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Abstract. The open-closed magnetic field line boundary

(OCB) delimits the region of open magnetic flux forming the

polar cap in the Earth’s ionosphere. We present a reliable,

automated method for determining the location of the pole-

ward auroral luminosity boundary (PALB) from far ultravio-

let (FUV) images of the aurora, which we use as a proxy for

the OCB. This technique models latitudinal profiles of au-

roral luminosity as both a single and double Gaussian func-

tion with a quadratic background to produce estimates of the

PALB without prior knowledge of the level of auroral activ-

ity or of the presence of bifurcation in the auroral oval. We

have applied this technique to FUV images recorded by the

IMAGE satellite from May 2000 until August 2002 to pro-

duce a database of over a million PALB location estimates,

which is freely available to download. From this database,

we assess and illustrate the accuracy and reliability of this

technique during varying geomagnetic conditions. We find

that up to 35% of our PALB estimates are made from double

Gaussian fits to latitudinal intensity profiles, in preference to

single Gaussian fits, in nightside magnetic local time (MLT)

sectors. The accuracy of our PALBs as a proxy for the loca-

tion of the OCB is evaluated by comparison with particle pre-

cipitation boundary (PPB) proxies from the DMSP satellites.

We demonstrate the value of this technique in estimating the

total rate of magnetic reconnection from the time variation of

the polar cap area calculated from our OCB estimates.
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1 Introduction

The polar cap is the ionospheric footprint of the region of

open magnetic flux in the Earth’s magnetosphere, i.e., those

magnetic field lines that attach both to the Earth and to the in-

terplanetary magnetic field (IMF). The interface between the

open field lines of the polar cap and the closed field lines

of the auroral zone of the ionosphere is termed the open-

closed boundary (OCB). Changes in the area of the polar

cap are linked to magnetic reconnection, with the addition

of open flux as a result of reconnection between the geo-

magnetic field lines and IMF on the dayside and the closure

of flux on the nightside in the magnetotail (e.g., Siscoe and

Huang, 1985; Brittnacher et al., 1999). Hence, the rate of

change of polar cap area (PCA) can be used as a proxy for

the total net rate of magnetic reconnection (e.g., Milan et al.,

2003; Chisham et al., 2008). Also, the local rate of recon-

nection and its spatial variability can be determined wherever

the OCB location is known and measurements of ionospheric

plasma flow across it exist, allowing a local estimation of the

rate of flux transfer between open and closed field line re-

gions (e.g., Pinnock et al., 2003; Chisham et al., 2004; Hu-

bert et al., 2006; Chisham et al., 2008). Therefore, accurate

determination of the OCB location is a prerequisite to esti-

mation of the rate of reconnection.

The location of the OCB can be best estimated from mea-

surements of particle precipitation boundaries (PPB) made

by satellites in low-altitude orbits (e.g., Vampola, 1971;

Makita et al., 1983; Makita and Meng, 1984; Newell et al.,

1991; Mishin et al., 1992; Newell et al., 1996; Sotirelis

and Newell, 2000). However, whilst these PPBs are con-

sidered to provide the best proxy of the OCB, they typi-

cally provide only infrequent, point measurements of this

boundary. Many other instruments have been used to pro-

vide estimates of the location of the OCB with higher
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spatial and temporal coverage. These include HF radars

(e.g., Baker et al., 1995, 1997; Milan et al., 1999; Milan

and Lester, 2001; Chisham et al., 2001, 2002; Chisham and

Freeman, 2003), ground-based magnetometers (e.g., Iijima

and Potemra, 1978; Mishin, 1990), all-sky cameras (e.g.,

Akasofu and Kimball, 1965; Feldstein and Galperin, 1985),

meridian scanning photometers (e.g., Blanchard et al., 1995;

Sandholt et al., 1998), and satellite-based imagers (e.g., Brit-

tnacher et al., 1999; Kauristie et al., 1999; Baker et al., 2000;

Carbary et al., 2003; Boakes et al., 2008). Arguably the best

instrument to estimate the location of the complete OCB (in

a single hemisphere) is the satellite-based imager, which can

image the whole auroral oval at a time resolution of the order

of minutes, for hours at a time (see e.g., Boakes et al., 2008).

Since the earliest auroral imager observations, a number of

different techniques have been used to estimate the poleward

boundary of auroral luminosity, thought to provide a good

proxy for the location of the OCB. These techniques have in-

cluded visual inspection (e.g., Elphinstone et al., 1990; Gjer-

loev et al., 2007), identifying a return to a threshold of low

auroral luminosity poleward of the main emission (e.g., Brit-

tnacher et al., 1999; Baker et al., 2000), identifying a return

to a fraction of the peak intensity on the poleward edge of the

main emission (e.g., Kauristie et al., 1999; Baker et al., 2000;

Carbary et al., 2003; Boakes et al., 2008), and identifying a

return to an intensity threshold relative to background inten-

sity levels (e.g., Mende et al., 2003; Gjerloev et al., 2008).

Carbary et al. (2003) estimated over 23 000 poleward auro-

ral luminosity boundaries (PALB) from images recorded by

the ultraviolet imager (UVI) on the Polar satellite, by mod-

elling latitudinal profiles of auroral luminosity intensity as a

Gaussian function superimposed on a quadratic background.

This method assumes that the auroral oval is characterised by

a single, contiguous band of emission across magnetic lati-

tudes, for all magnetic local time (MLT) sectors, at all times.

During substorm recovery, the auroral oval often exhibits a

“double oval” configuration with a main oval and a poleward

arc of emission (Elphinstone et al., 1995a,b). Gjerloev et al.

(2008) have confirmed the configuration of a bifurcated auro-

ral oval in UV images during substorm activity through a su-

perposed epoch analysis of 116 isolated substorms. A func-

tion with two Gaussian components has been used to model

latitudinal profiles of auroral intensity during substorm ac-

tivity when bifurcation may be present in the oval (Gjerloev

et al., 2008; Mende et al., 2003). Gjerloev et al. (2008) con-

sider the Gaussian peaks representing the main oval and the

bulge of the poleward emission to be quasi-independent phe-

nomena, arising from bifurcation in the particle precipitation

or energisation regions in the magnetosphere. When a dou-

ble oval configuration exists, the poleward arc maps close to

the OCB, at least in the nightside ionosphere (Elphinstone

et al., 1995a). Accurate modelling of the auroral luminos-

ity intensity profile during a double oval configuration is re-

quired for the best estimation of the OCB location, partic-

ularly during substorm recovery when this configuration is

prevalent (Elphinstone et al., 1995b), although substorms oc-

curring during ongoing geomagnetic activity do not always

exhibit the classical evolution of isolated substorms with au-

roral bifurcation (Hoffman et al., 2010).

The accuracy of the PALB as a proxy for the OCB has been

evaluated by comparison with satellite determined PPBs

(e.g., Kauristie et al., 1999; Baker et al., 2000; Carbary et al.,

2003; Boakes et al., 2008). These studies have highlighted

systematic differences between the locations of the PPBs and

PALBs and that this discrepancy varies with MLT. The com-

parative studies of Kauristie et al. (1999), Baker et al. (2000),

and Carbary et al. (2003) estimated PALBs from a single ul-

traviolet imager based on either the Viking or Polar satel-

lite. Boakes et al. (2008) estimated PALBs from FUV images

recorded by the IMAGE satellite. The IMAGE FUV instru-

ment has three detectors enabling the discrimination between

auroral emissions resulting from proton and electron precip-

itation. Boakes et al. (2008) showed that the PALBs derived

from the FUV detector that is sensitive to proton emissions

were more poleward than those derived from the detectors

that are sensitive to electron emissions in pre-dawn MLT sec-

tors, and were located equatorward during the dusk to pre-

midnight MLT sectors. Boakes et al. (2008) were able to

improve the correlation between PPBs and PALBs in some

MLT sectors by selecting boundaries from the most appro-

priate FUV detector for that sector, for example, selecting

boundaries from the detector sensitive to proton emission

from 01:00 to 07:00 MLT.

In this paper, we present an automated method to esti-

mate poleward and equatorward auroral luminosity bound-

aries (EALB) from IMAGE FUV images and show how to

correct the PALBs for use as a proxy for the OCB. Our tech-

nique brings together the strengths of various other methods.

We present analysis of a database of over 1 million PALB

location estimates derived from IMAGE FUV images us-

ing this technique, and demonstrate how satellite-measured

PPBs can be used to improve the accuracy of these bound-

aries as a proxy for the OCB. The OCB location estimates

can be used to compile an extensive set of reconnection rate

estimations, enabling further analysis of this fundamental

physical process.

2 Instrumentation

2.1 IMAGE FUV

The IMAGE FUV instrument is comprised of three detec-

tors; the Wideband Imaging Camera (WIC) and two Spec-

trographic Imagers (SI12 and SI13) (Mende et al., 2000b).

The WIC sensor has a passband of 140 to 190 nm, observing

emissions from the N2 Lyman-Birge-Hopfield band (Mende

et al., 2000a,b). The SI12 detector is sensitive to Doppler-

shifted Lyman-α emissions in the 121.8 nm band, caused

by proton precipitation (Mende et al., 2000b,c). The SI13

detector is sensitive to the 135.6 nm oxygen emission band
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resulting from energetic electron precipitation (Mende et al.,

2000b,c). FUV images are recorded with a time resolution

of two minutes, determined by the spin period of the satellite

(e.g., Burch, 2000). Both SI detectors produce images with

a 128 × 128 pixel resolution while the WIC detector has a

resolution of 256×256 pixels (Mende et al., 2000b). During

its operation (years 2000 to 2005), the IMAGE satellite was

in an elliptical orbit at 90◦ inclination with an altitude of 7

Earth radii (RE) at apogee and 1000 km at perigee, and with

an orbital period of 13.5 h (e.g., Burch, 2000; Gibson et al.,

2000; Mende et al., 2000b). IMAGE FUV data are available

from May 2000 until December 2005. We use the two years

of data from the start of the mission until August 2002, while

the satellite apogee is close to the north pole (e.g., Frey and

Mende, 2006). Some inaccuracy exists in the pointing infor-

mation of the IMAGE satellite, with systematic errors of up

to 4 pixels in the spin axis plane and 2 pixels perpendicular

to the spin plane (e.g., Frey et al., 2004; Frey and Mende,

2006). According to Frey et al. (2004), this pointing error

can increase the positional uncertainty of local time determi-

nation during summer and winter periods and uncertainty in

latitude determination during the spring and autumn.

2.2 DMSP

PPBs are taken from the SSJ/4 precipitating electron and ion

spectrometer instruments onboard the low-altitude Defense

Meteorological Satellites Program (DMSP) satellites. The

DMSP satellites are located in a sun-synchronous polar or-

bit at an altitude of around 830 km. Their orbital period is

101 min. The SSJ/4 particle detectors cover an energy range

of 30 eV to 30 keV across twenty channels (Hardy et al.,

1984). During the period of May 2000 until December 2001,

satellites DMSP 11 to 15 were in operation. The algorithm

used for automated identification of nightside PPBs from

the DMSP energy spectra is detailed in Newell et al. (1996)

while the algorithm to determine dayside PPBs is outlined in

Sotirelis and Newell (2000), based on Newell et al. (1991).

We use the b6 boundary representing the poleward edge of

subvisual drizzle as the proxy for the OCB in nightside MLT

sectors and the doc boundary, representing a transition from

closed to open precipitation regions, in dayside MLT sec-

tors. We refer to the nightside b6 boundary and the dayside

doc boundary, derived from DMSP data, collectively as pole-

ward auroral precipitation boundaries (PAPB). Where multi-

ple crossings of the same magnetospheric region are identi-

fied in a single pass of the satellite, the most poleward bound-

ary for each region is selected, and where clear transitions

between precipitation regions cannot be made, PPBs are dis-

carded (Sotirelis and Newell, 2000). Consequently regions

void of particle precipitation equatorward of closed regions

are considered to also be closed. Alternative classification

schemes could be used but authors differ on the physical in-

terpretation of spatially-separated void regions (Brittnacher

et al., 1999). Due to the satellite orbit, Northern Hemi-

sphere auroral boundaries are only available in the 05:00 to

22:00 MLT sectors during the time period under considera-

tion.

3 Boundary location technique

3.1 Boundary derivation

In order to estimate the location of the auroral luminos-

ity boundaries, we first determine latitudinal profiles of

FUV intensity for each image from WIC, SI12 and SI13.

The geomagnetic coordinates of the FUV images are trans-

formed to altitude-adjusted corrected geomagnetic coordi-

nates (AACGM, Baker and Wing, 1989), with an effective

emission altitude of 130 km, for consistency with the mag-

netic coordinate system used for DMSP data. For each im-

age, 24 latitudinal emission intensity profiles are constructed

by averaging available emission intensities in bins of 1◦ mag-

netic latitude and 1 h of MLT. The luminosity intensity pro-

files are created covering the 50◦ to 90◦ AACGM latitude

range (where satellite coverage is available).

Two functions are fit to each latitudinal profile; a sin-

gle Gaussian function with a quadratic component (Eq. 1)

and a double Gaussian function with a quadratic component

(Eq. 2),

Fs(λ) = A0exp

[

−
(λ−µ0)

2

2σ 2
0

]

+B +Cλ+Dλ2 (1)

Fd(λ) = Aeexp

[

−
(λ−µe)

2

2σ 2
e

]

+

Apexp

[

−
(λ−µp)

2

2σ 2
p

]

+E+Fλ+Gλ2 (2)

where λ is the magnetic latitude. In Eq. (1), A0, µ0, and

σ0 are the peak amplitude, peak latitude, and width of the

Gaussian, respectively, and B, C, and D, are the coefficients

of the quadratic background of the function. In Eq. (2), Ae,

µe, and σe are the coefficients of the most equatorward of

the two Gaussian components of the function, while Ap, µp,

and σp are the coefficients of the most poleward of the two

Gaussian components. E, F , and G are coefficients of the

quadratic background of the function. In both cases, the

Gaussian components of the function attempt to categorise

auroral emissions while the quadratic components represent

the background emissions. Carbary et al. (2003) and Boakes

et al. (2008) also fit a function of the form of Eq. (1) to lat-

itudinal intensity profiles in order to derive estimates for the

location of the PALB while Mende et al. (2003) fit a function

similar to Eq. (2) for this purpose.

WIC and SI13 images can be susceptible to contamination

by dayglow in the FUV spectrum (e.g. Boakes et al., 2008;

Hubert et al., 2006). Dayglow emission is generated by in-

cident solar radiation on the atmosphere and is dependent
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on the solar zenith angle, with the greatest dayglow emis-

sion observable at the subsolar point (e.g., Meier, 1991, and

references therein). When present, dayglow can be seen in

latitudinal luminosity intensity profiles as very high intensity

at the lowest magnetic latitudes, rapidly decreasing towards

higher latitudes. Dayglow can be modelled by the quadratic

background of the functions Fs(λ) and Fd(λ) (Carbary et al.,

2003). However, during fitting, sometimes a Gaussian com-

ponent of the functions will be fit to the dayglow in prefer-

ence to the auroral emission (e.g., Boakes et al., 2008). In

this case, the resulting PALB will be incorrectly located and

should not be used as an estimate for the OCB.

We attempt to enforce the fitting of the Gaussian compo-

nents of our models to the auroral emissions rather than the

dayglow by constraining the lower limit of dayside luminos-

ity intensity profiles (i.e., those in the 06:00 to 18:00 MLT

sectors). Hence, we search the intensity profile to find the

most equatorward local minimum in the 50◦ to 90◦ AACGM

range to locate the latitude at which auroral emissions exceed

the background. We then attempt to fit Eqs. (1) and (2) to the

intensity profile from the latitude of this local minimum up

to 90◦. When a local minimum cannot be found, no attempt

at fitting is made for that profile and no auroral luminosity

boundary estimates are made. As the intensity profiles are

typically noisy, we smooth the profiles using a boxcar slid-

ing average and find the location of the local minima from the

smoothed profiles. For intensity profiles derived from WIC

images, a width of three points is used in the sliding aver-

age. A width of seven points is used for intensity profiles de-

rived from SI13 images due to the lower resolution and count

numbers of these images. The fits are subsequently made

to the original, unsmoothed, intensity profiles. No dayglow

removal is performed for intensity profiles covering night-

side MLTs and those obtained from SI12 images at all local

times, as these images are much less susceptible to dayglow

contamination (e.g. Boakes et al., 2008; Hubert et al., 2006).

Techniques do exist to pre-process FUV images in an attempt

to completely remove dayglow by using an empirical refer-

ence model of dayglow emission from FUV images obtained

during quiet conditions that can then be used to characterise

dayglow in other images (Immel et al., 2000). While this

technique has been applied to IMAGE FUV images (e.g.,

Meurant et al., 2003; DeJong et al., 2007), there is an im-

pact on the extent of automation that can be achieved in the

selection of appropriate quiet time images and a dependence

between images is introduced. Some uncertainty is also in-

troduced through the accuracy of the reference model in rep-

resenting the actual dayglow in each specific image. Hence,

for our purposes our basic dayglow mitigation method pro-

vides the best solution.

The Levenberg-Marquardt method for nonlinear least-

squares fitting, adapted from Press et al. (1992), is used to

fit the functions Fs(λ) and Fd(λ) to each latitudinal lumi-

nosity intensity profile. Prior to fitting, initial values for

the function parameters are estimated from the intensity pro-

file. Specifically, the quadratic coefficients D and G are ini-

tially set to zero and initial estimates for the constant (i.e.,

B and E) and linear (i.e., C and F ) coefficients are obtained

by performing a linear least-squares fit to the intensity pro-

file. The background intensity components with these initial

values are subtracted from the intensity profile to produce an

estimate for the auroral emissions. The location and mag-

nitude of the one (or two) maxima in this derived auroral

emission profile are selected as the initial estimates for the

centre (µ) and amplitude (A) of the Gaussian component(s)

of Fs(λ) (or Fd(λ)). Initial estimates for the widths (σ ) of

the Gaussian components of Fs(λ) and Fd(λ) are made from

estimates of the corresponding full width at half maximum

(FWHM), where FWHM = 2
√

2ln(2)σ . The FWHM is es-

timated for each peak by calculating the distance between

the points where the intensity has fallen to one half of the

peak value on both sides of the peak. When a local minimum

in a profile is found prior to the half maximum value being

reached, the FWHM is estimated to this turning point.

Once estimates have been made for the function parame-

ters, the Levenberg-Marquardt fit is iterated until either im-

provements in the fitting are negligible in successive iter-

ations or a set maximum number of iterations is reached.

We consider improvements in fitting between iterations to

be negligible when the value of the reduced chi-squared

goodness-of-fit statistic (χ2/ν, where ν is the degrees of

freedom) reduces by less than 0.01 between successive it-

erations. We define the maximum number of iterations to

be 200 as more than 97% of fits showing convergence have

achieved full convergence to the optimum solution by this

point. During fitting, we prevent the parameters relating to

the Gaussian coefficients from becoming negative between

successive iterations by inverting the sign of a negative in-

crement that would move the parameter value below zero.

This prevents the fitting of an inverted Gaussian profile to

represent the separation of emission in a bifurcated intensity

profile, for example.

The parameters returned by the final fitting iteration are

used to estimate the EALB (λe) and PALB (λp). Following

Carbary et al. (2003), we use the FWHM of the fitted Gaus-

sian peaks offset from the centre of the peak, i.e.,

λe = µe −2
√

2ln(2)σe (3)

λp = µp +2
√

2ln(2)σp (4)

where µe = µp = µ0 and σe = σp = σ0 for a single Gaussian

profile. Uncertainties in the boundary locations can be de-

rived according to Eq. (5),

Uλ =

√

(

∂λ

∂µ
Uµ

)2

+
(

∂λ

∂σ
Uσ

)2

+2
∂λ

∂µ

∂λ

∂σ
U2

µσ (5)

where Uµ and Uσ are the uncertainties of the mean and

width of the fitted Gaussian peaks and Uµσ is the covari-

ance of these two parameters, which are derived as part of

the Levenberg-Marquardt fitting.
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3.2 Evaluation of the success of the fitting and boundary

location

The coefficients of each fit and the estimated boundaries are

checked against a number of criteria to remove auroral lumi-

nosity boundaries arising from the results of poor fitting to

bad or noisy data. These criteria are based on those specified

by Carbary et al. (2003) but have been adjusted and tested for

use with IMAGE FUV data. The criteria used here are:

1. The Gaussian amplitude(s) A must be greater than zero.

2. The Gaussian centre(s) µ must fall within the AACGM

latitude range of the given intensity profile.

3. The Gaussian amplitude(s) A must be at least 10%

of the amplitude of the background FUV intensity at

the location of the centre of that Gaussian peak (i.e.,

B +Cµ+Dµ2 or E +Fµ+Gµ2). In the case of the

fitted double Gaussian, the amplitude of the secondary

peak also must be at least 20% of the amplitude of the

primary peak.

4. The Gaussian width(s) σ must exceed the bin width of

the intensity profile, i.e., 1◦, but must not exceed the

AACGM latitude range of the intensity profile.

5. The derived PALB λp must fall within the range of the

lowest latitude covered by the intensity profile and 90◦

AACGM latitude.

Additional criteria based on measures of goodness-of-fit or

uncertainty can be used to determine whether an auroral lu-

minosity boundary estimation should be considered a suc-

cess. Thresholds for χ2/ν or standard error can be varied to

maximise either the number of estimates or to minimise the

uncertainty in estimates, for example. We have used the con-

straint that the χ2/ν value must be below 10.0 for a fit to be

considered successful. We also require that the uncertainty

on the poleward and equatorward boundaries derived from

WIC images must not exceed 1◦ (2◦ for boundaries derived

from SI12 and SI13 images). The threshold for the equator-

ward boundary uncertainty is included as an indication of the

overall precision of the fit. When fitting a single Gaussian

function, the uncertainty on the poleward and equatorward

boundaries will be the same.

The χ2/ν statistic is also used to determine the most ap-

propriate auroral luminosity boundary estimates when the fits

of both the single Gaussian and double Gaussian function to

a given latitudinal intensity profile pass all of the criteria.

The fit with the lowest χ2/ν value is selected as the more ap-

propriate fit to the data and the corresponding λe and λp are

retained. The degrees of freedom (ν) of a fit to an intensity

profile is simply the number of magnetic latitude bins in that

profile minus the number of parameters used to specify the

function for the fit. Hence, the ν for a single Gaussian fit to a

latitudinal profile will be higher than that for a double Gaus-

sian fit to the same profile as 6 parameters are used to specify

the single Gaussian function rather than the 9 parameters of

the double Gaussian function. This means that should the fits

of the single and double Gaussian functions have an almost

identical χ2 value, the fit to the single Gaussian function will

be selected in preference to the fit to the double Gaussian.

In the case that one of the single and double Gaussian fits

to an intensity profile passes the criteria for success detailed

above while the other fails, that fit will be used to determine

the PALB location. This is irrespective of which fit had the

better χ2/ν value for that intensity profile.

3.3 Technique limitations

The technique as outlined requires that each MLT sector be

well modelled either as a continuous single or double auro-

ral oval and so will not provide an accurate representation of

more complex auroral configurations (see Frey, 2007, for a

review of localised auroral features outside the main oval).

No explicit distinction is made between a double oval and

other auroral features that may appear poleward of the main

oval, such as high-latitude sun-aligned arcs. When present,

high-latitude sun-aligned arcs can be suggestive of a config-

uration of multiple regions of open and closed magnetic flux

rather than a single open polar cap (e.g., Newell et al., 1997;

Brittnacher et al., 1999; Newell et al., 2009). For each MLT

sector, only a single PALB is assumed to be a proxy for the

OCB and, hence, polar caps with multiple open field line re-

gions will not be well modelled. Our technique also assumes

that the region between the main oval and a poleward bulge

is on closed magnetic field lines. The technique used for

automated detection of PAPBs from DMSP data also con-

siders any void regions observed at latitudes equatorward of

a closed region, such as the central plasma sheet or plasma

sheet boundary layer, to also be closed (Sotirelis and Newell,

2000) and so comparison of our PALBs with this dataset is

still valid. Additionally, post-processing techniques could be

applied to our PALBs to identify or eliminate images show-

ing deviation from “typical” auroral configurations, such as

images with theta auroral signatures. Subauroral features,

such as detached arcs and patches, may also occasionally re-

sult in inaccurate modelling of the EALB.

4 Evaluation of the boundary location technique

In this section, we present a case study to illustrate how our

auroral luminosity boundary location technique compares

with the single Gaussian model and single camera location

method of Carbary et al. (2003). In addition, we present a sta-

tistical analysis of the whole dataset, in order to show more

generally the advantages of modelling intensity profiles as

both single and double Gaussian functions.
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Fig. 1. FUV intensity observed by the IMAGE FUV WIC instrument at 00:10 UT 1 February 2001 in AACGM coordinates (panel a). The

solid black lines mark the 02:00–03:00 and 22:00–23:00 MLT sectors. All count values above 1600 have been saturated. The latitudinal

luminosity intensity profiles corresponding to these MLT sectors are shown in panels (b) and (c), respectively. The black diamonds show the

mean count values of the intensity profiles. The standard error on these intensity count values are shown. The blue curves show the result of

fitting the function Fs(λ) to these intensity profiles with the vertical blue dashed lines indicating the PALBs derived from these fits for each

profile. The red curves show the result of fitting the function Fd(λ) to these intensity profiles with the vertical red dashed lines indicating the

PALBs derived from these fits.

4.1 Case study: boundary estimates during moderate

geomagnetic activity

Figure 1a shows the auroral luminosity variation recorded

by the WIC channel of the IMAGE FUV instrument on 1

February 2001 at 00:10 UT in AACGM coordinates. Inten-

sity values greater than 1600 counts have been saturated. The

saturated values at lower magnetic latitudes across the day-

side MLT sectors are caused by dayglow. This image was

taken during a small geomagnetic storm driven by the pas-

sage of an interplanetary coronal mass ejection (ICME) with

a minimum value of the Dst index of −43 nT. The onset of

this small storm occurred on the morning of the 31 January

2001, with minimum Dst observed at 18:00 to 19:00 UT on

that day. At the time of the image, Dst was −33 nT while the

Kp index had a value of 2.

Bifurcation of auroral emission is evident in both the pre-

and post-midnight sectors, with emission poleward of the

main oval. Figure 1b and c shows latitudinal profiles of FUV

intensity (black diamonds) in the 02:00 to 03:00 MLT and

22:00 to 23:00 MLT sectors, respectively, as highlighted in

Fig. 1a by the black solid lines. Error bars on the diamonds

indicate the standard error of the mean intensity values. In

each panel, the blue curve shows the result of fitting the sin-

gle Gaussian function Fs(λ) to the latitudinal profile while

the red curve shows the result of fitting the double Gaussian

function Fd(λ) to that profile. The vertical dashed lines mark

the location of the PALB estimated from the coefficients of

each fit using Eq. (4).

The bifurcation of the auroral oval apparent in Fig. 1a is

also evident in the latitudinal profiles, with emission pole-

ward of the main peak in Fig. 1b and a largely detached sec-

ondary peak in Fig. 1c. In both cases, the double Gaussian

fit provides a better description of the underlying intensity

profile and was selected in preference to the single Gaussian

fit; in the 02:00 to 03:00 MLT sector, χ2/ν for the Fd(λ)

fit is ∼ 0.4 compared to ∼ 4.9 for the Fs(λ) fit, and in the

22:00 to 23:00 MLT sector, the χ2/ν for the Fd(λ) fit is ∼ 1.7

compared to ∼ 11.1 for the Fs(λ) fit. It is also clear that

the quadratic coefficients of the single Gaussian function are

poorly fit to the background emissions of the intensity profile

due to the presence of the second peak in auroral emission in

the 22:00 to 23:00 MLT sector.

The PALBs estimated from the function Fd(λ) are located

poleward of both intensity peaks for both profiles and appear

to correspond to a return to background FUV intensity lev-

els poleward of the auroral oval. They also pass our criteria

for successful boundary location. In the 02:00 to 03:00 MLT
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Fig. 2. Intensity counts recorded by the IMAGE FUV WIC sensor on the 1 February 2001 between 00:00 and 06:00 UT. Count values above

and below thresholds indicated in the intensity scales have been saturated. Not a Number (NaN) and zero count intensity values are shown

in yellow. From top to bottom, the panels show the MLT sectors 00:00–01:00, 06:00–07:00, 12:00–13:00, and 18:00–19:00, respectively.

Panels (a) to (d) show auroral luminosity boundary locations derived according to the method detailed in this paper. Blue squares denote

poleward and equatorward luminosity boundaries determined from fits to a function with a single Gaussian component (Fs(λ)), with blue

error bars showing ±Uλ on these boundaries. Red squares denote poleward and equatorward luminosity boundaries determined from fits to

a function with a double Gaussian component (Fd(λ)), with red error bars showing ±Uλ on these boundaries. Panels e to h show these data

with auroral luminosity boundary locations derived according to the method detailed in Carbary et al. (2003). Vertical dashed black lines

indicate times of substorm onset from the list outlined in Frey et al. (2004).

sector (Fig. 1b), the single Gaussian fit also passes the criteria

for success, which could have resulted in an incorrectly esti-

mated PALB. However, the single Gaussian fit in the 22:00

to 23:00 MLT sector failed the criteria and would have been

discarded.

Figure 2 shows keograms of auroral luminosity intensity in

four MLT sectors recorded by WIC from 00:00 to 06:00 UT

1 February 2001. In this time period, Dst was in the range

−29 nT to −36 nT while Kp was in the range 2 to 3+. In

this figure, auroral luminosity boundaries derived from fits

to the function Fs(λ) are indicated as blue squares and those

derived from fits to the function Fd(λ) are indicated as red

squares. Error bars show the upper and lower uncertainty

bounds on these boundary estimates (Uλ). Panels on the left

hand side of the figure show the auroral luminosity boundary

locations derived using the technique outlined in this paper

while the right hand side panels show those derived using the

technique of Carbary et al. (2003). We include the bound-

aries obtained using the method of Carbary et al. (2003) to

enable direct comparison of our method with another fully

automated boundary location technique that only employs

fits to a single Gaussian function when deriving PALB loca-

tions. These PALBs have not been corrected for their syste-

matic offset with DMSP PAPBs, and hence the boundary lo-

cations derived using the method outlined in this paper from

a single Gaussian function, Fs(λ), differ from those derived

using the method of Carbary et al. (2003) only by their differ-

ent success criteria. The list of substorm onsets detected from

IMAGE data in Frey et al. (2004) includes two onsets during

the period shown in Fig. 2. These occurred at ∼03:16 UT
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and ∼04:26 UT and are highlighted by the vertical dashed

black lines in the figure. Oscillations in the latitude of auroral

emissions, and, consequently PALB locations, with a period

of around 10 to 20 min are evident in the keograms, and are

particularly clear in the 00:00 MLT sector prior to 01:00 UT.

These oscillations are caused by inconsistency in the IMAGE

pointing calculation due to spin-axis coning of the satellite

(as discussed earlier). Other contemporaneous images of the

aurora, such as those obtained from the NORSTAR 630 nm

meridian scanning photometer (not shown) do not show this

oscillation.

At the start of the interval, prior to ∼01:30 UT, bifurcation

of auroral emission is evident in the 00:00 to 01:00 MLT sec-

tor. The PALBs estimated from single Gaussian fits (Fig. 2e)

typically correspond to the more equatorward emission band

and appear to be at erroneously low latitudes. The PALBs es-

timated from double Gaussian fits (Fig. 2a) appear to cover

the full extent of auroral emission during this time. For a

very small number of intensity profiles, auroral luminosity

boundary estimates have been made from the single Gaus-

sian fits in preference to double Gaussian fits. In these cases,

the relatively low amplitude of the secondary emission with

respect to the main oval causes the double Gaussian fit to fail

the criteria set out in Sect. 3.2 (specifically, criterion 3) while

the single Gaussian fits pass all of our criteria, hence the au-

roral boundaries are taken from the fits to Fs(λ). Bifurcation

is also evident in the 00:00 to 01:00 and 18:00 to 19:00 MLT

sectors following the onset of substorm activity. At these

times, the double Gaussian appears to be a more appropri-

ate model for the auroral emissions. Prior to ∼02:17 UT, the

complex auroral emission profiles observed in the 06:00 to

07:00 MLT sector also appear to be better fit by double Gaus-

sian function than a single Gaussian function from compari-

son of the boundaries shown in Fig. 2b and f, especially the

EALBs. Panels (c) and (g) of Fig. 2 show the limited number

of auroral luminosity boundary locations that have been es-

timated in the 12:00 to 13:00 MLT sector, because dayglow

contamination swamps the auroral emission.

In the 18:00 to 19:00 MLT sector (Fig. 2d), it can be

seen that some of the auroral boundaries prior to ∼01:30 UT

and again between ∼03:00 UT and 04:30 UT switch between

those estimated from a single Gaussian function and those

estimated from a double Gaussian function. This switching

appears to be caused by fluctuations in the amplitudes of two

closely-spaced Gaussian components in the auroral emission

profiles such that at times the two peaks cannot be resolved

and appear as one. At the transition between an apparently

single and a resolved bifurcated oval, intensity profiles are

not clearly better modelled as either Fs(λ) or Fd(λ), result-

ing in the switching behaviour.

To illustrate the difference between the IMAGE FUV ca-

meras, Fig. 3 shows the mean intensity counts recorded by

the SI12 (panels a to d) and SI13 (panels e to h) channels dur-

ing the same moderate storm period with auroral luminosity

boundary locations estimated using the method outlined in

Sect. 3. As before, blue squares indicate boundaries derived

from single Gaussian fits to the intensity profiles while red

squares indicate boundaries derived from double Gaussian

fits. In contrast to the WIC data shown in Fig. 2, bifurca-

tion is not evident in the SI12 auroral emissions and con-

sequently fewer boundaries are made from double Gaussian

fits. In particular, the more poleward band of emission ob-

served prior to ∼01:30 UT in the WIC emissions in the 00:00

to 01:00 MLT sector (Fig. 2a) is not obvious in the SI12 emis-

sions (Fig. 3a). Some dayside boundaries have been resolved

from the SI12 auroral emission due to the reduced dayglow

contamination at this wavelength. However, the SI13 auroral

emissions show some bifurcation in the 00:00 to 01:00 MLT

sector at the start of the period and following the second sub-

storm onset (Fig. 3e) but does not capture the bifurcation ev-

ident in the WIC auroral emissions in the dawn and dusk

sectors. This is likely the result of the lower resolution of the

SI13 camera relative to the separation of the peaks in auroral

intensity.

4.2 Statistical analysis of the impact of the double

Gaussian model on boundary estimation

The number of PALB locations successfully estimated from

images from each of the three FUV detectors between May

2000 and August 2002 is shown in Fig. 4a. As can been

seen, the lowest numbers of successful PALB locations oc-

cur in dayside MLTs for all three cameras. This is due to

a combination of the effects of dayglow and weak dayside

auroral emissions. Peak numbers of successful PALB loca-

tions from SI12 and SI13 images occur around local mid-

night, while peak successful PALB locations from WIC im-

ages occur around dawn and dusk MLTs. The primary cause

of failure in PALB estimation in all MLT sectors for inten-

sity profiles from SI12 and SI13 images is the uncertainty in

boundary location exceeding the acceptable limit specified in

Sect. 3.2. Additionally, a large number of double Gaussian

fits fail our width criteria (criterion 4). In nightside MLT

sectors, there are fewer successful PALBs derived from WIC

images than may be expected from the trends in SI12 and

SI13 PALB numbers. This is a largely seasonal effect, with

few “nightside” boundaries being successfully located during

summer months from WIC images due to dayglow contami-

nation beyond the geomagnetic pole.

Figure 4b shows the percentage of those successfully es-

timated auroral luminosity boundary locations made from a

fit of Fd(λ) to a latitudinal intensity profile in preference to

Fs(λ). A clear MLT dependence is evident, with the highest

percentages observed around local midnight. WIC images

have higher percentages of intensity profiles that are better

modelled as a double Gaussian function than images from

SI12 and SI13 in each MLT sector, with ∼35% of WIC pro-

files in the 23:00 to 01:00 MLT sector being better modelled

as a double Gaussian. The difference between the SI13 and

WIC imagers, which are both sensitive to electron emissions,
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Fig. 3. Intensity counts recorded by the IMAGE FUV SI12 and SI13 sensors on the 1 February 2001 between 00:00 and 06:00 UT. Count

values above and below thresholds indicated in the intensity scales have been saturated. Not a Number (NaN) and zero count intensity

values are shown in yellow. From top to bottom, the panels show the MLT sectors 00:00–01:00, 06:00–07:00, 12:00–13:00 and 18:00–

19:00, respectively. Panels (a) to (d) show auroral luminosity boundary locations derived according to the method detailed in this paper

from SI12 images, with panels (e) to (h) showing the same derived from SI13 images. Blue squares denote poleward and equatorward

luminosity boundaries determined from fits to a function with a single Gaussian component (Fs(λ)), with blue error bars showing ±Uλ on

these boundaries. Red squares denote poleward and equatorward luminosity boundaries determined from fits to a function with a double

Gaussian component (Fd(λ)), with red error bars showing ±Uλ on these boundaries. Vertical dashed black lines indicate times of substorm

onset from the list outlined in Frey et al. (2004).

is likely due to the lower imager resolution and lower typical

intensity count levels of SI13, making the bifurcation of au-

roral emission more difficult to resolve in SI13 images. Sim-

ilarly, this is also the case for SI12 but with the additional

differences due to proton rather than electron emissions.

Table 1 compares the number of successful PALB loca-

tions made using our technique (showing both those bound-

aries made from fits of the single Gaussian function (Fs(λ))

and those made from fits of the double Gaussian function

(Fd(λ))), and using the technique outlined in Carbary et al.

(2003) (WIC only). It also shows how these numbers vary

with geomagnetic activity (as measured by Kp) and MLT

(6-h sectors). Consistent with Fig. 4, PALBs made from

fits of Fd(λ) using our technique are most numerous in the

nightside MLT sectors (21:00 to 03:00 MLT) and least nu-

merous in the dayside (09:00 to 15:00 MLT). Additionally,

the percentage of the total number of our successfully lo-

cated PALBs being made from fits of Fd(λ) in preference to

Fs(λ) in the nightside increases with geomagnetic activity,

with more than 50% of nightside boundaries made from WIC

images resulting from double Gaussian fits. Additionally, the

percentage of successfully located PALBs from the available

luminosity profiles also increases with geomagnetic activity

in all MLT ranges for each of the FUV detectors (with the

exception of WIC in nightside sector where similar percent-

ages of PALBs are successfully located during moderate and

active conditions). From comparison with the numbers of

PALB locations successfully estimated using the technique

www.ann-geophys.net/28/1659/2010/ Ann. Geophys., 28, 1659–1678, 2010



1668 N. Longden et al.: Estimating the OCB

Fig. 4. Number of PALBs in each MLT sector derived from IMAGE FUV WIC images (red line), SI12 images (blue line), and SI13 images

(green line) from May 2000 until August 2002 using the technique outlined in this paper (panel a). Panel (b) shows the percentage of these

successful boundary locations that are derived from fits of the function Fd(λ) to latitudinal intensity profiles.

Table 1. Number (N ) of PALB estimations derived from IMAGE FUV images between May 2000 and August 2002 using the method

outlined in this paper (all three FUV detectors) and the method of Carbary et al. (2003) (WIC images only) separated by MLT and geomag-

netic activity. The percentages of successfully located PALBs out of the total available luminosity profiles are shown in parentheses. The

percentages of successfully located PALBs made from single Gaussian fits (Fs(λ)) and double Gaussian fits (Fd(λ)) are also shown.

Our method Carbary method

SI12 SI13 WIC WIC

MLT N Fs(λ) Fd(λ) N Fs(λ) Fd(λ) N Fs(λ) Fd(λ) N

During quiet activity 0 ≤ Kp < 2

21:00–03:00 392 182 (35%) 96% 4% 404 304 (37%) 91% 9% 273 536 (27%) 81% 19% 371 707 (36%)

03:00–09:00 85 264 (8%) 98% 2% 143 935 (13%) 94% 6% 217 696 (21%) 87% 13% 254 310 (25%)

09:00–15:00 24 919 (2%) 98% 2% 59 808 (6%) 98% 2% 59 722 (6%) 94% 6% 61 253 (6%)

15:00–21:00 164 039 (15%) 98% 2% 165 651 (15%) 98% 2% 198 802 (19%) 94% 6% 217 504 (21%)

During moderate activity 2 ≤ Kp < 4

21:00–03:00 595 584 (60%) 91% 9% 548 541 (56%) 81% 19% 327 845 (35%) 63% 37% 391 158 (41%)

03:00–09:00 206 120 (21%) 97% 3% 263 827 (27%) 92% 8% 360 710 (38%) 84% 16% 361 173 (38%)

09:00–15:00 77 375 (8%) 98% 2% 94 069 (10%) 98% 2% 90 003 (10%) 95% 5% 77 393 (8%)

15:00–21:00 384 581 (39%) 95% 5% 313 221 (32%) 94% 6% 369 010 (39%) 88% 12% 359 926 (38%)

During high activity Kp ≥ 4

21:00–03:00 182 071 (71%) 85% 15% 172 958 (69%) 71% 29% 82 717 (34%) 49% 51% 96 697 (40%)

03:00–09:00 100 193 (39%) 92% 8% 105 465 (42%) 86% 14% 117 050 (48%) 78% 22% 113 837 (47%)

09:00–15:00 51 700 (20%) 96% 4% 33 588 (13%) 97% 3% 36 658 (15%) 95% 5% 23 686 (10%)

15:00–21:00 150 736 (59%) 89% 11% 106 082 (42%) 81% 19% 107 752 (45%) 75% 25% 102 009 (42%)

of Carbary et al. (2003), it can be seen that the requirement

of our technique to discriminate between single and double

Gaussian models of auroral luminosity does not greatly re-

duce the number of boundary locations found (< 10%).

Figure 5 illustrates the effect of modelling the latitudi-

nal intensity profiles as a double Gaussian function on the

estimated auroral luminosity boundary locations. It shows

the distribution of differences between boundaries estimated
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Fig. 5. Distribution of differences in auroral luminosity boundaries derived from single Gaussian (Fs(λ)) and double Gaussian fits (Fd(λ))

when both models successfully produce boundary locations under differing levels of geomagnetic activity, inferred from the Kp index. The

coloured curves show the distribution of PALB differences for each of the three IMAGE FUV detectors during May 2000 to August 2002.

The black curves in each panel show the distribution of EALB differences.

Table 2. Sample size (N ), mean (µ), standard deviation (σ ), 25th percentile (25%), median (50%), and 75th percentile (75%) for the

differences between DMSP PAPBs and IMAGE FUV PALBs, during 2000 and 2001. Differences have been included only when PALBs

are successfully located from fits of both single and double Gaussian functions to an auroral intensity profile and the double Gaussian is the

superior model.

Fs(λ) Fd(λ)

N µ σ 25% 50% 75% µ σ 25% 50% 75%

WIC 370 −1.67 3.60 −3.55 −1.88 −0.02 −1.94 3.18 −3.02 −1.74 −0.49

SI12 140 1.42 3.44 −0.93 1.40 3.70 −1.17 3.08 −2.69 −1.48 0.57

SI13 219 −0.98 5.30 −3.24 −1.28 0.96 −1.30 4.58 −2.15 −1.07 0.17

from fits of the single Gaussian function (Fs(λ)) and the dou-

ble Gaussian function (Fd(λ)) when both models produce

successful boundary locations. In nearly all cases (> 99%),

the double Gaussian function is a better model than the sin-

gle Gaussian function. The coloured curves show the distri-

bution of differences in the derived PALBs while the black

curves show the differences in EALBs. The boundary diffe-

rences have been separated according to geomagnetic activ-

ity and FUV camera. Each distribution of PALB differences

shows a main narrow peak with a modal value close to zero

and a secondary peak or heavy skew for large, positive diffe-

rences. These distributions imply two classes of offset be-

tween PALBs estimated from Fs(λ) and Fd(λ); small offsets

that do not show a significant poleward or equatorward bias
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Table 3. The number (N) and mode (M) of comparisons of differences between DMSP PAPBs and FUV PALBs during 2000 and 2001

and inter-camera comparisons from May 2000 to August 2002. All available boundaries have been included. Estimated values for modal

differences are shown in square brackets.

λDMSP −λWIC λDMSP −λSI12 λDMSP −λSI13 λWIC −λSI12 λWIC −λSI13 λSI12 −λSI13

MLT N M N M N M N M N M N M

00:00–01:00 – [0.0] – [−1.5] – [−1.0] 88 096 0.2 99 123 0.0 149 128 0.0

01:00–02:00 – [0.0] – [−1.5] – [−0.5] 82 105 −0.2 95 789 −0.2 13 5371 0.2

02:00–03:00 – [0.5] – [−1.5] – [0.0] 72 059 −0.4 89 998 0.0 113 759 0.4

03:00–04:00 – [0.0] – [−1.0] – [0.0] 60 409 −0.8 83 852 −0.4 89 959 0.8

04:00–05:00 – [0.0] – [−0.5] – [0.0] 49 082 −0.8 76 231 −0.4 62 989 1.2

05:00–06:00 143 −0.5 32 −1.5 48 0.5 40 537 −0.6 64 875 0.2 40 031 0.8

06:00–07:00 570 −0.5 191 0.0 245 −0.5 30 840 −0.4 45 323 −0.4 23 026 1.0

07:00–08:00 281 −1.5 107 0.0 144 −1.0 20 696 0.6 32 757 0.0 14 668 1.0

08:00–09:00 221 −2.0 74 −1.5 120 −1.0 11 874 0.2 20 908 0.0 8994 0.4

09:00–10:00 174 −2.0 66 −2.0 159 −1.0 6545 0.0 11 596 −0.2 5737 0.4

10:00–11:00 55 −1.0 47 −2.5 79 −1.5 4655 0.4 6409 0.4 5453 0.4

11:00–12:00 38 −2.0 40 −3.5 48 −1.5 4107 0.4 4309 0.2 5777 1.0

12:00–13:00 20 −1.5 31 −2.0 22 −2.0 4184 −0.2 4881 0.4 5947 0.4

13:00–14:00 36 −1.5 22 −1.5 38 −1.5 5559 −0.4 8023 0.2 6887 0.4

14:00–15:00 70 −1.5 41 −1.0 68 −1.5 10 350 −0.2 16 748 0.2 10 225 0.0

15:00–16:00 156 −1.5 99 0.0 137 −1.0 20 845 0.6 33 238 0.4 18 048 0.0

16:00–17:00 490 −1.5 281 0.5 277 −1.0 37 503 0.8 49 486 0.4 28 013 −0.4

17:00–18:00 793 −1.5 571 0.0 533 −1.0 51 964 1.8 55 185 0.2 38 659 −1.0

18:00–19:00 551 −2.0 550 1.0 478 −1.0 63 210 1.8 63 985 0.2 58 179 −0.8

19:00–20:00 282 −1.5 425 1.0 328 −1.5 66 233 2.0 69 336 0.2 81 368 −1.0

20:00–21:00 357 −1.5 541 1.0 482 −1.5 72 958 1.6 76 338 0.0 109 780 −1.0

21:00–22:00 206 −1.5 379 0.0 326 −1.5 79 412 1.0 84 445 0.2 134 310 −0.8

22:00–23:00 – [−1.0] – [−0.5] – [−1.5] 85 084 0.8 92 218 0.0 148 770 −0.2

23:00–00:00 – [−0.5] – [−1.0] – [−1.0] 88 710 0.6 97 808 0.0 154 217 −0.2

Total 4443 – 3497 – 3532 – 1 057 017 – 1 282 861 – 1 449 295 –

and large offsets where the PALB from Fd(λ) is consistently

poleward of the PALB from Fs(λ). This trend is present for

all levels of geomagnetic activity. The narrow peak of the

distribution located close to zero is likely to be from times

where the auroral emission luminosity profiles exhibit two

closely located or overlapping peaks. The large differences

are likely to be from times when there is clear separation in

the auroral emissions, with the PALBs from double Gaussian

fits consistently being made from the more poleward peak

while the PALB from the single Gaussian fit is made from the

more equatorward peak. The EALB difference distributions

are approximately anti-symmetric to the PALB ones, particu-

larly for boundaries from WIC and SI13 during times of low

geomagnetic activity. This demonstrates that when the single

and double Gaussian models produce very different auroral

luminosity boundaries, the poleward (equatorward) bound-

aries of the double Gaussian model are consistently poleward

(equatorward) of those from the single Gaussian models.

Figure 6 shows the probability densities of PALB locations

for each of the three IMAGE FUV detectors separated into 6-

h MLT ranges. In each panel, the solid coloured bars show

the densities for PALBs estimated from double Gaussian fits

while the black curves show the densities for PALBs esti-

mated from single Gaussian fits. In the dusk sector (15:00

to 21:00 MLT), the centroids of the density distributions of

PALBs from single Gaussian fits are slightly poleward of the

centroids of the density distributions of PALBs from double

Gaussian fits from WIC and SI13. In all other MLT sectors

and for SI12 boundaries, the PALBs centroids of the den-

sity distributions of the PALBs from double Gaussian fits are

poleward of those relating to single Gaussian fits. In most

cases, this suggests that the auroral luminosity boundaries are

poleward of the main peak in emission. However, the distri-

bution of PALBs from double Gaussian fits to WIC profiles in

the dayside MLT sector indicates some potentially erroneous

boundaries due to the relatively high probability of bound-

aries being located close to the cutoff of 90◦ compared to

the other MLT sectors and instruments. While these bound-

aries could indicate the presence of auroral features at high

latitudes, they do not appear in the distributions for SI12 and

SI13 cameras, which are less susceptible to dayglow contam-

ination.
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Fig. 6. Probability densities of IMAGE FUV PALBs derived using the method outlined in this paper during May 2000 to August 2002 with a

resolution of 1◦. From top to bottom, panels show the densities for PALBs from the WIC, SI12 and SI13 cameras, respectively. From left to

right, the panels show the probability densities for nightside, dawnside, dayside, and duskside MLT sectors, respectively. The solid coloured

bars show the densities for PALBs derived from double Gaussian (Fd(λ)) fits to intensity profiles while the black curves show the densities

for those derived from single Gaussian (Fs(λ)) fits to intensity profiles. All successfully located PALBs are included.

4.3 Statistical comparison of FUV PALBs

with DMSP PAPBs

As with similar studies (e.g. Carbary et al., 2003; Boakes

et al., 2008), we compare our estimated PALBs with con-

temporaneous, co-located DMSP PAPBs (where available)

to assess their accuracy as a proxy for the OCB. Boundary

comparisons are made to the closest successful PALB within

±5 min UT and within ±0.5 h MLT of the DMSP PAPB dur-

ing the period from May 2000 until December 2001. The

distributions of the differences between DMSP PAPBs and

IMAGE PALBs across all available MLT sectors are shown

in Fig. 7a to c, with a resolution of 0.5◦. Consistent with

the study of Carbary et al. (2003), these boundary difference

distributions are roughly Gaussian in profile, although the

SI12 PALB distribution exhibits a positive skew, indicating

a higher proportion of events where the DMSP PAPB is lo-

cated poleward of our FUV PALB. This is similar to the ob-

servation in the earlier case study of SI12 PALBs being made

from an equatorward band of auroral emission in the 00:00 to

01:00 MLT sector between around 00:00 to 01:30 UT while

WIC and SI13 PALBs are made from a clear poleward band

of emission (Figs. 2a, 3a, and 3e). The pointing calculation

error for the IMAGE dataset and subsequent effect on the ac-

curacy of the derived PALBs may increase the uncertainty of

these PALBs in comparison with the PAPBs. Panels (d) to (f)

of Fig. 7 illustrate the effect of fitting a double Gaussian func-

tion (Fd(λ)) on these boundary differences. In these panels,

the solid bars show the distribution of differences between

DMSP PAPBs and IMAGE PALBs derived from fits of Fd(λ)

to intensity profiles when the fits from this function were su-

perior to those of fits to the single Gaussian function Fs(λ).

We only include boundaries when the PALB derived from the

single Gaussian fit have also passed our criteria. The distri-

butions of differences between PAPBs and PALBs estimates

from these single Gaussian fits are shown as black lines in

Fig. 7d to f. Due to the lower number of comparisons in these

distributions, a resolution of 1◦ has been used. The mean (µ),

standard deviation (σ ), and percentile values for the differen-

ces between the DMSP PAPBs and FUV PALBs are sum-

marised in Table 2. In each case, the boundary differences

relating to PALBs derived from double Gaussian fits have
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Fig. 7. Distribution of differences between DMSP PAPBs and IMAGE FUV PALBs derived using the method outlined in this paper during

2000 and 2001. From top to bottom, panels show the distribution of differences between PAPBs and PALBs from the WIC, SI12 and SI13

cameras, respectively. Panels (a) to (c) show the distribution of all differences between PAPBs and PALBs at a resolution of 0.5◦. Panels

d to f show the distribution of differences between PAPBs and PALBs derived from double Gaussian (Fd(λ)) fits to intensity profiles (solid

coloured bars) and PALBs derived from single Gaussian (Fs(λ)) fits to intensity profiles (black line) at a resolution of 1◦. For panels (d) to

(f), boundaries are only included when PALBs derived from both the single and double Gaussian fits to an intensity profile pass our criteria

but the double Gaussian provides the superior fit to the profile.

a smaller standard deviation than those relating to PALBs

from single Gaussian fits, showing that the double Gaussian

fit yields a boundary more consistent with PAPBs than would

have been obtained by a single Gaussian fit. The interquartile

range is also lower for PALBs from double Gaussian fits than

those from single Gaussian fits for all FUV cameras. It must

be noted that the sample here is limited, and is biased by the

requirement that both the double and single Gaussians are

good fits to the profile, therefore excluding a large majority

of cases when the double Gaussian represents a much better

fit to the emission profile than a single Gaussian fit that fails

the criteria. Hence, the improved correlation with the PAPBs

is more subtle here than in reality.

Table 3 lists a summary of the comparisons of DMSP

PAPBs and PALBs in each MLT sector taken from each of

the IMAGE FUV detectors, including the number of compar-

isons made (N), and the mode of the distribution of the diffe-

rences between these boundary locations (M). Due to the low

frequency of differences in some MLT sectors, the difference

distribution in each MLT sector has been smoothed three

times using a boxcar average over five points (e.g., Boakes

et al., 2008). The MLT variation of these smoothed modal

differences for each FUV detector are shown in Fig. 8a to c

(diamond symbols). Error bars show estimates for the stan-

dard deviations derived from fitting a Gaussian function to

each distribution. To obtain estimates for the expected modal

values in the MLT sectors where no DMSP PAPBs are avail-

able, we model the MLT variation of the modal differences

(L(ϕ)) as a second-order harmonic function (e.g., Carbary

et al., 2003; Boakes et al., 2008):

L(ϕ) = C0 +C1cosϕ+D1sinϕ+C2cos2ϕ+D2sin2ϕ (6)

where ϕ is the angle associated with each MLT sector in cir-

cular coordinates with 0◦ at midnight, and increasing with in-

creasing MLT, and C0, C1, C2, D1 and D2 are coefficients of

the fit. We again use the Levenberg-Marquardt least squares

fitting routine adapted from Press et al. (1992) to obtain the

parameters of the fit. No weighting was applied during fit-

ting. The results of these fits are shown as the continuous

curves in Figs. 8a to c. The modal differences estimated

from these fits, rounded to the nearest 0.5◦, are shown in Ta-

ble 3 in square brackets for the MLT sectors without DMSP
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Fig. 8. Comparison of DMSP PAPBs and IMAGE FUV PALBs derived using the method outlined in this paper during 2000 and 2001.

Panels (a) to (c) show the modes of the smoothed difference distributions between PAPBs and PALBs from the WIC, SI12 and SI13 cameras,

respectively, with a resolution of 0.5◦, represented by diamond symbols. The solid lines in each panel show the second-order harmonic fits

to the modal distribution values. Error bars show estimates for the standard deviations of the boundary differences. Panel (d) shows the

correlation coefficient of PAPBs and PALBs from the WIC (red plus symbols), SI12 (blue cross symbols), and SI13 (green asterisks) FUV

cameras in each MLT sector. Grey symbols indicate correlation coefficient values that are not significant to the 95% confidence level.

data. Figure 8d shows the correlation coefficients for DMSP

PAPBs and FUV PALBs in each MLT sector. Coloured sym-

bols show significant correlation coefficients while grey sym-

bols indicate coefficients that are not significant at the 95%

confidence level.

In addition to the differences between DMSP PAPBs and

FUV PALBs, Table 3 also lists the (unsmoothed) modal

values of the distribution of differences between PALBs ob-

tained from the different FUV cameras and the number of

inter-camera comparisons available during May 2000 until

August 2002 in each MLT sector. Due to the typically higher

numbers of inter-camera comparisons relative to the compar-

isons with DMSP PAPBs, a resolution of 0.2◦ was used for

these difference distributions. Inter-camera comparisons are

made between successful PALBs within ±15 s UT and in the

same MLT sector.

From the modal differences of the inter-camera compar-

isons, it can be seen that PALBs obtained from WIC and

SI13 images are largely the same, with a slight poleward off-

set for WIC PALBs of up to 0.6◦ across all MLTs. As ex-

pected from the offset between electron and proton aurora,

the modal difference values indicate that PALBs from SI12

images are typically located poleward of those from WIC and

SI13 in the predawn sector and equatorward around dusk.

4.4 OCB estimate correction

Carbary et al. (2003) and Boakes et al. (2008) proposed

constant offset corrections to minimise the systematic er-

ror observed between DMSP PAPBs (thought to provide

the most accurate proxy for the OCB) and PALBs derived

from auroral images, aiming to improve the accuracy of the

PALB as a proxy for the OCB. We use the modal differen-

ces between the FUV PALBs and DMSP PAPBs as well

www.ann-geophys.net/28/1659/2010/ Ann. Geophys., 28, 1659–1678, 2010



1674 N. Longden et al.: Estimating the OCB

Fig. 9. Correction offset values for PALBs derived from images

from the IMAGE FUV WIC, SI12, and SI13 detectors using the

method outlined in this paper between May 2000 and August 2002,

represented by diamond symbols. The solid lines in each panel

show the second-order harmonic fits to these offsets.

as the modes of the inter-camera comparisons (as listed in

Table 3) to calculate the necessary offsets (1λFUV) to cor-

rect PALBs from each FUV camera using Eqs. (11) to (13)

of Boakes et al. (2008) (Eq. 13 of Boakes et al. (2008)

has a typographical error and should read E −D = (−x2 −
x3 − x4 − x5 − x6)/3). We invert these offset values such

that λOCB = λFUV +1λFUV. We model the resulting offset

values for each FUV camera as a second-order harmonic fit

in the form of Eq. (6) (with 1λFUV replacing L(ϕ)), again

using the Levenberg-Marquardt least squares fitting routine

adapted from Press et al. (1992). These offset values and

fits are shown in Fig. 9, and the coefficients of these fits are

also listed in Table 4. An MLT dependence in the systema-

tic offsets is clear from Fig. 9, with PALBs from all came-

ras being corrected equatorward around local noon and mid-

night. Around local dawn, PALBs from SI13 and WIC need

relatively little correction while PALBs from SI12 are cor-

rected equatorward. Around local dusk, PALBs from SI12

are corrected slightly poleward whereas PALBs from WIC

and SI13 are corrected equatorward. The harmonic coeffi-

cients presented in Table 4 can be used in Eq. (6) to provide

the correction offset (1λFUV) for PALB estimates from any

camera at any MLT. The correlation coefficients shown in

Fig. 8d indicate the applicability and suitability of these off-

sets (the inter-camera correlation coefficients are significant

to the 95% confidence level in all MLT sectors). Hence, these

offset corrections should only be used when the correlation

coefficients between DMSP PAPBs and FUV PALBs are sig-

nificant, i.e., WIC corrections should not be used in the 11:00

to 13:00 MLT sector and SI12 corrections should not be used

in the 11:00 to 14:00 MLT sector.

Table 4. Harmonic coefficients for correction of PALBs derived

from IMAGE FUV images between May 2000 and August 2002.

C0 C1 D1 C2 D2

WIC −1.10 0.52 0.43 −0.38 0.43

SI12 −0.88 0.66 −0.49 −0.57 −0.04

SI13 −0.89 0.37 0.28 −0.40 0.31

5 Polar cap area estimation

Assuming a spherical geometry, the PCA can be estimated

from the OCB (or the measured proxies) using Eq. (7) (e.g.

Carbary et al., 2003; Chisham et al., 2008):

PCA =
∫ 2π

0
(RE +h)2[1−sin(λOCB(φ))]dφ (7)

where h is the effective altitude of the measurements, λOCB is

the magnetic latitude of the OCB, and φ is the magnetic lon-

gitude. Our corrected PALBs define a proxy measure for the

latitude of the OCB at 24 evenly-spaced magnetic longitudes

and, hence, the PCA can be estimated from a summation of

the bounded areas in each MLT sector (ϕ) using Eq. (8) (e.g.

Carbary et al., 2003; Chisham et al., 2008):

PCA =
2π(RE +h)2

24

24
∑

i=1

[1−sin(λp(ϕi)+1λ(ϕi))] (8)

As PALB estimates may not be available for all 24 MLT sec-

tors in an image, a method to estimate the boundaries in the

missing sectors must be used. Where PALB estimates are not

available for all 24 MLT sectors in an image, a simple lin-

ear piece-wise interpolation across the successfully defined

boundaries is assumed.

As an example, Fig. 10 shows the intensity counts

recorded by each channel of the IMAGE FUV instrument

on 28 October 2001 at ∼09:18 UT in AACGM coordinates.

Panels (a) to (c) show the intensity counts recorded by WIC

(red), SI12 (blue), and SI13 (green) respectively. Panel d

shows the composite intensity counts when the most ap-

propriate camera for each MLT sector is selected, with the

colourscale corresponding to that of the selected camera.

In the MLT sectors where statistical comparisons with the

DMSP PAPBs were available, we determine the most ap-

propriate FUV camera to be the one where PALBs show

the highest correlation with PAPBs. For the MLT sectors

where PAPBs are not available, we select the camera that

typically produces the most poleward boundary of the three

based on the modal differences of the inter-camera compar-

ison (i.e., WIC from 22:00 to 01:00 MLT and SI12 from

01:00 to 05:00 MLT). Here, we are making the conservative

assumption that all particle precipitation that results in sig-

nificant auroral luminosity occurs on closed field lines, and

hence the OCB must be poleward of all regions of auroral lu-

minosity. In the 22:00 to 00:00 MLT sectors, where PALBs
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Fig. 10. FUV intensity observed by the IMAGE FUV instrument at 09:18 UT 28th October 2001 in AACGM coordinates. Panels (a) to

(c) show the intensity values from the WIC, SI12, and SI13 cameras respectively. Panel (d) shows the composite intensities obtained when

selecting the most appropriate camera for each MLT sector. The white diamonds in panel (d) show the OCB location estimates made using

the method outlined in this paper from the selected camera. The correction offsets have been added to these OCB locations.

could be taken from either the WIC or SI13 camera, we use

WIC data due to its higher image resolution. This instru-

ment selection is in agreement with those used in the 22:00

to 05:00 MLT sectors by Boakes et al. (2008). Overlaid on

the composite image are white diamonds indicating the esti-

mates for the OCB locations from the PALBs with systema-

tic offsets corrected for. The white curve illustrates the linear

interpolation across the MLT sectors for which no PALB is

available. The area enclosed by this curve is considered to be

the PCA.

Figure 11 shows PCA estimates made during the period of

moderate geomagnetic activity on the morning of 1 Febru-

ary 2001 (as covered in Fig. 2). Panel (a) shows the PCA

estimates made during this time period for three different

OCB estimation methods: (1) OCBs estimated from PALBs

from single Gaussian models of WIC intensity profiles (blue

curve), (2) OCBs estimated from PALBs from single Gaus-

sian models of intensity profiles from the best combination

of three IMAGE FUV cameras (yellow dashed curve), and

(3) OCBs estimated from PALBs from the combination of

single and double Gaussian models of intensity profiles from

the best combination of the FUV cameras (red curve). OCB

correction offsets as outlined in Sect. 4.4 have been applied

to the boundaries used in method 3. We have calculated ad-

ditional OCB correction offsets using PALBs derived from

single Gaussian fits only and applied these to the boundaries

used in PCA estimation methods 1 and 2. Panel (b) in Fig. 11

shows the percentage differences between the PCAs from

method 3 and the other two PCA methods from panel (a).

The vertical black dashed lines indicate the times of sub-

storm onset identified by Frey et al. (2004). PCA estimates

are made when PALBs are available for at least 10 of the 24

MLT sectors of the FUV image.

From Fig. 11, expansion of the polar cap prior to the sub-

storm activity can be seen, with contraction of the polar cap

following the onset of the second substorm for all three PCA

estimates. During the initial period of expansion, prior to

∼01:30 UT, when bifurcation of the auroral oval was evi-

dent in Fig. 2, PCAs calculated using methods 1 and 2 are

generally overestimated relative to those from method 3. At

times, this overestimation exceeds 20% of the total PCA. In

the mid-phase of the period shown, from ∼02:00 UT until

the onset of the second substorm at ∼04:26 UT, the PCA es-

timates from methods 2 and 3 are highly similar as during

this time bifurcation in the auroral oval was limited. Fol-

lowing the onset of the second substorm, while the auroral
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Fig. 11. Polar cap areas estimated from IMAGE FUV auroral

boundaries on the 1 February 2001 between 00:00 and 06:00 UT.

Panel (a) shows the PCA estimates derived from auroral boundaries

obtained using the method outlined in this paper. The areas are cal-

culated from boundaries estimated from single and double Gaussian

fits to intensity profiles from the best combination of all three IM-

AGE FUV cameras (solid red line), from boundaries obtained from

single Gaussian fits to intensity profiles from the best combination

of all three cameras (dashed yellow line), and from boundaries ob-

tained from single Gaussian fits to intensity profiles from the WIC

camera only (solid blue line). Correction offset values have been

applied to these auroral boundaries. Panel (b) shows the relative

difference in PCA estimated from boundaries from single Gaussian

fits from all three FUV cameras (yellow diamonds), and boundaries

from single Gaussian fits from the WIC camera (blue diamonds)

with respect to area estimates from boundaries derived from both

single and double Gaussian fits to intensity profiles from all three

FUV cameras. Vertical dashed black lines indicate times of sub-

storm onset from the list outlined in Frey et al. (2004).

oval undergoes contraction, fewer PCA estimates exist when

OCBs are derived from fits of a single Gaussian function

only. Again, the PCA estimates made from single Gaussian

fits only (methods 1 and 2) are frequently substantially differ-

ent to those from the combined single and double Gaussian

fits (method 3).

6 Conclusions

Building on the strengths of previous techniques (e.g. Car-

bary et al., 2003; Mende et al., 2003; Boakes et al., 2008;

Gjerloev et al., 2008), we have developed a new, more gen-

eral, method for estimating the location of auroral oval lu-

minosity boundaries. This technique is fully automated, re-

quiring no prior knowledge of geomagnetic conditions, and

can be used to estimate auroral luminosity boundaries dur-

ing all levels of auroral activity. A case study and statistical

analysis demonstrate that the accuracy of auroral luminosity

boundary locations can be improved by modelling latitudi-

nal profiles of auroral luminosity intensity as either a single

or double Gaussian function compared to modelling these

profiles as a single Gaussian function alone. We have identi-

fied that a significant percentage of intensity profiles exhibit

a degree of bifurcation, with up to 35% of WIC profiles in

nightside MLTs being better modelled by a double Gaussian

form, and over 50% during high geomagnetic activity. Fol-

lowing the techniques of Carbary et al. (2003) and Boakes

et al. (2008), we have derived systematic correction values

to improve our PALBs as a proxy for the OCB. By applying

our technique to a large number of IMAGE FUV images, we

have produced a substantial database of OCB location esti-

mates. From the case study of a single storm event where bi-

furcation is present in the auroral oval, we have demonstrated

how these OCB proxies can be used to calculate the PCA and

shown that the technique used to derive PALBs from mod-

els of a single Gaussian function can produce significantly

different PCA estimates than those implementing combined

single and double Gaussian modelling. These differences,

coupled with the number of successfully estimated PALBs

from fits in the form of Fd(λ), could have implications for

studies where changes in the PCA are used as a proxy for

the rate of magnetic reconnection during storm or substorm

activity. The dataset that we have compiled opens up the op-

portunity to measure the rate of reconnection across an un-

precedented range of temporal and spatial scales. The auro-

ral boundaries that we have derived from IMAGE data using

the technique outlined in this paper are available to down-

load at www.antarctica.ac.uk/bas research/our research/az/

magnetic reconnection/auroral boundary data.html
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