

we want to allow for di®erent e®ects of past innovation depending on the size of this
activity measured by its past output. The ¯rst result is that the e®ect of past research
is strongly weakened with this speci¯cation also. The second one is that the ¯rst patent
class f1 � ni;t¡1 � 5g is predominant. Clearly, the innovation function does not appear to
be the same for small and big innovators. Negative coe±cients even appear for research
under weak exogeneity. But this is likely to be an artefact. More precisely, two arguments
can explain our result. The ¯rst one is about the value of patents, which would be bigger
the bigger the ¯rm. In this case, the evolution of patents numbers for the large ¯rms would
be °at even though their research capital is increasing, but the total value of their patents,
unobservable, would be increasing. In a ¯rst di®erence model, this kind of measurement
error on innovation output would lead to a research elasticity near 0 or even negative if
research capital increases strongly enough while the number of patents is °at or decreases.
The second argument is the exhaustion of innovation resources, more likely to concern
advanced ¯rms than small innovators. The evolution of patents for the biggest ¯rm would
then be °at even though research capital is steadily increasing. Clearly, more speci¯cation
work has to be done on modeling the innovation process.

6 Conclusion

In this work we propose di®erent estimations of the innovation function in which the out-
put of the innovation process is measured by the number of patents. We implement new
estimation methods based on Wooldridge and Chamberlain works, that allow for less de-
manding speci¯cations that the ones proposed originally by Hausman, Hall and Griliches.
The main methodological idea is to specify models via conditional expectations in which
enters a multiplicative individual e®ect. The elimination of the ¯rm-level e®ect leads to
a set of orthogonality conditions that can be used in the GMM framework to provide
robust estimates. This enables us to provide estimation of the correlated e®ect models,

16As we saw, it is possible to de¯ne an estimator without serial correlation but its implementation is
tricky given the spurious maxima problem it implies.
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including in the weak exogeneity case. Further restrictions can be imposed to get more
e±ciency and can be tested, like constraining observed counts to be uncorrelated through
time conditional on explanatory variables and the ¯xed e®ect. Other speci¯cations are
be examined embedding the e®ect of past innovation.
This new set of speci¯cations is extensively explored. One of the most interesting

¯nding is that we do not reject the strict exogeneity version of the correlated e®ect model
against its weak exogeneity counterpart. On the other hand, we nearly reject the model in
levels at 5%. This is associated to an important decrease in the research capital coe±cient
from 0.7 to 0.3 which is compatible with previous studies. We also examine the existence
of restricted serial correlation and the impact of past patenting. However, there is one
inconsistency between the di®erent results: on the one hand, we accept the existence of
restricted serial correlation and, on the other hand, we also accept that past patenting
a®ects the ability to innovate in the future. Thus, more work remains to be done in order
to choose between competing speci¯cations.
Two points are on our research agenda. First, to study the di®erences in innovation

productivity by cohort of research, taking ¯rms by subsample of research beginning date.
This would let both the way research is accumulated and the impact of past innovation
successes be a function of the age of research. Second, to use an unbalanced panel that
would include younger ¯rms, that is with a higher patenting growth rate.
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Table 1: Patent numbers distribution
Number of patents Percentage
0 44.1
1 to 5 32.7
6 to 15 11.5
16 to 35 5.4
36 and more 6.3
Mean 11.6
Standard error 49.0
Number of European patent applications over

1984-1989, the sample is 4188 points from

698 ¯rms.

Table 2: Research capital and patent numbers

Year n ln k n=k
1984 1.47 9.67 0.11

(6.74) (1.90) (0.45)
1985 1.65 9.88 0.13

(7.34) (1.79) (0.49)
1986 1.81 10.02 0.14

(8.00) (1.73) (0.54)
1987 1.99 10.14 0.15

(8.63) (1.70) (0.58)
1988 2.28 10.23 0.17

(10.40) (1.68) (0.68)
1989 2.39 10.31 0.18

(9.85) (1.67) (0.66)
Mean 1.93 10.04 0.15

(8.17) (1.73) (0.54)
Sample averages over ¯rms.

n : number of European patent applications.

k : research capital.
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Table 3: Instrument set selection
Model Statistica Degrees of Probability

freedom
Strict exogeneity

Without FE (Levels) 149.46 126 0.0715

Correlated FE (Within) 131.07 105 0.0433

Correlated FE (First di®erence) 130.55 105 0.0462

Correlated FE and restricted SC 196.22 185 0.2721

Correlated FE, restricted SC and 127.45 130 0.5469
1 lagged dummy

Correlated FE, restricted SC and 169.24 164 0.3733
3 lagged dummies

Weak exogeneity

Correlated FE (First di®erence) 43.29 35 0.1586

Correlated FE and restricted SC 111.60 95 0.1174

Correlated FE, restricted SC and 77.20 70 0.2596
1 lagged dummy

Correlated FE, restricted SC and 97.91 94 0.3708
3 lagged dummies
FE: ¯xed e®ects

SC: serial correlation

a: The null hypothesis is that the additional constraints from the GMM2 instrument set are

satis¯ed. Under the null, the statistics is distributed as a Chi-Square with the degrees of

freedom indicated in the next column.
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Table 4: Estimates under strict exogeneity

Instrument set GMM1 GMM2

Model ki;t Overidenti¯cation ki;t Overidenti¯cation

elasticity test elasticity test

Without ¯xed e®ects 0.75 34.23 0.82 184.19
(levels) (0.04) df=35 (0.01) df=161

p=0.50 p=0.90

Correlated e®ects 0.27 21.43 0.28 152.50
(Within) (0.10) df=29 (0.02) df=134

p=0.16 p=0.87

Correlated e®ects 0.26 21.79 0.26 152.34
(First di®erence) (0.10) df=29 (0.02) df=134

p=0.17 p=0.87

Correlated e®ects 0.26
(Pseudo maximum (0.16) { { {
likelihood, HHG [11])

Correlated e®ects and 0.30 35.17 0.29 231.39
restricted serial correlation (0.09) df=39 (0.004) df=224

p=0.35 p=0.65

GMM1: ki;t plus 6 time dummies.

GMM2: GMM1 and its independent cross products.

df: degrees of freedom for the overidenti¯cation test.

p: signi¯cance level of the overidenti¯cation test.

Table 5: Estimates under weak exogeneity

Instrument set GMM1 GMM2

Model ki;t Overidenti¯cation ki;t Overidenti¯cation

elasticity test elasticity test

Correlated e®ects 0.32 10.79 0.33 54.08
(0.22) df=14 (0.14) df=49

p=0.30 p=0.71

Correlated e®ects and 0.31 25.63 0.31 137.23
restricted serial correlation (0.18) df=24 (0.03) df=119

p=0.62 p=0.88

GMM1: ki;t plus 6 time dummies.

GMM2: GMM1 and its independent cross products.

df: degrees of freedom for the overidenti¯cation test.

p: signi¯cance level of the overidenti¯cation test.
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Table 6: Estimates with lagged patents

Model Strict exogeneity Weak exogeneity
Instrument set GMM1 GMM2 GMM1 GMM2

With 1 lagged dummy

1Ini;t¡1¸1 0.25 0.24 0.24 0.30
(0.10) (0.03) (0.11) (0.07)

ln ki;t 0.11 0.11 0.08 0.08
(0.13) (0.01) (0.20) (0.04)

Statistica 51.18 178.63 41.27 118.47
Degrees of freedom 42 172 32 102
Probability 0.84 0.65 0.87 0.87
With 3 lagged dummies

1I1�ni;t¡1�5 0.15 0.17 0.19 0.24
(0.09) (0.01) (0.10) (0.04)

1I6�ni;t¡1�10 0.04 0.07 0.09 0.11
(0.11) (0.01) (0.13) (0.04)

1Ini;t¡1¸11 0.07 0.10 0.03 0.05
(0.12) (0.01) (0.15) (0.04)

ln ki;t 0.14 0.14 {0.06 {0.05
(0.11) (0.003) (0.16) (0.01)

Statistica 67.15 236.39 60.58 158.44
Degrees of freedom 60 224 50 144
Probability 0.75 0.73 0.85 0.81
All estimates are obtained under correlated ¯xed e®ects and restricted serial correlation.

a: It is the standard overidenti¯cation speci¯cation test. The null is that the orthogonality

conditions are satis¯ed. Under the null, the statistic is distributed as a Chi-Square with

the degrees of freedom indicated in the next line.
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Table 7: Strict versus weak exogeneity

Instrument set GMM1 GMM2

Model Statistica Degrees of Proba- Statistica Degrees of Proba-
freedom bility freedom bility

Correlated FE
First di®erence 11.00 15 0.7526 98.26 85 0.1541

Correlated FE and
restricted SC
Without lagged dummy 9.54 15 0.8476 94.16 105 0.7670

With 1 lagged dummy 9.91 10 0.4484 60.16 70 0.7931

With 3 lagged dummies 6.57 10 0.7653 77.90 80 0.5456
FE: ¯xed e®ects

SC: serial correlation

a: The null hypothesis is that the additional constraints from the strict exogeneity hypothesis are satis¯ed.

Under the null, the statistic is distributed as a Chi-Square with the degrees of freedom indicated in the next

column.
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