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Abstract

Global Positioning System and other location-based servicesdrgehicles’ spatial locations at
discrete time stamps. Considering these recorded locationzaae with given specific time
stamps, this paper proposes a novel time-dependent graph moddimateegheir likely
space-time paths and their uncertainties within a transmortagtwork. The proposed model
adopts theories in time geography and produces the feasible netwenains, the expected link
travel times and dwell times at possible intermediaipsstA dynamic programming algorithm
implements the model for both offline and real-time applicationgslimate the uncertainty, this
paper also develops a method based on the potential path ariééefasible network-time paths.
This paper uses a set of real-world trajectory data wetiite the proposed model, prove the
accuracy of estimated results and demonstrate the computatitinoeency of the estimation
algorithm.

Keywords: GPS map matching; traffic state estimation, dynamic sétopiath, uncertainty
estimation.

1. Introduction

Emerging mobile computing and sensor techniques have improvelilitigsato collect and
process real-time traffic data for traffic state monitgriand management applications. For
example, Global Positioning System (GPS)-based in car navigationdeagdea significant level
of penetration rate, and most smart phones are equipped witheGéhgers with high-speed data
communication links. Nevertheless, current vehicle locatida i still associated with location
errors, typically within a wide range of 5 meters to 300 rsetgven the ground-truth vehicle
trajectory. A critical data processing component in emergirgg [Bita applications is how to
systematically use latitude, longitude, and time stamssifgle probe vehicle or a set of probe
trajectories to estimate traffic states at differentescal

In this paper, we present a time-geography based approachrgtigige 1970) to consider not
only the geometry and topology of the road network, but alsontigedattributes in available GPS
samples. We also incorporate a space-time network-bagmésentation adapted from the
Time-Dependent Shortest Path problem (TDSP). Essentiallguesee of GPS traces with both
location and timestamp information can be mapped as a spac&djswtory or path. Within a
space-time network, there are a large number of possible wakhdifferent degrees of spatial
and temporal distance to the vehicle trajectory recordsa@unoach aims to find the most likely
network-time path that minimizes the total map-matching distanmng all possible alternatives.
Our method also allows estimation of dwell and detour times atnediate nodes and the
uncertainties associated with the likely paths. The proposédematical programming model
can integrate with various sensor data sources and firdeptimal solution that takes into
account the distance measure at different time stamps of drivaggtra

This paper is organized as follows. Section 2 provides the backgtoutite trajectory
map-matching problem, alternative solutions and the featiresr time geographic approach.
Section 3 illustrates the proposed space time network repatiearnfor finding the most likely
network-time paths, followed by an introduction on the time dependerteshpath model in
Section 4. Section 5 uses illustrative exampléutiber explain the fundamental of the model.
Section 6 presents dynamic programming algorithms to find the dependent shortest path
with generalized cost functions specific to the networletipath estimation problem. After a
discussion on uncertainty quantification for potential accessipéee-time nodes within the
estimated paths in Section 6.3, numerical experiments on a siepl®rk and a real-world
network are presented in Section 7. Section 8 concludes the p#psumimary comments and
future research steps.
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2. Background

Many traffic management and planning agencies have siastag the vehicle trajectory data
for estimating travel time, route choice behavior and agtleitation patterns. The traffic states
of interest include the most likely paths and related traffieed and density on the transportation
network. In this research, we are interested in providingme-¢éxpanded graph modeling
framework for fully utilizing location-based data and sensomlsueements from different
sources, such as automated vehicle counts, virtual detection $negllaas fixed detectors.
Within the last 30 years, a large number of algorithms have been pidpdbe general problem
of GPS map matching, which aims to find the closest or mkedlyImatched link sequence and
travel speed. These methods can be broadly categorized in the following.

i) Geometric map-matching algorithr@eometric map-matching algorithms compare raw GPS
points with the geometries of the underlying road network, in oodebtain a sequence of likely
links (Greenfeld, 2002). A simple approach along this lirte imatch each point with the nearest
road node (Bernstein and Kornhauser, 1996), while other sophistioagitods involve
point-to-curve or curve-to-curve geometric distances {8Vt al., 2000). As this approach
generally does not consider connectivity, it is possible thatridehed links are disconnected
from one other. To address this issue, Fu et al. (2004) proposed a hybmadataedpag algorithm
by examining the geometry of the road network and fuzzy comprehgudiyment. Kong et al.
(2013) recently integrated curve-fitting-based method andhileegracking-based method to
estimate traffic states from GPS probe data along a path without detour.

i) Topological map-matching algorithnAn approach proposed by Greenfeld (2002) aims to
find a topologically feasible (but time-invariant) path throubk road network, with the arc
weights in the related topological path-search algorithm withouidenivsg any heading or speed
information from GPS data. Meng (2006) further considered othetagipal features such as
road intersections, road curvature and road connections. Someagbkigical map-matching
algorithms (Yin and Wolfson, 2004; Yang et al., 2003) utilize the adivity and contiguity
information of road networks to improve link identification esmtin GPS map matching
applications.

ii) Statistical algorithmsHoney et al. (1989) first introduced a probability-based algorithm
clearly definite an elliptical or rectangular confidencgioa around a position. Zhao (1997)
suggested that the error region can be derived from the \@ar@nces associated with GPS
positions. To further quantify and determine map-matching proti@biljiven noisy data, this
type of algorithms have integrated various statistic methodsan® a few, Kalman Filters and
Extended Kalman Filters (e.g. Kim et al., 2000; Krakiwsky et al., 1988; Obradali¢c 2006, Jo
et al., 2012), fuzzy logic (e.g. Quddus, 2006; Zhao, 1997; Syed and Cannon, B&@gHian
inference (e.g. Pyo et al., 2001), and Particle Filter (Pekeal., 2011). Within an optimal
filtering framework, the above algorithms recursively reate the likely path and error
covariance matrix associated with the estimated statesr ufitferent measurement error
assumptions.

Beside these time-invariant algorithms, studies have dt&wteiccount for travel time beside
distance of vehicle trajectories. Aiming to assist infatnmffic management decisions, traffic
state estimation techniques are often used to estimate emd-ioip travel time and congestion
levels of the traffic system using heterogeneous data souteely studies such as Gazis and
Szeto (1972), Cremer and Papageorgiou (1981), and recent studiesasudfang and

Papageorgiou (2005), Mufioz et al., (2003), Sun et al. (2003) and Work et al. (2010) focus on how

to use detector data and various traffic state filtemeghods to estimate traffic flow, density and
gueue lengths on each link segment of the freeway corridoretdeand Bayen (2010) also
proposed a novel method of virtual trip lines to estimate ¢raffites based on trajectory data
from both arterial and freeway corridors. A recent study bgdoet al. (2013) extended Newell's
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three-detector method as a stochastic measurement equaticamtifyotine value of Automated
Vehicle Identification (AVI), Automated Vehicle Location YA) and point sensor

measurements.

While significant progress has been made in recent years,ateestill a number of challenging
guestions to be addressed to systematically estimate vphtble within a transportation network
based on trajectory data. First, many GPS map-matching &lgsrimainly focus on spatial
attributes of GPS records within a short time window, in comjomowvith the geometry and
topology information of the road network. A desirable traffic seg@mation model in this

context should utilize both space and time attributes from AVI, and AVL/GiRSlsalata. Many

new applications are looking for a much richer set of traffates beyond the likely link

sequence, such as the durations of dwelling or stationary iestjviink traveling time and

waiting time at intersections. The above information is aaitinot only for many traffic

engineering projects (such as optimizing traffic signalirtg) but also for a wide range of
accessibility based multi-modal transportation planning decisferts, evaluating impact of
parking policies on activity duration at downtown areas).

Second, many existing GPS map matching algorithms are venplsufta high-frequency
location data (say every 1 second). It is very challengiggluable to construct a well-defined
optimization or estimation framework that can be fully utilizeation-based data sources with
different sampling time and spatial resolutions. For example atielgg interval for cell phone
tower data could be significantly large, with a range of 30 sedmn8anin (Thiagarajan et al.,
2011). In this case, if one only simply considers the distanoe GPS points to a single node or
a single link, then it could fail to capture several mé&ators in real-world trajectories, such as
the link-to-link connectivity, possibility of dwelling and stationary wities.

Third, a desirable traffic state estimation method should ngt idehtify the most possible
map-matched links but also describe the uncertainty ofdtimation results, in a similar way to
the mean estimate and the corresponding estimation erronceigavariance matrix in a general
Kalman filtering framework. In the case of path matching, wee iaterested in several key
guestions. 1) If there are alternative likely paths availathin a similar estimation error range;
2) How many of those paths can be found, and 3) Is it possible &agecthe sampling interval
or add additional location sensors to reduce the estimation uncertainty?

With a unified time-expanded graph modeling framework across retitfe types of
location-based vehicle measurements, the methods in thisqapertegrate heterogeneous data
sources to improve estimation quality and address specifits fe@m high-quality traffic data
mining applications. Our goal is to develop a theoretically sanutcomputationally efficient
method for both offline and real-time applications. Our proposed metrotlther calculate the
uncertainty boundaries of estimated paths in a transportatioronketWith a solid uncertainty
estimation results, one can evaluate the quality impact & &&mpling intervals, market
penetration rates of probe vehicles, as well as the spatial resalfitioderlying networks.

3. Conceptual foundation, problem formulation and illustrative example

Time geography represents individual's actual and potentialility using space-time paths
and space-time prismeespectively (Hagerstrand 1970). The sample space-tirheirp&tig.1(a)
illustrates a traveler's movements among activity locatimitis respect to time. The slope of the
path segment indicates the moving speed: a steeper line meemsime is spent between two
locations and therefore lower speed; a vertical line corresgonctsnducting stationary activity
at the same location through time; and the maximum achievabéel spedetermined by the
individual's mobility level. A space-time prism is the erope of all feasible space-time paths
between two activity locations given the time budget for tliageand the maximum achievable
speed (Fig. 1b). Its projection the space constitiepotential path are@PPA) that delimits all
feasible routes in space.
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(Insert Fig. 1.)

In the real world, individuals’ movements are often confined &ignetworks such as those
corresponding to transportation systems and major activity locafdensrdingly, one can define
network-time pathsind network-time prismso take into account additional constraints such as
geometry, connectivity, and speed limits imposed by spatialonkswMiller 1991, Kuijpers and
Othman 2009). Each location within the network has a forward oplabhal for the least time
cost from the origin to that location, and a backward optimal label fordketlme cost from that
location to the destination. A location within the network is inRR& if and only if its forward
and backward optimal label costs together do not exceed thebtidget for travelling. The
network time prism has been applied to study individual's potemtéadility (e.g. Down and
Honer 2012) and create people-based accessibility measuresweug.1R98, O’Sullivan et al.
2000).

In this paper, the specific traffic state estimation probkims to estimate most likely
network-time paths, given a sequence of vehicle location reesaikable from, AVL and AVI
sensors. The underlying transportation network (serving as Ispatistraints) typically contains
a set of geographically referenced nodes (such as freewaye/digerge nodes and arterial
intersections), and a set of directed links in different iyae categories, for example, freeway,
highway and arterial streets. Without the loss of gengralie assume the geometric curvature
information of a road has been coded through a vector of node maiesli If an original road
link is represented as a sequence of curved road segniemtsyé will accordingly decompose
the link to a sequence of straight-line links in our model.

The constructed time-expanded network can be defin&l=aév, A, T), whereV is the set of
time-dependent vertexes, of cardinalityx T, and A is the set of time-dependent arcs
corresponding to any feasible transition between vertexes. Tdwetited time-expanded
networkpermits us to draw upon the many algorithms of time-dependent sthpaté and other
related dynamic network flow algorithms that can exploit theiab&eatures of the network-path
map-matching problem. The objective of the estimation probldémfiad the most likely path(s)
in the time-dependent network that can minimize the totdidrafate estimation error while
subject to network connectivity and feasible travel time reguents. Tables 1 and 2 give the
related notation, input parameters and estimation variables dfitesjgonding problem.

(Insert Table. 1.)
(Insert Table. 2.)

Let us first consider a hypothetical 3-node network and 6 rawidoceecords of a vehicle,
shown in Fig. 2(a). Nodes and records detailed coordinate infommatgiven in Tables 3 and 4
respectively. Obviously, there are two potential pathafeehicle traveling from nodeto node
k, namely Pl—j—k, and PA—k.

(Insert Fig. 2.)
(Insert Table. 3.)
(Insert Table. 4.)

In our notation system, a vertex is always associated with a time indexdambied ait) for
nodei at timet. Accordingly, an arc is also indexed by time interval numbedsisexpressed in
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terms of four indicesi,j,t"), and arc costf,'jt’ is associated with a traversal action leaving from
nodei to nodg, with an entering timeand an exit tim¢'.

The constructed time-expanded network has a time dimensibr6ofor each node, e.g., the
set of vertex iv={i(1),...i(1),...,i(6), j(1),...,j(6)K(1),..k(6)}.Using nodei as an example, the
arc setA has two categories of arcs can be originated from a veéjtgaveling arcs that move
straight to the next nodgA); ii) dwelling arcs that stop at the same node till next staenpt+1.
As shown in Fig. 3a, arg,L,,2) is an example of a dwelling arc, while the other aag, arcs
(i,14,6) and arci(1k,2) , are traveling arcs.

(Insert Fig. 3.)

Table 5 further illustrates the possible network-time patfi$?) in the sample network. Along
the time period from second 1 to second 6. Fig.4 aims to dispteapthetime paths 1 and 2 in
three-dimensional geographical space. In addition, paths 1 and 2 have the sameessquedes
@i, j, K), but different dwelling times at different locations. NBPhas a different node sequence
fromi toj.

(Insert Table. 5.)

(Insert Fig. 4.)

A typical GPS map matching method calculates the shortdahdésfrom a point to a line
using the orthogonal distance function that finds the length of thaylst line segment that
intersects that line at a right angle. In contrast, our praposethod calculates the distance
between two geometric locations referenced at the same timp &idully consider the temporal
dimension of available information.

4. Time-dependent least cost path mode for joint estimation of travel time and link
sequence

The key question in the previous example is how to minimize thealbestimation cost for
possible time-dependent paths. This section constructs an optimizatidel for the generic
network-time path estimation problem as a time-dependent-desistpath problem. This
optimization framework assumes the arc cost has been cattdtat each feasible arc in the
time-expanded network, and the optimal path finding algorithm to beemted in the next
subsection is able to find a network-time path solution that maenihe total traffic state
estimation errors among all possible solutions.

4.1 Data sour ces and optimization model
The optimization approach in this paper can accommodate two typicaodetes for vehicle
movement:
i) AVL data, containing semi-continuous location poiftg, g5} for t=1,..., T, for example,
from GPS navigation devices or cell phone tower location deith, different degrees of
measurement errors.

i) AVI data, from a pair of vehicle tag readers (e.g., Blo#t readers) at timiadicest andt'
at nodes andi', corresponding tqgt, g5} , {9, g%}, respectively.

We first define a binary variablef_'jt' to indicate if a vehicle passes lirikjj from time stamp
t at the upstream nodeo t' at downstream node With the constructed time-dependent network,
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we can easily establish the following integer programmiaglel with objective function (1) and
flow balance constraints (2-4) at different types of verficesnely trajectory origin, trajectory
destination and the other time-indexed nodes.

The objective function minimizes the total estimation error betwobserved data points and
estimated nodes with the corresponding time indices, th3lisawm Yr=, d(i, T), where d(i, 7)is the
time-index distance measure between observed location to the mapping node at sangpiindeKr.
Depending on the estimation error distribution (e.g. normally distribegedniformly distributed),
the error measure could be squared or absolute distance betweeofdggaitions. As the space-time
network is constructed using modeling time indewe need to link these two time index systems
together. If the two systems are consistent with the sameutiesolone can simply consider
Yicpath 2r-, d (i, t) as the objective functiomnterested readers are referred to a booklnyja et
al. (1993) for a systematic discussion on flow conservation camstraithin a network flow
programming framework, and a recent paper by Yang and Zhou (2014) otoHownulate
multidimensional space-time network models.

Without loss of generality, we first consider there are highuency of location data available
across all timd, so we can consider the following equivalent objective funactith respect to
each space-time arc.

Min C = ¥ jyea Yi-1 ZZ’» (Cltjt x Zit-'ft ) .
Subject to:

(Flow balance constraints at origin node r and time t=1, namely verjeasr&hown in Fig.3a.)

!

Yierse zy =1 t=1 )

(Flow balance constraints at the destination node s and'timenamely vertex s(T) as shown
in Fig.3b.)

!

Dit<t! thg,t =1 t'=T 3
(Flow balance constraints at intermediate vertex j(t')):

tt' t' e t'—1,t' tht'+1 _
Yi(DeBS( ) t<t! Z] — Yk(t")eFS(it )t <t zij tZ —Zj =0

vj,vt' 4)
Constraints (2)—(4) ensure flow balance on the network atribm wertex {1), destination
vertex §T) and intermediateertexj(t), respectively. It should be remarked tHj,t") is the set
of incoming arcs going to vertgft'), andFgj,t') is the set of outgoing arcs coming from vertex
j(t). As an example, Fig.5 shows a backward vegexBS(j,3))={(i,1), (,2), (,2)} and a
forward vertexsetFS(j,3))={ (k,4), k,5), k,6), (,4)}.
(Insert Fig. 5.)

4.2 Defining arc cost for traffic measurement in a space-time network

The formulation challenge within an expanded network structurevisto properly define and
calculate arc costs for the network-time path estimatioblem. To estimate the cost of each arc
(i,t, j, t') along the link i; j), we have the followingeneralized time-indexed location-to-link
distance equation:

it =3t d(i,),7) (5)
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where
d(i,t) T=t

d(i,j,7) = dg,t" =1t (6)
dtt (9%, 97) otherwise

with the time-indexed location-to-node distance measure function:

46 = G~ 99+ (i - 65)° @

and the approximate distance from GPS positions to intermediate gbinlisie (network arc):

art' (g%.95) = J Gt x (o — x)+x) — G312 + (s X () = ¥ +¥0) — g3 2 ®

As a special case, if we do not consider the distance frof @Ritions, we can have a
simplified time-indexed location-to-link distance measure equation:

' = d(, ) +d(,t) 9)

Using Eg. (8), we compute the straight-line distant@,j, ) from the map-matched
coordinate to GPS poirfgz, g7) at timez The detailed calculation steps will be illustrated in
Fig.6 in the following section. Furthermore, Eq. (5) can be applied dpecial case for waiting
arc(i,t,i,t+1) (for non-traveling activity locations or stopping before sidjigats) as shown in Eq.
(20):

it =d@,0) +d(,t + 1) (10)
For simplicity, Eq. (5) will double-count the location-to-node dists (with respective to
intermediate nodg in consecutive linksif) and {,k)). Because different paths would have the
same degree of distance “double-counting”, the proposed optimizatieatieejfunction does

not lead to biased results.

5. lllustrative example

We now use Figs. 4 and 6 to illustrate how different cost valteesalculated in a hypothetical
network. As shown in Figs. 4(a) and 6(a), a space-time p&h)(if the time-expanded network
contains 5 vertices, including vertgd), vertexj(2), vertexj(3),vertexj(4)and vertexk(6), and 4
arcs including are(l, j,2),arc{,24,3), arc{,3j,4)and arq(4k,6). This solution reads as a
sequence of events: the vehicle arrives at nadiéime 1, arrives at nodet time 2, leaves noge
at time 4, and arrives at noHlat time 6. The space-time path shows that a vehicle passtthe pa
(P1:i-j-k). This implies matching record 1 to nogaematching records 2, 3, and 4 to the same
nodej, matching record 5 to an intermediate point on ljnk)( and matching record 6 to nokle

(Insert Fig. 6.)

As GPS points 1, 2, 3,4 and 6 have been matched directly to,nagesse Eq. (7) to calculate
the vertex distance:
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dit=1) =/(1 — 1.1)2 + (1 — 1.05)? =0.11.
d(,t=2) =/(5 — 4.8)2 + (1 — 1.05)2 = 0.21.
d(,t=3)=y/(5 - 5.1)2+ (1 - 1.1)2 =0.14.
d(j,t=4)=/(5 — 4.8)2 + (1 — 1.08)% = 0.21.
d(k,t=6)=+/(5 — 4.95)2 + (5 — 4.9)2 = 0.11.

As a special case, record 5 is matched at an intermediate location wikhjrk)i,so we need to
calculate those vertex cost the vertex (@},f (g,?, gf;) as Eq. (8) leads to

dﬁf(g£,g3)=\/[EX(xk—xj)Hj—‘kB] + S x =) +y - 23| =073

Finally, as plotted in Fig. 4b, all arcs cost can be computed as:

ci7=d(i,1) +d(j,2) <0.11+0.21=0.32,

/= d(j,2) +d(j,t=3) ~0.21+0.14=0.35,

Cﬁf: d(j,t=3) +d(j,t=4)~0.14+0.21=0.35,

ciio=d(,t=4)+d "’ (95, 95 ) +d(k =6)<0.21+0.73+0.11=1.05, and

the total cost of path 1 solutiom =+’ +c"+¢/70=2.07.

Along the same physical path TP1, another possible map-matblutipn (TP2) is shown in
Figs.4(b) and 6(b), which is slightly different from TP1 showirigs. 4(a) and 6(a) by matching
the GPS point at timestamp 2 to the intermediate point alond(iljpkinstead of nod¢. The
straight link distance in the former case is much shdntan that in the latter case, while all the
other arc «costs are the same for both solutions. The updated cast
c;7=d(i,t=1)+d; 7’ (92, g2)+d(t=3)= 0.11+1.8+0.14 =2.05;* and ¢}’ are kept the same as
the solution TP1. As shown in Fig. 6(b), the total path cost of EP2pproximately
2.05+0.35+1.05 = 3.45, which is higher than 2.07 in Fig. 6(a). This mbahshe solution in
Figs. 4(a) and 6(a) is clearly a better map-matching solution.

On the other hand, when the modeling and sampling intervals aresdiffend there is no
location data at timeé, we can consider a default value dff,t) =w in the generalized cost
function,where w is a constant. One can use an approach of interpolating betwemssve
points to come up with a reasonable valuew of By doing so, we hope to still use
Yicpath 2r—, d(i,t) to find the most likely path based on (possibly limited) infdiomaon
available location data and the underlying network connectivity comstrai

For the GPS trace and network in Fig. 2, if we assume tireréno location data at time
stamps 2, 3 and 4 in Fig.7a, we also can use Eq. (5) to calculate the Vvdittxase.

dit=1) =/(1 — 1.1)2 + (1 — 1.05)? = 0.11,
d(j t=2) =o,
d(j,t=3)=w,
d(j,t=4)=w,
d(k,t=6)=+/(5 — 4.95)2 + (5 — 4.9)2 = 0.11,

- _ Z  s_ 2
die(93.95) = \/[ET: X (x — x;) + x; — 4.8] + [ET: X (yk —¥j) +y; — 2.3] ~0.73,
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Therefore, assumed = 0, all arcs cost can be computed along TP1 as plotted in Fig. 7b.

ct2=d(i, 1) +d(j,2) ~0.11+w =0.11,

C]%f: d(,2) +d(j,t=3)~w +w =0,

cff= d(j,t=3) +d(j,t=4) ~0 +w =0,

ofe=d(t=4)+d}¢ (g3, g5) +d(k,t=6)=0.73+0.11=0.84, and
the total path coste; +¢ +c’ +c40=0.95.

(Insert Fig. 7.)

6. Solution algorithm

6.1 Time-dependent least cost algorithm using dynamic programming

Using the above mathematical programming model, one can deevaptimality condition,
based on Bellman’s principle within a dynamic programming (DRhéwgork. Specificallyy; .
denotes the total travel cost of the current least-costfmathoriginr at time 1 to nod¢at time
t. An optimal path in the time-expanded network should satisfy the followingtaorgdi
A 0 ,ifj=rt' =1

it = {min (Aj,t’—l + cjty;_l't’,ﬂi‘t + cit,‘jt’) , otherwise for feasible(i, j)
We now solve this problem by enhancing label correcting orb&¥ed algorithms
(Ziliaskopoulos and Mahmassani, 19%3habini, 1998). It is worth noting that, the proposed
DP-based framework does not need to explicitly construct spaeengtuworks for each trace,

and the major key steps are label checking and updating.

(11)

Algorithm 1 (offline network time path estimation)
Input: network G, origin noder, destination node, and location data from time 1 i@
maximum allowed location-to-node distange(e.g. using maximum GPS error range)
Output: The most likely network-time path fronil) to §(T).

Step 1. (Preprocessing)
For each node within the search region, use Eq. (7) to calcuteteéndexed location-to-link
distanced(i,t) for each time

Step 2. (Initialization)
Aj,t = ,Vj; Ar,l =0;
Step 3. (Label updating)
For timet=1toT
For each link {;j) within the search region at tinhe
Step 3.1 //traveling arc
For timet'=t+FFTT(,j) to t+ MaxTT(,))

calculatecif'f'based on Eq. (5).

If (d(i,)< ¢ andd(i,t)< p andi;, +cff < 2;,) Then

Update 4, =/1i,t+cf_'jt'along traveling arc, and update the corresponding
predecessor at vert@t') as vertex(t)
End if
End for

10
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Step 3.2 // waiting arc
If nodei allows waiting and,; , + ¢{** < 2;4,) Then
Updatél;;, = A; + cif'i”l along dwell arc, update corresponding predecessor at vertex
i(t+1) as vertex(t)
End if
End for each link
End for each time

Step 4. (Fetch complete time-dependent likely path) Back-tracing predersfrom super sink
vertex sT) up to super souragl), and obtain the map-matching result.

The flow balance constraints presented in section 3 is inheremibedded in the space-time
search process in Step 3, that is, for each timer each link (j) and for each time'.
Specifically, the flow balance constraints at the origin argfimition are satisfied when we start
searching from origin(1), and back-trace from super sifi).

Algorithm 2 (Rolling horizon implementation for real-time estimation)

Input: networkG, origin noder, estimated traffic states up to tirtle newly received online
location data from timé&l tot2, maximum allowed location-to-node distance
Output: Likely current locatiors* at timet2, the most likely network-time path fron(il) to

(12).

Step 1. (Preprocessing)
For each node within the search region, use Eq. (7) to calduteeéndexed location-to-link
distanced(i,t) fromt=t1 tot2

Step 2. (Initialization)
Ajr = o0 ,Vj, fromt=t1 tot2;
Step 3. (Labd updating)
For timet =t1' to t2, wherdl'=t1-q andq is the time lag length
For each link {,j) within the search region at tinhe
Perform time-dependent label checking and updating, similardpsS2.1 and 3.2 in
Algorithm 1
End for each link
End for each time

Step 4. (Fetch partial likdly path up to t2) Find the most likely current locatiet at timet2 as
the node with the minimal label cosf,, across all nodesat timet2.
Back-trace predecessors from the likely current locatfoto &', and obtain the map-matching
result, wheret' <t1, butt' can be later than the original starting titwel, if a short look-up
window is used.

(Insert Fig. 8)

Algorithm 1 can find global optimum solutions and is suitdbteoffline processing by taking
the entire GPS trace into consideration. Essentially, our peddoB algorithm is able to solve a
multi-stage decision problem by breaking it down into a ctte@ of simpler sub-problems. As
illustrated in Fig. 8, in Algorithm 2 for real time mapatohing applications, the developed DP
method seeks to solve each on-line traffic state subprobleyroank for each stade (e.g. 10
min) given that the solutions from previous time stages baem computed and stored. When
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new data of a new stage (say 8:00 to 8:10 AM) is received frontlimog2, we need to roll back
to an earlier time stamid' (say 7:30 AM) to take into account that a link might takeaximal
duration ofg intervals to traverse.

Overall, the average-case time complexity of Algorithm 10@xax f), where T is
the planning horizonT(is the number of time intervals in the expanded network foresipae
path estimation)a is the number of links covered at each time interval withsearch region;
andp is MaxTT-FFTT for each link. The complexity of Algorithmireduced to Gf{xax f),
whereH= t2-t1+q which is the sum of estimation time stage length. In the warst, the search
process has to reach all links, thatdssm in the above formula. On the other hand, the space
complexity of the proposed algorithm 1 is determined by (1) the cfizebel cost vector

Ajr,asnxT, and (2) the size of quadratic cost matfgjt' with a dimension ofi*x T2 For an
efficient implementation of the quadratic cost ma:tfi}é, one can use hash tables to store

feasible values incif'jt'for each physical link and possililéo-t' pairs, as the number of physical

links is dramatically less than the number of links (i"®.jn the complete graph, and the average
out degree of a node in a transportation is between 2 and 4.

6.2 Handling dwell and detour time at intermediate destinations

The identified time-dependent trajectory is extremely udefuldentifying a trip chain that
contains intermediate stops and detours. Fig.9 illustrates hoprapesed algorithm represents
the detour based on the 4-node and 5-link road network with 7 GRIS.dnithis example, GPS
point setis = {1, 2, 3, 4, 5, 6, 7}, and GPS curve set iss312-3, 3—4, 45, 556, 6-7}.

A traveler goes to shopping mall 1 from his/her home, and dbaring back before driving to
shopping mall 2. This leads a path with lotp>j—il—i2—k.
(Insert Fig. 9.)

For a systematic comparison, we can match this GPS toaee4dtnode and 5-link road
network based on the different algorithms.

i) A point-to-point algorithm could produce a solution where GPS point 1 nsataits 1, point
2 matchesiodej, point 3 matches nodepoints4, 5 and 6 match nod&, and point 7 matches
nodek. As a result, the matched link set is$-Hj, j—i2,i2—Kk};

il) Based on point-to-link algorithm, GPS points 1 and 2 matdhili—j, point 3 matchebnk
j—k, point 4 matchedéink j—i2, point 5 matchetink i1—i2, and points 6 and 7 matdihk
i2—k. Similarly, matched link set is3¥—j, j—k, j—i2,i1—i2, i2—k};

iii) A curve-to-link algorithm can generate that GPS eutw»-2 matches linkl—j, curve 2-3
matchedink j—k, curves 3-4 and 4-5 matchlink j—i2, curve 5-6 matchedink i1—i2, and
curve 6-7 matchedink i2—k, which leads to matched link set ag-pj, j—k, j—i2, i1—i2,
i2—Kk};

iv) Based on time-dependent least cost algorithm using our ppmhys®mic programming
the matched result is time dependent path as shown in Fig.9b, nabié)y-j(2)—
j(3)—i1(5)—i2(6)—k(7), with a matched link set as¥l{>j, j—il, i1—i2, i2—k}.

Accordingly, if only the geometric distances from GPS pointg, 3, 4 and 5 to link in the
network are used in a map-matching algorithm, then it is néaltto decide if and how the
detour should be allowed. Recall that standard label correatidgsetting algorithms do not

12
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allow tours with loops. However, using the space-time reptatien, the resulting space-time
path is still a simple path without loops through time-indexedicesyt as shown in Fig. 9b.
Accordingly, a dwell arc and a detour arc can be automigticintified with associated activity
time duration. Such information on trip chaining can greatly hekpxtonine sample travelers’
movements throughout the day with different trip purposes andl times at different activity
locations.

6.3. Quantifying estimation uncertainty based on network potential path area

We now calculate the uncertainty associated with an a&stthresult by adopting the concept
of the Potential Path Area (PPA) within an underlying netwbitst, we drive the least cost path
trees based on the proposed network time path estimation algasitlenfrom the origin and the
other one towards the destination, which lead to the forward opkinel cost)\f . from the

origin to vertex i;t) and the backward optimal label co’cﬁt from vertex {t) to the destination.

Secondly, given the minimum estimated c65tand the error bound, the time budget
for travelling can be determined by the maximum tolerant €dst-(¢ ). Accordingly, the PPA
can be defined to delimit all accessible vertices. Sincecatibn within the network is
accessible if and only if its forward and backward optitabel costs together do not exceed
the time budget. The set of all accessible vertices can be defialgticlly as:

M={GOeVIAL, +2}, <C" +¢} (12)
Which is subject to the error boundthat reflects the tolerant level. For example, the error
bound ¢ can be calculated as a function of the number of samplets gmires the average
estimation error say 0.5 meters. Finally, we use thtgetrepresent the size of PPA within the
network subject to estimation quality constraints. Hence otlaé number of verticel! describes
the uncertainty or confident level associated with thienasibn result: more accessible vertices
provide more feasible arcs that a trajectory can be matohdnich results in higher uncertainty
associated with an estimation result. By doing so, we can useithieers of possible space-time
vertices as a proxy to evaluate the uncertainty changes undmediffiata collection settings.
This sensitivity analysis result can provide critical infation for selecting different sampling
rates and additional information sources such as AVI, AVL at varioasdns.

In an extreme case, there are only two accessible venvbésh means that a series of GPS
points can be matched only to that arc; therefore, thereusaestainty associated with the result.
Fig.10 shows general cases where there are multiple fegsitthes. The introduction of
uncertainty based on the network PPA can provide additional iafmmmrather than as set of
most likely map-matching space-time paths, and it may athaceethe required sample interval
(e.g. second-by-second). For instance, Fig.10(b) has largerh@RArtg. 10(a), which includes
two more vertices and result in one more possible feagiblih. Therefore, even the
map-matching results are the same, the first result is 100% sureetasult is correct, while the
second has an uncertainty associate with the estimation resaliseethat are other feasible
options available. Besides, comparison of Fig 10(a) and Fig. 10(b) showehmgttvork PPA can
reduce the sampling size (e.g. 1s to 2s).

(Insert Fig. 10.)

7. Numerical experiments

The applicability of proposed methods is illustrated using ecapidata from three U.S. cities.
We evaluate our algorithm using four network-time path estimationiastet

i) Computational time(t):
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Total caculation time
Ct = (13)

" Number of GPStrajectories

i) Average link identification rateA():

__ Number of correctly matched road links

Al

(14)

" Number of matched links for a traveller

iii) Average travel time errors for correctly identifiedks (A€):

Y Absolute travel time error of each correctly matched link
Ae = B 24 (15)

Y Actual travel time of all correctly matched links

iv) Average relative travel time errof):

Ae
Ar = - -
Y average travel time of links

(16)

To illustrate the above measures, Table 6 shows estimated feswatsample GPS trace in the
hypothetic network in Fig. 2b. As correctly matched road linksliaks i—j, j—k, the average
link identification rateAl=2/4=50%. At lastAe=(0+2)/2=1, according to Eq. (16).

(Insert Table. 6)

We implement the DP algorithm using Visual C# 2010. WHopeed all of the
experiments on a Lenovo ThinkPad E40 laptop with 2.53 GHz Intel i5 @Y &B memory.
First, the C# algorithm is tested against a linear progragnmindel implemented by GNU
Linear Programming Kit (GLPK, 2012), and the latter open-soummear Programming solver
produces the same results but with much longer running timehé&Wetested the performance of
the map-matching algorithm on three networks, namely New ®ilgk (New York), Salt Lake
City (Utah) and Phoenix (Arizona). Table 7 shows their basic argthattributes and Fig.11
illustrates the networks, We generate the New York @GBS data through a mesoscopic
dynamic traffic assignment simulator, and a small percentaggenmediate stops are generated
at various locations. The last two GPS data sets in Skdét City and Phoenix contain 2 and 43
real-world GPS data traces, and externally collected ttamelrecords on links, in July 2013 and
April 2014 respectively. The first synthesized data set in Mewk City with a large number of
GPS traces serve as the ground truth data for evaluating the impact daaRsror range, while
the last two data sets are used to identify potential issues raisesbirneorld setting.

(Insert Table. 7.)
(Insert Fig. 11.)

For experiments on the New York network with synthesized datdiystessume the error of
GPS points follow a normal distribution, with a mearn:cf0 and standard deviations as 10
and 50meters, respectively. As the probability Rreda(, u+30)=99.7% for a normal distribution,
we set the maximum error range paramet@oreviously defined for reducing problem space in
Section 5.3) asd Table 8 examines the map-matching quality for the sinilidéasets. When
the actual error standard deviatieris reasonably small such as 10 meters, it is easy &nobt
very satisfactory results with close to 100% identifamatrates and low running time (1.39
seconds per trace). Given a large GPS error of Standafdtida ¢ = 50 meters, we observe an
increase in computational time due to the extended search rangpeiCleatage of trajectories
with all links being correctly identified is downgraded to 99.5%e1@ll, when a trace contains a
large number of noisy GPS points on a high-density network, thengutinie of this approach
increases dramatically, for example, reaching 2.77 secondsgoer in the New York City
network with assumed standard deviaterb0 meters.
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(Insert Table. 8.)

For the last two data sets with real-world GPS traces;olected 2 and 43 traces which pass
different link types including highway, arterial, collector, frggaoad and ramp. As shown in
Table 8, the network-time path estimation results still heacsatisfactory level with link
identification rates of 98.2%, 98.9%, 98.8% and 99.3% under differemthseegions and
networks.  The obtained correct link identification rate of 9913®hoenix network is similar
to the previously reported performance (see Quddus, 2006, Velaga et al., 2009).

In order to compare with commonly used existihgorithms, we also implemented GPS map
matching methods with different distance measures, withiererge modeling framework as
shown inAppendix I. Under the Phoenix network with one second frequency, wa@ihtab%
and 88% and 92% as the rates of correctly identified links, rixsplgc based on the
commonly-used distance measures, namely point-to-point, point-to-eumyecurve-to-curve
methods. In comparison, the proposed optimization model in the time-expaetheatk can
systematically capture the distance between a sequenceSgb@ifts and a subpath of links in a
transportation network. That is, the existing methods tylpidatus on the distance between
individual objects (such as GPS curve, link, or node), while athod can take into account a
wide range of distance measures between a large number ofp@RS and a dynamically

defined subset of links. With the help of quadratic distance/cost m#r'ixour method is able to

further identify complex space-time activity patterns suchdet®urs, intersection stops and
activity stops.

As the network structure is taken into account automaticallyhé least cost path search
algorithm, the proposed algorithm can inherently maintain connectivity thraughdiong a path,
and it also shows superior performance in precisely recognizing thecgistam GPS points to a
set of road segments in an optimization-driven frameworkhdulsl be noticed that, if one only
considers simply the distance from GPS points to a single araaeingle link, then it could fail
to capture several major factors in real-world trajeemrsuch as the link-to-link connectivity,
possibility of dwelling and stationary activities.

The link identification rate of the two real-world data setslairely lower than the rate based
on simulated data sets, and in particular, the computationapgmteace reaches 5.39 seconds in
Salt Lake City network with 200-meter search region, asitiakerlying structure has a very high
fidelity node-link coverage. There are few potential reasonspéssible mismatches when
applying the proposed algorithm in real-world settings. The propogedtan explicitly allows
loops around nodes, so it introduces possibilities of visiting a nodethemeonce. This issue is
more likely to occur when adjacent links of a node are very short, espeadaipared to the GPS
error range defined by in our algorithm. The challenge associated with a real-wdatd set is
that, the GPS error range is a time-varying and situationadepé parameter, so estimating are
liable GPS error range is quite important for the proposeditdgorThis type of error can be
mitigated by adding a reasonable minimum time threshold for revisiting a Alstenote that the
maximum computational time of per stage of trace (30-se€).189 seconds, therefore, our
rolling horizon implementation can be applied to real-time reawf the traffic estimation
applications.

Table 8 gives a range of the average relative traved &mor between 2.2% and 12.7%.
Specifically, Fig.12 shows the comparison results between theatstl speeds and the actual
speed from the Salt Lake City data set, while the actuadsgata are calculated based on the
directly measured travel time records by non-driver data totkeasing high-solution clocks and
GPS devices. The figure shows that the error is relativeall Hetween estimated and real-world
values when the driving speed is low (corresponding to a longdrhnl time). The large speed
discrepancy is typically observed on freeway links with longefrime on mainline segments, as
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well as complex cases with short and complex ramps on both ends.

(Insert Fig. 12.)

An important practical issue for the network-time path esion is how to handle relatively
long GPS sampling time interval, e.g., with a long range of 5 to 48Gnds. In this case, as
illustrated in Fig.13, there are multiple subpaths between dansecutive sample locations.
Therefore, when we reduce the sample frequency (e.g. more8thaaconds), the number of
possible matched vertices will quickly increase. On therdthed, we find that the number of
uncertainty subpaths depending on the sampling time interval adénbiy of road network. At
high density of subarea, it could reduce uncertainty based onn&vadditional AVL data, e.g.
high-frequency Differential Global Positioning System (DGB&R, from other detectors. As Fig.
10 illustrateswe use PPA to delimit all feasible routes in space, androalizaccessible vertices.
Consequently, the numbers of possible space-time vertices undegrdiffication data sampling
rates without and with AVI and AVL data Phoenix Subarea netwoedee shown in Fig.14. The
proposed optimization method still allows us to systematicallgcselot only highly possible
map-matched links and but also the most likely sub-paths among serat@late alternatives.

(Insert Fig. 13.)
(Insert Fig. 14.)

For 60-slow frequency GPS data, the correct identification ratethefalgorithm are 97.8%
without additional data, which is similar to the performangeoned by a recent study by
Quddus(2015). If AVI or AVL data could be used at high density sabaeevork, the algorithm
further provides a 99.2% correct link identification.

8. Conclusion

This paper develops a novel path-oriented traffic state d@siimanodel based on time
geographic principles and a time-expanded network representafie adapt a dynamic
programming algorithm to solve the proposed models. The proposedhatgcen not only find
the most likely used road path, but also estimate the resuitikgravel times and activity
duration at possible intermediate stops, as well as timadistin uncertainty measured by the
number of accessible space-time vertices. The optimal sokltjonthms are applicable for both
offline data mining applications and real-time traffic estimatasks.

While focusing on improvements in estimation accuracy, this palperdevelops a rigorous
optimization framework that can systematically utilize baftatial and temporal distance
measures and network connectivity. Compared to the existing pguoirig point-to-link and
curve-to-curve GPS map matching algorithms, our algorithmachieve similar accuracy when
the commonly used spatial distance measures perform well with dagpling rates and
relatively simple topology. Under low sample rates and comglewpdral and spatial activities,
our proposed algorithm can simultaneously estimate the traveland traveled links within the
network connectivity constraints to find the likely paths anch&rrjuantify the uncertainty level
of the estimation results.

Future research will be focused on how to handle possible GE&draes with low sampling
rates without another source data and resulting large spatialrange. In the future study, with
the proposed time-expanded graph modeling framework, we will furihresider how to i)
systematically take into account the interactions betweetipheuVehicle trajectories, e.g., using
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a dynamic time warping method proposed by Taylor et al. (2015) tfamlyiag intradriver
heterogeneity; ii) how to feed a large number of map-matched GR®llophone traces to a
simulation based dynamic traffic assignment engine, e.g., DTALite prdplog Zhou and Taylor
(2014), for rapid traffic congestion prediction. For real-time aptiina, we should systematically
evaluate the performance and accuracy of Algorithm 2 within angoliorizon framework with
different degrees of sample rates, rolling stage length, and complaxitynderlying network
topologies.
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Appendix: Simple time-invariant path search algorithms using existing GPS distance
methods
Many studies (e.g., White et al., 2000) have implemented tim-f@epoint, point-to-curve and

curve-to-curve geometric algorithms. In this paper, we adgit tlistance functions to test our
experiments. We usk (without temproral dimension)denote the total travel cost of the current
least-cost path from origin to nodej. Define search region SRJ as the set of GPS points
within a pre-set space distance around ligjk (

Input: network G, origin noder, destination node, location data and maximum allowed
location-to-node distancg (e.g. using maximum GPS error range)

Output: The most likely set of link from(1) tos(T).

Step 1. (Preprocessing)

For each node within the search region, calculate

® location-to-node distanaii,t) for each GPS record GPS poig;}(g;) to nodei.
(i) location-to-link distancel(i,j,t) for each GPS poingg, g5) to linki—j

(iii) curve-to-link distanced(i,j,t,t+1) for consecutive 2 GPS records, that g;,@;)
—( g5t g5 tolink i—j.

Step 2. (Initialization)

A= Vj; A, =0;

Define time-invariant link costc; ; as the following for each link (i.j)

0] ci,j = min g jyd (i, t) for point-to-point distance
(i) Ci,j = min g jyd (i, J, ) for point-to-link distance
(iii) Cij = Min tegp; yd (i, J, t, t + 1) for point-to-curve distance

Step 3. (Perform label updating in labd correcting or label setting algorithm)

For each link {;j) in the scan eligible list
If (4 +¢;; < 4) Then
Update A; = 1; +¢;
End if
End for

,; and update the corresponding predecessor

Step 4. (Fetch complete time-invariant likely path) Back-tracing predecessors from super sink
vertex s up to super sourceand obtain the map-matching result.
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Table 1 Notations and input parameters

Symbol

Definition

ijk|
(i)
etz

XY
i(®), j(O.k®

(i.tit)
B 1)
FS(.t)

9% 9y

d, 1)

at (g% 95)

tt
ij

FFTT(,j)
MaxTT(,))

The indexed nodesq, j, k, IEN, N is the set of road network nodes, the
cardinality of N isn

The indexed traffic link between adjacent nodasdj, cardinality ism

The indices of modeling time stamgss 1,2,..., T, T is the number of time
stamps in the expanded network for estimation, t* > t'

The latitude and longitude of node

The vertex indices in space-time netwdite nodesi, j andk at timet, with
respectively.

The arc index in space-time network , leaving from niotte nodej, with an
entering time and an exit timé

Set of incoming arcs going to vertgx), i.e., backward arc set including a
number of vertexeit)

Set of outgoing arcs coming from verigk), i.e., forward arc set including
a number of vertexdgt")

The recorded vehicle longitude and latitude at titne

The Euclidean distance from the recordegf ;) to the nodeé.

The Euclidean distance from the recorded space-time loc#ligng()) to the
space-time ard (t, j, t).

The cost of arcit,j,t' ) from upstream nodit) to downstream nodgt")

Free flow travel time of linki())

The maximum travel time of link,]), MaxTT<=T
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Table 2 Estimation variables

Symbol

Definition

tt'

Zi,j

0-1 binary variables=1, if a vehicle passes link, ) from time stamp at the
upstream nodetot' at downstream node=0, otherwise
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Table 3 Node coordinates of road network

Node ID
i
j
k

o1 01 | X

[ S
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Table 4 Locations records of vehicle at different timestamp

Timestamp 9, 9y
1 1.1 1.05
2 4.8 1.05
3 51 1.1
4 4.8 1.08
5 4.8 2.3
6 4.95 4.9
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Table5 Possible network-time paths

Time Index (second) 1 2 3 4 5 6
NTP 1 (most likely network-time paths) i j j i — k
NTP 2 — i j — k
NTP 3 i i ] i k
NTP & — — — — k

— represents matched coordinate located in the middle position betpstream node and

downstream node.
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Table 6 lllustration for network-time path estimation gitsaimeasures in hypothetic network

Constructed Ground truth path (link id) i—j j—k k—j jon
Estimate link of path i—j j—k j—k ist
Constructed ground truth time stamps 4 5 3 4
(second)

Estimate travel time 4 2 2 5
Link identification error Incorrect Incorrect
Average distance (meter) 5 5 5 5
Absolute_travc_el_ time estl_mauon error for 0 N/A N/A
correctly identified travel time
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Table 7 Three transportation networks attributes

Avg. number of second-by-second

Network #of nodes  #of links #of traces
samples per trace
New York 1200 865 sample points
City 9390 21734 synthesized)
Salt Lake City 21381 50893 2 1499 sample points
Phoenix 19523 47713 43 926 sample points
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Table 8 Experimental results with 1-second sampling timerival

Road Error Search Computation  Link Absolute  Average Computation
network  Standard Region al Time Ct) Identifi Travel Relative al Time (Ct)
Deviatio u Per Trace  cation Time Error  Travel Per
no meter (sec) Rate@l per link Time Stage(30-sec)
(meter) ( ) ) (Ae) (sec) Error (%) of Trace (sec)
New York 10 40 1.39 99.9% 3.2 2.2% 0.048
New York 50 200 2.77 99.5% 4.7 11.4% 0.096
Sagibake - 40 2.91 98.2% 5.5 7.3%  0.058
Sagibake 200 5.39 98.9% 4.6 12.7%  0.109
Phoenix - 40 1.66 98.8% 4.1 10.3% 0.056
Phoenix - 200 3.08 99.3% 3.5 4.8% 0.100
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Fig. 1. lllustration of space-time path and network-tinmsm
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(a) 6 raw GPS records (b) 13 raw GPS records

Fig. 2. Hypothetical 3-node network based on two-dimeraioetwork
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Fig. 3. Time-expanded network presentations along different arcs airgid and
destinationvertexes
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Fig. 4. Different network-time path solution and calcutgtinode-specific matching distance for 6 GPS
points on a 3-node network based on three-dimeakiiwork
(projection of space-time path on the space plane)
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Fig. 5. Time-expanded network presentations along different arcs akane
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(@) First path solution with cost = 2.07 (b) Secpath solution with cost = 3.45

Legend: (arc cost)
Fig. 6. lllustrations ofdifferent cost values calculated for different paths
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0

(a) 3 raw GPS records (b)The cost of second path estimation solution

Fig. 7. The cost values are calculated in the hypothetical network under tiotodata at time
stamps 2, 3 and 4
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Fig. 8. Algorithm 2:Rolling horizon implementation for real-time space-time path estimation
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Shopping Mall 2 K

GPS point at time startp

----- » Direction of trace

Shopping Mall

(a) Hypothetical 4-node network based on
two-dimensional network for the detour issue

Fig. 9. An illustrative example with a detour and a dveaitivity
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Fig. 10. lllustrative of quantifying estimating uncertainty
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Fig. 12. Comparison between real-world speed and map-mateseailts (1 second sampling interval)
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Fig. 14. Number of possible space-time vertices under different location data rsgunaiés

without and with AVI and additional AVL data based on PPA
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