Estimating the Largest Eigenvalue of a Positive Definite Matrix

By Dianne P. O'Leary, G. W. Stewart* and James S. Vandergraft

Abstract

The power method for computing the dominant eigenvector of a positive definite matrix will converge slowly when the dominant eigenvalue is poorly separated from the next largest eigenvalue. In this note it is shown that in spite of this slow convergence, the Rayleigh quotient will often give a good approximation to the dominant eigenvalue after a very few iterations-even when the order of the matrix is large.

Let A be a positive definite matrix of order n with eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant$ $\lambda_{n}>0$ corresponding to the orthonormal system of eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$. In some applications, one must obtain an estimate of λ_{1} without going to the expense of computing the complete eigensystem of A. A simple technique that is applicable to a variety of problems is the power method. Starting with a vector u_{0} of Euclidean norm unity $\left(\left\|u_{0}\right\|_{2}=1\right)$, one iterates as follows:

$$
\begin{array}{ll}
1 & : \text { loop for } k:=0,1,2, \ldots \\
1.1 & : \quad v_{k}:=A u_{k} \\
1.2 & : \quad \rho_{k}:=u_{k}^{T} v_{k} ; \\
1.3 & : \quad u_{k+1}:=v_{k} /\left\|v_{k}\right\|_{2} \\
1 & : \text { end loop. }
\end{array}
$$

The theory of the method is well understood (e.g., see [4]). If $\lambda_{1}>\lambda_{2}$ and $x_{1}^{T} u_{0} \neq 0$, then the vectors u_{k} converge linearly to x_{1} at a rate proportional to $\left(\lambda_{2} / \lambda_{1}\right)^{k}$. The Rayleigh quotients ρ_{k} converge to λ_{1} at a rate proportional to $\left(\lambda_{2} / \lambda_{1}\right)^{2 k}$.

Convergence of the method can be hindered in two ways. First, if $x_{1}^{T} u_{0}$ is pathologically small compared to some of the numbers $x_{i}^{T} u_{0}(i>1)$, then it will take many iterations for u_{k} to become a good approximation to x_{1}. Second, if λ_{2} is very near λ_{1}, the final rate of convergence will be slow. We can do very little about the first problem, except to note that it is unlikely to occur with a randomly chosen starting vector u_{0}. Moreover, if our object is to compute the eigenvector x_{1}, the only way to accelerate slow convergence due to an unfavorable ratio $\lambda_{2} / \lambda_{1}$ is to use more elaborate methods, such as simultaneous iteration [2] , [3] or Lanczos tridiagonalization [1]. However, if we are only interested in a rough approximation to λ_{1}, it will

[^0]be provided by ρ_{k} after a few iterations. The purpose of this note is to quantify this assertion with specific bounds.

To simplify the analysis, let the matrix A be scaled so that $\lambda_{1}=1$. If we set $w_{i}=x_{i}^{T} u_{0}$, then

$$
\begin{equation*}
u_{0}=w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n} \tag{1}
\end{equation*}
$$

where w_{1} is assumed to be nonzero. Then it is easy to verify that

$$
\begin{equation*}
\rho_{k}=\frac{w_{1}^{2}+\sum_{i=2}^{n} w_{i}^{2} \lambda_{i}^{2 k+1}}{w_{1}^{2}+\sum_{i=2}^{n} w_{i}^{2} \lambda_{i}^{2 k}} \equiv \frac{\nu_{k}}{\delta_{k}} . \tag{2}
\end{equation*}
$$

The number ρ_{k} satisfies $0<\rho_{k} \leqslant 1$, and it will be a good approximation to $\lambda_{1}=1$ if it is near one. Thus, we are led to investigate the worst case, when the eigenvalues of A are distributed to make ρ_{k} as small as possible. This distribution is easily determined by differentiating the expression (2) with respect to each λ_{j} and setting the results to zero. This gives

$$
(2 k+1) w_{j}^{2} \lambda_{j}^{2 k} \delta_{k}-2 k w_{j}^{2} \lambda_{j}^{2 k-1} v_{k}=0 \quad(j=2,3, \ldots, n)
$$

An inspection of (2) shows that if $w_{j} \neq 0$ then no minimum of ρ_{k} can have $\lambda_{j}=0$. Hence, we take

$$
\begin{equation*}
\lambda_{j}=\frac{2 k}{2 k+1} \frac{\nu_{k}}{\delta_{k}}=\frac{2 k}{2 k+1} \rho_{k} \quad(j=2,3, \ldots, n) . \tag{3}
\end{equation*}
$$

Thus, if $\widetilde{\rho}_{k}$ denotes the minimum value of ρ_{k}, the minimizing distribution takes $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ equal and slightly less than $\tilde{\rho}_{k}$. We may obtain an equation for $\tilde{\rho}_{k}$ by substituting (3) into (2) to give

$$
\tilde{\rho}_{k}=\frac{1+\left(\frac{2 k}{2 k+1}\right)^{2 k+1} \tau^{2} \widetilde{\rho}_{k}^{2 k+1}}{1+\left(\frac{2 k}{2 k+1}\right)^{2 k} \tau^{2} \widetilde{\rho}_{k}^{2 k}}
$$

where

$$
\tau^{2}=\left(w_{2}^{2}+w_{3}^{2}+\cdots+w_{n}^{2}\right) / w_{1}^{2}
$$

This expression may be simplified to the polynomial equation

$$
\begin{equation*}
f_{k}\left(\tilde{\rho}_{k}\right) \equiv \frac{c_{k} \tau^{2}}{2 k+1} \tilde{\rho}_{k}^{2 k+1}+\tilde{\rho}_{k}-1=0 \tag{4}
\end{equation*}
$$

where

$$
c_{k}=\left(\frac{2 k}{2 k+1}\right)^{2 k}
$$

The polynomial $f_{k}(\rho)$ is increasing for $\rho \geqslant 0$. Since $f_{k}(0)=-1$ and $f_{k}(1)>0, f_{k}$ has a unique zero $\widetilde{\rho}_{k} \in(0,1)$.

Equation (4) allows us to give a qualitative description of the behavior of $\tilde{\rho}_{\boldsymbol{k}}$. The positive zero of (4) decreases as the leading coefficient increases. Now $c_{\boldsymbol{k}}$ is well
behaved, having e^{-1} as a limit as $k \rightarrow \infty$ and satisfying

$$
.367<e^{-1} \leqslant c_{k} \leqslant \frac{4}{9}<.445
$$

The number τ^{2} can be written

$$
\tau^{2}=\tan ^{2} \theta
$$

where θ is the angle between u_{0} and x_{1}. Thus, it reflects how good an approximation u_{0} is to x_{1}. In particular, if all the w_{i} are equal, then $\tau^{2}=n-1$. As τ^{2} grows, the approximation becomes poorer and $\tilde{\rho}_{k}$ decreases. On the other hand, as k increases, the leading coefficient of f_{k} decreases and $\tilde{\rho}_{k}$ increases.

To obtain some quantitative results on the behavior of the power method, suppose that we wish to estimate λ_{1} to within a tolerance α; that is, for $0<\alpha<1$ we wish the Rayleigh quotient ρ_{k} to satisfy $\rho_{k} \geqslant \alpha \lambda_{1}$. Then we must choose k so that

$$
\begin{equation*}
\frac{c_{k} \tau^{2}}{2 k+1} \alpha^{2 k+1}+\alpha-1<0 \tag{5}
\end{equation*}
$$

This inequality simplifies if we set

$$
x=-(2 k+1) \ln \alpha
$$

so that

$$
\begin{equation*}
\frac{e^{-x}}{x}<\frac{\alpha-1}{c_{k} \tau^{2} \ln \alpha} \tag{6}
\end{equation*}
$$

The following is a table of values of k satisfying (5) for $\alpha=.9$ and various values of τ^{2}.

$\tau^{2}+1$	5	10	15	25	50	75	100	250	500	1000
k	4	5	7	8	10	12	13	16	19	21

As we pointed out earlier, if the components of u_{0} along the eigenvectors of A are all equal, then $\tau^{2}+1=n$. In this case the table gives k as a function of the order of A. What is significant is the extremely slow growth of k; a tenfold increase in $\tau^{2}+1$ increases k by about eight. The effect is even more marked when α is taken to be 0.5 , as it might be when one wants a rough estimate of the magnitude of λ_{1}. In this case $k=2$ for $\tau^{2}+1=100$ and $k=3$ for $\tau^{2}+1=1000$.

We may get a crude approximation to k as a function of τ^{2} by making the approximation

$$
c_{k} \cong e^{-1}, \quad \frac{1-\alpha}{\ln \alpha} \cong 1
$$

and deleting the $1 / x$ term in (6). This gives

$$
x>\ln \tau^{2}-1
$$

or

$$
\begin{equation*}
k>\frac{\ln \tau^{2}-1}{2|\ln \alpha|}-\frac{1}{2} \tag{7}
\end{equation*}
$$

where $>$ indicates that the inequality is only approximate. Thus, the number of iterations required to obtain a given accuracy in λ_{1} increases as $\ln \tau /|\ln \alpha|$.

If one wishes to apply the power method with a fixed number of iterations, one must estimate τ^{2}, which may not be easy to do. The slow growth of k with τ^{2} suggests that underestimating τ^{2}, even by an order of magnitude, will not affect things very much; a few extra iterations will wipe out the effect. This view is reinforced by the fact that our analysis assumes the worst possible distribution of eigenvalues.

We can make a probabilistic estimate of τ^{2}, if we assume that the components of u_{0} are chosen to be independent normal random variables with mean zero and variance σ^{2}. In this case $\tau^{2} /(n-1)$ has an F distribution with $n-1$ and 1 degrees of freedom. It follows that at least 90% of the time, $\tau^{2} \leqslant 64(n-1)$. If the approximation (7) is to be believed, this will add approximately $-2 / \ln \alpha$ iterations to those required for $\tau^{2}=(n-1)$.

An alternative to fixing the number of iterations, is to terminate the process when ρ_{k} satisfies a convergence criterion such as $\left|\rho_{k}-\rho_{k-1}\right| \leqslant(1-\alpha) \rho_{k}$. The results of this note suggest that if α is not too stringent, say $\alpha \leqslant .9$, then iteration will stop after a very few iterations.

Department of Computer Science
University of Maryland
College Park, Maryland 20742

[^1]
[^0]: Received November 29, 1978
 AMS (MOS) subject classifications (1970). Primary 65F15.

 * This work was supported in part by the office of Naval Research under Contract No. N0014-76-C-0391.

[^1]: 1. B. N. PARLETT \& D. S. SCOTT, "The Lanczos algorithm with selective or orthogonalization," Math. Comp., v. 33, 1979, pp. 217-238.
 2. H. RUTISHAUSER, "Simultaneous iteration method for symmetric matrices," Numer. Math., v. 16, 1970, pp. 205-223.
 3. G. W. STEWART, "Accelerating the orthogonal iteration for the eigenvalues of a Hermitian matrix," Numer. Math., v. 13, 1969, pp. 362-376.
 4. G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1974.
