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1 Introduction

The marginal distribution of a stationary time series contains interesting informa-

tion. If one is interested in prediction or value-at-risk evaluation over long horizons,

this is the marginal distribution that matters (see e.g. Cotter, 2007). Another area

where marginal densities play an important role is the estimation of copula-based

stationary models: for instance Chen and Fan (2006) proposed a copula approach

whose advantage is to "separate out the temporal dependence (such as tail depen-

dence) from the marginal behavior (such as fat tailedness) of a time series." On the

other hand, numerous statistical procedures require conditions on the marginal law,

such as the existence of moments. Moreover, statistical inference on the marginal

distribution can help validate or invalidate time series models. For example, a

linear model with alpha-stable innovations entails the same type of distribution

for the observations (see Remark 1 of Proposition 13.3.1 in Brockwell and Davis,

1991).

In principle, the marginal distribution is specified by the time series model.

However, the closed parametric form of the marginal density is known only in spe-

cial cases. Examples include the linear autoregressive processes with Gaussian or

stable innovations, and some threshold autoregressive processes with very specific

error distributions (see Andĕl and Barton̆ (1986), Andĕl, Netuka and Zvára (1984),

and more recently Loges (2004)). Moreover, in real situations, the dynamics of the

series and the errors distribution are generally unknown.

Our aim in this paper is to estimate the parameterized marginal distribution of a

stationary times series (Xt) without specifying its dependence structure. The focus

is on the parameter of the marginal distribution, and the unknown dependence

structure can be considered as a nuisance parameter in our framework.

To deal with situations where the computation of the exact likelihood is not
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feasible, Lindsay (1988) proposed the composite likelihood as a pseudo-likelihood

for inference. A composite likelihood consists of a combination of likelihoods of

small subsets of data. For example, the composite likelihood can be the product of

the bivariate likelihood of pairs of observations (see Davis and Yau (2011) for the

asymptotic properties of pairwise likelihood estimation procedures for linear time

series models). Here the bivariate likelihood is not available, only the univariate

likelihood is assumed to be known. Applying the composite likelihood principle

to our framework, we thus write the likelihood corresponding to independent ob-

servations, neglecting the dependence structure. As will be seen, neglecting the

dependence may however have important effects on the accuracy of the estimators.

The corresponding estimator will be called Quasi-Marginal MLE (QMMLE). This

estimator is actually widely employed with the name of MLE, but this estimator is

not the MLE in the presence of time dependance. In the present paper, the asymp-

totic distribution of this estimator is studied by taking into account the temporal

dependence, but without specifying a particular model. Our only assumption con-

cerning the dependence structure is a classical mixing assumption, which is known

to hold for an immense collection of time series models.

Our results apply, in particular, to heavy tailed time series, which have at-

tracted a great deal of attention in recent years. Number of fields, in particu-

lar Environment, Insurance and Finance, use data sets which seem compatible

with the assumption of heavy-tailed marginal distributions. For instance it has

been long known that asset returns are not normally distributed. Mandelbrot

(1963) and Fama (1965) pioneered the use of heavy-tailed random variables, with

P (X > x) ∼ Cx−α, for financial returns. Mandelbrot advocated the use of infinite-

variance stable (Pareto-Lévy) distributions. See Rachev and Mittnik (2000) for a

detailed analysis of stable distributions. The use of other heavy tailed distribu-

tions, for instance the Generalized Pareto Distribution (GPD) and the Generalized
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Extreme Value distribution (GEV), was advocated by many authors. See Rachev

(2003) for an account of the many applications of heavy-tailed distributions in fi-

nance. The GPD and GEV play a central role in extreme value theory (EVT) (see

e.g. Beirlant et al. 2005).

Asymptotic theory of estimation for stable distributions has been established

by DuMouchel (1973). He showed that, whenever α < 2, the Maximum Likeli-

hood Estimator (MLE) of the coefficient α has an asymptotic normal distribution.

Asymptotic properties of the MLE of GPD and GEV parameters were obtained by

Smith (1984, 1985). However, a limitation of those results is that their validity re-

quire independent and identically distributed (iid) observations. The independence

assumption is clearly unsatisfied for most of the series to which these distributions

are usually adjusted. This is in particular the case for financial returns. Autocor-

relations of squares and volatility clustering, for instance, have been extensively

documented for such series.

The paper is organized as follows. Section 2 defines the QMMLE and gives

general regularity conditions for its consistency and asymptotic normality. The

next section shows that the regularity conditions of Section 2 are satisfied for three

important classes of heavy-tailed distributions. The alpha-stable, the generalized

Pareto and the generalized extreme value distributions are considered respectively

in Section 3.1, Section 3.2 and Section 3.3. Applications to the marginal distribu-

tion of financial returns are proposed in Section 4. Section 5 concludes. Proofs are

relegated to an appendix.

2 The Quasi-Marginal MLE

In this section we consider the general problem of estimating the marginal distribu-

tion of a stationary time series X1, . . . ,Xn defined on a probability space (Ω,A, P )
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and taking its values in a non empty measurable space (E, E). Assume that Xt ad-

mits a density fθ0 with respect to some σ-finite measure µ on (E, E). We consider

the unknown dependent structure as a nuisance parameter and we concentrate on

the estimation of the parameter θ0 ∈ Θ ⊂ R
q. In similar situations, where depen-

dencies constitute a nuisance, one can use an estimator obtained by maximizing

a quasi-likelihood (also known as pseudo-likelihood or composite likelihood) which

treats the data values as being independent (see Lindsay (1988)). This leads to

define a QMMLE1 as any measurable solution of

θ̂n = arg min
θ∈Θ

ℓn(θ), ℓn(θ) = − 1

n

n
∑

t=1

log fθ(Xt). (2.1)

To guarantee the existence of a solution to this optimization problem, we assume

A1: the set {x ∈ E : fθ(x) > 0} does not depend on θ, the function θ → fθ(x)

is continuous for all x ∈ E and Θ is compact.

Ignoring the time series dependence, the estimator θ̂n is often called MLE. Note

however that, in general, θ̂n does not coincide with the MLE when the observations

are not iid. Standard estimation methods based on the likelihood, or the quasi-

likelihood, cannot be implemented when the conditional distribution of Xt given its

past, or at least when the conditional moments of Xt given its past, are unknown.

The main interest of the QMMLE is to avoid specifying a particular dynamics.

1We emphasize the difference with the so-called Quasi MLE: in the latter case, the

first two conditional moments are supposed to be correctly specified and the criterion is

written as if the conditional distribution were Gaussian; in the present paper, the marginal

distribution is supposed to be correctly specified but the criterion is written as if the

observations were independent.

5



2.1 Consistency and asymptotic normality of the quasi

marginal MLE

The QMMLE θ̂n is CAN (consistent and asymptotically normal) under regularity

assumptions similar to those made for the CAN of the MLE (see e.g. Tjøstheim,

1986, Pötscher and Prucha, 1997, Berkes and Horváth, 2004, McAleer and Ling,

2010). More precisely, the following standard identifiability and moment assump-

tions are made:

A2: fθ(X1) = fθ0(X1) almost surely (a.s.) implies θ = θ0.

A3: E |log fθ(X1)| < ∞ for all θ ∈ Θ.

For the asymptotic normality, we need additional regularity assumptions.

A4: θ0 belongs to the interior
◦
Θ of Θ, the function θ = (θ1, . . . , θq)

′ → fθ(x)

admits third-order derivatives, for all i, j, k ∈ {1, . . . , q} there exists a neigh-

borhood V (θ0) of θ0 such that E supθ∈V (θ0)

∣

∣

∣

∂3 log fθ(X1)
∂θi∂θj∂θk

∣

∣

∣ < ∞, the matrices

I =

∞
∑

h=−∞
E
∂ log fθ0(X1)

∂θ

∂ log fθ0(X1+h)

∂θ′
and J = −E

∂2 log fθ0(X1)

∂θ∂θ′

exist and J is nonsingular.

In the iid case, J = I is the Fisher information matrix. In the general case, I is a

so-called long-run variance (LRV) matrix. We also have to assume that the serial

dependence is not too strong:

A5: E
∥

∥

∥

∂ log fθ0 (X1)

∂θ

∥

∥

∥

2+ν
< ∞ and

∑∞
k=0 {αX(k)} ν

2+ν < ∞ for some ν > 0,

where αX(k) , k = 0, 1, . . . , denote the strong mixing coefficients of the process

(Xt) (see e.g. Bradley, 2005, for a review on strong mixing conditions).
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Theorem 2.1. If (Xt) is a stationary and ergodic process with marginal density

fθ0, and if A1-A3 hold true, then θ̂n → θ0 a.s. Under the additional assumptions

A4 and A5, we have

√
n
(

θ̂n − θ0

)

d→ N (0,Σ := J−1IJ−1) as n → ∞.

In the iid case, we have I = J . The following example shows that, for time

series, Σ may be quite different from J−1.

Example 2.1. Consider the simplistic example of an AR(1) of the form

Xt = a0Xt−1 + ηt, ηt iid N (0, σ2
0), a0 ∈ (−1, 1), σ0 > 0

and assume that the parameter of interest is θ0 = VarXt = σ2
0/(1 − a20). We have

∂ log fθ0(x)

∂θ
=

x2 − θ0
2θ20

.

Therefore we have

J =
1

2θ20
, I =

1

4θ40

∞
∑

h=−∞
Cov

(

X2
1 ,X

2
1+h

)

=
1

4θ40
Var(X2

1 )

(

1 + a20
1− a20

)

with Var(X2
1 ) = 2θ20. The QMMLE is thus θ̂n = n−1

∑n
t=1 X

2
t and it satisfies

√
n
(

θ̂n − θ0

)

d→ N
(

0,Σ = 2θ20
1 + a20
1− a20

)

as n → ∞.

Figure 1 shows that the dynamics is crucial for the asymptotic distribution of the

QMMLE, in the sense that Σ is much greater than J−1 when a0 is far from 0.

It is well known that the MLE ϑ̂MLE of ϑ0 = (a0, σ
2
0)

′ satisfies

√
n
(

ϑ̂MLE − ϑ0

)

d→ N







0,





1− a20 0

0 2σ4
0











as n→ ∞.
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Figure 1: Asymptotic variances Σ of the

QMMLE and J−1 of the iid MLE, for the

AR(1) of Example 2.1 with σ2
0 = 1.
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Figure 2: As in Figure 1 for the AR(1) of

Example 2.2, with the asymptotic vari-
ance σ2

MLE of the MLE.

By the delta method, the MLE θ̂MLE of θ0 thus satisfies
√
n
(

θ̂MLE − θ0

)

d→
N (0, σ2

MLE) , with

σ2
MLE =

(

2a0σ2
0

(1−a20)
2

1
1−a20

)





1− a20 0

0 2σ4
0









2a0σ2
0

(1−a20)
2

1
1−a20



 =
2σ4

0(1 + a20)

(1− a20)
3
.

Note that Σ = σ2
MLE . Thus, for this particular example, the QMMLE and

the MLE have the same asymptotic distribution.

In the previous example, the QMMLE was as efficient as the MLE. The following

example shows that, as expected, we may have an efficiency loss of the QMMLE

with respect to the MLE, which can be considered as the price to pay for not having

to specify the dynamics.

Example 2.2. Consider another example of an AR(1) of the form

Xt = a0Xt−1 + ηt, a0 ∈ (−1, 1), ηt iid N (0, 1),
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and assume that the parameter of interest is θ0 = VarXt = (1 − a20)
−1. Using the

computation of the previous example, the QMMLE θ̂n = n−1
∑n

t=1 X
2
t satisfies

√
n
(

θ̂n − θ0

)

d→ N
{

0,Σ = 2θ20(2θ0 − 1)
}

as n → ∞.

It is known that the MLE of a0 satisfies

√
n(ân − a0)

d→ N
{

0, 1 − a20
}

.

Since θ′(a) = 2a/(1 − a2)2, the delta method shows that the MLE of θ0 satisfies

√
n
(

θ̂MLE − θ0

)

d→ N
{

0, σ2
MLE = 4(θ0 − 1)θ20

}

as n → ∞.

Figure 2 shows that, for this very particular model, the MLE always clearly out-

performs the QMMLE. Indeed, if we know that the observations are generated by

an AR(1) with standard Gaussian innovations, than the marginal variance θ0 is

entirely defined by the AR coefficient. Thus it is not surprising that the estimator

of θ0 based on the MLE of a be more efficient than a simple empirical moment.

Figure 2 also shows that J−1, which is the asymptotical variance of the MLE of

θ0 in the iid case, is very far from the asymptotic variance of the MLE or of the

QMMLE in the time series case.

Note that Theorem 2.1 does not allow to treat interesting cases where the support

of the density depends on θ and/or cases where θ → fθ(x) is not differentiable for

all x. The GEV density is an example of such densities, that we would like to fit

with QMMLE. To this purpose, consider the alternative assumptions.

A1∗: for Pθ0 almost all x, the function θ → fθ(x) is continuous and Θ is

compact.

A3∗: E |log fθ0(X1)| < ∞ and E log+ fθ(X1) < ∞ for all θ ∈ Θ.

9



A4∗: there exists X ∈ E such that P (Xt ∈ X ) = 1, for all x ∈ X the function

θ → fθ(x) admits third-order derivatives at θ0, and all the other requirements

of A4 are satisfied.

Theorem 2.2. If (Xt) is a stationary and ergodic process with marginal density

fθ0, and if A1∗, A2 and A3∗ hold true, then θ̂n → θ0 a.s. Under the additional

assumptions A4∗ and A5, we have

√
n
(

θ̂n − θ0

)

d→ N (0,Σ = J−1IJ−1) as n → ∞.

As illustrated by Examples 2.1–2.2, it is essential to estimate consistently the stan-

dard Fisher information matrix J and the LRV matrix I. This problem is consid-

ered in the following section.

2.2 Estimation of the asymptotic variance

Since J is equal to the variance of the pseudo score St := ∂ log fθ0(Xt)/∂θ, a natural

estimator of that matrix is

Ĵ =
1

n

n
∑

t=1

ŜtŜ
′
t where Ŝt =

∂ log fθ̂n(Xt)

∂θ
.

Estimation of the LRV matrix I is more intricate. In the literature, two types of

estimators are generally employed: Heteroskedasticity and Autocorrelation Consis-

tent (HAC) estimators (see Newey and West, 1987, and Andrews, 1991, for general

references; see Francq and Zakoian, 2007, for an application to testing strong lin-

earity in weak ARMA models) and spectral density estimators (see e.g. de Haan

and Levin, 1997, for a general reference and Francq, Roy and Zakoïan, 2005, for

weak ARMA models). We will apply the second approach but HAC estimators

could also be considered.

Note that, up to the factor 2π, the LRV matrix I is the spectral density at

frequency zero of the process (St). For the numerical illustrations presented in this
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paper we used a VAR spectral estimator consisting in: i) fitting VAR(r) models

for r = 0, . . . , rmax to the series Ŝt, t = 1, . . . , n; ii) selecting the order r which

minimizes an information criterion and estimating I by the matrix Î defined as

2π times the spectral density at frequency zero of the estimated VAR(r) model.

For the numerical illustrations presented in this paper, we used the AIC model

selection criterion with rmax = 25.

We now give a more precise description of the method and its asymptotic

properties. The process (St) is both strictly and second-order stationary (by As-

sumption A5). If this process is purely deterministic (see e.g. Brockwell and Davis

(1991) p. 189), it thus admits the Wold decomposition St = ut +
∑∞

i=1 Biut−i,

where (ut) is a q-variate weak white noise (that is, a sequence of centered and

uncorrelated random variables) with covariance matrix Σu. Assume that Σu is non

singular, that
∑∞

i=1 ‖Bi‖ < ∞, and that det
(

Iq +
∑∞

i=1Biz
i
)

6= 0 when |z| ≤ 1.

Then (St) admits a VAR(∞) representation of the form

A(B)St := St −
∞
∑

i=1

AiSt−i = ut, (2.2)

such that
∑∞

i=1 ‖Ai‖ < ∞ and det {A(z)} 6= 0 for all |z| ≤ 1, and we obtain

I = A−1(1)ΣuA
′−1(1). (2.3)

Consider the regression of St on St−1, . . . , St−r defined by

St =

r
∑

i=1

Ar,iSt−i + ur,t, ur,t ⊥{St−1 · · ·St−r} . (2.4)

The least squares estimators of Ar = (Ar,1 · · ·Ar,r) and Σur = Var(ur,t) are defined

by

Âr = Σ̂Ŝ,Ŝr
Σ̂−1

Ŝr

and Σ̂ur =
1

n

n
∑

t=1

(

Ŝt − ÂrŜr,t

)(

Ŝt − ÂrŜr,t

)′
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where Ŝr,t = (Ŝ′
t−1 · · · Ŝ′

t−r)
′,

Σ̂Ŝ,Ŝr
=

1

n

n
∑

t=1

ŜtŜ
′
r,t, Σ̂Ŝr

=
1

n

n
∑

t=1

Ŝr,tŜ
′
r,t,

with by convention Ŝt = 0 when t ≤ 0, and assuming Σ̂Ŝr
is non singular (which

holds true asymptotically). We are now in a position to give conditions ensuring

the consistency of Î and Ĵ . The proof, which is based on Berk (1974), is not given

here, but is available from the authors.

Theorem 2.3. Let the assumptions of Theorem 2.1 be satisfied. We have Ĵ → J

a.s. as n → ∞. Assume in addition that the process (St) admits the VAR(∞)

representation (2.2), where ‖Ai‖ = o
(

i−2
)

as i → ∞, the roots of det(A(z)) = 0

are outside the unit disk, and Σu is non singular. We also need to complement

Assumption A4 by assuming that, with the same notation,

A4’: E supθ∈V (θ0)

∣

∣

∣

∂
∂θi

{

∂ log fθ(X1)
∂θj

∂ log fθ(X1)
∂θk

}∣

∣

∣
< ∞,

and to reinforce Assumption A5 by assuming that, for some ν > 0,

A5’: E
∥

∥

∥

∂ log fθ0 (X1)

∂θ

∥

∥

∥

4+2ν
< ∞ and

∑∞
k=0 {αX(k)} ν

2+ν < ∞.

Then, when r = r(n) → ∞ and r3/n → 0 as n → ∞,

Î := Â−1
r (1)Σ̂urÂ

′−1
r (1) → I in probability.

Remark 2.1. In Theorems 2.2 and 2.3, we considered stationary processes with

specified marginal distributions. Examples of dependent processes admitting a

given cdf F can be constructed as follows. Take for instance a model of the form

Yt = Gθ(Yt−1, ǫt) with iid errors (ǫt). Under stationary assumptions, for any error

distribution there exists a unique invariant marginal cdf FY for Yt. For ease of

presentation, let us assume that F and FY are invertible functions. Then, the

process Xt = F−1{FY (Yt)} is a strictly stationary solution of the model

Xt = F−1{FY (Gθ[F
−1
Y {F (Xt−1)}, ǫt])}
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with marginal distribution F . This shows the existence of a non trivial stationary

process with a specified marginal distribution. In the next section, we study a

non iid and non linear stationary process admitting a marginal standard Gaussian

distribution.

2.3 A GMM point of view

In general, our estimation problem could be reformulated in terms of Generalized

Method of Moments (GMM) estimation, using the first-order condition

E

[

∂ log fθ0
∂θ

(Xt)

]

= 0. (2.5)

In fact, we do not use such first-order conditions for the consistency of our estima-

tor. In Theorem 2.1, the consistency is established under A1-A3, that is, without

any differentiability assumption on the density fθ (continuity suffices). Under the

assumptions of Theorem 2.1, however, the moment condition (2.5) holds and, in

a GMM perspective, additional moments could be introduced to achieve efficiency

gains. To illustrate this, consider estimating marginal Gaussian distributions. We

follow the approach developed by Bontemps and Medahi (2005) for testing nor-

mality. Standard Gaussian distributions are characterized by the equalities

E[Hi(X)] = 0 for all i > 0 (2.6)

where the Hi are Hermite polynomials recursively defined by

H0(x) = 1, H1(x) = x, Hi(x) =
1√
i
{xHi−1(x)−

√
i− 1Hi−2(x)}.

We also have, using the Kronecker symbol δij ,

E[Hi(X)Hj(X)] = δij for all i, j ≥ 0. (2.7)
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Now assume that X1, . . . ,Xn are (possibly dependent) observations from the

N (m0, σ
2
0) distribution, with θ0 = (m0, σ

2
0)

′ ∈ R× R
+. Let for p ≥ 1,

gn(θ) =
1

n

n
∑

t=1

H

(

Xt −m

σ

)

, where H(x) = (H1(x), . . . ,Hp(x))
′. (2.8)

A GMM estimator of θ0 based on the first p equalities in (2.6) is any measurable

solution of

θ̂Wn = arg min
θ∈Θ

gn(θ)
′Wgn(θ) (2.9)

for some positive definite weighting matrix W . For p = 2 we retrieve the QMMLE

θ̂n, whatever W , because gn(θ̂n) = 0. In the iid setting, an optimal weighting

matrix is the identity matrix. Under appropriate assumptions (see Hansen (1982)),

the GMM estimator is consistent and asymptotically normal:

√
n(θ̂Wn − θ0)

d→ N (0,Σ(W )) as n → ∞,

where Σ(W ) = {GWG′}−1GWVWG′{GWG′}−1 and

G = E





∂H ′
(

Xt−m0
σ0

)

∂θ



 , V =
∞
∑

h=−∞
Cov

{

H

(

Xt −m0

σ0

)

,H

(

Xt−h −m0

σ0

)}

.

The optimal GMM estimator is obtained for W = V −1 and its asymptotic variance

is Σ∗ = {GV −1G′}−1. For i ≥ 1 we have ∂Hi(x)/∂x =
√
iHi−1(x). In view of (2.6)

and (2.7), it follows that

G = −





1
σ0

0 0 . . . 0

0 1√
2σ2

0

0 . . . 0



 .

Thus, for the GMM estimator defined in (2.8)-(2.9), the optimal asymptotic co-

variance matrix takes the form

Σ∗ = σ2
0





V 11 1√
2σ0

V 12

1√
2σ0

V 21 1
2σ2

0
V 22





−1

, where V −1 = (V ij). (2.10)
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In particular, if V = (Vij) is diagonal

Σ∗ = σ2
0





V11 0

0 2σ2
0V22



 =





∑∞
h=0 γ(h) 0

0
∑∞

h=0 γ2(h)





where γ is the autocovariance function of (Xt) and γ2 is the autocovariance function

of (Xt −m0)
2. Interestingly, when V is diagonal, Σ∗ is independent of the number

p of moments used for the GMM method. In other words, no asymptotic efficiency

gains can be obtained from taking p > 2. But for p = 2, the GMM estimator

coincides with the QMMLE. An example of process such that V is a diagonal

matrix is the Gaussian AR(1) (see Bontemps and Meddahi, 2005, p.157). For the

reader’s convenience, we summarize these results in the next proposition.

Proposition 2.1. Let (Xt) denote a stationary process with marginal Gaussian

N (m0, σ
2
0) distribution. Then, under conditions ensuring the asymptotic normality

of GMM estimators (see Hansen, 1982), the asymptotic variance of the optimal

GMM estimator is given by (2.10). For a Gaussian AR(1) process, more generally

when V is diagonal, the QMMLE coincides with the optimal GMM for any number

of moments p in (2.8).

Simulations confirmed this proposition: for moderate and large sample size, no

efficiency gains are reached from using p > 2. For nonlinear models, however, the

matrix V is in general non diagonal and efficiency gains might be obtained. Let us

consider the "absolute" autoregression

Yt = φ|Yt−1|+ ǫt, (2.11)

where (ǫt) is an iid sequence of N (0, 1) variables. Under the condition |φ| < 1,

there exists a strictly stationary solution (Yt) which, for φ < 0, admits the density

hY (x) = [2(1 − φ2)/π]1/2 exp

{

−1

2
(1− φ2)x2

}

Φ(φx),
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where Φ denotes the cdf of the standard Gaussian distribution (see Andĕl, Netuka

and Zvára (1984)). Let FY denote the marginal cdf of Yt. It follows that, for any m

and any σ > 0, the process Xt = m+ σΦ−1{FY (Yt)} is strictly stationary and has

a marginal N (m,σ2) distribution. To compare the performance of the QMMLE

and the GMM estimators, we simulated N = 1, 000 independent trajectories

of size n = 1, 000 of Xt, with φ = 0 and 0.5, m = 0 and σ = 1. For the GMM

estimators, we used p = 4 Hermite polynomials and two weighting matrices: GMMI

(resp. GMMΣ̂) denotes the GMM estimator with W equal to the identity matrix

(resp. the estimated optimal weighting matrix). Results reported in Table 1 do

not show much difference between the three estimators. For estimating the optimal

weighting matrix we used the spectral estimator described in Section 2.2. We also

tried several versions of the HAC estimators proposed by Andrews (1991), but the

results remained qualitatively unchanged. Other sample size and parameter values

lead to similar conclusions.

3 Application to heavy-tailed distributions

We now apply the general results of the previous section to three important

classes of distributions.

3.1 Estimating stable marginal distributions

Assume that (Xt) has a univariate stable distribution S(θ), θ = (α, β, σ, µ),

with tail exponent α ∈ (0, 2], parameter of symmetry (or skewness) β ∈
[−1, 1], scale parameter σ ∈ (0,∞), and location parameter µ ∈ R. This class

of density coincides with all the possible non degenerated limit distributions
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Table 1: Sampling distribution, , over n = 1, 000 replications of 3 estimators

of the N (0, 1) marginal distribution of Xt = Φ−1{FY (Yt)}, where Yt is simulated

from Model (2.11).

θ φ Method bias RMSE min Q1 Q2 Q3 max
n = 1 000

m = 0 0.0 QMMLE -0.001 0.031 -0.134 -0.023 -0.002 0.018 0.104
GMMI -0.001 0.031 -0.136 -0.024 -0.002 0.018 0.104
GMM

Σ̂
-0.001 0.031 -0.132 -0.023 -0.002 0.018 0.111

0.5 QMMLE -0.002 0.037 -0.137 -0.027 -0.001 0.024 0.116
GMMI -0.002 0.038 -0.145 -0.027 -0.001 0.023 0.115
GMM

Σ̂
0.002 0.039 -0.146 -0.024 0.002 0.027 0.115

σ2 = 1 0.0 QMMLE 0.001 0.046 0.843 0.969 1.001 1.031 1.143
GMMI 0.006 0.048 0.843 0.972 1.007 1.035 1.142
GMM

Σ̂
-0.009 0.048 0.840 0.958 0.991 1.024 1.138

0.5 QMMLE 0.000 0.051 0.826 0.966 0.999 1.034 1.179
GMMI 0.006 0.053 0.825 0.970 1.004 1.041 1.179
GMM

Σ̂
-0.012 0.054 0.813 0.953 0.986 1.023 1.173

RMSE is the Root Mean Square Error, Qi, i = 1, 3, denote the quartiles.

for standardized sums of iid random variables of the form a−1
n

∑n
i=1 Zi − bn,

where (an) and (bn) are sequences of constants with an > 0. The location

and scale parameters are such that Y = σX + µ, σ > 0, follows a stable

distribution of parameter (α, β, σ, µ) when X follows a stable distribution of

parameter (α, β, 1, 0). In general, the density fθ(x) of a stable distribution

is not known explicitly, but the characteristic function φ(s) = φα,β(s) of a

stable distribution of parameter (α, β, 1, 0) is defined by

log φ(s) = −|s|α
{

1 + iβ (sign s) tan
(πα

2

)

(

|s|1−α − 1
)

}

if α 6= 1 and

logφ(s) = −|s|
{

1 + iβ (sign s)
2

π
log |s|

}
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if α = 1. There exist other parameterizations for the stable characteristic

function, but this parameterization presents the advantage that

fθ(x) := (2π)−1

∫

R

exp {−is(x− µ)}φα,β(σs)ds

is differentiable with respect to both x ∈ R and θ ∈ Λ := (0, 2)× (−1, 1)×
(0,∞) × R (see Nolan, 2003). Let fα,β be the stable density of parameter

θ = (α, β, 1, 0). Because fα,β(x) is real and φ(−s) = φ(s), we have

fα,β(x) =
1

π

∫ ∞

0

e−sα cos
{

sx+ β tan
(πα

2

)

(s− sα)
}

ds (3.1)

for α 6= 1, and

fα,β(x) =
1

π

∫ ∞

0

e−s cos

(

sx+ sβ
2

π
log s

)

ds (3.2)

for α = 1. From these expressions and the elementary series expansion

(1− sα−1) tan
(

πα
2

)

= 2
π
log s+ o(α− 1), the continuity at α = 1 is clear.

Note that fθ(x) = σ−1fα,β {σ−1(x− µ)} can be numerically evaluated

from (3.1)-(3.2), or alternatively using the function dstable() of the R pack-

age fBasics.

A stable distribution with exponent α = 2 is a Gaussian distribution,

a stable distribution with α < 2 has infinite variance. The parameter α

determines the tail of the distribution of X ∼ S(θ) in the sense that, when

α < 2, Fθ(−x) := P (X < −x) and 1−Fθ(x) are equivalent to Cα(1− β)x−α

and Cα(1 + β)x−α, respectively, as x → ∞, with Cα > 0. Moreover, still

when X ∼ S(θ) with α < 2,

E|X|p <∞ if and only if p < α. (3.3)
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Theorem 3.1. Assume that Θ is a compact subset of Λ and that θ0 ∈ Θ. If

(Xt) is a stationary and ergodic process whose marginal follows a stable distri-

bution S(θ0), then the QMMLE defined by (2.1) is such that θ̂n → θ0 a.s. If,

in addition, θ0 ∈
◦
Θ and there exists ε ∈ (0, 1) such that

∑∞
k=0 {αX(k)}1−ε <

∞, then
√
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I and J are defined in A4.

We now show how to use the estimators Î and Ĵ defined in Theorem 2.3 in

the alpha-stable case. Since the alpha-stable densities and their derivatives

are not explicit, we need to define a way to compute Ŝt. By continuity,

set gα(s) = tan (πα/2) (s− sα) when α 6= 1 and gα(s) = (2s/π) log s when

α = 1. Let ψα,β(x, s) = sx+ βgα(s). By the arguments given in the proof of

Theorem 3.1, differentiations of (3.1) under the integral sign yield

∂fθ(x)

∂α
=

−1

σπ

∫ ∞

0

sαe−sαϕα,β

(

x− µ

σ

)

ds,

∂fθ(x)

∂β
=

−1

σπ

∫ ∞

0

e−sα sinψα,β

(

x− µ

σ
, s

)

gα(s)ds,

∂fθ(x)

∂σ
=

−1

σ
fθ(x) +

1

σ3π

∫ ∞

0

s(x− µ)e−sα sinψα,β

(

x− µ

σ
, s

)

ds,

∂fθ(x)

∂µ
=

1

σ2π

∫ ∞

0

se−sα sinψα,β

(

x− µ

σ
, s

)

ds,

with ϕα,β (x) is equal to

(log s) cosψα,β(x, s)− β sinψα,β(x, s)

{

(log s) tan
(πα

2

)

− π (s1−α − 1)

2 cos2(πα
2
)

}

when α 6= 1 and equal to (log s) cosψ1,β(x, s) − (β/π)(log s)2 sinψ1,β(x, s)

when α = 1. These derivatives allow to compute the Ŝt’s required for the

estimators of I and J .
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Proposition 3.1. Under the assumptions of Theorem 3.1, Assumptions A4’

and A5’ are satisfied. Thus the consistency of Î and Ĵ holds under the other

assumptions of Theorem 2.3.

3.2 Estimating generalized Pareto distributions

The GPD(γ0, σ0) with shape parameter γ0 ∈ R and scale parameter σ0 > 0,

has the probability distribution function

Fγ0,σ0(x) =







1−
(

1 + γ0
x
σ0

)−1/γ0
, γ0 6= 0,

1− exp
(

− x
σ0

)

, γ0 = 0,

where for γ0 ≥ 0 the range is x ≥ 0, while for γ0 < 0 the range is 0 ≤ x ≤
−σ0/γ0.

One attractive feature of the GPD is that it is stable with respect to "ex-

cess over threshold operations": if X ∼ GPD(γ0, σ0), then the distribution

of X − u conditional on X > u is the GPD(γ0, σ0 + γ0u). Moreover, when

γ0 > 0 the upper tail probability P (X > x) of the GPD(γ0, σ0) behaves like

kx−α for large x, with α = 1/γ0, so that 1/γ0 is the tail index, comparable to

α of the stable distribution. Note also that E(Xs) < ∞ for s < 1/γ0. How-

ever, unlike the Pareto distribution, the GPD permits Paretian tail behavior

with α ≥ 2. The GPD plays an important role in EVT. Indeed, it has been

shown by Balkema and de Haan (1974) and Pickands (1975) that, for any

random variable X whose distribution belongs to the maximum domain of

attraction of an extreme value distribution, the law of the excess X − u over

a high threshold u, often called Peak Over Threshold (POT), is well approx-

imated by a GPD(γ0, σ0(u)) (see Theorem 3.4.13 in Embrechts, Klüppelberg

and Mikosch, 1997).
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Many approaches have been proposed to estimate the GPD (see the re-

view by de Zea Bermudez and Kotz (2010)). Let θ0 = (γ0, σ0) be the true

parameter value of the GPD(γ0, σ0), where γ0, σ0 > 0. Let Θ denote a com-

pact subset of (0,∞)2. The QMMLE is any measurable solution of (2.1) with,

for θ = (γ, σ) ∈ Θ,

ℓn(θ) = log σ2 +
1

n

(

1

γ
+ 1

) n
∑

t=1

log

(

γXt

σ
+ 1

)2

.

Theorem 3.2. If (Xt) is a stationary and ergodic process whose marginal

follows a GPD(θ0), then the QMMLE defined by (2.1) is such that θ̂n →
θ0 a.s. If, in addition, θ0 ∈

◦
Θ and there exists ε ∈ (0, 1) such that

∑∞
k=0 {αX(k)}1−ε <∞, then

√
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I is defined in A4 and

J−1 =





(1 + γ0)
2 −σ0(1 + γ0)

−σ0(1 + γ0) 2σ2
0(1 + γ0)



 .

A drawback of the GPD, for instance in the aim of modeling log-returns

distributions, is that its density is not positive over the real line. A simple

extension of the GPD(γ0, σ0) is defined by the following density, which we

can call double GPD(τ, γ1, σ1, γ2, σ2):

fθ0(z) = τ
σ
1/γ1
1

(−γ1z + σ1)1+1/γ1
1lz<0 + (1− τ)

σ
1/γ2
2

(γ2z + σ2)1+1/γ2
1lz≥0 (3.4)

where θ0 = (τ, γ1, σ1, γ2, σ2)
′ ∈ Θ where Θ denotes a compact subset of

[0, 1]× (0,∞)4. A straightforward extension of Theorem 3.2, whose proof is

omitted, is the following.
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Theorem 3.3. If (Xt) is a stationary and ergodic process whose marginal

follows a double GPD(θ0), then the QMMLE defined by (2.1) is such that

θ̂n → θ0 a.s. If, in addition, θ0 ∈
◦
Θ and there exists ε ∈ (0, 1) such that

∑∞
k=0 {αX(k)}1−ε <∞, then

√
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I is defined in A4 and for i = 1, 2,

J−1 =











τ(1− τ) 0 0

0 τ−1J−1
1 0

0 0 (1− τ)−1J−1
2











, J−1
i =





(1 + γi)
2 −σi(1 + γi)

−σi(1 + γi) 2σ2
i (1 + γi)



 ,

3.3 Estimating generalized extreme value distributions

We now consider another class of densities which is widely used in EVT. It is

known (see e.g. Beirlant et al. 2005) that the possible limiting distributions

for the maximum X(n) of a sample X1, . . . , Xn are given by the class of the

GEV whose densities are of the form

fθ(x) =
1

σ

{

1 + γ

(

x− µ

σ

)}−1/γ−1

e−{1+γ( x−µ
σ )}−1/γ

1l{1+γ(x−µ)/σ>0},

with θ = (µ, σ, γ) ∈ R×R
+ ×R. Taking the limit, when γ = 0 the density is

fθ(x) = σ−1e−(x−µ)/σe−e−(x−µ)/σ

.

The density is called Weilbull, Gumbel or Fréchet when the shape parameter

γ is respectively negative, null or positive. When the Xi’s have Pareto tails

of index α > 0, the limiting distribution of X(n) as n → ∞ is a Fréchet

distribution with shape parameter γ = 1/α. Let θ0 = (µ0, σ0, γ0) be the true
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parameter value of the GEV(θ0), where θ0 belongs to a compact subset Θ of

R × R
+ × (γ,∞). We impose the constraint γ0 > γ because, as shown by

Smith (1985) in the iid case, the information matrix J does not exist when

γ0 ≤ −1/2.

Theorem 3.4. If (Xt) is a stationary and ergodic process whose marginal

follows a GEV(θ0), and if γ ≥ −1 then the QMMLE defined by (2.1) is such

that θ̂n → θ0 a.s. If, in addition, θ0 ∈
◦
Θ, γ ≥ −1/2 and there exists ε ∈ (0, 1)

such that
∑∞

k=0 {αX(k)}1−ε <∞, then

√
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I and J are defined in A4.

4 Modeling the unconditional distribution of

daily returns

In this section, we consider an application to the marginal density of financial

returns. We focus on two aspects of the shape of daily returns distributions,

both widely discussed in the empirical finance literature, the asymmetry and

the tail thickness.

Daily returns distribution are generally considered as approximately sym-

metric (see e.g. Taylor, 2007) but several studies documented the fact that

they can be positively skewed (see e.g. Kon (1984)). Symmetry tests are

generally based on the skewness coefficient, and the critical value is routinely

obtained by assuming a sample from a normal distribution. In the symme-

try test proposed by Premaratne and Bera (2005), the normality is replaced
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by a distribution that takes into account leptokurtosis explicitly, but the

iid assumption is maintained. In the framework of this paper, we can test

for asymmetry under general distributional assumptions, while allowing for

serial dependence of observations.

By graphical methods, Mandelbrot (1963) showed that daily price changes

in cotton have heavy tails with α ≈ 1.7, so that the mean exists but the

variance is infinite. To mention only a few more recent studies, using the Hill

estimator Jansen and de Vries (1991) found estimated values of α between

3 and 5 using the order statistics, for daily data of ten stocks from the

S&P100 list and two indices. With the same estimator, Loretan and Phillips

(1994) found estimated values of α between 2 and 4, for a daily and monthly

returns from numerous stock indices and exchange rates, indicating that the

variance of the price returns are finite but the fourth-order moments are

not. The modified Hill estimator proposed by Huisman, Koedijk, Kool and

Palm (2001) suggests higher α estimates. Using a MLE approach, McCulloch

(1996) reestimated the coefficient α on the same data as Jansen and de Vries

(1991) and Loretan and Phillips (1994), and found values between 1.5 and

2. By the same technique, using fast Fourier transforms to approximate the

α-stable density, Rachev and Mittnik (2000) obtained values of α between 1

and 2, for a variety of stocks, stock indices and exchange rates.

The above-mentioned references show that the debate concerning the tail

index α of the financial returns is not over. The estimated value of α seems
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to be very sensitive to the estimation method.2

In this paper, we participate in the debate on the typical value of α and

the possible asymmetry of the marginal distribution of financial returns, by

fitting alpha-stable, GPD and GEV distributions to daily returns of stock in-

dices, using the QMMLE. We consider nine major world stock indices: CAC

(Paris), DAX (Frankfurt), FTSE (London), Nikkei (Tokyo), NSE (Bombay),

SMI (Switzerland), SP500 (New York), SPTSX (Toronto), and SSE (Shang-

hai). The observations cover the period from January, 2 1991 to August,

26 2011 (except for the NSE, SPTSX and SSE whose first observations are

posterior to 1991). The period includes the recent sovereign-debt crises in

Europe and US. We checked that the results presented below are not changed

much by withdrawing this recent turbulent period.

4.1 Fitting alpha-stable distributions to the series

Table 2 shows that the tail index estimated when fitting alpha-stable distri-

butions is always between 1.5 and 1.7, for all the series, which is comparable

with the values found by Mandelbrot (1963), Leitch and Paulson (1975), Mc-

Culloch (1996) or Rachev and Mittnik (2000). It is interesting to note that

all distributions are negatively skewed (β < 0). Table 3 shows that, for all

but one returns the distribution is significantly asymmetric. Table 4 shows

that the estimated value µ̂ of the position parameter is often significantly

positive. It should be however underlined that these results are valid under

2Several methods based on EVT have been proposed for the sole estimation of the tail

parameter α, mainly in the iid case (see Beirlant, Vynckier and Teugels (1996), Einmahl,

Li and Liu (2009) and the references therein).
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Table 2: Stable distributions fitted by QMMLE on daily stock market returns. The
estimated standard deviation are displayed into brackets.

Index α̂ β̂ σ̂ µ̂
CAC 1.72 (0.07) -0.19 (0.05) 0.81 (0.03) 0.07 (0.02)
DAX 1.64 (0.07) -0.17 (0.05) 0.79 (0.04) 0.09 (0.02)
FTSE 1.70 (0.06) -0.19 (0.04) 0.62 (0.02) 0.07 (0.01)
Nikkei 1.65 (0.05) -0.14 (0.03) 0.79 (0.03) 0.05 (0.02)
NSE 1.60 (0.09) -0.21 (0.07) 0.87 (0.05) 0.17 (0.04)
SMI 1.66 (0.06) -0.22 (0.05) 0.64 (0.02) 0.09 (0.02)
SP500 1.62 (0.05) -0.10 (0.03) 0.50 (0.01) 0.05 (0.01)
SPTSX 1.55 (0.11) -0.25 (0.05) 0.60 (0.03) 0.11 (0.02)
SSE 1.54 (0.06) -0.12 (0.07) 0.83 (0.03) 0.09 (0.04)

Table 3: p-values for the t-test of H0 : β = 0 against β 6= 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.080

the assumption that the marginal distribution belongs to the class of the

alpha-stable distributions.

4.2 Fitting double GPD to double POT

It is worth studying the sensitivity of the results to a change of distribution.

According to the EVT, the tail index of a series of returns rt should also be

well estimated by fitting a GPD to the POT’s {rt − u : rt > u}. In order

Table 4: p-values for the t-test of H0 : µ = 0 against µ > 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.001 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.012
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to estimate indices for both the positive and negative tails, we fitted double

GPD distributions to {rt − u : rt > u} ∪ {rt + u : rt < −u}, for the different

series rt of returns considered in Table 2. The choice of the threshold u is

crucial. If u is chosen too small, estimation biases may occur due to the

inadequacy of the GPD distribution for the whole data set. If u is chosen

too large, the variance of the estimates is likely to be too large because of

the small number of tail observations.

In order to propose a practical choice for the threshold, we conducted

the following experiment. Let k be a positive integer, and let (ηt) be an iid

sequence of alpha-stable distribution S(θk). Assume θk = (α, 0, k−1/α, 0), i.e.

the location parameter is µ = 0, the symmetry parameter is β = 0 and the

scale parameter is σ = k−1/α. For any k ≥ 1, the moving average process

Xt =
k
∑

i=1

ηt+1−i (4.1)

has the marginal distribution S(θ), with θ = (α, 0, 1, 0). For the numerical

illustrations we took α = 1.6, which is a value close to the estimated values in

Table 2. Even if the marginal distribution does not vary with k, the dynamics

of the k-dependent process (Xt) strongly depends on k (Figure 3).

We simulated 1, 000 independent realizations of length n = 4, 000 of

Model (4.1). The sample size n = 4, 000 is a typical sample size for the

daily series considered in Table 2. On each series, we fitted a double GPD,

whose density is displayed in (3.4), to the proportion π of the data with

largest absolute values. Figure 4 shows, in function of π, the bias and root
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Figure 3: Trajectories of the moving average (4.1) of order k for different values of k.

mean squared error (RMSE) of estimation of the tail parameter α2 := 1/γ2 of

the positive tail. We do not present the graph of the RMSE of estimation of

α1 := 1/γ1, which is obviously very similar to that of Figure 4. For computing

these RMSE’s we used 5%- trimmed means, which eliminate few simulations

for which the estimate of γ2 is close to zero (and thus the estimate of α is

clearly not compatible with that of a stable distribution). It can be seen

that the bias and RMSE’s tend to increase with the degree k of dependence.

Interestingly, the shapes of the curves are however similar for the different

values of k, with a minimum corresponding to π of about 12.5%. We thus

decided to define the threshold u as being the quantile of order 87.5% of the

absolute values of the returns. We then adjusted double GPD’s on the subset

of the returns with absolute value greater than u. Table 5 displays the values

of the QMMLE for the nine series of returns. The most noticeable output
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is that the estimated standard deviations of α̂1, and to a lesser extent α̂2,

are very high, ruling out any clear conclusion concerning the tail index pa-

rameters. We tried other values of the threshold, but even for much smaller

values of u the estimated standard deviations remained very large.

The POT approach seems difficult to apply to get an accurate estimate of

α for typical sample sizes of daily series of returns. A very small proportion

of the most extreme observations is required to get a negligible bias, but the

RMSE is then relatively large. The estimated values of the other parame-

ters give more conclusive information. Note that if the marginal distribution

of the returns was symmetric, one should have τ = 1/2 and σ1 = σ2. Ta-

ble 6 shows that this assumption is often rejected, confirming the outputs of

Tables 3 and 4.

From this study, based two large classes of distributions for the daily

returns, one can conclude that for general volatility models (i.e. GARCH,

stochastic volatility ...) of the form rt = σtηt with ηt iid, centered and in-

dependent of σt, an asymmetric distribution can be recommended for ηt.

Indeed, a symmetric distribution for ηt would entail a symmetric distribu-

tion for rt. The commonly used Gaussian, Student distributions, or GED

(Generalized Error Distribution), should thus be avoided for ηt.

4.3 Fitting GEV to block maxima

Table 7 displays the estimated tail indices obtained by fitting a GEV on the

maxima of blocks of m consecutive returns. The main result of that table
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Figure 4: RMSE for the estimates for the positive tail index α = 1/γ2 of the process
(4.1), when γ2 is estimated by fitting a double GPD to the proportion π of the data with
largest absolute values.

is that the estimated tail indices are around 3, which is much higher than

what was obtained by fitting stable distributions. This is not very surprising

since, under the Pareto-tail assumption, α is only a tail parameter of the

asymptotic distribution of the maxima. Observe that when m increases, the

estimation of α decreases for all assets and tends to be closer to what was

obtained for the stable distribution (in particular for the SMI, 1.89 with the

GEV against 1.66 with the stable law). Note also that the estimated standard

deviation are large, but do not increase much when m increases (although

the number of observations [n/m] decreases). This is certainly due to the fact

that, roughly speaking, the dependence of the observations decreases when

the size m of the blocks increases.

5 Conclusion

It is often of interest to have information about the marginal distribution of a

time series. A typical example is provided by financial series, for which recur-
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Table 5: Generalized Pareto distributions fitted by QMMLE on 12.5% of the most
extreme daily stock market returns. The estimated standard deviation are displayed into
brackets. The estimate of the tail index is NA (not available) when the estimate of GPD
parameter γ is not positive.

Index τ̂ α̂1 = 1/γ̂1 σ̂1 α̂2 = 1/γ̂2 σ̂2
CAC 0.53 (0.02) 11.16 (13.65) 0.97 (0.13) 3.69 (1.13) 0.73 (0.1)
DAX 0.51 (0.02) 24.72 (51.39) 1.14 (0.12) 3.96 (1.34) 0.76 (0.08)
FTSE 0.52 (0.02) 4.72 (2.33) 0.72 (0.08) 5.5 (2.23) 0.68 (0.08)
Nikkei 0.54 (0.02) 4.57 (1.38) 0.83 (0.07) 6.29 (2.35) 0.91 (0.08)
NSE 0.54 (0.03) 6.68 (4.26) 1.21 (0.15) 5.65 (2.96) 1.1 (0.15)
SMI 0.52 (0.02) 22.09 (45.77) 0.98 (0.12) 3.8 (1.24) 0.66 (0.08)
SP500 0.5 (0.01) 3.81 (0.79) 0.57 (0.05) 5.11 (1.55) 0.59 (0.05)
SPTSX 0.56 (0.03) 5.21 (2.74) 0.93 (0.27) 7 (6.51) 0.87 (0.19)
SSE 0.52 (0.03) 184 (3301.67) 1.3 (0.13) 4.28 (2.22) 0.88 (0.12)

Table 6: p-value for the Wald test of H0 : τ = 0.5 and σ1 = σ2.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.008 0.007 0.163 0.011 0.395 0.016 0.916 0.01 0.049

rent debates concerning the shape of the distributions exist in the literature.

In particular, a large literature has been devoted to testing for the presence

of heavy tails, and the asymmetry of marginal distributions of stock returns.

However, tests developed in the iid framework are abusively applied, without

taking into account the dynamics. In this paper we proposed a method for

estimating a parametric specification of the marginal distribution, without

specifying the dynamics. We showed that the consistency holds under mild

conditions. The dynamic plays an important role, however, in the asymptotic

distribution of estimators.

In the present work, the marginal density is assumed to belong to a

specific class of parametric densities. Goodness-of-fit tests based on non-
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Table 7: Estimated tail index α when GEV distributions are fitted by QMMLE on
maxima of m consecutive daily stock market returns.

Index m = 8 m = 16 m = 24 m = 32 m = 40 m = 48
CAC 5.75 (1.39) 4.11 (1.23) 3.63 (1.02) 3.54 (1.22) 3.22 (1.06) 3.26 (1.31)
DAX 5.69 (1.60) 4.60 (1.52) 3.97 (1.38) 3.75 (1.50) 3.68 (1.67) 3.23 (1.53)
FTSE 5.73 (1.12) 3.84 (0.89) 3.65 (0.94) 3.04 (0.94) 2.81 (0.79) 3.30 (1.05)
Nikkei 6.11 (1.26) 4.73 (1.08) 4.67 (1.15) 5.12 (1.44) 5.08 (1.64) 5.10 (1.77)
NSE 6.52 (1.53) 3.09 (0.77) 3.03 (0.85) 2.32 (0.60) 1.76 (0.19) 2.71 (0.16)
SMI 6.81 (1.48) 2.96 (0.71) 3.11 (0.71) 2.89 (0.84) 2.94 (0.78) 1.89 (0.65)
SP500 5.61 (1.19) 4.94 (1.15) 4.10 (1.10) 4.84 (1.45) 5.40 (1.82) 4.88 (1.87)
SPTSX 4.88 (1.94) 3.13 (1.28) 2.57 (1.11) 3.17 (1.45) 3.17 (0.42) 2.78 (1.18)
SSE 9.28 (3.32) 4.73 (1.66) 3.96 (1.44) 3.06 (1.32) 3.41 (1.68) 3.57 (3.07)

parametric kernel density estimators can be used (see Liu and Wu, 2010) to

assess a particular form for the marginal density. In future works, we in-

tend to consider the related problem of testing whether the marginal density

belongs to a given parametric class.

Appendix: Proofs

A Proof of Theorem 2.1

First note that

θ̂n = arg min
θ∈Θ

Qn(θ), with Qn(θ) =
1

n

n
∑

t=1

Dt(θ), Dt(θ) = log
fθ0(Xt)

fθ(Xt)
.

(A.1)

Let Vk(θ) be the open sphere with center θ and radius 1/k and let θ̃ ∈ Θ,

θ̃ 6= θ0. Applying Assumption A3 and the ergodic theorem to the stationary
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ergodic process
{

infθ∈Vk(θ̃)∩ΘDt(θ)
}

t
shows that

lim inf
n→∞

inf
θ∈Vk(θ̃)∩Θ

Qn(θ) ≥ E inf
θ∈Vk(θ̃)∩Θ

D1(θ). (A.2)

By Beppo Levi’s theorem, E infθ∈Vk(θ̃)∩ΘD1(θ) increases to ED1(θ̃) as k →
∞. Moreover, Jensen’s inequality and A2 entail

ED1(θ̃) ≥ − logE
fθ̃(Xt)

fθ0(Xt)
= − log

∫

E

fθ̃(x)dµ(x) = 0

with equality iff θ̃ = θ0. It follows that for all θ̃ 6= θ0, there exists a neigh-

borhood V (θ̃) of θ̃ such that

lim inf
n→∞

inf
θ∈V (θ̃)∩Θ

Qn(θ) > 0 ≥ lim sup
n→∞

inf
θ∈V (θ0)∩Θ

Qn(θ), (A.3)

where V (θ0) is an arbitrary neighborhood of θ0. The consistency then follows

from a standard compactness argument.

The proof of the asymptotic normality rests on the Taylor expansion:

0 =
√
n
∂ℓn(θ0)

∂θ
+
∂2ℓn(θ

∗
n)

∂θ∂θ′
√
n
(

θ̂n − θ0

)

, with ‖θ∗n−θ0‖ ≤ ‖θ̂n−θ0‖. (A.4)

The central limit theorem of Herrndorf (1984) and A5 entail

√
n
∂ℓn(θ0)

∂θ

d→ N (0, I) as n→ ∞.

A new Taylor expansion, Assumption A4, the consistency of θ̂n and the

ergodic theorem show that ∂2ℓn(θ∗n)
∂θ∂θ′

→ −J a.s.

B Proof of Theorem 2.2

We maintain the notation introduced in the proof of Theorem 2.1. Note that,

with probability one, fθ0(Xt) > 0 for all t. Using A1∗ and the standard con-

vention Dt(θ) = +∞ when fθ(Xt) = 0, almost surely the criterion Qn(θ) is
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a continuous function valued in (−∞,∞], taking a finite value at θ0. There-

fore arg minθ∈ΘQn(θ) exists (but is not necessarily unique) with probability

one. Thus θ̂n is still defined as a measurable solution of (A.1). Now A3∗

entails that EDt(θ0) = 0 and EDt(θ) ∈ (−∞,∞] for all θ ∈ Θ. Applying

the ergodic theorem to the stationary ergodic process
{

infθ∈Vk(θ̃)∩ΘDt(θ)
}

t

whose expectation is defined in (−∞,∞] (see Billingsley 1995, pages 284 and

495) we still have (A.2), where the expectation of the right-hand side can be

equal to +∞. Finally (A.3) continues to hold, and the consistency follows.

The asymptotic normality is shown as in the proof of Theorem 2.1, on

the set of probability one ∩∞
t=1 (Xt ∈ X ).

C Proof of Theorem 3.1 and Proposition 3.1

DuMouchel (1973) showed the CAN of the MLE for stable iid variables.

Note that DuMouchel used a parametrization with a discontinuity at α = 1.

With the chosen parameterization, fθ(x) is continuous with respect to θ ∈ Λ

for all x and its support is R (see Nolan, 2003). Assumption A1 is thus

satisfied with E = R. The identifiability assumption A2 follows from the

identifiability of the characteristic function (see Condition 5 in DuMouchel,

1973). Since

fθ0(x) ∼ cθ0 |x|−(α0+1) as |x| → ∞ (C.1)

(see for example Feller, 1975), | log fθ0(x)|fθ0(x) ∼ (α0+1)cθ0|x|−(α0+1) log |x|
as |x| → ∞. It follows that

∫

|x|>A
| log fθ0(x)|fθ0(x)dx < ∞ for A large

enough. Moreover fθ0(x) is bounded and bounded away from zero on any

compact: 0 < m ≤ fθ0(x) ≤ M < ∞ for all x ∈ [−A,A]. It follows
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that
∫

|x|≤A
| log fθ0(x)|fθ0(x)dx < ∞, and eventually A3 holds true. The

consistency then follows from Theorem 2.1.

From asymptotic expansions in DuMouchel (1973) (see also equations

(2.5)-(2.10) in Andrews, Calder and Davis (2009)), there exists a neighbor-

hood V (θ0) of θ0 such that

sup
θ∈V (θ0)

∣

∣

∣

∣

∂k log fθ(x)

∂θi1∂θik

∣

∣

∣

∣

= O
(

[log |x|]k
)

, (C.2)

as |x| → ∞, for k ∈ {1, 2, 3} and i1, . . . , ik ∈ {1, . . . , 4}. From (3.1)-(3.2),

it is clear that fθ(x) admits derivatives of any order with respect to the

components of θ, and that these derivatives can be obtained by differentiation

under the integral sign. By continuity arguments and the compactness of Θ,

the function fθ(x), its derivatives and its inverse are bounded uniformly on

θ ∈ Θ and x ∈ [−A,A] for all A ∈ R. We thus have

∫ A

−A

sup
θ∈Θ

∣

∣

∣

∣

∂ log fθ(x)

∂θi

∣

∣

∣

∣

τ

fθ0(x)dx <∞

for all τ ≥ 0 and all A ≥ 0. The same bound holds when the first-order

derivative is replaced by higher-order derivatives. In view of (C.2) with k = 1

and (C.1), we also have

∫

(−∞,−A)∪(A,∞)

sup
θ∈Θ

∣

∣

∣

∣

∂ log fθ(x)

∂θi

∣

∣

∣

∣

τ

fθ(x)dx <∞

for all τ ≥ 0. By (C.2) with k = 2, 3 the same holds true with second and

third order derivatives. It follows that the moments conditions of A4 are

satisfied, in particular the existence of J is established. The invertibility of

J is proved by Condition 6 in DuMouchel (1973). By Davydov’s inequality

(1968), the existence of I is a consequence of the mixing condition and of the
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fact that ‖∂ log fθ0(X1)/∂θ‖ admits moment of any order τ . Assumptions

A4 and A5 are thus satisfied, and the conclusion follows from Theorem 2.1.

Proposition 3.1 is established by the arguments used to show A4, in

particular (C.1)-(C.2).

D Proof of Theorem 3.2

The theorem is a consequence of Theorem 2.1. Assumption A1 is satisfied

with E = R
+. Assumptions A2 and A3 are clearly satisfied, with the density

of the GPD(θ) given, for γ, σ > 0, by fθ(z) =
σ1/γ

(γz+σ)1+1/γ , z ≥ 0. From the

second- and third-order derivatives, available as JBES on-line supplement,

we have

sup
θ∈V (θ0)

∣

∣

∣

∣

∂ log fθ(x)

∂θi

∣

∣

∣

∣

= O (log |x|) , sup
θ∈V (θ0)

∣

∣

∣

∣

∂2 log fθ(x)

∂θi∂θj

∣

∣

∣

∣

= O (log |x|) ,

as |x| → ∞, for all i, j ∈ {1, . . . , 4}. It can be seen that the third-order

derivatives are of the same order, from which Assumption A4 follows. Fi-

nally, ‖∂ log fθ(X1)/∂θ‖ admits moment of any order, and Assumption A5 is

thus satisfied. The formula for J−1 is available as JBES on-line supplement.

E Proof of Theorem 3.4

Note that Theorem 2.1 does not apply here because the support of fθ depends

on θ. We will therefore apply Theorem 2.2. Note that fθ(x) ∼ σ−1y−1/γ−1

when y := 1 + γ (x− µ) /σ → 0+ and γ < 0. Because γ > γ ≥ −1, the

continuity assumption A1∗ holds true. Moreover, when γ > −1 the function

fθ(·) is bounded. The condition E log+ fθ(X1) <∞ of A3∗ is thus satisfied.
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Now note that as y → +∞, we have |log fθ(x)| fθ(x) = O(y−1/γ−1 log y)

when γ > 0 and |log fθ(x)| fθ(x) = O
(

exp(y−1/γ)
)

when γ < 0. Note also

that as y → 0+, |log fθ(x)| fθ(x) tends to zero at an exponential rate when

γ > 0 and tends to zero like a positive power of y when −1 < γ < 0.

This shows that E| log fθ0(X1)| < ∞ when γ0 6= 0. When γ0 = 0, the

function x → |log fθ0(x)| fθ0(x) is bounded away from zero on any compact

set and tends to zero at an exponential rate when x→ ±∞, which shows that

E| log fθ0(X1)| <∞ also when γ0 = 0. We thus have shown that Assumption

A3∗ is satisfied, and the consistency follows from Theorem 2.2.

Now observe that θ̂n and θ0 necessarily belong to

Θn :=
{

θ : 1 + γ
(

X(1) − µ
)

/σ > 0 and 1 + γ
(

X(n) − µ
)

/σ > 0
}

where X(1) and X(n) denote the minimum and maximum of the observations.

Indeed, ℓn(θ) = +∞ when θ 6∈ Θn. Moreover, n−1ℓn(θ) → −E log fθ(X1)

which is finite at θ0, and thus also finite in a neighborhood of θ0 by A1∗.

This entails that ℓn(θ) is finite, and admits derivatives of any order, on this

neighborhood for n large enough. The Taylor expansion (A.4) thus holds.

The existence and invertibility of J does not depend on the dynamics, and

has already been proven by Smith (1985) in the iid case under the condition

γ0 > −1/2. Explicit expressions for the derivatives of log fθ(x) can be found

in Beirlant et al. (2005). From these expressions, it can be seen that,

for γ < 0, ‖∂fθ(x)/∂θ‖2fθ(x) tends to zero at the exponential rate when

y → −∞ and is equivalent to a constant multiplied by y−3−1/γ when y → 0+.

It follows that, when γ0 > −1/2, we have E‖∂fθ0(X1)/∂θ‖2+ε <∞ for some

ε > 0. The existence of I then follows from the mixing condition, using

Davydov’s inequality (1968). The conclusion follows.
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SUPPLEMENTARY MATERIALS

Online appendix: Appendix A derives the matrix J−1 for the GPD. Ap-

pendix B provides complementary numerical illustrations. In particu-

lar, we consider alpha stable distributions fitted on aggregated series.

Finally, Appendix C provides a proof for Theorem 2.3.
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Online appendix

Estimating the marginal distribution of heavy

tailed time series

A Matrix J−1 for the GPD

The first-order derivatives of log fθ with respect to (γ, σ) are

∂ log fθ(z)

∂γ
=

1

γ2
log
(

1 + γ
z

σ

)

− (1 + γ)
z

γ(γz + σ)
,

∂ log fθ(z)

∂σ
=

z − σ

σ(γz + σ)
,

and the second-order derivatives are

∂2 log fθ(z)

∂γ2
=

−2

γ3
log
(

1 + γ
z

σ

)

+
2

γ2
z

γz + σ
+

(

1 +
1

γ

)

z2

(γz + σ)2
,

∂2 log fθ(z)

∂γ∂σ
=

−(z − σ)z

σ(γz + σ)2
,

∂2 log fθ(z)

∂σ2
=

(z − σ)2 − z2(1 + γ)

σ2(γz + σ)2
.

Now let

mk,j = E

{

Zk

(γZ + σ)j

}

, 0 ≤ k ≤ j +
1

γ
.

We have, by integration by part,

mk,j =
k

1 + γj
mk−1,j−1, 1 ≤ k ≤ j +

1

γ
.

By direct integration we have m0,j =
1

σj (1+jγ)
. It follows that

m1,1 =
1

1 + γ
, m1,2 =

1

σ(1 + γ)(1 + 2γ)
, m2,2 =

2

(1 + γ)(1 + 2γ)
.

We also have

E

{

log

(

1 + γ
Z

σ

)}

= γ.
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Table 8: Stable distributions fitted by QMMLE on daily stock market returns. The
estimated standard deviation are displayed into brackets.

Index α̂ β̂ σ̂ µ̂
CAC 1.70 (0.08) -0.16 (0.05) 0.80 (0.04) 0.07 (0.02)
DAX 1.62 (0.08) -0.16 (0.05) 0.78 (0.05) 0.09 (0.02)
FTSE 1.64 (0.08) -0.10 (0.04) 0.62 (0.03) 0.05 (0.01)
Nikkei 1.74 (0.06) -0.09 (0.06) 0.90 (0.03) 0.01 (0.02)
NSE 1.55 (0.08) -0.24 (0.07) 0.90 (0.05) 0.22 (0.04)
SMI 1.66 (0.07) -0.22 (0.05) 0.65 (0.03) 0.09 (0.02)
SP500 1.55 (0.10) -0.11 (0.05) 0.58 (0.04) 0.06 (0.01)
SPTSX 1.52 (0.12) -0.23 (0.06) 0.61 (0.04) 0.11 (0.02)
SSE 1.49 (0.06) -0.16 (0.06) 0.81 (0.03) 0.08 (0.04)

It follows that

E

{

−∂
2 log fθ(z)

∂γ2

}

=
2

(1 + γ)(1 + 2γ)
,

E

{

−∂
2 log fθ(z)

∂γ∂σ

}

=
1

σ(1 + γ)(1 + 2γ)
,

E

{

−∂
2 log fθ(z)

∂σ2

}

=
1

σ2(1 + 2γ)
.

The matrix J−1, as given in Theorem 3.2, follows.

B Complementary numerical illustrations

We now replicate the numerical illustrations of Section 4 on a sub-period
which does not include the recent crisis. More precisely, we consider the nine
stock returns during the period from January, 2 1991 to July, 3 2009 (except,
of course, for the series whose first observations are posterior to 1991). The
results of Tables 8-12 are similar to those displayed in the paper, in Tables
2-6.

Figure 5 shows that the estimated stable distributions actually resemble
the non parametric kernel density estimator of the marginal distributions.

2



−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

CAC

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

DAX

−2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

FTSE

−3 −2 −1 0 1 2 3

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Nikkei

Figure 5: Comparison between the estimated stable density (full line) and the kernel

density estimate (dashed line) of the marginal distribution of the returns of 4 stock market

indices.
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Table 9: p-values for the t-test of H0 : β = 0 against β 6= 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.002 0.001 0.023 0.095 0.001 0.000 0.021 0.000 0.321

Table 10: p-values for the t-test of H0 : µ = 0 against µ > 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE

0.001 0.000 0.001 0.342 0.000 0.000 0.000 0.000 0.033

We now return to the most recent data sets. Table 13 displays the alpha

stable distributions fitted on the aggregated series Xt =
∑m

i=1 r5t+i of each

series of returns (rt), for m = 5. Note that if the series rt was iid, with

a distribution which is not necessary stable but belongs to the domain of

attraction of a stable distribution with tail index α, then, in view of the gen-

eralized CLT (see e.g. Feller, 1975), the distribution of Xt should be close to

a stable distribution with tail index α for large m. To illustrate this point,

let S̃t = St + Nt, where (St) and (Nt) are two independent iid sequences,

St ∼ S(α, β, σ, µ) and Nt ∼ N (m, s). Figure 6 shows that, according to the

asymptotic theory, the distribution of
∑m

i=1 S̃5t+i tends to the stable distri-

bution of
∑m

i=1 S5t+i when m increases. For this figure, we took α = 0.8,

β = µ = m = 0 and σ = s = 1. This simple illustration highlights that there

exist obviously situations where a stable distribution is more plausible after

temporal aggregation, and that the tail index is not changed by this trans-

formation. Interestingly, Table 13 shows that the tail index estimated on the

aggregated series is similar to that of the initial series of returns. Surprisingly
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Table 11: Generalized Pareto distributions fitted by QMMLE on 12.5% of the most
extreme daily stock market returns. The estimated standard deviation are displayed into
brackets. The estimate of the tail index is NA (not available) when the estimate of GPD
parameter γ is not positive.

Index τ̂ α̂1 = 1/γ̂1 σ̂1 α̂2 = 1/γ̂2 σ̂2
CAC 0.53 (0.02) 10.69 (13.26) 0.99 (0.14) 4.51 (1.87) 0.81 (0.11)
DAX 0.50 (0.02) 89.15 (672.28) 1.22 (0.13) 3.74 (1.32) 0.77 (0.08)
FTSE 0.51 (0.02) 9.18 (9.30) 0.87 (0.12) 6.70 (5.90) 0.78 (0.14)
Nikkei 0.53 (0.01) 4.95 (3.64) 0.86 (0.11) 7.48 (4.82) 0.94 (0.11)
NSE 0.54 (0.03) 11.36 (12.28) 1.39 (0.20) 5.60 (3.37) 1.19 (0.18)
SMI 0.51 (0.02) 24.17 (58.24) 1.01 (0.13) 3.79 (1.27) 0.68 (0.08)
SP500 0.52 (0.02) 4.57 (2.28) 0.78 (0.14) 5.34 (2.96) 0.81 (0.14)
SPTSX 0.57 (0.03) 5.79 (4.36) 1.03 (0.33) 12.25 (17.05) 1.04 (0.22)
SSE 0.49 (0.03) NA (NA) 1.38 (0.17) 3.72 (1.89) 0.88 (0.12)

Table 12: p-value for the Wald test of H0 : τ = 0.5 and σ1 = σ2.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.065 0.004 0.227 0.005 0.334 0.024 0.343 0.016 0.049

the estimated standard deviation of the estimator of α is not deteriorated by

the aggregation (although the number of observations is obviously divided

by m = 5). A possible explanation is that the temporal dependencies should

decrease as m→ ∞, which could facilitate the estimation of that parameter.

Another surprising output of Table 13 is that the asymmetry parameter β is

much more negative for m = 5 than for m = 1. This is certainly due to the

presence of clusters of negative returns. Table 14 display the estimated tail

index α for different values of m. The main output of that table is that α̂

is always greater than 1.5 and less than 2, for all indices and any m, leading

to the conclusion that the moments of order 1 should exist, whereas those of

order 2 should not.

5



Table 13: Stable distributions fitted by QMMLE on rolling sums of m = 5 consecutive
daily stock market returns.

Index α̂ β̂ σ̂ µ̂
CAC 1.81 (0.06) -0.48 (0.10) 1.95 (0.10) 0.28 (0.08)
DAX 1.74 (0.07) -0.47 (0.11) 1.86 (0.17) 0.44 (0.12)
FTSE 1.74 (0.08) -0.29 (0.11) 1.40 (0.06) 0.28 (0.07)
Nikkei 1.75 (0.05) -0.44 (0.11) 1.82 (0.08) 0.24 (0.09)
NSE 1.61 (0.11) -0.50 (0.20) 2.25 (0.17) 0.90 (0.20)
SMI 1.65 (0.08) -0.45 (0.09) 1.47 (0.10) 0.44 (0.08)
SP500 1.77 (0.05) -0.32 (0.09) 1.29 (0.05) 0.27 (0.04)
SPTSX 1.55 (0.15) -0.47 (0.13) 1.33 (0.13) 0.42 (0.08)
SSE 1.78 (0.09) -0.26 (0.32) 2.34 (0.16) 0.32 (0.32)

Table 14: Estimated tail index α when stable distributions are fitted by QMMLE on
rolling sums of m consecutive daily stock market returns.

Index m = 1 m = 2 m = 4 m = 8 m = 16 m = 32
CAC 1.72 (0.07) 1.73 (0.08) 1.83 (0.06) 1.86 (0.05) 1.82 (0.08) 1.73 (0.14)
DAX 1.64 (0.07) 1.66 (0.06) 1.75 (0.07) 1.71 (0.09) 1.65 (0.13) 1.63 (0.23)
FTSE 1.70 (0.06) 1.73 (0.06) 1.79 (0.06) 1.79 (0.07) 1.70 (0.11) 1.80 (0.19)
Nikkei 1.65 (0.05) 1.70 (0.06) 1.80 (0.06) 1.77 (0.06) 1.80 (0.13) 1.85 (0.18)
NSE 1.60 (0.09) 1.64 (0.08) 1.63 (0.11) 1.76 (0.10) 1.66 (0.14) 1.68 (0.14)
SMI 1.66 (0.06) 1.67 (0.07) 1.68 (0.07) 1.74 (0.07) 1.61 (0.11) 1.76 (0.12)
SP500 1.62 (0.05) 1.73 (0.05) 1.77 (0.04) 1.80 (0.05) 1.82 (0.05) 1.82 (0.11)
SPTSX 1.55 (0.11) 1.64 (0.12) 1.52 (0.09) 1.64 (0.09) 1.62 (0.10) 1.68 (0.20)
SSE 1.54 (0.06) 1.71 (0.05) 1.73 (0.07) 1.81 (0.07) 1.97 (0.03) 1.91 (0.06)

In order to further assess the previous assumptions on the marginal mo-

ments, we draw the empirical moments Mr,n = n−1
∑n

t=1 |rt|r as function of

n, for r = 1 (Figure 7) and r = 2 (Figure 8). The ergodic theorem entails

that, if the tail indices are correctly estimated, M1,n should converge and
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M2,n should diverge. The main output of these figures is that the empirical

moments Mr,n of the returns do not resemble those of iid sequences with the

stable distribution fitted on the returns by QMMLE. An obvious explanation

for that is that the returns rt are not independent. This is not the sole reason

because if the marginal distribution where the estimated stable distribution,

by the ergodic theorem Mr,n should however converge to the corresponding

moment, which does not seem to be the case. Indeed, the empirical moments

Mr,n computed on the real series rt are always smaller that those computed

on the simulations of stable distribution. We draw the conclusion that the

marginal distribution of the returns are not be well approximated by a stable

distribution. It is a much more difficult to infer if the sequence Mr,n converge

or not, and thus to assess if the estimated tail indices are plausible, by simple

inspection of the graphs. By the previous arguments based on generalized

CLT, the marginal distribution of rolling sums of m consecutive returns are

expected to be closer to a stable distribution, at least for m large enough.

Figures 9 and 10 confirm that the empirical moments are indeed closest to

those of the estimated stable distributions, but these average are still smaller

that expected. We thus have a serious doubt on the adequacy the class of

the stable distributions for modeling the marginal distribution of the returns

or even of aggregates of r returns, at least for moderate values of r.

Figures 11 and 12 indicate that the behavior of the empirical moments

Mr,n are in accordance with the assumption of a marginal GEV for the block

maxima, but the size m of the blocks must be large.
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To have an idea on how large should be the size m of the blocks, we made

a last experiment. We fitted GEV to block maxima of 1, 000 independent

realizations of length n = 4, 000 of the moving average Model (4.1) whose

marginal is the stable distribution of parameter α = 1.6, β = 0, σ = 1

and µ = 0. Table 15 gives the estimated value of the tail index α. The

main output is that the size m needs to be dramatically large. Even for

m = 48, the estimation of α is still largely positively biased. The numbers

between the brackets are the observed standard deviations of the estimates

over the 1, 000 replications. Surprisingly, these standard deviations do not

systematically increase withm (although the number of observation [1000/m]

decreases). This is in accordance with the estimated standard deviations

that we obtained in Table 7. This can be explained by the fact that the time

dependence decreases when m increases. The effect of the time dependence

is indeed clear, because the estimation results worsen when the order of the

dependence parameter k increases.
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Table 15: Estimated tail index α of the stable MA(k) (4.1) by fitting GEV distributions
on block maxima of size m.

MA order k m = 8 m = 16 m = 24
1 3.35 (0.55) 2.33 (0.38) 2.00 (0.35)
2 5.03 (1.42) 3.16 (0.77) 2.57 (0.60)
3 2011.57 (44698.62) 4.09 (1.59) 3.15 (1.02)
4 15012.88 (121611.7) 5.12 (2.95) 3.81 (1.75)

MA order k m = 32 m = 40 m = 48
1 1.83 (0.36) 1.74 (0.37) 1.71 (0.40)
2 2.28 (0.56) 2.08 (0.52) 2.00 (0.59)
3 2.75 (0.92) 2.52 (1.25) 2.32 (0.85)
4 3.21 (1.25) 2.86 (1.02) 2.64 (0.98)
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Figure 6: Convergence of the distribution of
∑m

i=1
S̃5t+i (full blue line) to that of a stable

distribution (dashed red line) as m → ∞, for an iid sequence S̃t which does not follow a
stable distribution (see the text for details).
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Figure 7: Empirical moment M1,n = n−1
∑

t=1
|rt| (full line) as function of n, for the

returns rt of 4 stock market indices. The dotted lines are the 1% and 99% empirical
quantiles of 1000 trajectories of n−1

∑

t=1
|Xt| where Xt is an iid sequence of the stable

distribution fitted by QMMLE.
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Figure 8: As Figure 8, but for the empirical moment M2,n = n−1
∑

t=1
r2t (the 99%

upper bound is outside the frame).
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Figure 9: As Figure 7, but for rolling sums of 5 consecutive returns.
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Figure 10: As Figure 8, but for rolling sums of 5 consecutive returns.
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Figure 11: As Figure 7, but rt is replaced by the maximum max{rmt+1, . . . , rmt+m} of
m = 16 consecutive returns, and the dotted lines are the 1% and 99% confidence bounds
for n−1

∑

t=1
|Xt| when Xt is iid with GEV distribution.
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Figure 12: As Figure 11, but M1,n is replaced by M4,n.
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C Proof of Theorem 2.3

The proof is based on a series of lemmas. Similar proofs can be found in

the supplementary files of Francq, Roy and Zakoïan (2005) and Boubacar,

Carbon and Francq (2011). We begin by proving that Ĵ is a consistent

estimator of J . It will be convenient to introduce the notation Σ̂Ŝ = Ĵ ,

Σ̂S = n−1
∑n

t=1 StS
′
t and ΣS = J = EStS

′
t.

Lemma C.1. Under the assumptions of Theorem 2.1, Σ̂Ŝ → ΣS a.s. when

n→ ∞.

Proof of Lemma C.1. A Taylor expansion yields

Σ̂Ŝ(i, j) = Σ̂S(i, j) + (θ̂n − θ0)
′ 1

n

n
∑

t=1

∂

∂θ

{

∂ log fθ(Xt)

∂θi

∂ log fθ(Xt)

∂θj

}

(θ∗)

(C.1)

for some θ∗ between θ̂n and θ0. The consistency of Ĵ then follows from

Assumption A4’, the consistency of θ̂n and the ergodic theorem. ✷

We use the multiplicative matrix norm ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ̺1/2(A′A),

where A is a d1×d2 matrix, ‖x‖ is the Euclidean norm of the vector x ∈ R
d2 ,

and ̺(·) denotes the spectral radius. This choice of the norm is crucial for

the following lemma to hold (with e.g. the Euclidean norm, this result is not

valid). Let Sr,t =
(

S ′
t−1, . . . , S

′
t−r

)′
and

ΣS,Sr
= EStS

′
r,t, ΣSr

= ESr,tS
′
r,t.

In the sequel, K and ρ denote generic constant such as K > 0 and ρ ∈ (0, 1),

whose exact values are unimportant.
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Lemma C.2. Under the assumptions of Theorem 2.3,

sup
r≥1

max
{

∥

∥ΣS,Sr

∥

∥ ,
∥

∥ΣSr

∥

∥ ,
∥

∥

∥
Σ−1

Sr

∥

∥

∥

}

≤ ∞.

Proof. We readily have

‖ΣSr
x‖ ≤ ‖ΣSr+1

(x′, 0′q)
′‖ and ‖ΣS,Sr

x‖ ≤ ‖ΣSr+1
(0′q, x

′)′‖

for any x ∈ R
qr. Therefore

0 < ‖Var (St)‖ =
∥

∥ΣS1

∥

∥ ≤
∥

∥ΣS2

∥

∥ ≤ · · ·

and
∥

∥ΣS,Sr

∥

∥ ≤
∥

∥ΣSr+1

∥

∥ .

Let f(λ) be the spectral density of St. Because the autocovariance function

of St is absolutely summable, ‖f(λ)‖ is bounded by a finite constant K, say.

Denoting by δ = (δ′1, . . . , δ
′
r)

′ an eigenvector of ΣSr
associated with its largest

eigenvalue, such that ‖δ‖ = 1 and δi ∈ R
q for i = 1, . . . , r, we have

∥

∥ΣSr

∥

∥ = ̺1/2(Σ2
Sr
) = ̺(ΣSr

) = δ′ΣSr
δ

=
r
∑

j,k=1

δ′j

∫ π

−π

ei(k−j)λf(λ)d(λ)δk ≤ 2πK.

By similar arguments, the smallest eigenvalue of ΣSr
is greater than a positive

constant independent of r. Using the fact that ‖Σ−1
Sr
‖ is equal to the inverse

of the smallest eigenvalue of ΣSr
, the proof is completed. ✷

Denote by St(i) the i-th element of St.

Lemma C.3. Under A5’, there exits a finite constant K1 such that for

m1, m2 = 1, . . . , q

sup
s∈Z

∞
∑

h=−∞
|Cov {S1(m1)S1+s(m2), S1+h(m1)S1+s+h(m2)}| < K1.
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Proof. See for instance Corollary A.3 in Francq and Zakoïan (2010). ✷

Let Σ̂Sr
, Σ̂S and Σ̂S,Sr

be the matrices obtained by replacing Ŝt by St in Σ̂Ŝr
,

Σ̂Ŝ and Σ̂Ŝ,Ŝr
.

Lemma C.4. Under the assumptions of Theorem 2.3,
√
r‖Σ̂Sr

− ΣSr
‖,

√
r‖Σ̂S − ΣS‖, and

√
r‖Σ̂S,Sr

− ΣS,Sr
‖ tend to zero in probability as n→ ∞

when r = o(n1/3).

Proof. For 1 ≤ m1, m2 ≤ q and 1 ≤ r1, r2 ≤ r, the element of the

{(r1 − 1)q +m1}-th row and {(r2 − 1)q +m2}-th column of Σ̂Sr
is of the

form n−1
∑n

t=1 Zt where Zt = St−r1(m1)St−r2(m2). By stationarity of (Zt),

we have

Var

(

1

n

n
∑

t=1

Zt

)

=
1

n2

n−1
∑

h=−n+1

(n− |h|)Cov (Zt, Zt−h) ≤
K1

n
, (C.2)

where, by Lemma C.3, K1 is a constant independent of r1, r2, m1, m2 and

r, n. Note that the sup-norm satisfies

‖A‖2 ≤
∑

i,j

a2i,j (C.3)

with obvious notations.

In view of (C.3) and (C.2), using arguments of the proof of Lemma C.2,

we have

E
{

r‖Σ̂S − ΣS‖2
}

≤ E
{

r‖Σ̂S,Sr
− ΣS,Sr

‖2
}

≤ E
{

r‖Σ̂Sr
− ΣSr

‖2
}

≤ K1q
2r3

n
= o(1)

as n→ ∞ when r = o(n1/3). The result follows. ✷

We now show that the previous lemma applies when St is replaced by Ŝt.
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Lemma C.5. Under the assumptions of Theorem 2.3,
√
r‖Σ̂Ŝr

− ΣSr
‖,

√
r‖Σ̂Ŝ − ΣS‖, and

√
r‖Σ̂Ŝ,Ŝr

− ΣS,Sr
‖ tend to zero in probability as n → ∞

when r = o(n1/3).

Proof. Similarly to (C.1), for 1 ≤ m1, m2 ≤ q and 1 ≤ r1, r2 ≤ r, the

element of the {(r1 − 1)q +m1}-th row and {(r2 − 1)q +m2}-th column of

Σ̂Ŝr
− Σ̂Sr

is of the form

(θ̂n − θ0)
′ 1

n

n
∑

t=1

∂

∂θ

{

∂ log fθ(Xt−r1)

∂θm1

∂ log fθ(Xt−r2)

∂θm2

}

(θ∗)

for some θ∗ between θ̂n and θ0. By Assumption A4’, the expectation of

the absolute value of the latter empirical mean is bounded by a constant K

independent of n, r1, r2, m1 and m2. Thus, using again (C.3),

‖Σ̂Ŝr
− Σ̂Sr

‖2 ≤ r2
∥

∥

∥
θ̂n − θ0

∥

∥

∥

2

OP (1).

Since
∥

∥

∥
θ̂n − θ0

∥

∥

∥
= OP

(

n−1/2
)

, we obtain for r = o(n1/3)

√
r‖Σ̂Ŝr

− Σ̂Sr
‖ = oP (1). (C.4)

By Lemma C.4 , (C.4) shows that
√
r‖Σ̂Ŝr

−ΣSr
‖ = oP (1). The other results

are obtained similarly. ✷

Write A∗
r = (A1 · · ·Ar) where the Ai’s are defined by (2.2).

Lemma C.6. Under the assumptions of Theorem 2.3,

√
r ‖A∗

r − Ar‖ → 0,

as r → ∞.
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Proof. Recall that by (2.2) and (2.4)

St = ArSr,t + ur,t = A∗
rSr,t +

∞
∑

i=r+1

AiSt−i + ut := A∗
rSr,t + u∗r,t.

Hence, using the orthogonality conditions in (2.2) and (2.4)

A∗
r − Ar = −Σu∗

r ,Sr
Σ−1

Sr
(C.5)

where Σu∗

r ,Sr
= Eu∗r,tS

′
r,t. By Assumption A4, there exists a constant K2

independent of s and m1, m2 such that

E |S1(m1)S1+s(m2)| ≤ K2.

By (C.3), we then have

∥

∥Cov
(

St−r−h, Sr,t

)∥

∥ ≤ K2r
1/2q.

Thus,

‖Σu∗

r ,Sr
‖ = ‖

∞
∑

i=r+1

AiESt−iS
′
r,t‖ ≤

∞
∑

h=1

‖Ar+h‖
∥

∥Cov
(

St−r−h, Sr,t

)∥

∥

= O(1)r1/2
∞
∑

h=1

‖Ar+h‖. (C.6)

Note that the assumption ‖Ai‖ = o (i−2) entails r
∑∞

h=1 ‖Ar+h‖ = o(1) as

r → ∞. The lemma therefore follows from (C.5), (C.6) and Lemma C.2. ✷

The following lemma is similar to Lemma 3 in Berk (1974).

Lemma C.7. Under the assumptions of Theorem 2.3,

√
r‖Σ̂−1

Ŝr

− Σ−1
Sr
‖ = oP (1)

as n→ ∞ when r = o(n1/3) and r → ∞.
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Proof. We have

∥

∥

∥
Σ̂−1

Ŝr

− Σ−1
Sr

∥

∥

∥
=

∥

∥

∥

{

Σ̂−1

Ŝr

− Σ−1
Sr

+ Σ−1
Sr

}{

ΣSr
− Σ̂Ŝr

}

Σ−1
Sr

∥

∥

∥

≤
(∥

∥

∥
Σ̂−1

Ŝr

− Σ−1
Sr

∥

∥

∥
+
∥

∥

∥
Σ−1

Sr

∥

∥

∥

)∥

∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥

∥

∥

∥
Σ−1

Sr

∥

∥

∥
.

Iterating this inequality, we obtain

∥

∥

∥
Σ̂−1

Ŝr

− Σ−1
Sr

∥

∥

∥
≤

∥

∥

∥
Σ−1

Sr

∥

∥

∥

∞
∑

i=1

∥

∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥

i ∥
∥

∥
Σ−1

Sr

∥

∥

∥

i

.

Thus, for every ε > 0,

P
(√

r
∥

∥

∥
Σ̂−1

Ŝr

− Σ−1
Sr

∥

∥

∥
> ε
)

≤ P







√
r

∥

∥

∥
Σ−1

Sr

∥

∥

∥

2 ∥
∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥

1−
∥

∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥

∥

∥

∥
Σ−1

Sr

∥

∥

∥

> ε and
∥

∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥

∥

∥

∥
Σ−1

Sr

∥

∥

∥
< 1







+P
(√

r
∥

∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥

∥

∥

∥
Σ−1

Sr

∥

∥

∥
≥ 1
)

≤ P







√
r
∥

∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥
>

ε
∥

∥

∥
Σ−1

Sr

∥

∥

∥

2

+ εr−1/2

∥

∥

∥
Σ−1

Sr

∥

∥

∥







+P

(√
r
∥

∥

∥
Σ̂Ŝr

− ΣSr

∥

∥

∥
≥
∥

∥

∥
Σ−1

Sr

∥

∥

∥

−1
)

= o(1)

by Lemmas C.4 and C.2. This establishes Lemma C.7. ✷

Lemma C.8. Under the assumptions of Theorem 2.3,

√
r
∥

∥

∥
Âr − Ar

∥

∥

∥
= oP (1)

as r → ∞ and r = o(n1/3).

Proof. By the triangle inequality and Lemmas C.2 and C.7, we have

∥

∥

∥
Σ̂−1

Ŝr

∥

∥

∥
≤
∥

∥

∥
Σ̂−1

Ŝr

− Σ−1
Sr

∥

∥

∥
+
∥

∥

∥
Σ−1

Sr

∥

∥

∥
= OP (1). (C.7)
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Note that the orthogonality conditions in (2.4) entail that Ar = ΣS,Sr
Σ−1

Sr
.

By Lemmas C.2, C.4, C.7, and (C.7), we then have

√
r
∥

∥

∥
Âr − Ar

∥

∥

∥
=

√
r
∥

∥

∥
Σ̂Ŝ,Ŝr

Σ̂−1

Ŝr

− ΣS,Sr
Σ−1

Sr

∥

∥

∥

=
√
r
∥

∥

∥

(

Σ̂Ŝ,Ŝr
− ΣS,Sr

)

Σ̂−1

Ŝr

+ ΣS,Sr

(

Σ̂−1

Ŝr

− Σ−1
Sr

)∥

∥

∥
= oP (1).

✷

Proof of Theorem 2.3. In view of (2.3), it suffices to show that Âr(1) →
A(1) and Σ̂ur → Σu in probability. Let the r × 1 vector 1r = (1, . . . , 1)′

and the rq × q matrix Er = Iq ⊗ 1r, where ⊗ denotes the matrix Kronecker

product and Id the d× d identity matrix. Using (C.3), and Lemmas C.6 and

C.8, we obtain

∥

∥

∥
Âr(1)−A(1)

∥

∥

∥
≤

∥

∥

∥

∥

∥

r
∑

i=1

Âr,i − Ar,i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

r
∑

i=1

Ar,i −Ai

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

=
∥

∥

∥

(

Âr − Ar

)

Er

∥

∥

∥
+ ‖(A∗

r −Ar)Er‖+
∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

≤ √
qr
{∥

∥

∥
Âr − Ar

∥

∥

∥
+ ‖A∗

r − Ar‖
}

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

= oP (1).

Now note that

Σ̂ur = Σ̂Ŝ − ÂrΣ̂
′
Ŝ,Ŝr

and, by (2.2)

Σu = Eutu
′
t = EutS

′
t = E

{(

St −
∞
∑

i=1

AiSt−i

)

S ′
t

}

= ΣS −
∞
∑

i=1

AiESt−iS
′
t = ΣS − A∗

rΣ
′
S,Sr

−
∞
∑

i=r+1

AiESt−iS
′
t.
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Thus,

∥

∥

∥
Σ̂ur − Σu

∥

∥

∥
=

∥

∥

∥
Σ̂Ŝ − ΣS −

(

Âr −A∗
r

)

Σ̂′
Ŝ,Ŝr

−A∗
r

(

Σ̂′
Ŝ,Ŝr

− Σ′
S,Sr

)

+
∞
∑

i=r+1

AiESt−iS
′
t

∥

∥

∥

∥

∥

≤
∥

∥

∥
Σ̂Ŝ − ΣS

∥

∥

∥
+
∥

∥

∥

(

Âr −A∗
r

)(

Σ̂′
Ŝ,Ŝr

− Σ′
S,Sr

)∥

∥

∥

+
∥

∥

∥

(

Âr − A∗
r

)

Σ′
S,Sr

∥

∥

∥
+
∥

∥

∥
A∗

r

(

Σ̂′
Ŝ,Ŝr

− Σ′
S,Sr

)∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

AiESt−iS
′
t

∥

∥

∥

∥

∥

. (C.8)

In the right-hand side of this inequality, the first norm is oP (1) by Lemma

C.4. By Lemmas C.6 and C.8, we have ‖Âr − A∗
r‖ = op(r

−1/2) = op(1),

and by Lemma C.4, ‖Σ̂′
Ŝ,Ŝr

− Σ′
S,Sr

‖ = op(r
−1/2) = op(1). Therefore the

second norm in the right-hand side of (C.8) tends to zero in probability. The

third norm tends to zero in probability because ‖Âr − A∗
r‖ = op(1) and, by

Lemma C.2, ‖Σ′
S,Sr

‖ = O(1). The fourth norm tends to zero in probability

because, in view of Lemma C.4, ‖Σ̂′
Ŝ,Ŝr

− Σ′
S,Sr

‖ = op(1), and, in view of

(C.3), ‖A∗
r‖2 ≤ ∑∞

i=1 Tr(AiA
′
i) < ∞. Clearly, the last norm tends to zero,

which completes the proof. ✷
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