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Estimating the Largest Eigenvalue of a

Positive Definite Matrix

By Dianne P. O'Leary, G. W. Stewart* and James S. Vandergraft

Abstract.   The power method for computing the dominant eigenvector of a positive

definite matrix will converge slowly when the dominant eigenvalue is poorly separated

from the next largest eigenvalue.   In this note it is shown that in spite of this slow

convergence, the Rayleigh quotient will often give a good approximation to the domi-

nant eigenvalue after a very few iterations-even when the order of the matrix is large.

Let A be a positive definite matrix of order n with eigenvalues Xj > X2 > • • • >

X„ > 0 corresponding to the orthonormal system of eigenvectors xx,x2, . . . ,xn. In

some applications, one must obtain an estimate of Xx without going to the expense

of computing the complete eigensystem of A.   A simple technique that is applicable to

a variety of problems is the power method.   Starting with a vector u0 of Euclidean

norm unity (||«0||2 = 1), one iterates as follows:
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loop for k := 0, 1, 2,

vk := Auk;

Pk :=uIvk'

"fc + i := vk¡Hh>

end loop-

The theory of the method is well understood (e.g., see [4]).  If Xx > X2 and

x\u0 ^ 0, then the vectors uk converge linearly to Xj at a rate proportional to

(X2/Xx)fc.  The Rayleigh quotients pk converge to \x at a rate proportional to

(X2/Xj)2fc.

Convergence of the method can be hindered in two ways.   First, if x^u0 is

pathologically small compared to some of the numbers xfu0 (i > 1), then it will take

many iterations for uk to become a good approximation to xr  Second, if X2 is very

near Xp the final rate of convergence will be slow.  We can do very little about the

first problem, except to note that it is unlikely to occur with a randomly chosen

starting vector u0.  Moreover, if our object is to compute the eigenvector xx, the only

way to accelerate slow convergence due to an unfavorable ratio X2/Xj is to use more

elaborate methods, such as simultaneous iteration [2], [3] or Lanczos tridiagonaliza-

tion [1].   However, if we are only interested in a rough approximation to Xj, it will
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be provided by pk after a few iterations.  The purpose of this note is to quantify this

assertion with specific bounds.

To simplify the analysis, let the matrix A be scaled so that Xj = 1.  If we set

w¡ = xju0, then

(1) u0 = wxxx +w2x2 + ■ ■ ■ +wnxn,

where w, is assumed to be nonzero.  Then it is easy to verify that

(2) Pk =
«2X+Z?=2»>Wk+\vk

W+Z,-"=2^\?fc       "'*

The number pk satisfies 0 < pk < 1, and it will be a good approximation to

Xj = 1 if it is near one. Thus, we are led to investigate the worst case, when the

eigenvalues of A axe distributed to make pk as small as possible.  This distribution is

easily determined by differentiating the expression (2) with respect to each X- and

setting the results to zero.  This gives

(2k + l)w2r2k8k-2kw2X2k-ivk = 0      (/= 2, 3, . . . , „).

An inspection of (2) shows that if w, =£ 0 then no minimum of pk can have X- = 0.

Hence, we take

(3) h=jñ-lÍ = 2F+-l^k      0 = 2,3,...,n).
2k      v_k _    2 k

Thus, if pfc denotes the minimum value of pk, the minimizing distribution takes

X2, X3, . . . , X„ equal and slightly less than fjk. We may obtain an equation for fJk

by substituting (3) into (2) to give

/   2k   y*+i

\2fc + 1/
1      111 -r2~2fc+l

¥\2k + l) T Pk
Pk

1    |   /     2k     \2k    2~2

l+\2kTl)     T Pk
2~2k

where

T2=(W2+W2+---    +W2n)lw\.

This expression may be simplified to the polynomial equation

(4) 4(pfe)-¿riPk2fc+1+pk-i = o,

where

'k     \2k + l)    ■

The polynomial /fc(p) is increasing for p > 0.  Since /fc(0) = - 1 and /k(l) > 0, fk

has a unique zero 7>k G (0, 1).

Equation (4) allows us to give a qualitative description of the behavior of pfc.

The positive zero of (4) decreases as the leading coefficient increases.  Now ck is well
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behaved, having e   1 as a limit as k —► °° and satisfying

.367<e-1 <cfc<4r <.445.

The number r2 can be written

t2 = tan20,

where 0 is the angle between u0 and xx.  Thus, it reflects how good an approximation

u0 is to Xj.  In particular, if all the w¡ axe equal, then r2 = n - 1.  As t2 grows, the

approximation becomes poorer and pfc decreases. On the other hand, as k increases,

the leading coefficient of fk decreases and pfc increases.

To obtain some quantitative results on the behavior of the power method, sup-

pose that we wish to estimate \x to within a tolerance a; that is, for 0 < a < 1 we

wish the Rayleigh quotient pk to satisfy pk > a\x. Then we must choose k so that

c t2

^ rT^T^+'+a-KO.
2k + 1

This inequality simplifies if we set

x = - (2k + 1) In a,

so that

e~x        a - 1
<

(6) x       ckT2ln a '

The following is a table of values of k satisfying (5) for a = .9 and various

values of t2.

t2 + 1   5   10    15  25  50  75  100 250   500   1000

k 4   5    7  8  10  12  13  16   19    21

As we pointed out earlier, if the components of u0 along the eigenvectors of A

are all equal, then t2 + I = n.  In this case the table gives k as a function of the order

of A. What is significant is the extremely slow growth of k; a tenfold increase in

t2 + I increases k by about eight.  The effect is even more marked when a is taken

to be 0.5, as it might be when one wants a rough estimate of the magnitude of Xx.  In

this case k = 2 for t2 + 1 = 100 and k = 3 for t2 + 1 = 1000.

We may get a crude approximation to k as a function of x2 by making the ap-

proximation
~ „-i     1 - a ~ ,

ck = e    ,  -.-= 1k In a

and deleting the 1/x term in (6).  This gives

x > In r2 - 1

or

In t2 - 1     1
(7) k>

2\lna\       2'
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where > indicates that the inequality is only approximate.  Thus, the number of iter-

ations required to obtain a given accuracy in Xx increases as In r/lln a|.

If one wishes to apply the power method with a fixed number of iterations, one

must estimate r2, which may not be easy to do. The slow growth of k with t2 sug-

gests that underestimating t2 , even by an order of magnitude, will not affect things

very much; a few extra iterations will wipe out the effect.  This view is reinforced by

the fact that our analysis assumes the worst possible distribution of eigenvalues.

We can make a probabilistic estimate of t2 , if we assume that the components

of u0 axe chosen to be independent normal random variables with mean zero and vari-

ance a2.   In this case T2/(n - 1) has an F distribution with n - 1 and 1 degrees of

freedom.  It follows that at least 90% of the time, r2 < 64(n - 1).    If the approxi-

mation (7) is to be believed, this will add approximately - 2/ln a iterations to those

required for r2 = (n — 1).

An alternative to fixing the number of iterations, is to terminate the process

when pk satisfies a convergence criterion such as |pfe - pfc _ x I < ( 1 - a)pk. The results of

this note suggest that if a is not too stringent, say a < .9, then iteration will stop

after a very few iterations.
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