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Abstract. Water ponding and pluvial flash flooding (PFF)
on roadways can pose a significant risk to drivers. Further-
more, climate change, growing urbanization, increasing im-
perviousness, and aging stormwater infrastructure have in-
creased the frequency of these events. Using physics-based
models to predict pluvial flooding at the road segment scale
requires notable terrain simplifications and detailed informa-
tion that is often not available at fine scales (e.g., block-
age of stormwater inlets). This brings uncertainty into the
results, especially in highly urbanized areas where micro-
topographic features typically govern the actual flow dynam-
ics. This study evaluates the potential for flood observations
collected from Waze – a community-based navigation app –
to estimate the likelihood of PFF at the road segment scale.
We investigated the correlation of the Waze flood reports
with well-known flood observations and maps, including the
National Flood Hazard Layer (NFHL), high watermarks, and
low water crossings data inventories. In addition, highly lo-
calized surface depressions and their catchments are derived
from a 1 m resolution bare-earth digital elevation model (BE-
DEM) to investigate the spatial association of Waze flood
reports. This analysis showed that the highest correlation
of Waze flood reports exists with local surface depressions
rather than river flooding, indicating that they are potentially
useful indicators of PFF. Accordingly, two data-driven mod-
els, empirical Bayes (EB) and random forest (RF) regression,
were developed to predict the frequency of flooding, a proxy
for flood susceptibility, for three classes of historical storm
events (light, moderate, and severe) in every road segment
with surface depressions. Applying the models to Waze data
from 150 storms in the city of Dallas showed that depression

catchment drainage area and imperviousness are the most im-
portant predictive features. The EB model performed with
reasonable precision in estimating the number of PFF events
out of 92 light, 41 moderate, and 17 severe storms with 0.84,
0.85, and 1.09 mean absolute errors, respectively. This study
shows that Waze data provide useful information for highly
localized PFF prediction. The superior performance of EB
compared to the RF model shows that the historical obser-
vations included in the EB approach are important for more
accurate PFF prediction.

1 Introduction

This study developed and tested a new data-driven frame-
work for short-term flash flood likelihood estimation at the
scale of road surface depressions based on crowdsourced
traffic data. Flash flooding is considered one of the most
hazardous natural disasters that affect people worldwide
(Kousky, 2018). Analysis of flash floods over the contiguous
United States shows that flash flood frequency and property
damage have increased in the past 2 decades (Ahmadalipour
and Moradkhani, 2019). Pluvial flash flooding (PFF) is de-
fined as localized floods caused by an overwhelmed natural
or engineered drainage system (Carter et al., 2015; Rosen-
zweig et al., 2018). PFF can reduce the reliability of roadway
networks by decreasing capacity, increasing travel time, re-
ducing safe speed, and increasing accident risks and deaths
through lane submersion (Agarwal et al., 2005; Suarez et al.,
2005; Smith et al., 2004).
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Most urban flood studies have focused on fluvial and
coastal flooding rather than PFF. Rosenzweig et al. (2018)
identified three reasons for pluvial flooding being less stud-
ied: (1) it is assumed that stormwater infrastructure, such as
sewers, culverts, and pumps, are sufficient to prevent pluvial
flooding, (2) pluvial flooding is believed to be a nuisance
with minimal impacts, and (3) lack of monitoring data to
capture short-duration precipitation over small urban water-
sheds.

In the past, stormwater minor system (curbs, gutters, in-
lets, pipes, and channels) have been designed to minimize
nuisance hazards associated with a 10-year or less recurrence
interval rainfall (US Department of Transportation FHWA,
1979). More recent roadway facilities are designed and eval-
uated for 50 and 100-year events (Mark and Marek, 2011),
but in older urban areas undersized conveyance systems re-
main (Jack et al., 2021). With climate change, growing ur-
banization, and increasing imperviousness, the frequencies
of extreme rainfall events and nuisance flooding are increas-
ing (United Nations, 2019; Hemmati et al., 2021, 2020), lead-
ing to increased risks from pluvial flooding. Mobility disrup-
tion is a noticeable consequence of PFF (Douglas et al., 2010;
Yin et al., 2016; Coles et al., 2016; Li et al., 2018). For ex-
ample, Pregnolato et al. (2017) estimated that a driver facing
10 cm of standing water must not drive faster than 40 km h−1

to maintain safe driving, stopping, and steering without loss
of control. Furthermore, according to the National Weather
Service (National Weather Services, 2022) 30 cm of stand-
ing water can be sufficient to float most cars.

In order to warn drivers about rapidly changing flash flood
conditions, high-resolution predictive models are needed at
navigational scale (road segment and intersection). Simpli-
fied terrain models, such as the rapid flood spreading model
(RFSM; Lhomme et al., 2008), height above nearest drainage
model (HAND; Nobre et al., 2011), and hierarchical fill-
ing and spilling models (Zhang and Pan, 2014; Chu et al.,
2013; Wu et al., 2019; Samela et al., 2020) can estimate in-
undation extent in less complex terrains where the dynam-
ics of flow, velocity, and momentum are negligible (Teng et
al., 2017). Statistical methods are also able to predict flood-
ing by analyzing historical observations, however, since they
learn from the past, updating procedures are required to make
them adaptive to accelerated future changes as they are built
upon the assumption that similar conditions in the future will
cause flooding. A notable advantage of statistical PFF mod-
els is their ability to capture impacts of unobserved variables
and uncertainties from historical observations, as well as the
ability to rapidly update the models as new data become
available and system dynamics change. Haghighatafshar et
al. (2020) suggested that designing stormwater infrastruc-
ture based on storm recurrence intervals is ambiguous, while
statistical models can provide the basis of a more resilient
system by taking uncertainties of vulnerability and hazard
of pluvial flooding into account. Many studies have inves-
tigated statistical flood modeling to predict flooding by ap-

plying statistical and machine learning methods such as clas-
sification models, Bayesian frameworks, and random forest
models (Tien Bui and Hoang, 2017; Solomatine and Ostfeld,
2008; Tehrany et al., 2013; Zahura et al., 2020). Other studies
have combined deterministic physics-based models with sta-
tistical models for forecasting applications (Li and Willems,
2020; Zhao et al., 2018).

Empirical and data-driven models require flooding obser-
vation data with high spatiotemporal resolution. The average
duration of flash flooding events in the United States has been
3.5 h during the last two decades (Ahmadalipour and Morad-
khani, 2019), limiting the applicability of aerial imagery to
obtain sufficiently frequent flash flooding observations. To
fill this data gap, there is increasing interest in the application
of newer “crowdsourced” data into flood modeling, moni-
toring, and impact assessment (Molinari et al., 2018; Gai-
tan et al., 2016; See, 2019; Assumpcao et al., 2018; Praharaj
et al., 2021a; Helmrich et al., 2021; Zhu et al., 2022; Liu
et al., 2021; Schnebele et al., 2014). Previous crowdsourced
flood data studies have involved engaging citizens in collect-
ing four types of data: streamflow or rain gauge readings,
videos, text messages, and image postings (Li and Willems,
2020; Assumpcao et al., 2018; Zhu et al., 2022; Liu et al.,
2021; Schnebele et al., 2014; Le Coz et al., 2016; Smith et
al., 2017; Cervone et al., 2015; Wang et al., 2018; Pereira et
al., 2020; Moy De Vitry et al., 2019). Also, Zhu et al. (2022)
and Liu et al. (2021) applied artificial intelligence techniques
to extract flooding waterlogging from microblog informa-
tion shared in crowdsourcing apps. A big challenge in using
crowdsourced data is identifying the accurate location and
flood extent from posted pictures, videos, and texts. How-
ever, even with the challenges mentioned above, researchers
have concluded that integrating crowdsourced data into flood
models improves the overall performance and timeliness of
forecasts, hence increasing flood hazard awareness (Assump-
cao et al., 2018; Goodrich et al., 2020).

The majority of studies have implemented crowdsourced
data into physics-based models as complementary data for
model setup, calibration, validation, and data assimilation
(Zahura et al., 2020; Assumpcao et al., 2018; Smith et al.,
2017). However, physics-based models can be limited in
flood prediction at road segment scales due to highly com-
plex and interconnected variables that contribute to flooding
in urban environments (Coles et al., 2016; Rafieeinasab et al.,
2015). Micro-topographic features, steep slopes, and varying
surface materials can generate different types of flow regimes
at small spatial scales. Dual-drainage hydrodynamic models
that couple equations for the underground sewer system and
surface flow require detailed layouts of urban drainage sys-
tems that can be of varying quality, particularly in older ur-
ban areas where PFF is most prevalent (Haghighatafshar et
al., 2020; Smith et al., 2017; Sadler et al., 2018; Berndts-
son et al., 2019). Finally, catchments that drain into roadways
are often very small and ungauged, leading to further uncer-
tainties in estimating road inundation (Versini et al., 2010).
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Hence accurate high-resolution real-time physics-based hy-
drodynamic modeling in urban areas is computationally ex-
tensive and rarely considered feasible (Mignot et al., 2006;
Sanders et al., 2020).

In this study, we address these gaps and limitations of PFF
probability estimation on roadways by incorporating crowd-
sourced navigation data from the Waze navigation app as
highly localized flood observations into high-resolution data-
driven models that can be updated and implemented rapidly
to provide near-real-time navigational warnings. The frame-
work developed has three steps. In the first step, road sur-
face depressions and their upstream catchments are delin-
eated from a high-resolution digital elevation model using
simplified flow-routing and hierarchical fill spill approaches.
In the second step, two statistical and machine learning mod-
els – empirical Bayes (EB) and random forest (RF) – are
developed and tested to predict PFF frequency using road-
way, catchment, depression, and rainfall characteristics. In
the third step, the probability of roadway flooding and flood
maps are generated that could be disseminated to navigation
software. To our knowledge, this study is the first to develop
real-time PFF likelihood maps at road segment scales us-
ing data-driven models and crowdsourced traffic data. With
the widespread use of smartphones and crowdsourced appli-
cations, this study shows the benefits of integrating crowd-
sourced data and statistical modeling approaches into road-
way flood awareness and management systems.

2 Methodology

The three steps of the framework developed are shown in
Fig. 1. The first step involves data preprocessing to create the
dataset needed for modeling. The second step fits statistical
and machine learning models to the historical dataset, and
the third step performs the roadway flooding likelihood esti-
mation for future storms. These steps are described in more
detail in sections below.

2.1 Step I: Preprocessing

The dataset preprocessing in Step I includes three primary
components that are described in detail in the sub-sections
below and depicted in Fig. 1. First, road surface depressions
and their upstream catchments are delineated. Second, storm
events and their characteristics are determined from contin-
uous rain gauge observations; third and last, flood alerts are
assigned to corresponding depressions and storm events.

2.1.1 Depression extraction

The first step of data preprocessing is to find road surface
depressions that are prone to PFF. Generally, surface depres-
sions are defined as the difference between the hydrologi-
cally conditioned digital elevation model (DEM) (Lindsay
and Dhun, 2014) and the raw DEM. In hydrologically con-

nected DEM elevations internally draining sinks are raised to
form a flat area that can drain to downstream. Locating sur-
face depressions in a highly urbanized terrain is challenging
due to micro-topographic and underground features (such as
curbs, stormwater inlets, etc.) that determine the actual flow
path. In addition, using a high-resolution DEM (1 m) intro-
duces hierarchical depressions with different orders of mag-
nitude in a spatial scale, from highly localized (minor pits)
to surface depressions that cover more than one neighbor-
hood (residual depressions). Therefore, a nested hierarchy of
depressions must be considered to extract depressions com-
patible with urban features.

In this paper, the “sink evaluation” tool of the Arc Hydro
toolbox (Djokic et al., 2011) is utilized to extract a nested
hierarchy of surface depressions. The sink evaluation tool
scans the bare-earth DEM (BE-DEM) and characterizes low-
lying cells. The process of local depression extraction is an
iterative process that examines each sink, raises the eleva-
tion of low-lying cells to fill the sink, and then reapplies the
process on the resulting DEM. This procedure is depicted in
Fig. 2. In the first sink evaluation step, Level-1 depressions
are delineated and raised (Fig. 2a). In the second step, the
DEM resulting from the first level fill (Fig. 2e, red areas) is
evaluated and Level-2 depressions are delineated. This pro-
cess can be repeated until the area is fully hydrologically con-
ditioned and no higher-level depressions remain. The number
of steps required in this process is dependent on the resolu-
tion of the DEM and the complexity of the depressions in the
landscape.

Due to the complexity of urban terrain, the spatial scale of
depressions at each hierarchy level is quite variable, and de-
pressions at the same level can be as large as a neighborhood
or as small as a pothole. Initially, depressions at all hierarchi-
cal levels were extracted. Since 15 cm of standing water has
minimal impact on most cars (National Weather Services,
2022), depressions with maximum depth smaller than 15 cm
are removed from further analysis. Next, those depressions
that best represent and align with urban topographic features
that block flow, such as roadway curbs and gutters, are manu-
ally selected as flood-prone depressions. Flood-prone depres-
sions are then selected by examining overlays of the depres-
sions and Waze flood reports, as well as the areas of depres-
sions and road surfaces that the depression covers. Heuris-
tics for this procedure are presented in detail in Sect. 2.1.5.
Figure 2e shows 10 depressions (L1-1 to L1-7, L2-1, L2-2,
and L3-1) extracted on a road segment with three depression
levels. Level-1 depressions and L2-2 appear as single cell or
too small pits on the road surface to cause traffic disruption.
However, L2-1 aligns with road curbs and gutters and could
cause traffic disruptions by covering a large area and all lanes
of the roadway. Therefore, L2-1 is manually selected as the
smallest depression that is prone to PFF and could affect traf-
fic flow on this road segment. (Note that L3-1 includes L2-1;
hence, it will be filled only after L2-1 has filled and disrupted
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Figure 1. Methodology framework (basemap from ESRI-2021).

Figure 2. Hierarchical filling of surface depressions (basemap from ESRI-2021).

traffic flow already. Hence, L3-1 does not need to be included
in the model for traffic navigation purposes.)

2.1.2 Physical depression and catchment descriptors

After delineating road surface depressions, physical descrip-
tors of depressions and their upstream catchments are com-
puted as follows. Two sets of characteristics, summarized in

Table 1, are defined for every depression that is selected in
the previous extraction step: physical depression descriptors
(PDDs) and physical catchment descriptors (PCDs; Kalantari
et al., 2014). PDD features describe the depression topogra-
phy that is likely to affect water accumulation. These features
are area, average depth assuming the depression is filled, and
the height of road DEM cell elevations above the lowest el-
evation of the depression (hereafter called height above low-
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Figure 3. Schematic of HALE and depth features.

est elevation, or HALE). The HALE feature indicates which
DEM cells on road surface would be inundated first and what
is the accumulated depth required for flood water to reach
that grid cell. Figure 3 shows a schematic of the HALE and
depth features. The PCD features are derived from the up-
stream catchment that drains into each depression. The ex-
tracted features are average slope, fractions of the upstream
catchment with a steep slope (defined as steeper than 8 %),
percentage of imperviousness, and the net log-transformed
drainage area, hereafter called net drainage area (NetDA),
which is computed using Eq. (1):

NetDA= Log(CA)× I, (1)

where CA is the catchment area in m2, and I is the percent-
age imperviousness of the catchment based on the National
Land Cover Dataset (NLCD).

Log(CA) was used in this equation, reflecting the nonlin-
ear relationship between catchment area and flood likelihood.
This can happen since the larger the drainage area is, the
higher are the impacts of infiltration, loss, and stormwater
drainage that we are not considering in this analysis.

2.1.3 Traffic exposure

Crowdsourced data are generated by volunteer contributions,
which results in more data availability on roads with higher
traffic volumes. Therefore, including a feature in the model
that captures roadway traffic exposure to flooded areas is nec-
essary to consider the likelihood of reporting a flooded de-
pression. For this purpose, two additional variables are in-
cluded in the framework (Table 1): (1) the natural logarithm
of annual daily traffic (ADT) and (2) the road function as de-
fined by the Texas Department of Transportation (TX-DOT).

2.1.4 Storm event definition and storm clustering

Raw precipitation data are obtained from Automated Surface
Observing Systems (ASOS) stations in continuous 5 min in-
terval rain pulse observations. To predict the probability of
depression flooding during a storm of particular severity, in-
dependent storm events must be derived from the continu-
ous data. In this study, the minimum inter-event time (MIT)
method is used to define independent storm events. The MIT

approach defines a storm event as rainfall that follows and is
followed by a minimum dry (rainless) period called the min-
imum inter-event time. The MIT value can be calculated us-
ing different approaches. A reasonable estimate of the MIT
value is the lag time at which the serial autocorrelation be-
tween rain pulses reaches a pre-set low threshold and re-
mains steady (Asquith et al., 2005). In this study, the MIT
value is diagnosed using the correlogram method to visu-
alize the autocorrelation of a rain pulse time series to find
the lag time that makes a rain pulse independent of its pre-
ceding rain pulses. After defining independent storm events,
storm characteristics, including accumulated precipitation;
duration; average intensity; and maximum 15 min, 30 min,
and hourly intensities, are calculated.

In similar storm events characteristics, similar locations
of depression PFF is likely to occur. To capture this phe-
nomenon, storms are clustered into classes with similar
severity (light, moderate, severe) using the storm character-
istics such as intensity, rainfall depth, and storm duration.
For storm clustering, agglomerative hierarchical clustering
is applied using a bottom-up approach that forms a single
cluster for each storm event and successively merges clus-
ters based on Ward’s linkage method. Ward’s linkage method
minimizes the total increase in within-cluster variance (Edel-
brock, 1979) caused by merging clusters. The benefit of us-
ing agglomerative clustering is that this algorithm is less sen-
sitive to outliers and avoids creating a large number of small
clusters for extreme storm events (Edelbrock, 1979).

2.1.5 Waze data preprocessing

Waze is a GPS-based traffic navigation app that collects
crowdsourced information about road conditions. The Waze
app aggregates traffic incidents reported by its users as traffic
alerts. Traffic alerts are geotagged points with two attributes
that specify their lifetime: “publish date” and “last seen”. The
Waze app has no pre-qualification for users to post a report,
consequently not all of the flood-labeled alerts are reliable to
be used as flood observations. Praharaj et al. (2021b) showed
that 71 % of Waze flood alerts are reliable in Norfolk, Vir-
ginia. To investigate Waze alerts’ authenticity, we matched
flood-related alerts to the most recent rainfall event and com-
puted the delay between alerts’ publishing and rainfall end-
time. A temporal threshold can be found by analyzing the
cumulative distribution of delays that determines whether a
flood report is related to a storm event.

In addition to alert timing, we also compared the locations
of Waze alerts to publicly available datasets of high-flood-
risk locations, including the National Flood Hazard Layer
(NFHL), high watermarks and low water crossings data in-
ventories from the North Central Texas Council of Govern-
ment (NCTCOG), and the road surface depressions com-
puted as described in the methodology section. The NFHL
is a spatial dataset that uses river flood hazard information
provided by the Federal Emergency Management Agency
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Table 1. Physical depression/catchment descriptors.

Depression descriptor Definition Unit Source

PDD

Depression area The area of the road surface that the depression covers m2 DEM processing
Average depth The average depth assuming that the depression is filled m DEM processing
Maximum depth The maximum depth assuming that the depression is filled m DEM processing
Depression volume The volume that fills the depression m3 DEM processing
Minimum volume The volume that generated 15.24 cm depth on the road m3 DEM processing
HALE The average height of the road above the lowest elevation m DEM processing

of the depression

PCD

Net drainage area Proxy to the runoff generated from the upstream catchment m2 DEM processing
Upstream imperviousness Average imperviousness fraction of the upstream catchment % NLCD
Upstream steep slope The fraction of the catchment area that has a slope steeper than 8 % % DEM processing
Average upstream slope The average slope of upstream catchment ◦ DEM processing

Road

Log ADT Natural logarithm of the ADT Vehicles per day TX-DOT inventory

The function of the road as
(1) interstate,
(2) freeway and expressway,
(3) principal arterial,

Road function (4) minor arterial, n/a∗ TX-DOT inventory
(5) major collector,
(6) minor collector,
(7) local

∗ n/a: not applicable.

(FEMA) to generate flood hazard maps showing areas at high
risk of flooding. We investigated the proximity of Waze alerts
to the high-flood-risk locations to find the spatial accordance
of flood alerts to these locations.

One challenge in adopting Waze flood-related alerts as
roadway PFF observations is assigning the alerts to the ap-
propriate flooded location because the coordinates of alert
points do not perfectly align with flooded location coordi-
nates. The distance between the flooded location and alerts
depends on many unknown factors such as drivers’ reaction
times, direction, and sight distance. Posting a flood alert re-
quires Waze users to complete three steps (three selections)
in the app while driving or riding and users can post a flood
alert before or after passing the flooded road segment. Hence
assigning flood alerts to the proper depression must be done
carefully. Waze data do not provide the direction of travel.
However, no constraints regarding the travel direction have
been used for assigning flood alerts to flooded depressions,
since depressions can cross both sides of the road.

In this study, three independent individuals were each
asked to separately visually assess a map of historical flood
alerts laid over surface depressions and assign alerts to de-
pressions using the following criteria: a cluster of more than
two flood alerts should be available near the depression and
the depression must be distinct from other nearby surface
depressions. Flood alerts posted from bridges and elevated
highways are excluded since BE-DEM does not represent
bridge surfaces. Figure 4 shows a schematic example of alerts
that can be assigned to the depicted depression and some that

Figure 4. Alert assignment.

should remain unassigned because they are isolated and too
far from a depression.

2.2 Step II: modeling

Pluvial flooding on any given surface depression is a binary
variable that can be modeled as a Bernoulli trial of flood fail-
ure (i.e., non-flooded) or success (i.e., flooded). If a depres-
sion has one or more Waze flood alerts linked to it, the de-
pression is labeled as flooded (success). Assuming that the
probability of being flooded is smaller than the non-flooded
situation and that the likelihood of flooding in a particular
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storm event for each depression only relies on its character-
istics and the storm magnitude (i.e., is independent of the
probability of flooding on other depressions), a random vari-
able yi,j will define the count of successes (flooding) out of
the N trials (N storm events of cluster j ) on depression i.
The purpose of this study is to estimate the random variable
yi,j using extracted topographic features, road function, and
storm severity. Both statistical and machine learning models
are implemented to estimate yi,j , namely empirical Bayes
and random forest. Table 2 summarizes the categories of pre-
processed independent variables used in the modeling.

2.2.1 Empirical Bayes model

In a highly urbanized area there are numerous uncertain and
unobserved site-specific features that affect localized PFF
likelihood, such as storm inlet’s age, capacity, and condi-
tion. For example, consider two road surface depressions (A
and B) with similar PDD, PCD, road type, and ADT that ex-
perience the same storm. Suppose depression A is located
in a neighborhood with lower infrastructure maintenance
services, and its drainage system clogs more often. Then,
despite similar descriptive features, higher flood frequency
should be expected at depression A. The empirical Bayes
(EB) algorithm, a simplified and faster version of Bayes the-
ory, takes advantage of the historical count of reported flood
events from the Waze data to better reflect the impacts of
these types of uncertain and unobserved variables. The EB
approach has previously been implemented in many fields
to address the impacts of unobserved variables in estimat-
ing rare events, including hydrology. The EB method uses
the joint global prior and site-specific counts and produces
the posterior probability yi by employing a weighted aver-
age as shown in Eq. (2) (Fill and Stedinger, 1998; Kuczera,
1982; Smith et al., 2014; Hauer et al., 2002; Lord et al., 2005;
Strupczewski et al., 2001).

EB(y)= w×µ+ (1−w)× y, (2)

where w is the EB weight factor, µ is the expected flood
frequency on depressions similar to a given depression, and
y is the number of flood events on a given depression.

The expected flood frequency for similar depressions (µ)
is the global prior probability distribution from a fitted re-
gression model, which in this study is a negative binomial
regression model. The number of flood events (y) is the his-
torical site-specific flood event observation from the Waze
data.

2.2.2 Negative binomial distribution

Based on Waze flood observations, the variance of flood fre-
quencies on depressions with similar PDD, PCD, road type,
and ADT is assumed to be greater than the average of flood
frequencies (i.e., E(y) < Var(y)). This assumption is appro-
priate given the importance of unobserved variables on the

PFF formation on roads such as storm inlet conditions. In
other words, among n similar surface depressions, k depres-
sions, where k� n experience flooding significantly more
than average. This fact leads to an over-dispersed dataset
where E(y) < Var(y). Studies have shown that in the case
of over-dispersed data, yi follows a Poisson distribution with
the rate parameter λi , where λi follows a Gamma distribution
with the dispersion parameter φ and the rate parameter φ/µi .
The resulting distribution is Poisson–Gamma, also called the
negative binomial (NB) distribution (Zou et al., 2017). The
probability mass function of the NB distribution is given in
Eqs. (3) and (4). Therefore, in this study, the expected flood
frequency on similar depressions in the EB equation (Eq. 2)
is derived from a negative binomial (NB) regression model
that is fit to the count dataset shown in Table 2. NB parame-
ters (φ and βi) are estimated using the maximum likelihood
estimation method.

P (y)=
0(y+φ)

0 (y+ 1)0 (φ)

(
φ

φ+µ

)φ(
µ

µ+φ

)y
, (3)

where φ is the dispersion parameter of the NB distribution,
y is number of flood events on depression i, and µ is the ex-
pected flood frequency on a given depression based on simi-
lar depressions (Eq. 4).

µ= exp
(∑

βkxk

)
, (4)

where βk is the coefficient of kth regressor variable in the
fitted regression model and xk is the value of kth regressor
on a given depression model selection for the NB regression
model and is implemented using the Bayesian information
criterion (BIC). In model selection, minimizing the BIC to
the simplest model with the least number of exploratory vari-
ables is reasonable. Reducing the BIC by adding more ex-
planatory variables increases the risk of overfitting and loss
of generality. Equation (5) shows the calculation of BIC.

BIC=−2log(L)+K ·Ln(n) (5)

L is the maximum likelihood of the model representing the
overall fit of the model, K is the number of model parame-
ters, and n is the sample size.

It can be shown that the weight in the EB equation based
on the NB regression is calculated as φ

µ+φ
; hence, we can

rewrite Eq. (2) as Eq. (6). φ is the NB parameter (Eq. 3
estimated using maximum likelihood estimation). For more
information regarding the mathematics of deriving the EB
weight factor, refer to Zou et al. (2017).

EB(y)=
φ

µ+φ
µ+

µ

µ+φ
y, (6)

where φ is the dispersion parameter of NB distribution. The
EB model’s predictive power is estimated using the mean ab-
solute error (MAE). The MAE shows the average error of the
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Table 2. Count dataset of PFF events.

PDD & PCD Road function (categorical) Storm clusters Count of flooding

Interstate
Light y(i,j=light)Freeway

Depression ith Topographic features
Expressway

Moderate y(i,j=moderate)Principal arterial

Minor arterial
Severe y(i,j=severe)Major collector

fitted values across the observations. The lower the MAE, the
better the EB estimates fit the observations. The MAE is cal-
culated using Eq. (7):

MAE=
1
n

n∑
i=1
|yi − ŷi |, (7)

where n is the sample size, yi is number of flood events on
depression i, and ŷi is the EB predicted number of flood
events on depression i.

2.2.3 Random forest

Random forest (RF) is a supervised ensemble machine learn-
ing algorithm that uses multiple decision tree learners to in-
crease predictive performance (Breiman, 2001). A decision
tree consists of a hierarchy of nodes, each of which repre-
sents a conditional decision rule that splits the data into dif-
ferent decision paths. The final prediction of RF is the av-
erage prediction of all decision trees; each tree is built from
a bootstrap sample of observations and a subset of features.
The RF has been widely used for data-driven modeling in the
field of water resources (Sadler et al., 2018). This algorithm
can handle large and imbalanced datasets and is well known
to be easy to train. An important strength of the RF is that
its convergence rate is independent of noise and sparsity in
the descriptive variables. RF models are useful for estimat-
ing the contribution of features in the target variable (in this
case, flood frequency). The node impurity in each node of
the RF is the measure of homogeneity of the target values at
that node, which is the variance of target values in a regres-
sion problem. The normalized reduction in the node impurity
achieved by adding a specific feature to a tree defines the im-
portance of that feature. In RF, the average of importance of
a feature in all trees weighted by the number of samples in-
volved in each split is the overall feature importance.

In this study, RF regression is executed using the Scikit-
Learn library in the Python environment (Pedregosa et al.,
2011). The number of decision tree learners in the RF regres-
sion is optimized by the algorithm. For hyperparameter tun-
ing and model selection, a randomized cross-validated grid
search is applied on a wide range of model parameters and
MAE is used to measure parameter performance and select
the best-performing parameter set. The resulting parameters

are then used to estimate the frequency of PFF at every de-
pression for each storm class using Eq. (8).

RF(y)= RF(PDD,PCD, road features,storm type), (8)

where RF(y) is the random forest prediction of number of
flood events on a given depression.

2.2.4 Model evaluation

To evaluate the performance of the proposed model, the fol-
lowing approaches are used. First, 80 % of the historical data,
randomly selected, are used in model training. Model testing
is then implemented using the remaining 20 % of the data
held out from the training process. The performance of the
models is then assessed using the MAE of the predictions.
In order to ensure that the models are stable and their per-
formance does not change with different train-test sets, the
models are trained and evaluated for several randomly cho-
sen training sets and the variation in their performance is con-
sidered in selecting the best models for the final step of the
framework.

Then, to further assess the improvements in PFF event
estimation using topographic and historical Waze observa-
tions, the EB and RF models are compared with three simple
benchmark models. First, the average model (Eq. 9) assumes
that the average PFF counts from historical Waze observa-
tions apply to all depressions and all storms without consid-
ering storm type and topographic feature. Second, the storm-
based average model uses the average of the PFF count in
each storm cluster without considering topographic features
(Eq. 10). Finally, a regression model is used that predicts PFF
based on topographic, road type, and storm features but with-
out implementing EB to update the prior probability (Eq. 4).

pi =

n∑
i=1

yi

Nt
, (9)

where pi is the likelihood of flooding on depression i, yi is
the number of reported floodings on depression i, n is to-
tal number of depressions, and Nt is number of total storm
events.

pi,j =

n∑
i=1

yi,j

Nj
, (10)
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where pi,j is the likelihood of flooding on depression i and
storm type j , yi,j is the number of reported floodings on de-
pression i and storm type j , and Nj number of total storms
of cluster j .

2.3 Step III: flood probability estimation

Finally, in Step III, the most accurate model from Step II is
used to produce flood probability maps for every storm clus-
ter across the region of interest. The probability of flooding
is calculated using Eq. (11).

pi,j =
ŷi,j

Nj
, (11)

where ŷi,j is the predicted number of floodings on depression
i and storm type of j .

3 Case study background and datasets

The described methodology was evaluated in the city of Dal-
las, Texas, USA (Fig. 5), which is the third-largest city in
Texas with a population of more than 1 million. Dallas’ ele-
vation ranges from 137 to 168 meters (450 to 550 ft), and it
is mostly flat. According to the Texas Department of Trans-
portation (TXDOT), almost 20 % of crashes, equal to 248 ve-
hicle crashes in the City of Dallas in 2018, happened on
either standing water or wet road surface conditions. Ac-
cording to an analysis conducted by the First Street Founda-
tion, flooding can expose 1841 mi of Dallas roadways (out of
6064 mi) to the risk of becoming impassable (F. S. Founda-
tion, 2020). However, currently available fire-rescue dispatch
software, including that used by the Dallas Fire Rescue De-
partment (DFRD), assumes empty and dry roads for routing
rescue vehicles. This has resulted in rescue delays and occa-
sional loss of life on flooded roadways, which provided the
motivation for this study.

For this case study, several datasets were used. First, a 1 m
resolution bare-earth digital elevation model (BE-DEM) was
obtained from the North Central Texas Council of Govern-
ment (NCTCOG), which was derived from a quality level 2
Lidar survey performed by Digital Aerial Solutions, LLC, in
2018, under contract with the Unites States Geological Sur-
vey (USGS) and National Resources Conservation Services
(NRCS). The BE-DEM dataset’s name is TX Pecos Dallas
2018 D19, with horizontal accuracy of ±0.682 m at a 95 %
confidence level and non-vegetated vertical accuracy (NVA)
of 0.196 m.

For rainfall, 15 min precipitation observations were ob-
tained from the USGS ASOS station at Dallas Love Field
Airport (DAL; Fig. 5). Precipitation observations from 1 Jan-
uary 2017 to 1 March 2020 were used. Next, the US De-
partment of Agriculture’s (USDA) National Land Cover
Database (2016; Homer and Fry, 2012) is used to extract
catchment imperviousness. The imperviousness raster over

Dallas has a 30 m resolution and ranges from 0 % to 100 %,
with a mean of 33.87 % and standard deviation of 32.98 %.

Waze alerts were obtained from the NCTCOG, which is a
Waze partner in the Waze Connected Citizen Program (CCP).
The NCTCOG granted us access to the Waze data for the pe-
riod of 21 April 2018 (the start of NCTCOG’s Waze part-
nership) to 20 March 2020. Waze alerts are classified into
seven main categories: accident, jam, construction, miscel-
laneous, hazard or weather (hazard-weather), road-closure,
and others. The “hazard-weather” data itself are divided into
several subcategories. Alerts in the “flood” subcategory and
ones which have any form of the word “flood” in their re-
port description, such as “right lane flooded”, are potentially
flood-related and were included in this study, resulting in
5652 Waze alerts.

The locations of these Waze alerts were shown in Fig. 5,
along with the NFHL river flood zones. Figure 6a shows that
the majority (around 70 %) of alerts during the study period
were posted in areas with minimal river flood hazard, which
comprise approximately 76 % of the study area (Fig. 6b). An-
other 18 % of the alerts were posted in areas of reduced river
flood risk due to levees, which were not breached during the
study period. This indicates that PFF is likely the cause of
most Waze alerts.

To further investigate the potential causes of Waze flood
alerts, the high-water marks inventory and low-water cross-
ing dataset were obtained from the Texas Natural Resources
Information System (TNRIS). The high-water marks inven-
tory contains historic high water level reports from flooded
water bodies or structures at 334 locations across the city
of Dallas (Fig. 5). The low-water crossing dataset includes
175 locations where surface water has crossed roads during
high-flow conditions (Fig. 5). Analyzing Waze alert distances
to the nearest high-water mark and low-water crossing shows
that the vast majority of alerts are more than 200 m from both
low-water crossings and high-water marks (Fig. 7).

These findings show how complementary flood observa-
tions such as Waze data are needed to assess roadway condi-
tions more comprehensively than available official datasets.
Thus, in order to predict local roadway PFF, it is necessary to
consider local surface depressions as low-lying areas where
surface runoff can accumulate during storms.

4 Data pre-processing results

4.1 Depression extraction

Following the procedure explained in the methodology, al-
most 380 000 surface depressions were extracted over the
city of Dallas. Only 315 depressions are located on roads and
are deeper than 6 in. Among these 315 depressions, 191 de-
pressions were proximal to reliable Waze flood alerts more
than twice. To consider only chronically flooding areas, the
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Figure 5. Study area and datasets (basemap from ESRI-2021).

Figure 6. (a) Distribution of NFHL flood zone areas across the study region, (b) flood alerts in NFHL flood zones.

rest of this analysis is focused only on these 191 surface de-
pressions.

4.2 Storm event definition

As can be seen in Fig. 8, the autocorrelation coefficient of
rain pulses first reaches a low value and remains steady at
a lag time of 9 h; accordingly, MIT= 9 h is chosen to con-
vert the continuous precipitation data into independent storm
events.

Using MIT= 9 h, 236 independent storm events are ex-
tracted from 1 January 2017 to 1 March 2020. Storm char-
acteristics are then tested for their utility in generating inde-
pendent storm clusters with comparable storms. The max-
imum 15 min interval intensity and the total accumulated
precipitation were found to generate the most comparable
storms with agglomerative clustering. Figure 9 shows the
dendrogram that illustrates how clustering the storms into
three groups captures acceptable dissimilarity between storm
severity, which are defined as light, moderate, and severe
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Figure 7. Cumulative density of alert distances to the closest high-
water mark and low-water crossing.

Figure 8. Autocorrelation of rain pulses.

storms. The vertical axis of the dendrogram depicts the dis-
similarity between storms, and the horizontal axis represents
storms. The position of each split on the vertical axis shows
the dissimilarity of the two clusters on sides of the split. Ta-
ble 3 shows summary statistics for the three storm clusters.

4.3 Waze data preprocessing

Potential flood-related alerts posted in the time span of
21 April 2018 to 20 March 2020 are matched to their pre-
ceding storm. Figure 10 gives the distribution of delays be-
tween the alert’s published time and storm end. Figure 10
shows that more than 90 % of Waze flood alerts are posted
within 5 h of storms. Therefore, potential flood-related alerts
posted later than 5 h after storms were considered outliers

Figure 9. Tree-based dendrogram of agglomerative clustering;
green, red, and purple lines represent within-cluster dissimilarities
in light, moderate, and severe storms, respectively.

Figure 10. Distribution of delay in alert posting from storm end.

(noise) and removed from the analysis. This process left
4996 flood-related alerts out of the initial 5652 alerts. The
number of flood alerts posted per storm event ranged from
0 to 375, with the distribution depicted in Fig. 11. During
the study period, 150 storms occurred but only 98 storms
caused Waze flood alerts. On average, each storm event had
10 flood alerts. The process of flood alert assignment ex-
plained in the methodology section was performed for the
4996 flood alerts in the Dallas case study by three indepen-
dent individuals. With the given criteria, where more than
four alerts were clustered around a depression, 100 % agree-
ment between the annotators was observed in the assignment
of alerts to depressions. Disagreement between annotators
in alert to depression assignment was observed in locations
where less than four alerts are clustered around a depression.
The first author reviewed alerts that indicated disagreement,
and if the specified criteria for making the assignment were
not met, alerts were removed from the analysis. Among the
4996 flood alerts that were filtered, 2665 alerts were assigned
to 191 independent surface depressions using the approach
described in the methodology section (Sect. 2.1.5).
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Table 3. Summary statistics of storm clusters.

Storm cluster Number of Mean of maximum 15 min intensity Mean of total precipitation Mean of duration
storms (15 in. min−1) (in.) (h)

Light 142 0.05 0.12 4.08
Moderate 70 0.29 0.85 8.89
Severe 24 0.72 2.99 18.59

Figure 11. Total number of flood-related alerts per storm.

5 Modeling results

The performance of the proposed framework in estimating
flood frequency is evaluated using both the empirical Bayes
(EB) and random forest (RF) models and compared to the
baseline models. Results from the best-performing model,
EB, are then examined in more detail in the following sec-
tions.

5.1 Model parameters and performance

Parameters for the fitted NB model (Eq. 4) are presented in
Table 4. The dispersion parameter of the fitted NB regression
model (φ of Eq. 3) is 2.943. A value of φ > 1 demonstrates
that the over-dispersion assumption is valid, whereas φ < 1
shows an under-dispersed dataset. The MAE value achieved
from fitting the NB distribution is 1.74, which shows that the
flood frequencies fit to the prior probability distribution have
an average error equal to 1.74 flood events out of 150 storms.
The EB estimate of the fitted NB regression model, com-
puted based on Eq. 6, reduces the MAE on the training set
to 0.88 flood events.

For the RF model, hyperparameter tuning is implemented
using a 3-fold cross-validated randomized search in the
Scikit-Learn library in Python programming environment.
The best-performing model is found to have 10 trees. The
features with the highest importance (based on impurity-
based feature importance calculated by the Scikit-Learn li-
brary) in the RF model are severe storms, maximum depth,
average upstream slope, log ADT, and the net drainage area.
The MAE of RF estimates on the training set is 0.73.

The predictive power of both models is evaluated on the
held-out test dataset. The EB approach predicts the number
of flood events for unseen situations with MAE= 0.92, while
the RF model’s evaluation MAE is considerably higher, with
MAE= 2.1. To minimize the impact of particular train-test
datasets on the model’s performance, the dataset is randomly
split 50 times and the model performance statistics are re-
evaluated for each split. The EB model has an average MAE
of 0.89, as opposed to the average MAE of 1.92 attained by
the RF model. EB’s predictive capability is also more stable
across the 50 runs than the RF model, with the standard de-
viation of MAEs attained from different runs being 0.11 and
0.18, respectively. Figure 12 shows the prediction power of
the models on the train and test datasets.

It can be seen that the RF model is a better fit on the train-
ing dataset, but its lower performance on the test set shows
that it is overfitting on the training set while the EB approach
has more consistent performance on both datasets. The supe-
riority of the EB model shows that the unobserved features
play a significant role in PFF formation on road segments
and a Bayesian approach is more successful in capturing the
effects of these features.

Next, the EB model that is found superior to the RF model
is compared with the simple benchmark models given in the
methodology section. Figure 13 demonstrates how the flood
counts will be predicted on the test dataset using each bench-
mark model, NB regression, and EB model. Table 5 summa-
rizes the performance of the EB approach, NB regression,
and benchmark models. It can be seen that the MAE for both
training and testing sets improves by adding storm clusters to
the average model. This increase is more noticeable in light
storms (almost 50 % improvement for both training and test-
ing dataset).

However, adding topographic and observed flooding vari-
ables, as in the EB model, increases the accuracy of PFF
count estimation for severe storms more than moderate and
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Table 4. NB model estimation results.

Variable Coefficient Standard error Z value P value

Constant −9.30× 101 3.17× 10−1
−295.3 0.000a

Moderate storm 5.10× 101 2.10× 10−2 3.1 0.000a

Severe storm 7.60× 101 2.40× 10−4 3.3 0.000a

Net DA 8.10× 10−3 1.20× 10−1 445.9 0.001b

Average slope 6.30× 10−2 1.10× 10−1 686.2 0.003b

Log ADT 8.20× 10−2 2.70× 10−2 3 0.003b

Goodness of fit

BIC 1836.31
MAE 1.74

a Significant with more than 99 % confidence. b Significant with more than 95 % confidence.

Figure 12. Prediction of the number of roadway PFF events.
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Figure 13. Prediction of the number of PFF using benchmark models and EB.

Table 5. Summary performance of models.

MAE of train set MAE of test set

Light Moderate Severe Total Light Moderate Severe Total

Total average 1.88 2.01 2.53 2.14 2.19 1.93 3.04 2.37
Storm cluster based average 0.95 1.97 2.52 1.82 1.16 1.86 2.72 1.89
NB regression 0.94 1.91 2.37 1.74 1.16 1.65 2.75 1.82
Empirical Bayes 0.69 1.01 0.93 0.88 0.84 0.85 1.09 0.92
Random forest 0.68 0.98 0.91 0.86 1.34 1.66 2.76 1.92

light storms. This shows that topographic features are more
important in the formation of PFF when storms are more se-
vere. Also, if PFF is observed at a particular location, then it
is more likely to be observed at that depression again.

5.2 Flood likelihood estimation

The EB approach is superior in predicting the total number
of flood events; hence, this approach is used to estimate flood
likelihoods from the frequency of PFF events (Eq. 11). Fig-
ure 14 shows a higher PFF likelihood during severe storms
compared to light and moderate storms. Generally, we can
see that flood likelihoods are higher when flooding has been
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Figure 14. Distribution of flood likelihoods in reported versus non-
reported floods.

posted. However, as discussed in the methodology section,
true negative situations cannot be identified with voluntary
crowdsourced data (i.e., there could be flooding that no Waze
user has reported).

Figure 14a shows an example of a flood probability map
for severe storms, along with historical flood-related alerts
and traffic jams reported by Waze during one particular se-
vere storm that occurred on 22 September 2018. Figures 14b
and c show the same information during the same time and
day of the week for the following and preceding weeks.
Waze traffic jam reports include severity and congestion lev-
els ranging from 1 (lowest) to 5 (highest), which denote the
level of traffic slow down or complete shutdown. Negligible,
low, moderate, and high flood probabilities are defined as less
than 10 %, less than 30 %, less than 50 %, and higher than
50 %, respectively. In Figure 14a, high traffic levels (Waze
jam levels of 5) can be seen near a depression with high PFF
probability (more than 50 %). Figure 14 indicates that traf-
fic jams during severe storm are noticeably higher than at
similar time intervals before and after the storm. These maps
suggest that the traffic jam on the storm date, which agrees
with the flood likelihood, is likely to be an anomaly relative
to typical traffic conditions at this intersection. This finding
is consistent with the flood alerts and predictions of severe
flooding at this location during the storm.

6 Discussion

The EB model is superior compared to the RF and bench-
mark models in predicting the number of flood events; hence,
this model is used to estimate flood probabilities for storm
clusters. The distribution of estimated flood probabilities
(Fig. 14 and Table 5) are plausible given the magnitude of

the storms. For example, the light storms have an average
duration of 4 h and an average total precipitation of 0.1 in.,
which is quite low and flooding would not be expected dur-
ing these storms. Flood-related alerts that are posted during
these rainfall events can be assumed to be noise and disre-
garded for future studies. Based on the NB regression line
that is fitted to the count of observed flood events, we ex-
pect to see 7.6 and 5.2 times more flood events in moder-
ate and severe storms, respectively, compared to light storms.
The NB model also shows that increases in the upstream net
drainage area and average slope increase the probability of
flooding, as would be expected. Furthermore, log ADT has
a direct relationship with the probability of observing a PFF
event because frequently traveled roads are more likely to
have Waze postings. This finding shows the limitations of es-
timating flood events from crowdsourced Waze datasets that
tend to neglect flood events on less-traveled roads. The su-
perior performance of the EB approach shows the significant
impact of unobserved site-specific features such as stormwa-
ter inlet conditions in predicting the likelihood of PFFs on
roadways. By using historical observations, the EB approach
better identified frequently flooded locations (road surface
depressions), perhaps due to site-specific features such as
under-sized stormwater inlets. Data were not available on
these features for this study. In highly urbanized areas, these
types of uncertainties in engineered structures, particularly
in older areas of the city where record keeping can be poor,
add to temporal uncertainties such as changing climate and
land use that can affect flood formation. Despite these limi-
tations, this study showed that localized traffic-related flood
alerts are helpful in estimating PFF probabilities over a 3-
year period. For longer periods, periodically retraining the
model to account for changes in infrastructure and climate is
recommended.

To make effective use of crowdsourced traffic data, exten-
sive preprocessing is needed to evaluate the reliability of the
data and map flood alerts, which are not necessarily posted at
the exact location of the flooding, to plausible nearby depres-
sions. This process, which was done manually in this study,
can introduce errors and bias to the analysis. With more data
and integration of other data sources (e.g., flood sensors and
stormwater inlets), an automated mapping process could be
developed that could potentially reduce these errors.

Furthermore, the approach taken in this study only consid-
ers flood-prone locations reported by Waze users. Numerous
parameters affect human exposure to flooded locations, such
as the number of Waze users that pass a road segment, road
type, road function, day of week, and time of day. Hence, a
similar flood extent on the road can cause significantly dif-
ferent magnitudes of traffic disruption at different times and
locations and, therefore, different flood reports. Data-driven
models also have limitations due to the previously discussed
dataset constraints.

The EB model accounts for heterogeneity by utilizing his-
torical frequencies. However, because of the bias and uncer-

https://doi.org/10.5194/nhess-23-1-2023 Nat. Hazards Earth Syst. Sci., 23, 1–19, 2023



16 A. Safaei-Moghadam et al.: Estimating the likelihood of roadway pluvial flood

Figure 15. PFF probability map versus flood alerts and traffic jams from 13:00 to 17:00 CST on (a) Friday, 22 September with a severe
storm; (b) Friday, 29 September 2018, rainless; and (c) Friday, 15 September 2018, rainless.

tainty in the Waze data, as discussed in Sect. 2.1.5, the EB
model estimates will be skewed and less accurate for depres-
sions situated on local and less-traveled routes. While major
routes are more important than minor routes for minimiz-
ing exposure to roadway PFF, these limitations must be ac-
knowledged. It is possible that, with more data, an approach
to extrapolating findings on major roads to minor roads could
be developed. To develop a more unbiased flood prediction
model, we suggest that crowdsourced data be used as com-
plementary data in conjunction with other data sources and
models to account for less frequently traveled areas and times
(e.g., during the Covid-19 pandemic, which was not included
in this study, when traffic was significantly reduced).

7 Conclusions

This analysis is a first step in exploring approaches to im-
plement crowdsourced data from the Waze app into flash-
flood prediction. For this case study, Waze flood alerts were
primarily posted in areas outside of mapped river flood haz-
ards and low water crossings, suggesting the need for and im-
portance of modeling rainfall-induced or pluvial flash flood-
ing (PFF). The statistical and machine learning (ML) mod-
els implemented in this study demonstrated the feasibility of
modeling PFF in terrain depressions based on storm, catch-
ment, and road properties. The EB approach is found to be
superior in terms of predictive power compared to RF. This
shows the importance of unobserved site-specific features on
roadway PFF, which the EB approach captures by incorpo-

rating historical site-specific PFF observations to produce
posterior probability. Both statistical and machine learning
models achieve smaller MAEs for severe storms compared
with moderate and light storms. This shows that the modeled
depression and catchment descriptors are more explanatory
in severe storms when infiltration is reduced and drainage
systems are more likely to be overwhelmed. The high accu-
racy of the proposed methodology in the Dallas case study
shows that crowdsourced traffic data have value for high spa-
tiotemporal resolution flash flood prediction. Stakeholders
and decision-makers could benefit from the developed model
for identifying locations that require stormwater utility main-
tenance or capital investment. Further research is needed to
fully exploit crowdsourced data applicability as a comple-
mentary data source using more authoritative data sources
and physics-based models.

Code availability. The methodological explanations in the arti-
cle can be used to replicate the code, which was done in
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On request, code can be obtained from the corresponding author
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