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Abstract 
 
Global Positioning System and other location-based services record vehicles’ spatial locations at 
discrete time stamps. Considering these recorded locations in space with given specific time 
stamps, this paper proposes a novel time-dependent graph model to estimate their likely 
space-time paths and their uncertainties within a transportation network. The proposed model 
adopts theories in time geography and produces the feasible network-time paths, the expected link 
travel times and dwell times at possible intermediate stops. A dynamic programming algorithm 
implements the model for both offline and real-time applications. To estimate the uncertainty, this 
paper also develops a method based on the potential path area for all feasible network-time paths. 
This paper uses a set of real-world trajectory data to illustrate the proposed model, prove the 
accuracy of estimated results and demonstrate the computational efficiency of the estimation 
algorithm.  
 
Keywords: GPS map matching; traffic state estimation, dynamic shortest path, uncertainty 
estimation. 
 
1. Introduction 

  Emerging mobile computing and sensor techniques have improved capabilities to collect and 
process real-time traffic data for traffic state monitoring and management applications. For 
example, Global Positioning System (GPS)-based in car navigation has reached a significant level 
of penetration rate, and most smart phones are equipped with GPS receivers with high-speed data 
communication links. Nevertheless, current vehicle location data are still associated with location 
errors, typically within a wide range of 5 meters to 300 meters given the ground-truth vehicle 
trajectory. A critical data processing component in emerging Big Data applications is how to 
systematically use latitude, longitude, and time stamps of a single probe vehicle or a set of probe 
trajectories to estimate traffic states at different scales.  

In this paper, we present a time-geography based approach (Hägerstrand 1970) to consider not 
only the geometry and topology of the road network, but also the time attributes in available GPS 
samples. We also incorporate a space-time network-based representation adapted from the 
Time-Dependent Shortest Path problem (TDSP). Essentially, a sequence of GPS traces with both 
location and timestamp information can be mapped as a space-time trajectory or path. Within a 
space-time network, there are a large number of possible paths with different degrees of spatial 
and temporal distance to the vehicle trajectory records. Our approach aims to find the most likely 
network-time path that minimizes the total map-matching distance among all possible alternatives. 
Our method also allows estimation of dwell and detour times at intermediate nodes and the 
uncertainties associated with the likely paths. The proposed mathematical programming model 
can integrate with various sensor data sources and finds the optimal solution that takes into 
account the distance measure at different time stamps of driving traces. 

This paper is organized as follows. Section 2 provides the background to the trajectory 
map-matching problem, alternative solutions and the features of our time geographic approach.  
Section 3 illustrates the proposed space time network representation for finding the most likely 
network-time paths, followed by an introduction on the time dependent shortest path model in 
Section 4.  Section 5 uses illustrative example to further explain the fundamental of the model. 
Section 6 presents dynamic programming algorithms to find the time dependent shortest path 
with generalized cost functions specific to the network-time path estimation problem. After a 
discussion on uncertainty quantification for potential accessible space-time nodes within the 
estimated paths in Section 6.3, numerical experiments on a simple network and a real-world 
network are presented in Section 7.  Section 8 concludes the paper with summary comments and 
future research steps. 
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2. Background 

Many traffic management and planning agencies have started using the vehicle trajectory data 
for estimating travel time, route choice behavior and activity location patterns. The traffic states 
of interest include the most likely paths and related traffic speed and density on the transportation 
network. In this research, we are interested in providing a time-expanded graph modeling 
framework for fully utilizing location-based data and sensor measurements from different 
sources, such as automated vehicle counts, virtual detection lines as well as fixed detectors. 
Within the last 30 years, a large number of algorithms have been proposed to the general problem 
of GPS map matching, which aims to find the closest or most likely matched link sequence and 
travel speed. These methods can be broadly categorized in the following.  

i) Geometric map-matching algorithm. Geometric map-matching algorithms compare raw GPS 
points with the geometries of the underlying road network, in order to obtain a sequence of likely 
links (Greenfeld, 2002). A simple approach along this line is to match each point with the nearest 
road node (Bernstein and Kornhauser, 1996), while other sophisticated methods involve 
point-to-curve or curve-to-curve geometric distances (White et al., 2000). As this approach 
generally does not consider connectivity, it is possible that the matched links are disconnected 
from one other. To address this issue, Fu et al. (2004) proposed a hybrid map-matching algorithm 
by examining the geometry of the road network and fuzzy comprehensive judgment. Kong et al. 
(2013) recently integrated curve-fitting-based method and a vehicle-tracking-based method to 
estimate traffic states from GPS probe data along a path without detour. 

ii) Topological map-matching algorithm. An approach proposed by Greenfeld (2002) aims to 
find a topologically feasible (but time-invariant) path through the road network, with the arc 
weights in the related topological path-search algorithm without considering any heading or speed 
information from GPS data. Meng (2006) further considered other topological features such as 
road intersections, road curvature and road connections. Some other topological map-matching 
algorithms (Yin and Wolfson, 2004; Yang et al., 2003) utilize the connectivity and contiguity 
information of road networks to improve link identification rates in GPS map matching 
applications. 

iii) Statistical algorithms. Honey et al. (1989) first introduced a probability-based algorithm to 
clearly definite an elliptical or rectangular confidence region around a position. Zhao (1997) 
suggested that the error region can be derived from the error variances associated with GPS 
positions. To further quantify and determine map-matching probabilities given noisy data, this 
type of algorithms have integrated various statistic methods, to name a few, Kalman Filters and 
Extended Kalman Filters (e.g. Kim et al., 2000; Krakiwsky et al., 1988; Obradovic et al., 2006, Jo 
et al., 2012), fuzzy logic (e.g. Quddus, 2006; Zhao, 1997; Syed and Cannon, 2004), Bayesian 
inference (e.g. Pyo et al., 2001), and Particle Filter (Peker et al., 2011). Within an optimal 
filtering framework, the above algorithms recursively estimate the likely path and error 
covariance matrix associated with the estimated states under different measurement error 
assumptions. 

Beside these time-invariant algorithms, studies have started to account for travel time beside 
distance of vehicle trajectories. Aiming to assist informed traffic management decisions, traffic 
state estimation techniques are often used to estimate end-to-end trip travel time and congestion 
levels of the traffic system using heterogeneous data sources. Early studies such as Gazis and 
Szeto (1972), Cremer and Papageorgiou (1981), and recent studies such as Wang and 
Papageorgiou (2005), Muñoz et al., (2003), Sun et al. (2003) and Work et al. (2010) focus on how 
to use detector data and various traffic state filtering methods to estimate traffic flow, density and 
queue lengths on each link segment of the freeway corridor. Herrera and Bayen (2010) also 
proposed a novel method of virtual trip lines to estimate traffic states based on trajectory data 
from both arterial and freeway corridors. A recent study by Deng et al. (2013) extended Newell’s 
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three-detector method as a stochastic measurement equation to quantify the value of Automated 
Vehicle Identification (AVI), Automated Vehicle Location (AVL) and point sensor 
measurements.  
While significant progress has been made in recent years, there are still a number of challenging 
questions to be addressed to systematically estimate vehicle paths within a transportation network 
based on trajectory data. First, many GPS map-matching algorithms mainly focus on spatial 
attributes of GPS records within a short time window, in conjunction with the geometry and 
topology information of the road network. A desirable traffic state estimation model in this 
context should utilize both space and time attributes from AVI, and AVL/GPS sample data. Many 
new applications are looking for a much richer set of traffic states beyond the likely link 
sequence, such as the durations of dwelling or stationary activities, link traveling time and 
waiting time at intersections. The above information is critical not only for many traffic 
engineering projects (such as optimizing traffic signal timing) but also for a wide range of 
accessibility based multi-modal transportation planning decisions (e.g., evaluating impact of 
parking policies on activity duration at downtown areas). 

Second, many existing GPS map matching algorithms are very suitable for high-frequency 
location data (say every 1 second). It is very challenging yet valuable to construct a well-defined 
optimization or estimation framework that can be fully utilize location-based data sources with 
different sampling time and spatial resolutions. For example, the sampling interval for cell phone 
tower data could be significantly large, with a range of 30 seconds to 5 min (Thiagarajan et al., 
2011). In this case, if one only simply considers the distance from GPS points to a single node or 
a single link, then it could fail to capture several major factors in real-world trajectories, such as 
the link-to-link connectivity, possibility of dwelling and stationary activities.  

Third, a desirable traffic state estimation method should not only identify the most possible 
map-matched links but also describe the uncertainty of the estimation results, in a similar way to 
the mean estimate and the corresponding estimation error variance-covariance matrix in a general 
Kalman filtering framework. In the case of path matching, we are interested in several key 
questions. 1) If there are alternative likely paths available within a similar estimation error range; 
2) How many of those paths can be found, and 3) Is it possible to increase the sampling interval 
or add additional location sensors to reduce the estimation uncertainty?   

With a unified time-expanded graph modeling framework across different types of 
location-based vehicle measurements, the methods in this paper can integrate heterogeneous data 
sources to improve estimation quality and address specific needs from high-quality traffic data 
mining applications. Our goal is to develop a theoretically sound and computationally efficient 
method for both offline and real-time applications. Our proposed method can further calculate the 
uncertainty boundaries of estimated paths in a transportation network. With a solid uncertainty 
estimation results, one can evaluate the quality impact of GPS sampling intervals, market 
penetration rates of probe vehicles, as well as the spatial resolution of underlying networks.  

 
3. Conceptual foundation, problem formulation and illustrative example 

Time geography represents individual’s actual and potential mobility using space-time paths 
and space-time prisms respectively (Hägerstrand 1970). The sample space-time path in Fig.1(a) 
illustrates a traveler’s movements among activity locations with respect to time. The slope of the 
path segment indicates the moving speed: a steeper line means more time is spent between two 
locations and therefore lower speed; a vertical line corresponds to conducting stationary activity 
at the same location through time; and the maximum achievable speed is determined by the 
individual’s mobility level. A space-time prism is the envelope of all feasible space-time paths 
between two activity locations given the time budget for travelling and the maximum achievable 
speed (Fig. 1b). Its projection the space constitutes the potential path area (PPA) that delimits all 
feasible routes in space.    
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                          (Insert Fig. 1.) 
 
In the real world, individuals’ movements are often confined to spatial networks such as those 

corresponding to transportation systems and major activity locations. Accordingly, one can define 
network-time paths and network-time prisms to take into account additional constraints such as 
geometry, connectivity, and speed limits imposed by spatial networks (Miller 1991, Kuijpers and 
Othman 2009). Each location within the network has a forward optimal label for the least time 
cost from the origin to that location, and a backward optimal label for the least time cost from that 
location to the destination. A location within the network is in the PPA if and only if its forward 
and backward optimal label costs together do not exceed the time budget for travelling. The 
network time prism has been applied to study individual’s potential mobility (e.g. Down and 
Honer 2012) and create people-based accessibility measures (e.g. Kwan 1998, O’Sullivan et al. 
2000). 

In this paper, the specific traffic state estimation problem aims to estimate most likely 
network-time paths, given a sequence of vehicle location records available from, AVL and AVI 
sensors. The underlying transportation network (serving as spatial constraints) typically contains 
a set of geographically referenced nodes (such as freeway merge/diverge nodes and arterial 
intersections), and a set of directed links in different road type categories, for example, freeway, 
highway and arterial streets. Without the loss of generality, we assume the geometric curvature 
information of a road has been coded through a vector of node coordinates. If an original road 
link is represented as a sequence of curved road segments, then we will accordingly decompose 
the link to a sequence of straight-line links in our model.  

The constructed time-expanded network can be defined as G = (V, A, T), where V is the set of 
time-dependent vertexes, of cardinality n�T, and A is the set of time-dependent arcs 
corresponding to any feasible transition between vertexes. The discretized time-expanded 
network permits us to draw upon the many algorithms of time-dependent shortest path and other 
related dynamic network flow algorithms that can exploit the special features of the network-path 
map-matching problem. The objective of the estimation problem is to find the most likely path(s) 
in the time-dependent network that can minimize the total traffic state estimation error while 
subject to network connectivity and feasible travel time requirements. Tables 1 and 2 give the 
related notation, input parameters and estimation variables of the corresponding problem. 

    
                      

(Insert Table. 1.) 
(Insert Table. 2.) 
 

Let us first consider a hypothetical 3-node network and 6 raw location records of a vehicle, 
shown in Fig. 2(a). Nodes and records detailed coordinate information is given in Tables 3 and 4 
respectively. Obviously, there are two potential paths for a vehicle traveling from node i to node 
k, namely P1:i→j→k, and P2:i→k. 

 
 

                          (Insert Fig. 2.) 
(Insert Table. 3.) 
(Insert Table. 4.) 

 
 
 
  In our notation system, a vertex is always associated with a time index and is denoted as i(t) for 
node i at time t. Accordingly, an arc is also indexed by time interval numbers and is expressed in 
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terms of four indices (i,t,j,t'), and arc cost ��,��,�� is associated with a traversal action leaving from 
node i to node j, with an entering time t and an exit time t'. 

  The constructed time-expanded network has a time dimension of T=6 for each node, e.g., the 
set of vertex is V={ i(1),…,i(t),…,i(6), j(1),…, j(6),k(1),..,k(6)} .Using node i as an example, the 
arc set A has two categories of arcs can be originated from a vertex: i) traveling arcs that move 
straight to the next node (j≠i); ii) dwelling arcs that stop at the same node till next time stamp t+1. 
As shown in Fig. 3a, arc (i,1,i,2) is an example of a dwelling arc, while the other arcs, e.g. arcs 
(i,1,j,6) and arc (i,1,k,2) , are traveling arcs. 

                           (Insert Fig. 3.) 
  

Table 5 further illustrates the possible network-time paths (NTP) in the sample network. Along 
the time period from second 1 to second 6. Fig.4 aims to display network-time paths 1 and 2 in 
three-dimensional geographical space. In addition, paths 1 and 2 have the same sequence of nodes 
(i, j, k), but different dwelling times at different locations. NTP � has a different node sequence 
from i to j.  

 (Insert Table. 5.) 
 

                             (Insert Fig. 4.) 
 
 

A typical GPS map matching method calculates the shortest distance from a point to a line 
using the orthogonal distance function that finds the length of the straight line segment that 
intersects that line at a right angle. In contrast, our proposed method calculates the distance 
between two geometric locations referenced at the same time stamp to fully consider the temporal 
dimension of available information.  

 
4. Time-dependent least cost path model for joint estimation of travel time and link 
sequence  

The key question in the previous example is how to minimize the overall estimation cost for 
possible time-dependent paths. This section constructs an optimization model for the generic 
network-time path estimation problem as a time-dependent least-cost path problem. This 
optimization framework assumes the arc cost has been calculated for each feasible arc in the 
time-expanded network, and the optimal path finding algorithm to be presented in the next 
subsection is able to find a network-time path solution that minimizes the total traffic state 
estimation errors among all possible solutions. 

  

4.1 Data sources and optimization model  
The optimization approach in this paper can accommodate two typical data sources for vehicle 

movement: 
i) AVL data, containing semi-continuous location points 	
�� , 
�� 
 for t=1,…, T, for example, 
from GPS navigation devices or cell phone tower location data, with different degrees of 
measurement errors. 
  
ii) AVI data, from a pair of vehicle tag readers (e.g., Bluetooth readers) at time indices t and t' 
at nodes i and i', corresponding to 	
�� , 
�� 
 , 	
���, 
���
, respectively. 
 

  We first define a binary variable ��,��,�� to indicate if a vehicle passes link (i, j) from time stamp 
t at the upstream node i to t' at downstream node j. With the constructed time-dependent network, 
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we can easily establish the following integer programming model with objective function (1) and 
flow balance constraints (2-4) at different types of vertices, namely trajectory origin, trajectory 
destination and the other time-indexed nodes.  

The objective function minimizes the total estimation error between observed data points and 
estimated nodes with the corresponding time indices, that is, ∑ ∑ ���, �������∈���� , where ���, ��is the 
time-index distance measure between observed location to the mapping node at sampling time index τ. 
Depending on the estimation error distribution (e.g. normally distributed vs. uniformly distributed), 
the error measure could be squared or absolute distance between a pair of locations. As the space-time 
network is constructed using modeling time index t, we need to link these two time index systems 
together. If the two systems are consistent with the same resolution, one can simply consider ∑ ∑ ���, �������∈����  as the objective function. Interested readers are referred to a book by Ahuja et 
al. (1993) for a systematic discussion on flow conservation constraints within a network flow 
programming framework, and a recent paper by Yang and Zhou (2014) on how to formulate 
multidimensional space-time network models.  

Without loss of generality, we first consider there are high frequency of location data available 
across all time t, so we can consider the following equivalent objective function with respect to 
each space-time arc.   �� 	" # ∑ ∑ ∑ $��,��,�� � ��,��,��%���&�������,��∈'   (1) 

Subject to: 
 
(Flow balance constraints at origin node r and time t=1, namely vertex r(1) as shown in Fig.3a.) 
  ∑ �(,��,�� # 1																																																													� # 1�,��	&�	   (2) 
 
(Flow balance constraints at the destination node s and time t'=T, namely vertex s(T) as shown 

in Fig.3b.) 
 ∑ ��,*�,�� # 1																																																													�′ # ,�,�-��	           (3) 
 
(Flow balance constraints at intermediate vertex j(t' )): 
 ∑ ��,��,�� . ∑ ��,���,��� / ��,���0�,�� . ��,���,��1� # 0								∀4, ∀�5			6�����∈78��,���,��-���		����∈98��,���,�-��		  (4) 
 
Constraints (2)–(4) ensure flow balance on the network at the origin vertex i(1), destination 

vertex s(T) and intermediate vertex j(t'), respectively. It should be remarked that, BS(j,t') is the set 
of incoming arcs going to vertex j(t'), and FS(j,t') is the set of outgoing arcs coming from vertex 
j(t'). As an example, Fig.5 shows a backward vertex set BS((j,3))={( i,1), (i,2), (j,2)} and a 
forward vertex set FS((j,3))={ (k,4), (k,5), (k,6), (j,4)}.  

                               (Insert Fig. 5.) 
 

4.2 Defining arc cost for traffic measurement in a space-time network 
The formulation challenge within an expanded network structure is how to properly define and 

calculate arc costs for the network-time path estimation problem. To estimate the cost of each arc 
(i,t, j, t') along the link (i, j), we have the following generalized time-indexed location-to-link 
distance equation: 

 ��,��,�� # ∑ ���, 4, �������     (5)  
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where  

���, 4, �� # : 				���, ��															� # �			��4, �5�														� # �′�̅�,��,��<
�� , 
��=					>�?@AB�C@	
D     (6)  

 
with the time-indexed location-to-node distance measure function: 

���, �� # E�F� . 
���G / <H� . 
�� =G (7) 

 
and the approximate distance from GPS positions to intermediate points of a line (network arc): 
 

�̅�,��,��<
�� , 
��= # EI� �0���0� � �F� . F��/F�� . 
��JG / I� �0���0� � �H� . H��/H�� . 
��JG         (8) 

 

As a special case, if we do not consider the distance from GPS positions, we can have a 
simplified time-indexed location-to-link distance measure equation: 

��,��,�� # ���, �� / ��4, �′�  (9) 
 
Using Eq. (8), we compute the straight-line distance ���, 4, ��  from the map-matched 

coordinate to GPS point <
�� , 
��= at time �. The detailed calculation steps will be illustrated in 
Fig.6 in the following section. Furthermore, Eq. (5) can be applied to a special case for waiting 
arc (i,t,i,t+1) (for non-traveling activity locations or stopping before signal lights) as shown in Eq. 
(10): 

 ��,��,�1� # ���, �� / ��4, � / 1� (10) 
 
For simplicity, Eq. (5) will double-count the location-to-node distances (with respective to 

intermediate node j in consecutive links (i,j) and (j,k)). Because different paths would have the 
same degree of distance “double-counting”, the proposed optimization objective function does 
not lead to biased results. 

 
 

5. Illustrative example  

We now use Figs. 4 and 6 to illustrate how different cost values are calculated in a hypothetical 
network. As shown in Figs. 4(a) and 6(a), a space-time path (TP1) in the time-expanded network 
contains 5 vertices, including vertex i(1), vertex j(2), vertex j(3),vertex j(4)and vertex k(6), and 4 
arcs including arc(i,1, j,2),arc(j,2,j,3), arc(j,3,j,4)and arc(j,4,k,6). This solution reads as a 
sequence of events: the vehicle arrives at node i at time 1, arrives at node j at time 2, leaves node j 
at time 4, and arrives at node k at time 6. The space-time path shows that a vehicle pass the path 
(P1: i-j-k). This implies matching record 1 to node i, matching records 2, 3, and 4 to the same 
node j, matching record 5 to an intermediate point on link (j, k), and matching record 6 to node k.  

                            (Insert Fig. 6.) 
 

As GPS points 1, 2, 3,4 and 6 have been matched directly to nodes，we use Eq. (7) to calculate 
the vertex distance: 
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d(i,t=1) =K�1 . 1.1�G / �1 . 1.05�G ≈ 0.11.  

d(j,t=2) =K�5 . 4.8�G / �1 . 1.05�G ≈ 0.21. 

d(j,t=3)=	K�5 . 5.1�G / �1 . 1.1�G  ≈ 0.14. 

d(j,t=4)=	K�5 . 4.8�G / �1 . 1.08�G ≈ 0.21. 

d(k,t=6)=	K�5 . 4.95�G / �5 . 4.9�G ≈ 0.11. 
 
As a special case, record 5 is matched at an intermediate location within link (j,k),so we need to  

calculate those vertex cost the vertex cost �̅�,6Q,R<
�S, 
�S=	as Eq. (8) leads to   

�̅�,6Q,R<
�S, 
�S= # ETS0QR0Q� <F6 . F�= / F� . 4.8UG / TS0QR0Q� <H6 . H�= / H� . 2.3UG	≈ 0.73 

 
Finally, as plotted in Fig. 4b, all arcs cost can be computed as: 
 ��,��,G=d(i,1) +d(j,2) ≈0.11+0.21=0.32, ��,�G,X= d(j,2) + d(j,t=3) ≈0.21+0.14=0.35, ��,�X,Q= d(j,t=3) + d(j,t=4) ≈0.14+0.21=0.35, ��,6Q,R=d(j,t=4)+�̅�,6Q,R<
�S, 
�S=	+d(k,t=6)≈0.21+0.73+0.11=1.05, and 

the total cost of path 1 solution =��,��,G+��,�G,X+��,�X,Q+��,6Q,R=2.07.  
 
Along the same physical path TP1, another possible map-matching solution (TP2) is shown in 

Figs.4(b) and 6(b), which is slightly different from TP1 shown in Figs. 4(a) and 6(a) by matching 
the GPS point at timestamp 2 to the intermediate point along link (i,j), instead of node j. The 
straight link distance in the former case is much shorter than that in the latter case, while all the 
other arc costs are the same for both solutions. The updated arc cost ��,��,X=d(i,t=1)+	�̅�,6�,X<
�G, 
�G=+d(j,t=3)= 0.11+1.8+0.14 =2.05,	��,�X,Q and ��,6Q,R are kept the same as 
the solution TP1. As shown in Fig. 6(b), the total path cost of TP2 is approximately 
2.05+0.35+1.05 = 3.45, which is higher than 2.07 in Fig. 6(a). This means that the solution in 
Figs. 4(a) and 6(a) is clearly a better map-matching solution.  

 
On the other hand, when the modeling and sampling intervals are different and there is no 

location data at time t, we can consider a default value of d(i,t) =Y in the generalized cost 
function,	where	Y is a constant. One can use an approach of interpolating between successive 
points to come up with a reasonable value ofY . By doing so, we hope to still use 	∑ ∑ ���, �������∈����  to find the most likely path based on (possibly limited) information on 
available location data and the underlying network connectivity constraints. 

 
 For the GPS trace and network in Fig. 2, if we assume there are no location data at time 

stamps 2, 3 and 4 in Fig.7a, we also can use Eq. (5) to calculate the vertexes’ distance.  
 

d(i,t=1) =K�1 . 1.1�G / �1 . 1.05�G ≈ 0.11,  
d(j,t=2) =Y, 
d(j,t=3)=	Y, 
d(j,t=4)=	Y, 
d(k,t=6)=	K�5 . 4.95�G / �5 . 4.9�G ≈ 0.11, 

�̅�,6Q,R<
�S, 
�S= # ETS0QR0Q� <F6 . F�= / F� . 4.8UG / TS0QR0Q� <H6 . H�= / H� . 2.3UG	≈ 0.73, 
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Therefore, assumed Y # 0, all arcs cost can be computed along TP1 as plotted in Fig. 7b. 
 ��,��,G=d(i,1) +d(j,2) ≈0.11+	Y =0.11, ��,�G,X= d(j,2) + d(j,t=3) ≈Y +	Y =0, ��,�X,Q= d(j,t=3) + d(j,t=4) ≈Y +	Y =0, ��,6Q,R=d(j,t=4)+�̅�,6Q,R<
�S, 
�S=	+d(k,t=6)≈0.73+0.11=0.84, and 

the total path cost =��,��,G+��,�G,X+��,�X,Q+��,6Q,R=0.95.  
 

  (Insert Fig. 7.) 
 

6. Solution algorithm  

6.1 Time-dependent least cost algorithm using dynamic programming 
  Using the above mathematical programming model, one can derive the optimality condition, 
based on Bellman’s principle within a dynamic programming (DP) framework. Specifically,	 �̂,� 
denotes the total travel cost of the current least-cost path from origin r at time 1 to node j at time 
t. An optimal path in the time-expanded network should satisfy the following conditions: 

�̂,�� # _ 0																																							, if	4 # A, �5 # 1min $ �̂,��0� / ��,���0�,�� , ^�,� / ��,��,��%	 , otherwise	for	feasible��, 4�D (11) 

We now solve this problem by enhancing label correcting or DP-based algorithms 
(Ziliaskopoulos and Mahmassani, 1993; Chabini, 1998). It is worth noting that, the proposed 
DP-based framework does not need to explicitly construct space-time networks for each trace, 
and the major key steps are label checking and updating. 

Algorithm 1 (offline network time path estimation) 
Input: network G, origin node r, destination node s, and location data from time 1 to T,  

maximum allowed location-to-node distance j (e.g. using maximum GPS error range) 
Output: The most likely network-time path from r(1) to s(T). 
 
Step 1. (Preprocessing) 
For each node within the search region, use Eq. (7) to calculate time-indexed location-to-link 

distance d(i,t) for each time t 

Step 2. (Initialization) 
�̂,� # ∞		, ∀4; ^(,� # 0;  

 
Step 3. (Label updating) 

 For time t=1 to T 
  For each link (i,j) within the search region at time t 

Step 3.1 //traveling arc 
         For time t'=t+FFTT(i,j) to t+ MaxTT(i,j) 
          calculate 	��,��,��based on Eq. (5). 

If (d(i,t)l j and d(i,t')l j and	^�,� / ��,��,�� l ^�,��) Then 

Update 	 �̂,�� # ^�,� / ��,��,��along traveling arc, and update the corresponding 
predecessor at vertex j(t') as vertex i(t) 

                      End if 
     End for 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 
 

 
Step 3.2 // waiting arc  
    If node i allows waiting and	^�,� / ��,��,�1� l ^�,�1�) Then 

Updatê �,�1� # 	^�,� / ��,��,�1� along dwell arc, update corresponding predecessor at vertex 
i(t+1) as vertex i(t) 

  End if 
     End for each link 
    End for each time  
 
Step 4. (Fetch complete time-dependent likely path) Back-tracing predecessors from super sink 
vertex s(T) up to super source r(1), and obtain the map-matching result. 
 
The flow balance constraints presented in section 3 is inherently embedded in the space-time 
search process in Step 3, that is, for each time t, for each link (i,j) and for each time t'. 
Specifically, the flow balance constraints at the origin and destination are satisfied when we start 
searching from origin r(1), and back-trace from super sink s(T). 
 
Algorithm 2 (Rolling horizon implementation for real-time estimation) 
 

Input: network G, origin node r, estimated traffic states up to time t1, newly received online 
location data from time t1 to t2, maximum allowed location-to-node distance  

Output: Likely current location s* at time t2, the most likely network-time path from r(1) to 
s(t2). 

 
Step 1. (Preprocessing) 
For each node within the search region, use Eq. (7) to calculate time-indexed location-to-link 

distance d(i,t) from t=t1 to t2 

Step 2. (Initialization) 
�̂,� # ∞		, ∀4, from t=t1 to t2;  

 
Step 3. (Label updating) 

 For time t =t1' to t2, where t1'=t1-q and q is the time lag length 
  For each link (i,j) within the search region at time t 

Perform time-dependent label checking and updating, similar to Steps 3.1 and 3.2 in 
Algorithm 1 

     End for each link 
   End for each time  
 
Step 4. (Fetch partial likely path up to t2) Find the most likely current location s* at time t2 as 
the node with the minimal label cost ^�,�G across all nodes i at time t2.  
Back-trace predecessors from the likely current location s* to t', and obtain the map-matching 
result, where t' <t1, but t' can be later than the original starting time t=1, if a short look-up 
window is used.  

(Insert Fig. 8) 
  Algorithm 1 can find global optimum solutions and is suitable for offline processing by taking 
the entire GPS trace into consideration. Essentially, our proposed DP algorithm is able to solve a 
multi-stage decision problem by breaking it down into a collection of simpler sub-problems. As 
illustrated in Fig. 8, in Algorithm 2 for real time map matching applications, the developed DP 
method seeks to solve each on-line traffic state subproblem only once for each stage k, (e.g. 10 
min) given that the solutions from previous time stages have been computed and stored. When 
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new data of a new stage (say 8:00 to 8:10 AM) is received from time t1 to t2, we need to roll back 
to an earlier time stamp t1' (say 7:30 AM) to take into account that a link might take a maximal 
duration of q intervals to traverse. 
 
 Overall, the average-case time complexity of Algorithm 1 is O(T×α× β), where T is 
the planning horizon (T is the number of time intervals in the expanded network for space-time 
path estimation), α is the number of links covered at each time interval within a search region; 
and β is MaxTT-FFTT for each link. The complexity of Algorithm 2 is reduced to O(H×α× β), 
where H= t2-t1+q which is the sum of estimation time stage length. In the worst case, the search 
process has to reach all links, that is, α =m in the above formula. On the other hand, the space 
complexity of the proposed algorithm 1 is determined by (1) the size of label cost vector 

�̂,� , as	n×T, and (2) the size of quadratic cost matrix 	��,��,�� with a dimension of n2× T2. For an 

efficient implementation of the quadratic cost matrix	��,��,��, one can use hash tables to store 

feasible values in 	��,��,��for each physical link and possible t-to-t' pairs, as the number of physical 
links is dramatically less than the number of links (i.e., n2) in the complete graph, and the average 
out degree of a node in a transportation is between 2 and 4. 

6.2 Handling dwell and detour time at intermediate destinations 
The identified time-dependent trajectory is extremely useful for identifying a trip chain that 

contains intermediate stops and detours. Fig.9 illustrates how the proposed algorithm represents 
the detour based on the 4-node and 5-link road network with 7 GPS points. In this example, GPS 
point set is = {1, 2, 3, 4, 5, 6, 7}, and GPS curve set is= {1→2, 2→3, 3→4, 4 →5, 5→6, 6→7}. 
A traveler goes to shopping mall 1 from his/her home, and then coming back before driving to 
shopping mall 2. This leads a path with loop i1→j→i1→i2→k. 

                              (Insert Fig. 9.) 
 

 For a systematic comparison, we can match this GPS trace to a 4-node and 5-link road 
network based on the different algorithms. 

 
i) A point-to-point algorithm could produce a solution where GPS point 1 matches node i1, point 
2 matches node j, point 3 matches node j, points 4, 5 and 6 match node i2, and point 7 matches 
node k. As a result, the matched link set is= {i1→j, j→i2, i2→k}; 
 
ii) Based on point-to-link algorithm,  GPS points 1 and 2 match link i1→j, point 3 matches link 
j→k, point 4 matches link j→i2, point 5 matches link i1→i2, and points 6 and 7 match link 
i2→k. Similarly, matched link set is= {i1→j, j→k, j→i2, i1→i2, i2→k}; 
 
iii) A curve-to-link algorithm can generate that GPS curve 1→2 matches link i1→j, curve 2→3 
matches link j→k, curves 3→4 and 4→5 match link j→i2, curve 5→6 matches link i1→i2, and 
curve 6→7 matches link i2→k, which leads to matched link set as {i1→j, j→k, j→i2, i1→i2, 
i2→k}; 
 
iv) Based on time-dependent least cost algorithm using our proposed dynamic programming  
the matched result is time dependent path as shown in Fig.9b, namely i1(1)→j(2)→ 
j(3)→i1(5)→i2(6)→k(7), with a matched link set as= {i1→j, j→i1, i1→i2, i2→k}. 
 
Accordingly, if only the geometric distances from GPS points 1, 2, 3, 4 and 5 to link in the 

network are used in a map-matching algorithm, then it is not trivial to decide if and how the 
detour should be allowed. Recall that standard label correcting and setting algorithms do not 
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allow tours with loops. However, using the space-time representation, the resulting space-time 
path is still a simple path without loops through time-indexed vertices, as shown in Fig. 9b. 
Accordingly, a dwell arc and a detour arc can be automatically identified with associated activity 
time duration. Such information on trip chaining can greatly help to examine sample travelers’ 
movements throughout the day with different trip purposes and dwell times at different activity 
locations. 

             
6.3. Quantifying estimation uncertainty based on network potential path area 

  We now calculate the uncertainty associated with an estimated result by adopting the concept 
of the Potential Path Area (PPA) within an underlying network. First, we drive the least cost path 
trees based on the proposed network time path estimation algorithm, one from the origin and the 
other one towards the destination, which lead to the forward optimal label cost λ�,�7  from the 
origin to vertex (i,t) and the backward optimal label cost ^�,�9  from vertex (i,t) to the destination.  
 
   Secondly, given the minimum estimated cost "∗ and the error bound ε	, the time budget 
for travelling can be determined by the maximum tolerant cost ("∗ / ε ). Accordingly, the PPA 
can be defined to delimit all accessible vertices. Since a location within the network is 
accessible if and only if its forward and backward optimal label costs together do not exceed 
the time budget. The set of all accessible vertices can be defined analytically as:   
                  � # o��, �� ∈ p|^�,�7 / ^�,�9 r "∗ / st  (12) 
Which is subject to the error bound ε that reflects the tolerant level. For example, the error 
bound ε  can be calculated as a function of the number of samples points times the average 
estimation error say 0.5 meters. Finally, we use the set M to represent the size of PPA within the 
network subject to estimation quality constraints. Hence, the total number of vertices M describes 
the uncertainty or confident level associated with the estimation result: more accessible vertices 
provide more feasible arcs that a trajectory can be matched to, which results in higher uncertainty 
associated with an estimation result. By doing so, we can use the numbers of possible space-time 
vertices as a proxy to evaluate the uncertainty changes under different data collection settings. 
This sensitivity analysis result can provide critical information for selecting different sampling 
rates and additional information sources such as AVI, AVL at various locations. 
 

In an extreme case, there are only two accessible vertices, which means that a series of GPS 
points can be matched only to that arc; therefore, there is no uncertainty associated with the result. 
Fig.10 shows general cases where there are multiple feasible paths. The introduction of 
uncertainty based on the network PPA can provide additional information rather than as set of 
most likely map-matching space-time paths, and it may also reduce the required sample interval 
(e.g. second-by-second). For instance, Fig.10(b) has larger PPA than Fig. 10(a), which includes 
two more vertices and result in one more possible feasible path. Therefore, even the 
map-matching results are the same, the first result is 100% sure that the result is correct, while the 
second has an uncertainty associate with the estimation result because that are other feasible 
options available. Besides, comparison of Fig 10(a) and Fig. 10(b) show that the network PPA can 
reduce the sampling size (e.g. 1s to 2s).    

                              (Insert Fig. 10.) 
 

7. Numerical experiments  

The applicability of proposed methods is illustrated using empirical data from three U.S. cities.  
We evaluate our algorithm using four network-time path estimation metrics:  
 

i) Computational time (Ct): 
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				"� # �u�vw	xvxywv��uz	��{|}y{~|(	u�	��8	�(v�|x�u(�|* (13) 

ii) Average link identification rate (Al): 

			�� # }y{~|(	u�	xu((|x�w�	{v�x�|�	(uv�	w�z6*}y{~|(	u�		{v�x�|�	w�z6*	�u(	v	�(v�|ww|( (14) 

iii) Average travel time errors for correctly identified links (Ae):  

		�@ # ∑'~*uwy�|	�(v�|w	��{|	|((u(	u�	|vx�	xu((|x�w�	{v�x�|�	w�z6	∑'x�yvw	�(v�|w	��{|	u�	vww	xu((|x�w�	{v�x�|�	w�z6*  (15) 

iv) Average relative travel time error (Ar):   

		�A # '|∑v�|(v�|	�(v�|w	��{|	u�	w�z6* (16)  

 
To illustrate the above measures, Table 6 shows estimated results for a sample GPS trace in the 

hypothetic network in Fig. 2b. As correctly matched road links are links i→j, j→k, the average 
link identification rate Al=2/4=50%. At last, Ae=(0+2)/2=1, according to Eq. (16). 

(Insert Table. 6)  
 

     We implement the DP algorithm using Visual C# 2010. We performed all of the 
experiments on a Lenovo ThinkPad E40 laptop with 2.53 GHz Intel i5 CPU and 4 GB memory. 
First, the C# algorithm is tested against a linear programming model implemented by GNU 
Linear Programming Kit (GLPK, 2012), and the latter open-source Linear Programming solver 
produces the same results but with much longer running time. We then tested the performance of 
the map-matching algorithm on three networks, namely New York City (New York), Salt Lake 
City (Utah) and Phoenix (Arizona). Table 7 shows their basic network attributes and Fig.11 
illustrates the networks,  We generate the New York City GPS data through a mesoscopic 
dynamic traffic assignment simulator, and a small percentage of intermediate stops are generated 
at various locations. The last two GPS data sets in Salt Lake City and Phoenix contain 2 and 43 
real-world GPS data traces, and externally collected travel time records on links, in July 2013 and 
April 2014 respectively. The first synthesized data set in New York City with a large number of 
GPS traces serve as the ground truth data for evaluating the impact of GPS data error range, while 
the last two data sets are used to identify potential issues raised in a real-world setting. 

            
(Insert Table. 7.)  
(Insert Fig. 11.) 

 
 

For experiments on the New York network with synthesized data, we first assume the error of 
GPS points follow a normal distribution, with a mean of µ =0 and standard deviations as σ = 10 
and 50meters, respectively. As the probability Prob(µ-3σ, µ+3σ)=99.7% for a normal distribution, 
we set the maximum error range parameter σ (previously defined for reducing problem space in 
Section 5.3) as 4σ. Table 8 examines the map-matching quality for the simulated datasets. When 
the actual error standard deviation σ is reasonably small such as 10 meters, it is easy to obtain 
very satisfactory results with close to 100% identification rates and low running time (1.39 
seconds per trace). Given a large GPS error of Standard Deviation σ = 50 meters, we observe an 
increase in computational time due to the extended search range. The percentage of trajectories 
with all links being correctly identified is downgraded to 99.5%. Overall, when a trace contains a 
large number of noisy GPS points on a high-density network, the running time of this approach 
increases dramatically, for example, reaching 2.77 seconds per trace in the New York City 
network with assumed standard deviation σ=50 meters. 
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 (Insert Table. 8.) 
For the last two data sets with real-world GPS traces, we collected 2 and 43 traces which pass 

different link types including highway, arterial, collector, frontage road and ramp. As shown in 
Table 8, the network-time path estimation results still reach a satisfactory level with link 
identification rates of 98.2%, 98.9%, 98.8% and 99.3% under different search regions and 
networks.   The obtained correct link identification rate of 99.3% in Phoenix network is similar 
to the previously reported performance (see Quddus, 2006, Velaga et al., 2009).  

 
In order to compare with commonly used existing algorithms, we also implemented GPS map 

matching methods with different distance measures, within a generic modeling framework as 
shown in Appendix I. Under the Phoenix network with one second frequency, we obtained 65% 
and 88% and 92% as the rates of correctly identified links, respectively, based on the 
commonly-used distance measures, namely point-to-point, point-to-curve and curve-to-curve 
methods. In comparison, the proposed optimization model in the time-expanded network can 
systematically capture the distance between a sequence of GPS points and a subpath of links in a 
transportation network. That is, the existing methods typically focus on the distance between 
individual objects (such as GPS curve, link, or node), while our method can take into account a 
wide range of distance measures between a large number of GPS points and a dynamically 
defined subset of links. With the help of quadratic distance/cost matrix,	��,��,��, our method is able to 
further identify complex space-time activity patterns such as detours, intersection stops and 
activity stops. 

As the network structure is taken into account automatically in the least cost path search 
algorithm, the proposed algorithm can inherently maintain connectivity through links along a path, 
and it also shows superior performance in precisely recognizing the distance from GPS points to a 
set of road segments in an optimization-driven framework. It should be noticed that, if one only 
considers simply the distance from GPS points to a single node or a single link, then it could fail 
to capture several major factors in real-world trajectories, such as the link-to-link connectivity, 
possibility of dwelling and stationary activities.  

The link identification rate of the two real-world data sets is relatively lower than the rate based 
on simulated data sets, and in particular, the computational time per trace reaches 5.39 seconds in 
Salt Lake City network with 200-meter search region, as the underlying structure has a very high 
fidelity node-link coverage. There are few potential reasons for possible mismatches when 
applying the proposed algorithm in real-world settings. The proposed algorithm explicitly allows 
loops around nodes, so it introduces possibilities of visiting a node more than once. This issue is 
more likely to occur when adjacent links of a node are very short, especially compared to the GPS 
error range defined by σ in our algorithm. The challenge associated with a real-world data set is 
that, the GPS error range is a time-varying and situation-dependent parameter, so estimating are 
liable GPS error range is quite important for the proposed algorithm. This type of error can be 
mitigated by adding a reasonable minimum time threshold for revisiting a node. Also note that the 
maximum computational time of per stage of trace (30-sec) is 0.109 seconds, therefore, our 
rolling horizon implementation can be applied to real-time nature of the traffic estimation 
applications. 

 
Table 8 gives a range of the average relative travel time error between 2.2% and 12.7%. 

Specifically, Fig.12 shows the comparison results between the estimated speeds and the actual 
speed from the Salt Lake City data set, while the actual speed data are calculated based on the 
directly measured travel time records by non-driver data collectors using high-solution clocks and 
GPS devices. The figure shows that the error is relatively small between estimated and real-world 
values when the driving speed is low (corresponding to a long link travel time). The large speed 
discrepancy is typically observed on freeway links with long travel time on mainline segments, as 
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well as complex cases with short and complex ramps on both ends.  
 
 

                    (Insert Fig. 12.) 
 
An important practical issue for the network-time path estimation is how to handle relatively 

long GPS sampling time interval, e.g., with a long range of 5 to 180 seconds.  In this case, as 
illustrated in Fig.13, there are multiple subpaths between two consecutive sample locations. 
Therefore, when we reduce the sample frequency (e.g. more than 30 seconds), the number of 
possible matched vertices will quickly increase. On the other hand, we find that the number of 
uncertainty subpaths depending on the sampling time interval and the density of road network. At 
high density of subarea, it could reduce uncertainty based on AVI and additional AVL data, e.g. 
high-frequency Differential Global Positioning System (DGPS) data, from other detectors. As Fig. 
10 illustrates, we use PPA to delimit all feasible routes in space, and obtain all accessible vertices. 
Consequently, the numbers of possible space-time vertices under different location data sampling 
rates without and with AVI and AVL data in Phoenix Subarea network are shown in Fig.14. The 
proposed optimization method still allows us to systematically select not only highly possible 
map-matched links and but also the most likely sub-paths among several candidate alternatives.  

                           (Insert Fig. 13.) 
                            (Insert Fig. 14.) 

 
For 60-s low frequency GPS data, the correct identification rates of the algorithm are 97.8% 
without additional data, which is similar to the performance reported by a recent study by 
Quddus(2015). If AVI or AVL data could be used at high density subarea network, the algorithm 
further provides a 99.2% correct link identification. 
 
 
8. Conclusion 

This paper develops a novel path-oriented traffic state estimation model based on time 
geographic principles and a time-expanded network representation. We adapt a dynamic 
programming algorithm to solve the proposed models. The proposed algorithm can not only find 
the most likely used road path, but also estimate the resulting link travel times and activity 
duration at possible intermediate stops, as well as the estimation uncertainty measured by the 
number of accessible space-time vertices. The optimal solution algorithms are applicable for both 
offline data mining applications and real-time traffic estimation tasks.  

 
While focusing on improvements in estimation accuracy, this paper also develops a rigorous 

optimization framework that can systematically utilize both spatial and temporal distance 
measures and network connectivity. Compared to the existing point-to-point, point-to-link and 
curve-to-curve GPS map matching algorithms, our algorithm can achieve similar accuracy when 
the commonly used spatial distance measures perform well with high sampling rates and 
relatively simple topology. Under low sample rates and complex temporal and spatial activities, 
our proposed algorithm can simultaneously estimate the travel time and traveled links within the 
network connectivity constraints to find the likely paths and further quantify the uncertainty level 
of the estimation results. 

 
Future research will be focused on how to handle possible GPS trajectories with low sampling 

rates without another source data and resulting large spatial error range. In the future study, with 
the proposed time-expanded graph modeling framework, we will further consider how to i) 
systematically take into account the interactions between multiple vehicle trajectories, e.g., using 
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a dynamic time warping method proposed by Taylor et al. (2015) for studying intradriver 
heterogeneity; ii) how to feed a large number of map-matched GPS or cell phone traces to a 
simulation based dynamic traffic assignment engine, e.g., DTALite proposed by Zhou and Taylor 
(2014), for rapid traffic congestion prediction. For real-time applications, we should systematically 
evaluate the performance and accuracy of Algorithm 2 within a rolling horizon framework with 
different degrees of sample rates, rolling stage length, and complexity of underlying network 
topologies. 
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Appendix: Simple time-invariant path search algorithms using existing GPS distance 
methods 
Many studies (e.g., White et al., 2000) have implemented the point-to-point, point-to-curve and 

curve-to-curve geometric algorithms. In this paper, we adapt their distance functions to test our 
experiments. We use	 �̂ 	�without	temproral	dimension�denote the total travel cost of the current 
least-cost path from origin r to node j. Define search region SR(i,j) as the set of GPS points 
within a pre-set space distance around link (i,j). 

Input: network G, origin node r, destination node s, location data and maximum allowed 
location-to-node distance j (e.g. using maximum GPS error range) 

Output: The most likely set of link from r(1) to s(T). 
 
Step 1. (Preprocessing) 
For each node within the search region, calculate  

(i) location-to-node distance d(i,t) for each GPS record GPS point (
�� ,	
�� ) to node i. 

(ii)  location-to-link distance d(i,j,t) for each GPS point (
�� ,	
�� ) to link i→j 

(iii)  curve-to-link distance d(i,j,t,t+1) for consecutive 2 GPS records, that is, (
�� ,	
�� ) 
→(	
��1�,	
��1�) to link i→j. 

Step 2. (Initialization) 
�̂ # ∞	∀4; ^( # 0;  

Define time-invariant link cost 	��,� as the following for each link (i,j) 
(i) ��,� # min ���, ���∈8���,�� 	for point-to-point distance 
(ii)  ��,� # min ���, 4, ���∈8���,�� 	for point-to-link distance 
(iii)  ��,� # min ���, 4, �, � / 1��∈8���,�� 	for point-to-curve distance 
Step 3. (Perform label updating in label correcting or label setting algorithm) 

  For each link (i,j) in the scan eligible list  
If (	^� / ��,� l �̂) Then 

Update 	 �̂ # ^� / ��,� and update the corresponding predecessor  
          End if 

 End for 
 

Step 4. (Fetch complete time-invariant likely path) Back-tracing predecessors from super sink 
vertex s up to super source r, and obtain the map-matching result. 
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Table 1 Notations and input parameters 
Symbol Definition 
i,j,k,l The indexed nodes, i, j, k, l∈N, N is the set of road network nodes, the 

cardinality of N is n 

(i,j) The indexed traffic link between adjacent nodes i and j, cardinality is m 

t,t',t'',τ  The indices of modeling time stamps, t = 1,2,…, T, T is the number of time 
stamps in the expanded network for estimation, t'>t , t" > t'  

xi ,yi
 

 The latitude and longitude of node i 
i(t), j(t),k(t) The vertex indices in space-time network, for nodes i, j and k at time t, with 

respectively. 
(i,t,j,t') The arc index in space-time network , leaving from node i to node j, with an 

entering time t and an exit time t' 
BS(j,t') Set of incoming arcs going to vertex j(t'), i.e., backward arc set including a 

number of vertexes i(t) 
FS(j,t') Set of outgoing arcs coming from vertex j(t'), i.e., forward arc set including 

a number of vertexes k(t'') 
�� , 
��  The recorded vehicle longitude and latitude at time �.  

d(i, t) The Euclidean distance from the recorded (
�� , 
�� ) to the node i.  
  ��,��,���
��, 
���  The Euclidean distance from the recorded space-time location (�
�� , 
���) to the 
space-time arc (i, t, j, t'). 
 c�,��,�� The cost of arc (i,t,j,t' ) from upstream node i(t) to downstream node j(t') 

FFTT(i,j) Free flow travel time of link (i,j) 

MaxTT(i,j) The maximum travel time of link (i,j), MaxTT<=T 
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Table 2 Estimation variables 
Symbol Definition ��,��,�� 0-1 binary variables，=1，if a vehicle passes link (i, j) from time stamp t at the 

upstream node i to t' at downstream node j, =0, otherwise 
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Table 3 Node coordinates of road network 
Node ID x y 

i 1 1 
j 5 1 
k 5 5 
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Table 4 Locations records of vehicle at different timestamps 
Timestamp ���  ���  

1 1.1 1.05 

2 4.8 1.05 

3 5.1
 

1.1 

4 4.8 1.08 

5 4.8 2.3
 

6 4.95
 

4.9
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Table 5 Possible network-time paths 
Time Index (second) 1 2 3 4 5 6 

NTP 1 (most likely network-time paths) i j j j → k 
NTP 2  i → j j → k 
NTP 3 i j j j j k 
… … … … … … … 
NTP �  i → → → → k 

 → represents matched coordinate located in the middle position between upstream node and 
downstream node. 
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Table 6 Illustration for network-time path estimation quality measures in hypothetic network 
Constructed Ground truth path (link id) i→j j→k k→j jon 

Estimate link of path i→j j→k j→k ist 
Constructed ground truth time stamps 
(second) 

4 2 3 4 

Estimate travel time 4 2 2 5 
Link identification error   Incorrect Incorrect 
Average distance (meter) 5 5 5 5 
Absolute travel time estimation error for 
correctly identified travel time 

0 2 N/A N/A 
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Table 7 Three transportation networks attributes 

Network #of nodes #of links #of traces 
Avg. number of second-by-second 

samples per trace 
New  York 

City 
9390 21734 

1200 
(synthesized) 

865 sample points 

Salt Lake City 21381 50893 2 1499 sample points 

Phoenix  19523 47713 43 926 sample points 
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Table 8 Experimental results with 1-second sampling time interval  
Road 

network 
Error 

Standard 
Deviatio

n σ 
(meter) 

Search 
Region	� 

(meter) 

Computation
al Time (Ct) 
Per Trace 

(sec)  

Link 
Identifi
cation 

Rate(Al
) 

Absolute 
Travel 

Time Error 
per link 

(Ae) (sec) 

Average 
Relative 
Travel 
Time 

Error (%) 

Computation
al Time (Ct) 

Per 
Stage(30-sec) 
of Trace (sec) 

New York 10 40 1.39 99.9% 3.2 2.2% 0.048 
New York 50 200 2.77 99.5% 4.7 11.4% 0.096 
Salt Lake 

City 
- 40 2.91 98.2% 5.5 7.3% 0.058 

Salt Lake 
City 

- 200 5.39 98.9% 4.6 12.7% 0.109 

Phoenix  - 40 1.66 98.8% 4.1 10.3% 0.056 
Phoenix  -  200 3.08 99.3% 3.5 4.8% 0.100 
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Fig. 1. Illustration of space-time path and network-time prism  
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                 Fig. 2. Hypothetical 3-node network based on two-dimensional network 
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Fig. 3. Time-expanded network presentations along different arcs at and origin and 
destination vertexes 
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Fig. 4. Different network-time path solution and calculating node-specific matching distance for 6 GPS 
points on a 3-node network based on three-dimensional network  

(projection of space-time path on the space plane) 
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          Fig. 5. Time-expanded network presentations along different arcs at one vertex 
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Fig. 6. Illustrations of different cost values calculated for different paths 
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Fig. 7. The cost values are calculated in the hypothetical network under no location data at time 
stamps 2, 3 and 4  
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Fig. 8. Algorithm 2: Rolling horizon implementation for real-time space-time path estimation  
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Fig. 9. An illustrative example with a detour and a dwell activity 
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Fig. 10. Illustrative of quantifying estimating uncertainty  
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Fig. 11. New York City, Salt Lake City and Phoenix road networks (from left to right) 
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Fig. 12. Comparison between real-world speed and map-matched results (1 second sampling interval) 
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Fig. 13. Phoenix Subarea network and 12 raw GPS points with 60-second sampling time interval 
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    Fig. 14. Number of possible space-time vertices under different location data sampling rates 
without and with AVI and additional AVL data based on PPA 
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