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Abstract 
This paper proposes a method to estimate the Integral 
Non-Linearity of AD-converters from the lower order 
output Fourier coeficients of a sinusoidal input. In order 
to get a high quality estimate, the lower order Fourier 
coeflcients have to be stabilized with respect to the 
rounding operation of the AD-converter. For this we use a 
computationally eficient and easily applied method 
named wobbling. 

1. Introduction 
The industrial testing of AD-converters is still largely 
specification based. The characteristics which are usually 
listed in the specification of an AD-converter can be 
divided into two groups. 

The first group consists of characteristics which are a 
measure of the extent to which the transfer function of an 
AD-converter approximates a straight line. Examples of 
such characteristics are Integral Non-Linearity and 
Differential Non-Linearity. 

The second group of characteristics is a measure of how 
well the sample set of an AD-converter represents the 
signal at its input. Examples of such characteristics are 
Total Harmonic Distortion and Signal to Noise and 
Distortion. 

1. 1. Practical considerations 
The most straightforward method of measuring Integral 
Non-Linearity is by applying a ramp to an AD-converter 
and by assessing how far the AD-converter’s response is 
off from a straight line. The straight line can be 
determined either by a least-squares fit through the 
acquired sample set or by a straight line drawn through 
the AD-converter’s end points. 

It is, however, difficult to generate a high quality ramp on 
automated test equipment, especially if the number of bits 
of the AD-converter is large. The reason for this is that a 

ramp is a broad-band signal and sensitive to in-band noise 
or spurious signals. Also, Nyquist limitations of arbitrary 
waveform generators might make it impossible to 
reconstruct sufficient higher order harmonics. 

Integral Non-Linearity can also be measured by using a 
sine wave as a stimulus. The advantage of using a sine 
wave is that it is a narrow-band signal so its quality can 
easily be improved by filtering. The disadvantage is that 
more samples are needed compared to a ramp because of 
the non-uniformity of the sine wave’s amplitude density 
function. 

Another problem is that the required number of samples 
can become unacceptably large if one wants to visit every 
code at least once for AD-converters with more than 12 
bits. This is especially true in the presence of noise. Even 
present day automated test equipment has problems with 
the efficient handling and processing of such large sample 
sets. 

In contrast to this, the measurement of Total Harmonic 
Distortion (THD) and Signal to Noise and Distortion 
(SINAD) is much easier. These characteristics are usually 
measured with a sinusoidal stimulus and the desired 
characteristics are computed after a Fast Fourier 
Transform of the acquired sample set. Relatively small 
sample sets are usually sufficient in order to get estimates 
with a good repeatability. 

2. AD-converter model 
For the moment we consider time-continuous signals and 
model the operation of an AD-converter as: 

where [I denotes the rounding operation, 22 is thermal 
noise and h() is a smooth transfer function comprising the 
Integral Non-Linearity when present and which we model 
by a polynomial with degree I L, see Figure 1 .  
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Fig. 1: AD-converter model 
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As an input stimulus we use a sinusoid x(?): 

x ( t )  = A s i n ( 2 m )  - c; A = x 2q-1, 

where A is the relative amplitude which is unity at full- 
scale, q is the number of bits of the converter, v is the 
frequency whiQ we set to unity, and c is the offset 

The total harmonic distortion THD' of x(t) is defined as: 

I 
, 

I 

! 

where X(n) is !he nth Fourier coefficient of x(t) and L is an 
integer in the range $...,lo. 

I 
In the ideal case, where we could ignore both the thermal 
noise and the founding operation, we could compute h(x) 
from the same ;Fourier coefficients according to: 

I 

' L  
h" (x  ) = X (0) + 2c in.X (n)Tn (x /  A), (1) 

i n=l 

where T, is thd nth Chebyshev polynomial of the first kind. 

In general, thdrmal noise is not a big problem as long as 
the order N ofjthe DIT which is used to compute X(n) is 
large comparea to L. The rounding operation, however, 
poses a far more serious problem. 

3. Wobbling 
Wobbling was, introduced by De Vries and Janssen as a 
method to stabilize AD-converter characteristics [ 11. 

I 
It was shown h a t  small variations in amplitude or offset 
of a sinusoidal stimulus could cause relatively large 
fluctuations in the lower order Fourier coefficients of the 
AD-converters1 response. These fluctuations could be 

I 

1 

~ 
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explained by an interaction between the small amplitude 
and offset variations and the rounding operation of the 
AD-converter . 

De Vries and Janssen suggested to add a DC-free ramp 
with a span of 1 LSB covering an integral number M of 
sine periods to the sinusoidal stimulus in order to stabilize 
the AD-converter characteristics. This ramp can be added 
to the sinusoid in the memory of the arbitrary waveform 
generator, where one has full control over the signals. 

After sampling and quantization the ramp can be 
subtracted from the sine wave before computation of the 
desired characteristics. The whole procedure is shown in 
Figure 2. 

Fig. 2: Wobbling at work 

What is achieved by using the above mentioned 
procedure, which is called wobbling, is that all AD- 
converter characteristics are averaged over 1 LSB 
variation in amplitude and offset. The extent to which this 
averaging occurs depends on M ,  the number of sine 
periods covered by the ramp. Loosely speaking, one may 
say that wobbling with M sine periods amounts to 
replacing the actual quantizer one has by a quantizer 
having a quantization step a factor M smaller. This point 
was already made [l], Eq. 11, and is elaborated in detail 
in [2]. 

The characteristic which is the most sensitive to 
amplitude or offset variations is THD because it is based 
only on the lower order Fourier coefficients. The average 
THD for a perfectly linear AD-converter (h(x) = x )  when 
no wobbling is used is given by: 

THD2 = 10'010g[0.01234(L - 1)A-3] 

= -954-30"logA [dBl  

where L = 10. The maximal THD', on the other hand, is 
equal to: 
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THDkax = 10101~g[0.07006(L - 1)A-3] 

= -2.00 - 3O’Olog A [dB] 

again for L = 10. Notice the large difference between the 
constants -9.54 and -2.00 in the formulas for the average 
and maximal THD’, which explains to a large extent the 
strong sensitivity of the THD’ to amplitude and offset 
variations. 

The formulas above are valid for time-continuous signals. 
In the case of discrete-time signals: 

y M  ($) = [ Asin 2 M $ ] ,  k = 0,. . ., N - 1, 

where N is the number of samples and M is the number of 
periods of the sinusoid, one has to distinguish between 
three cases. The oversampled case, which is characterized 
by: 

the undersampled case: 

2 M A  > N ,  

and the so-called critical case: 

2 M A  = N. 

For the oversampled case, the observations and formulas 
for average and maximal THD2 as given above hold. For 
the undersampled case, the average THD2 is given by: 

[dB1 
M ( L - I )  THDZ = 1O1O1og 

3NA2 

while the THD’ itself shows only modest variations with 
amplitude and offset variations. The critical case should 
be avoided because the THD’ behaves irregularly. For 
details we refer to [2]. 

3.1. Reduction of rounding THD 
During our investigations we observed that wobbling does 
not only stabilize the THD but also the involved lower 
order Fourier coefficients themselves with respect to the 
rounding operation. 

quantizer by a factor M (equivalently: adding 210g M bits 
to the quantizer) continues to hold when sampling comes 
into play, provided that the number of samples N is a 
multiple of M. This point is elaborated in [2]. 
Accordingly, in the case of wobbling one can obtain the 
ranges of oversampling, undersampling and critical 
sampling with their respective maximum and average 
THD’ values from those of the previous case without 
wobbling by simply replacing all amplitudes A by MA. 
Thus one gets in all cases a substantial decrease of THD’ 
values. 

To illustrate the above, consider a perfectly linear 11-bits 
AD-converter. In the case that we measure THD’ with a 
sinusoid with 32 periods in 2048 samples, we expect an 
average THD2 due to rounding of -73 dB (no wobbling, 
undersampled case), which is confirmed by the 
simulation, see Figure 3. 

M = 32, N = 2048, B =  11 
-65 I I 

-85 
0.8 0.85 0.9 0.95 1 

relative amplitude 

Fig. 3: THD’ due to rounding 

We can get the same quality with a 6-bits AD-converter 
when wobbling is used but with otherwise the same 
parameters, see Figure 4 by wobbling with M = 32 we 
gain ’log 32 = 5 bits. 

The observation made for the time-continuous case that 
wobbling amounts to decreasing the quantizer step of the 
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h(x)=a,x5  +a4x4 +a,x3 + a 2 x 2  +a,x+a,, 

0.8 I 0.85 0.9 0.95 1 
! relative amplitude I 

Fig. 4: Reduce'd THD' due to rounding 
~ 

4. Estimatid Integral Non-Linearity 
By using wobdling we are able to reduce the contribution 
of the rounding operation to the THD' substantially and 
are now ab14 to estimate the Integral Non-Linearity 
directly from equation (1). 

To illustrate Qis, first consider an ideal 11-bits AD- 
converter (h(x) = x) ,  where we have chosen M = 16 and 
N =  2048. If we do not wobble, we expect a THD' due to 
rounding of around -76 dB, see the dashed-dotted line in 
Figure5 1 

I 

I 

M = 16,N =2048,B = I 1  I 
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0.8 ~ 0.85 0.9 0.95 1 I .05 

I relative amplitude I 
Fig. 5 THD' c$e to rounding with (dotted) and without 
(dashed-dotted) wobbling, THD2 due to h(x) (solid) 

I 

Consider a sm+th transfer function h(x) representing the 
Integral Non-Linearity, which we have modeled by: 

1 
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where we have chosen: 

as = 5 ~ 1 0 - ~ ,  a4 = 2.5xlO-j, a, = 1.5~10 '~ ,  a, = 3.5x105, 
a, = 1, = 0. 

Then we see from Figure 5 (solid line, wobbling used) that 
h(x) gives rise to a THD2 of around -85 dB. It is clear that 
we cannot estimate the Integral Non-Linearity directly 
without wobbling. 

By using wobbling, we can significantly reduce the THD' 
due to rounding to a level of around -100 dB, see Figure 5 
(dotted line), again for an ideal AD-converter. We thus 
have reduced the THD' due to rounding to a level far 
below the level of the THD' due to the non-linearity. 

This reduction is enough in order to get a high quality 
estimate of h(x) by using equation (1). see Figure 6, where 
we have shown h"(x) - x and h(x)  - x . 

-1.5 ' 
-1  -0.5 0 0.5 1 

X 

Fig. 6: z ( x )  - x (dashed-dotted), h(x)  - x (solid). 

In Figure 7, we also show h"(x) - x and h(x)  - x where 
we have now used equation (1) without wobbling. 
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x A =0.95. M = 16. N =2048,B = 11 
41 

I I 
-J 

- I  -0.5 0 0.5 1 
X 

Fig. 7: h"(x) - x (dashed-dotted), h(x)  - x (solid). 

It is clear from Figures 6 and 7 that retrieval of the non- 
linear part of h(x) becomes possible only after wobbling 
has been applied. 

As a reference, we have repeated the above simulations 
but used subtractive noise dithering instead of wobbling, 
see Figure 8. We have chosen subtractive noise dithering 
because in general it gives better results than non- 
subtractive noise dithering. Clearly, the reconstruction 
result in Figure 6 is again superior. Note that a near to 
perfect 'synchronization of test equipment is required in 
the case of subtractive noise dithering. 

x A = 0.95, M = 16, N = 2048, B = 11 
2.5 I I 

-1.5 I 

- 1  -0.5 0 0.5 I 
X 

5. Code visitation 
With the introduction of wobbling, we have put forward 
the restriction that the number K: 

K : =  N / M ,  

has to be an integer. This is against the common practice 
in DSP-based testing where M and N are chosen in such a 
way that their greatest common divisor (GCD) is 1 [3]. 

By making sure that GCD(MJV) = 1 ,  one guarantees that 
the sine wave stimulus visits as many different codes in N 
samples as possible, see Figure 9 for a histogram of codes 
which are visited for M = 5 and N = 512 (not wobbled, 8- 
bits quantizer). 

When we set M to 4 (GCD(M,N) = 4), then it is clear from 
the code visitation histogram that this is not an optimal 
choice for M if we want to visit as many codes as possible 
in N samples, see Figure 10 (not wobbled). 

The code visitation properties of the wobbled sine wave 
can be improved by a slight extension of the wobbling 
technique. Instead of adding a ramp with a span of 1 LSB, 
a ramp with a span of Q LSB's can be added, where Q has 
to be chosen in such a manner that GCD(Q,M) = 1. A 
good choice for Q is often the nearest integer to 2nMNN 
satisfying GCD(Q,M) = 1. 

35 

30 

25 

20 

15 

10 

5 

0 

M = 5, N =512,A =0.90 

-0.5 0 0.5 I 
I I 

Fig. 9: Code visitation for M = 5,  N = 512 

Fig. 8: h"(x) - x (dashed-dotted), h(x)  - x (solid). 
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Fig. 10: Code/visitation for M = 4, N = 512 
I 
I 
I As an illustration, consider the case above but now 

wobbled with ‘a ramp with Q = 7. From the histogram in 
Figure 11, it ik clear that the code visitation properties of 
the sinusoid hJve been improved considerably. 

1 M -  4. N = 512,A =0.90.0= 7 
I 

25 i 

-1  j -0.5 0 0.5 I 

Fig. 11: Code +isitation for M = 4, N = 512 and Q = 7 
! 

Another interesting feature of the ramp span parameter Q 
is that it can be used to increase the robustness of the 

I 

method against relatively large variations in code width 
(Differential Non-Linearity). This can be explained by the 
fact that by increasing Q, the variation in code width is 
averaged over several neighboring codes. 

6. Conclusion and outlook 
A method has been presented which allows the derivation 
of the Integral Non-Linearity of mildly non-linear AD- 
converters from the lower order Fourier coefficients of a 
subtractively wobbled sinusoidal stimulus. Simulations 
have shown that the method is robust to variations in 
ramp span and alignment. 

All of the signal processing is done in the digital domain 
and is not computationally intensive. 

We are presently in the process of validating our method 
by using it for estimating the non-linearity of real AD- 
converters. A point of further investigations is 
incorporating non-ideal Differential Non-Linearities into 
the model of Sec. 2. This will complicate the 
mathematical analysis somewhat, but .the model thus 
obtained provides a better connection with practical AD- 
converters. 
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