ESTIMATING THE MEAN OF A FINITE POPULATION
By J. Roy anp I. M. CHAKRAVARTI

Indian Statistical Institute, Calcutta

0. Introduction and summary. In sampling from a finite population, the non-
existence of a uniformly minimum variance unbiased estimator for the mean u
has been demonstrated by Godambe [3], and the inadmissibility of the sample
mean as an estimator for x, when sampling is with replacement and equal proba-
bilities, has been proved by Des Raj and Khamis [2] and by Basu [1].

In this paper, the problem of unbiased linear estimation of u with minimum
variance is considered for a very general scheme of sampling. An admissible
estimator is obtained, together with a complete class of estimators. It is shown
further that, for a somewhat restricted sampling scheme, amongst estimators
with variance proportional to ¢, there does exist a best estimator which, in the
case of sampling with replacement and equal probabilities, is the same as that
considered in [1] and [2].

1. Sampling scheme and method of estimation. Consider a population con-
sisting of a finite number N of distinguishable elementary units u; with asso-
ciated real numbers (variate-values) y;, ¢ = 1, 2, --- , N. The mean and the
variance of the population will be denoted respectively by

N N
(1.1) B = N"Z y: and o = N_IZ (yi — M)z-
i=1 i=1

Let {U} denote a countable collection of finite or infinite sequences U(z),
z = 1,2, ---, of the elementary units, repetitions being allowed. We shall call
each U(zx) a “sampling unit”’. Let n;(x) denote the number of times u; occurs
in U(z) and let

(1.2) vi(z) = 0(1) if my(xz) = 0(>0).

To avoid triviality, it will be assumed that there is no sampling unit which con-
tains all the N different elementary units.

The sampling scheme to be considered is as follows: Only one of the sampling
units is to be selected, the probability of selecting U(z) being p(z) so that
Y. p(z) = 1 (summation being over all sampling units), and the variate-values
for all the elementary units in the selected sampling unit are to be determined.
The total number of elementary units in U(z), counting repetitions, is thus

n(z) = D i1ni(x), and the number of distinct elementary units in U(z) is
N
(1.3) v(z) = ; vi(x).

The serial number of the selected sampling unit is thus a random variable X
with probability distribution given by
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(1.4) Prob (X = x) = p(x), T = 17 27 ......

It is to be noted that the sampling scheme considered is of a very general
type; n(z) and »(z) need not be independent of z, and n(x) may not even be
finite. This kind of formulation is useful because it covers cases of sequential
sampling. Consider, for instance, the following scheme of sampling: Draw
elementary units, one by one, with replacement, until two different elementary
units are obtained, where the probability of getting a particular unit may vary
from draw to draw. The sample size counting repetitions may be infinite, though
the effective sample size is only two. Our complete class Theorem 2.2 shows that
in this case, to estimate the mean, one may disregard the multiplicities and the
order of drawing of the two elementary units.

If U(x) happens to be selected, a linear function, call it ¢(z), of the variate-
values for all the elementary units in U(z), will be taken as the estimate for p.
In general, {(z) can be written as {(z) = 2 i— y:x(z), where a;(z) (G = 1,
2, e e , Nz =1,2, -+ - ) are pre-determined real numbers with the
restriction that a;(z) = 0 whenever n;(z) = 0. The estimator is thus the random
variable

N
(1.5) T =X) = ;yiai(X)-
In order that the expectation of T may be equal to u for all values of y = (w1,
Y2, *++, Yn) a necessary and sufficient condition is that
(1.6) Ela:;(X)] = N7, i=1,2 --,N.
The further restriction E[a:(X) < «,¢=1,2, --- , N, is imposed so that the

variance of T may be finite for all finite values of y. A random variable T satisfy-
ing these conditions will be called a linear unbiased estimator of p.

Obviously (1.6) cannot hold unless for every 7 (¢ = 1,2, --- , N) there exists
at least one z for which both n;(z) > 0 and p(z) > 0; henceforth this will be
tacitly assumed. (Any us for which n;(z)p(z) = 0 for all z are effectively
outside of the sampled population.)

The variance of a linear unbiased estimator T of u is obviously given by

N N
(1.7) V(T) = ; ;yiyaaz‘j;

where 3;; = Cov [a:(X), a;(X)] = Ela:(X)a;j(X)] — N

2. An admissible estimator and a complete class of estimators. Of two dif-
ferent linear unbiased estimators T and 7" of u, T will be said to be at least as
good as T’ if

(2.1) V(T) = V(1)

holds for all y; T will be said to be better than T if (2.1) holds for all values of
y with strict inequality for at least one value of y. In a given class of linear un-
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biased estimators of u, T' will be said to be best if it belongs to the class and is
better than any other member of the class; it will be said to be admsssible if the
class does not contain a better member. A class @ of linear unbiased estimators
of p will be called complete, if given any linear unbiased estimator of u not be-
longing to the class @ it is possible to find a member of @ which is better.

It has been shown [3] that a best estimator in the class of all linear unbiased
estimators does not exist for any sampling scheme. An admissible estimator and
a complete class of estimators are obtained in this section.

Let a;(z) be defined by

Vi(il?)
Nq,‘ ?

where »;(z) is defined by (1.2) and ¢; stands for the probability that the ele-
mentary unit %; occurs in the selected sampling unit, that is ¢; = E[v:(X)].
Consider

(22) af(z) =

N
(2.3) T* = 3 yiai (X),
1=1

which is easily verified to be a linear unbiased estimator of u. The variance of T*
is given by
N N

(2.4) V(T*) = Z:l ]Z_; Y:y;8%;
where N’6% = (g:;/q:q;) — 1 where ¢,; stands for the probability that both
u; and w; occur in the selected sampling unit; that is, ¢;; = E[vi(X)v;(X)],
Qs = qi .

THEOREM 2.1 T* defined by (2.3) is admissible in the class of all linear unbiased
estimators of p. '

Proor. If not, there exists a better linear unbiased estimator of u, say T given
by (1.5). Then, from (1.7) and (2.4) one gets

(2.5) v(T*) = v(T) = g ?:: yiyi (8% — 8;)

which must be at least positive-semidefinite. But it is easy to verify that 87 —
8:; = —EaT(X) — ai(X)) is not positive: this contradicts the assumption
that T is better. '

To obtain a complete class of estimates proceed as follows. Let J = (j1,
Ja, +++ , jm) denote a non-empty proper subset of the set of integers (1, 2, ---
.-+, N). There are thus 2¥ — 2 such subsets. Let S, stand for the set of the
serial numbers x of those sampling units U(x) which contain the elementary
units wj, , ¥, , *** , Uj, and these only, thus

(2.6) S;={z:ivi(x) =1(0) for 1eJ(i2J)}.
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Let @, denote the class of linear unbiased estimators T of u for which the coeffi-
cients a;(x) are equal for all z £ S; and for every subset J, that is, they are of
the form: a;(x) = b;;; for all x € S; and for every subset J. Thus, @ is the class
of linear unbiased estimators of u, whose coefficients depend only on which
elementary units are in the sampling unit, and not on their multiplicities or
ordering.

We then have the following:

THEOREM 2.2 The class @y is complete.

Proor. Let T = Z?_l y:0:(X) be a linear unbiased estimate of u. Let 7, =
Prob (X & 8,) and define

(2.7) bis = D zes; ai(2)p(2)/my if w, >0, b;; = 0 otherwise

and further let @:(xz) = bis for all z £ S, and for every subset J. It is easy to see
that the estimator T = D_i-; y:4:(X) belongs to the ¢class € . Also,

(28) V(T) = V(D) + 2 2 vk,

where \;; = E[{a:(X) — ai(X)} {a;(X) — a,;(X)}]. Since the matrix ((Ai;))
is at least positive-semidefinite, 7' is better than 7" unless T itself belongs to
@y . This completes the proof.

3. Best estimator in a restricted class. Since there does not exist a best mem-
ber in the class of all unbiased linear estimators we proceed to examine whether
a best estimator exists if the class is suitably restricted.

A linear unbiased estimator T' = ¢(X) will be called linearly invarient if the
transformation y¥ = ay; + 8(: = 1,2, --- , N) of the variate values transforms
t(z) to t*(z) where t*(x) = at(z) + B for all z for which p(z) > 0. Obviously, a
necessary and sufficient condition for 7' to be linearly invariant is that

N

(3.1) > a,(z) =1, for all z for which p(z) > 0.
1

1=

We now show by a counter-example that, even in the class of linearly invariant
unbiased estimators, in general there does not exist a best estimator.

Consider a population of N = 4 elementary units w; with variate-values
yi (1 = 1,2, 3, 4). Let the sampling units be U(1) = [w;, %2, us), U(2) =
[y, ug, ud], UQB) = [wy, us, us) and U(4) = [u2, us, us), and let the prob-
ability of selection be the same, viz. 1 for all the sampling units. This corre-
sponds to taking 3 units with equal probabilities without replacement from a
population of 4 units. It follows from Theorem 2.1 that the sample mean T*
is an admissible estimator in this case. Obviously, T* is linearly invariant and
its variance is ¢°/9 where o° = Y i_; (y; — u)’/4. Consider now an alternative
estimate, T = 211 y:a:(X), whose coefficient-matrix {a:(z)} (4, z = 1, 2, 3, 4)
is given on the following page.
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It is easy to verify that T is linearly invariant and unbiased, and that its vari-
ance, 30° + 36°(y1 — y2)® + £6(y1 — u2) (ys — ¥4), can be made smaller than the
variance of T* by a proper choice of 8 if y; # y, . Therefore a best invariant
estimator does not exist in this case.

It will now be shown that, if consideration is limited to a still smaller class of
what we propose to call regular estimators, there does exist a best estimator,
provided that the sampling scheme is somewhat restricted.

A linear unbiased estimator T of u will be called a regular estimator if its
variance is of the form

(3.2) V(T) = kd*,

where k is a constant independent of y. Suppose that T is of the form (1.5) so
that its variance is given by (1.7). Since (3.2) can be written as

N N
(3.3) V(T) = k(N = DN 2y — kN 2 2 yiys
=1 17j=1
by equating coefficients in (1.7) and (3.3) we get
EN7' — (k — 1)N* ifi=j
(34) Elai(X)a;(X)] = R e
—(k — 1)N~ if 75 7.

Consequently, writing a(X) = D i~ a:(X), one gets from (3.4), V[a(X)] = 0.
Therefore

N
(3.5) doaz) =1 for all z for which p(x) > 0.

We thus have
TaEOREM 3.1. A regular estimator is linearly invariant.
Let us now compute M = ED ij[ai(X) — »(X)/»(X)]. By virtue of

(3.5), we get 2L [a(X) — »w(X)/v(X)F = XLila(X)F — 1/v(X).
Using (3.4) we then have
(3.6) M =kN — 1)N™ + N — E[1/»(X)].

Since M is non-negative, we obtain the following:
LemMa. For the variance of any regular estimator T of u, there exists a lower
bound V(T) = Ko where

(3.7) K = (N/(N — D)E[1/»(X)] = (1/(N = 1)).
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This lower bound can be attained if and only if M = 0. But this requires that,
for every z for which p(z) > 0, a;(z) = N(X), where

(3.8) N(z) = vi(z)/v().

In order that the linear statistic
N
(3.9) L = 2 y\(X)
may be an unbiased estimator of u, a necessary and sufficient condition is that
(3.10) E[v:(X)/v(X)] = N7 fori =1,2,---,N.

A sampling scheme will be called balanced if (3.10) holds.

We thus have proved the following:

THEOREM 3.2. In order that the lower bound for the variance of a regular estimator
of 1 may be attained, a necessary and sufficient condition is that the sampling scheme
should be balanced. If the sampling scheme is balanced, the estimator L defined by
(3.9) s best in the class of all regular estimators and its variance is given by V(L) =
Ko® where K is defined by (3.7).

4. Application to specific sampling schemes. The usefulness of the theorems
derived in Sections 2 and 3 will be demonstrated by considering several well
known sampling schemes.

4.1 Simple Random Sampling: In this case, a sample of n elementary units
is drawn one by one with equal probabilities and with replacement. There are
thus N» sampling units, each consisting of n of the N elementary units, repeti-
tions being allowed. The probability of selecting any one sampling unit is N7".
That the sample mean T' = > 1 ymi(X)/n is an inadmissible estimator follows
from the complete class Theorem 2.2. This result was obtained earlier in [1] and
[2] by proving that the estimator Ty = S ywi(X)/v(X) is better. From
Theorem 3.2 we have the stronger result that T is the best regulator estimator.
An admissible estimator in this case is

T NI - (= @a/Mm)l

as obtained from Theorem 2.1. This estimator was used in [3] to prove that the
sample mean T is not better than T* However, T* is not even a linearly in-
variant estimator.

4.2 Random Samplgng Without Replacement. In this case a sample of n ele-
mentary units is drawn one by one with equal probabilities but without replace-
ment. There are thus N!/(N — n)! sampling units, each consisting of a com-
bination of n of the N elementary units, and each such sampling unit has the
probability (N — n)!/N! of selection. It is easily seen from Theorems 2.1 and
3.2 that the sample mean in this case is admissible and best in the regular class.

T*
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The counter-example in Section 3 however demonstrates that a best invariant
estimator does not exist in general.

4.3 Sampling for v Distinct Units. In this case elementary units are drawn one
by one with equal probabilities and with replacement, until » distinct elementary
units are drawn, the total sample size being thus a random variable. It is seen
from Theorem 2.2 that the sample mean T = Y i ym«(X)/n(X) is inad-
missible. This was proved in [1] by showing that the estimator 7* =
D =1 yivi(X)/v is better. It follows from Theorems 2.1 and 3.1 that T* is ad-
missible and best in the regular class.
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