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Abstract: Fine particulate matter (PM2.5) threatens human health and the natural environment. Esti-
mating the near-ground PM2.5 concentrations accurately is of great significance in air quality research.
Statistical and deep-learning models are widely used for estimating PM2.5 concentration based on
remotely sensed aerosol optical depth (AOD) products. Deep-learning models can effectively express
the nonlinear relationship between AOD, parameters, and PM2.5. This study proposed a capsule
network model (CapsNet) to address the spatial differences in PM2.5 concentration distribution by
introducing a capsule structure and dynamic routing algorithm for the first time, which integrates
AOD, surface PM2.5 measurements, and auxiliary variables (e.g., normalized difference vegetation
index (NDVI) and meteorological parameters). Moreover, we examined the longitude and latitude
of pixels as input parameters to reflect spatial location information, and the results showed that the
introduction of longitude (LON) and latitude (LAT) parameters improved the model fitting accuracy.
The coefficient of determination (R2) increased by 0.05± 0.01, and the root mean square error (RMSE),
mean relative error (MRE), and mean absolute error (MAE) decreased by 3.30 ± 1.0 µg/m3, 8 ± 3%,
and 1.40 ± 0.2 µg/m3, respectively. To verify the accuracy of our proposed CapsNet, the deep neural
network (DNN) model was executed. The results indicated that the R2 values of the validation dataset
using CapsNet improved by 4 ± 2%, and RMSE, MRE, and MAE decreased by 1.50 ± 0.4 µg/m3,
~5%, and 0.60 ± 0.2 µg/m3, respectively. Finally, the effects of seasons and spatial region on the
fitting accuracy were examined separately from 2018 to 2020. With respect to seasons, the model
performed more robustly in the cold season. In terms of spatial region, the R2 values exceeded 0.9
in the central-eastern region, while the accuracy was lower in the western and coastal regions. This
study proposed the CapsNet model to estimate PM2.5 concentrations for the first time and achieved
good accuracy, which could be used for the estimation of other air contaminants.

Keywords: aerosol optical depth; PM2.5 concentration; dynamic routing algorithm; CapsNet; DNN

1. Introduction

Fine particulate matter (PM2.5) is defined as particulate matter with an aerodynamic
diameter less than or equal to 2.5 µm, and it is a main pollutant causing hazy weather.
Numerous studies in relation to environmental epidemiology have shown that fine par-
ticulate matter has a variety of negative effects on human health (e.g., causing respiratory
and cardiovascular diseases) [1,2]. To monitor and evaluate air quality, the China National
Environmental Monitoring Centre has established ground-based stations since 2013 to mea-
sure PM2.5 concentrations in real time at an hourly scale. Despite some PM2.5 concentration
reductions measured, the PM2.5 concentration is still very worrying, especially in some
metropolitan regions in winter [3]. The number of ground-based stations is still limited,
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and existing sites are distributed unevenly, which causes issues called “blind monitoring
zones” [4]. Providing large-scale and frequent (near-daily) images, satellite remote sensing
is gaining popularity to compensate for the deficiency of ground-based stations in quanti-
fying PM2.5 distribution and temporal variations [5–7]. For example, Terra (Aqua)/MODIS
(Moderate Resolution Imaging Spectroradiometer) [8–12], Terra/MISR (Multiangle Imaging
SpectroRadiometer) [13–15], the Visible Infrared Imaging Radiometer Suite (VIIRS) [16,17],
Himawiri-8/AHI (Advanced Himawari Imagers) [18], and FY-4/AGRI (Multichannel Scan
Imagery Radiometer) [19] are common satellite sensors that measure the aerosol optical
depth (AOD) to estimate PM2.5 concentrations.

PM2.5 estimation approaches were developed from early simple scaling relation-
ships [20] and atmospheric model simulations [21] to complex physical models [11,22]
and statistical models [23–25]. For example, Liu et al. established a regression model of
AOD-PM2.5 by combining AOD and assimilation data, obtaining an R2 value of 0.43 in
the eastern United States [26]. Wang et al. realized the estimation of surface PM2.5 at
different regional scales by utilizing MODIS AOD, lidar, and atmospheric model data [22].
Although the estimation accuracy has greatly increased, simple scaling relationships still
cannot represent the nonlinear interactions between particulate matter, satellite detection
data, and environmental parameters. The satellite retrieval AOD represents the integral
of extinction coefficient from top to bottom of the atmosphere, while PM2.5 is the concen-
tration of near-ground particulate matter. Therefore, the correlation between AOD and
PM2.5 is strongly affected by external factors in terms of physical mechanisms, such as
the difference in extinction due to the hygroscopic growth characteristics of particulate
matter, the vertical profile distribution of aerosol, and the particle size causing different
scattering and extinction. To express the physical mechanism of AOD-PM2.5, some physical
mechanism models have been proposed. Koelemeijer et al. used the boundary layer height
and humidity to perform vertical and hygroscopic corrections, and the results showed
that the correlation coefficients between AOD and PM2.5 were improved [27]. Chu et al.
obtained the aerosol extinction profile from 2006 to 2009 to described the vertical distribu-
tion of aerosols, and haze layer height (HLH) was discussed for use for the near-ground
extinction [28]. Compared with the single-factor estimation of PM2.5, the estimation error
was reduced by 2.9 µg/m3. Lin et al. introduced the fine particle ratio, mass extinction
efficiency, and hygroscopic growth factor to the hygroscopic correction process based on an
observation-based semi-physical model [29]. Zhang et al. obtained the fine mode fraction
(FMF) from MODIS and other data to propose a physical mechanism [11]. However, the
physical model cannot fully express the relationship between parameters in a formula.
With the development of machine-learning, some methods (e.g., random forests (RF) [4],
deep neural networks (DNN) [30], and residual network models (RNM) [31]) are usually
used to estimate PM2.5 and to improve estimation accuracy by establishing the associa-
tion between AOD and PM2.5 via apparent reflectance inversion to directly establish the
relationship between apparent reflectance, observed parameters, and PM2.5 [32]. Overall,
the PM2.5 estimation of different machine-learning models has been proposed to address
the nonlinearity of the AOD-PM2.5 relationship, and these models have obtained great
accuracy. Spatial variability exists in the AOD-PM2.5 relationship, and models that can
address both the nonlinearity and spatial variability are still continuously pursued in the
remote sensing estimation of surface PM2.5.

In the field of image classification, graph convolutional networks (GCNs) [33], multi-
modal deep learning (MDL) [34], and capsule network model (CapsNet) [35] have been
successfully applied in irregular data representation and analysis, which can solve the
difficulties in positional relation recognition and spatial reasoning more efficiently. These
approaches have been widely used in imagery classification in recent years [36], but have
never been applied for atmospheric research. This study addresses spatial variability by
developing a CapsNet model that can reflect more accurate location information compared
with RF and DNN widely used in PM2.5 estimation. Longitude and latitude information of
the stations was used as input factors, by combining multiple-source satellite products (e.g.,
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aerosol and vegetation) and ground-based PM2.5 measurements and day of year (DOY) to
estimate surface PM2.5. This model was tested by utilizing a case study in China over three
years (from 2018 to 2020), and daily estimates of surface PM2.5 were effectively generated
from satellite observations. The main contributions of this letter are listed as follows:

(1) We proposed a CapsNet model that introduced the capsule structure and dynamic
routing algorithm to estimate daily PM2.5 concentrations over China. The longitude
(LON) and latitude (LAT) of pixels were used as input parameters to verify whether it
is helpful to improve the accuracy of the model. The coefficient of determination (R2),
root mean square error (RMSE), mean relative error (MRE), and mean absolute error
(MAE) are used as the evaluation metrics.

(2) To evaluate the CapsNet proposed by us effectively, the DNN model was executed,
and the LON and LAT were also included in the DNN model. We discussed the
accuracy of CaspNet and DNN in both the cold season and warm season, and the
results indicate that CaspNet performs better. Therefore, we used CaspNet to estimate
daily PM2.5 concentrations and analyzed the characteristics of PM2.5 concentration
variations.

(3) We examined the different advanced capsule layers in CaspNet, which influence the
accuracy of PM2.5 estimation. Multiple capsules and a single weight are better when
considering the accuracy and operating efficiency. Moreover, we verified the accuracy
of the CaspNet model in different regions.

The flowchart of CapsNet modeling for remote sensing estimation of PM2.5 concen-
tration is shown in Figure 1 in this study. First, we downloaded ground-measured PM2.5,
satellite data, and meteorological data. All data were preprocessed to obtain a spatialtempo-
rally dataset, and we handed some missing data. Subsequently, the parameters of the input
model are discussed, and the CapsNet model could be trained. Finally, evaluation metrics
were used to verify the accuracy of PM2.5 estimation, and then daily PM2.5 concentrations
were obtained. The rest of this paper is structured as follows: Section 2 mainly introduces
the CapsNet model; the data used in this study and preprocessing are presented in Section 3;
the experimental results are analyzed in Section 4; Section 5 discusses the advantage and
disadvantage of this model; and the final section briefly concludes our work.
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Figure 1. The framework of the approach used in the analysis.

2. Methodology
2.1. CapsNet Structure

A CapsNet model, which integrates multiple-source satellite products (e.g., aerosol op-
tical depth and NDVI) and ground-based PM2.5 measurements, meteorological parameters,
and day of year (DOY), is proposed to estimate PM2.5 concentration.

As shown in Figure 2, the structure of CapsNet consists of three parts: fully connected
layer (FC), capsule neuron structure, and dynamic routing algorithm [32]. The first part is
the fully connected layer (FC) in the convolutional neural network, where it is used for the
initial feature extraction of the input factors. The second part is the primary capsule layer,
which captures the features of the data and generates combinations. Subsequently, the
capsule carrier is fed into the digitCaps layer. A dynamic routing algorithm (the third part)
is used between the primary capsule layer and the digitCaps layer to iteratively update
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the weights, and it enables the digitCaps layer to extract entity features from low-level
capsules and capture geometric relationships. Finally, to achieve the estimation results,
the generated vector neurons were filtered, and the capsule with the highest probability
was chosen. Especially, to balance the relationship between model complexity and training
accuracy, we found through repeated experiments that the training accuracy exceeds the
existing model when the number of nodes in the fully-connected layer of the network was
set to 200, the primary capsule layer was 64 × 8 × 1, and the shape of the digitCaps layer
was 4 × 16 × 1. Therefore, we designed a capsule network model for PM2.5 concentration
estimation based on the idea of the dynamic routing algorithm.
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2.2. The Dynamic Routing Algorithm

The logical structure of the dynamic routing algorithm is shown in Figure 3. The
neurons in the capsule layer are composed of a set of vectors. The information transmission
of neurons is completed by calculating the similarity between the capsules. The information
received by capsules of different levels is determined by the routing coefficients. Therefore,
a dynamic routing algorithm is used between the primary capsule layer and the digitCaps
layer to iteratively update the routing coefficients, and the routing coefficients probability
have the following properties: (1) the values for each dimension are non-negative; (2) the
sum of all dimensions is equal to 1; (3) the length of weight probability is equal to the
number of capsules in the next layer; and (4) the weight probability is determined by
updating the dynamic routing algorithm. The details of the dynamic routing algorithm are
as follows.
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Given the capsule vector V1 and V2, the prediction vector U1 and U2 are calculated
by U1 = V1∗W1 and U2 = V2∗W2, respectively, where W1 and W2 are the weight matrix
trained by the gradient descent algorithm. After taking into account routing coefficients C1
and C2, and a nonlinear normalization function squash, the capsule vector is calculated
by A = Squshing(C1∗U1 + C2∗U2). The multiple iterations algorithm was executed by
dynamically updating the routing coefficients C1 and C2 with the geometric agreement.
Here, C1 and C2 reflect the probability that the lower-level capsule is assigned to the
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higher-level one. After a few iterations (the number of iterations is set as 3 in this study),
lower-level capsules with strong agreements will dominate the contribution to the A
capsule. The result can be deduced from the norm of the output capsule vector. By virtue
of this algorithm, CapsNets can not only extract information from lower-level capsules, but
also preserve their geometric relationships [32].

2.3. Parameters Setting

All comparation experiments of parameter settings were run under the same envi-
ronment, and the main experimental parameters are set as follows: the initial learning
rate was set as 10−4; batch was 4000; epoch was 900; the activation function of the first
two fully connected layers was a rectified linear unit (ReLU); the activation function of the
capsule layer was Squash with novel nonlinear activation functions for vectors; the last
layer was the output layer without the activation function; the optimizer of the model was
selected as Adam, which was used with β1 = 0.9 and β2 = 0.999 as weight decay; and
the loss function was the mean square error (MSE). This study finally employed a total of
11 feature parameters, namely, LON, LAT, AOD, RH, VWS, HWS, BLH, SP, TP, NDVI, and
DOY. Various feature data often have different dimensions, resulting in a large numerical
gap between different feature data. Following data screening and sorting, the dataset was
randomly divided into a training dataset and a validation dataset at a ratio of 8:2.

2.4. Evaluation Metric

To complete the quantitative evaluation of the capability of the constructed CapsNet
model, this study selected R2, RMSE, MRE, and MAE as the evaluation metrics. R2, RMSE,
MRE, and MAE can be represented as follows:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (2)

MRE =
100%

n

n

∑
i=1

|yi − ŷi|
yi

(3)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (4)

where yi, ŷi, and yi are the mean, estimation, and ground-measured PM2.5 concentration,
respectively. n is the total dataset.

3. Data and Preprocessing
3.1. The Ground-Based PM2.5

Ground-based PM2.5 data were downloaded from the China Environmental Monitor-
ing Center, providing hourly PM2.5 ground-based monitoring data (http://106.37.208.233:
20035/). In this study, we obtained data from 2018 to 2020, and the distribution of the sites
is displayed in Figure 4. The station network is unevenly distributed, with dense stations
located in eastern China and sparse stations in western China. To ensure the reliability of
the monitoring, those days that had no more than 18 h of valid measurements were deleted
from the datasets.

http://106.37.208.233:20035/
http://106.37.208.233:20035/
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3.2. AOD Products

We used the 1 km MODIS/Aqua AOD products inverted by the Multi-Angle Imple-
mentation of Atmospheric Correction algorithm (MAIAC). The overpass time of satellite is
about 13:30 (Beijing Time), so the results in this study only reflect PM2.5 concentration in
this time of day. Compared with the commonly used MODIS dark target and deep blue
algorithm products (3 km/10 km), MAIAC AOD has a better spatial resolution (1 km),
making it ideal for sensitively representing the continuous spatial change of air pollutants
and pinpointing PM2.5 hotspot sources [37–39]. The MAIAC has a similar accuracy to
the dark target algorithm under the vegetation surface, but it is better than the deep blue
algorithm under the bright surface [40]. In addition, the cloud masking method of the
MAIAC algorithm based on time series observations can strictly remove clouds, melting
snow and ice areas, making the product suitable for monitoring [41]. The AOD products
can be downloaded from the National Aeronautics and Space Administration (NASA)
(https://ladsweb.modaps.eosdis.nasa.gov/).

3.3. European Centre for Medium-Range Weather Forecasts Data and Other Auxiliary Data

The European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis
(ERA) is a widely used meteorological reanalysis dataset with benefits such as continuous
series and regional coverage. According to the literature, the ERA data in the lower and
middle troposphere are closer to sounding data than other reanalysis products [42]. With
a temporal resolution of one hour and a spatial resolution of 0.25◦, ERA5 was officially
released in 2017, and the meteorological parameters primarily include relative humidity
(RH, unit: %), vertical and horizontal wind speed (VWS/HWS, unit: m/s), boundary layer
height (BLH, unit: m), surface pressure (SP, unit: Pa), and surface temperature (TP, unit:
K). To enhance the spatial and temporal sensitivity of the model, this study introduced the
longitude (LON) and latitude (LAT) coordinates of the image element. In addition, the
normalized difference vegetation index (NDVI) from the MODIS satellite was downloaded,
namely MOD13 products, which have a spatial resolution of 1 km.

3.4. Data Preprocessing

To ensure the spatial and temporal consistency of all data, all data were reprocessed
to generate a full dataset acceptable for this study. To maintain the consistency of spatial
resolution, reprojection was conducted on all data to the WGS84 geographic coordinate
system. Because the NDVI, AOD, and meteorological parameters have different spatial
resolutions, the meteorological and NDVI data were resampled to 1 × 1 km using the

https://ladsweb.modaps.eosdis.nasa.gov/
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bilinear interpolation method. The corresponding pixel values (satellite and meteorological
data) were extracted with the longitude and latitude information of PM2.5 monitoring
stations to produce the corresponding records. To be as consistent in temporal as possible,
the average PM2.5 concentration of ground-based monitoring was determined half an
hour before and after the satellite pass time to maintain the consistency between ground-
based and satellite observations, because the scanning time of Aqua/AOD data was
approximately 13:30 daily.

4. Experiment Analysis
4.1. Experimental Results
4.1.1. Normalization Methods

In the process of model training, a large number of dimensional values greatly weaken
the role of small dimensional values in the model, preventing the model from being correctly
trained to obtain accurate fitting relationships. To eliminate the effects of dimensional
differences, all data need to be normalized. The results of different normalization methods
can ultimately affect the results of the model. In the mainstream normalization methods,
we separately discussed the minimum–maximum method and standard score (Z-Score)
method, and the methods can be expressed as follows:

minimum−maximum : I =
I − Imin

Imax − Imin
(5)

Z− Score : I =
I − Imean

Istd
(6)

where I is the feature data and Imin, Imax, Imean, and Istd denote the minimum, maximum,
mean value, and standard deviation in the feature data, respectively.

The above two methods were used to conduct normalization experiments on the same
dataset, and we calculated normalization rules on the data of the training set and applied
them to the validation set for experiments. The experimental results are shown in Table 1.
According to the results of the normalization methods, R2, RMSE, MRE, and MAE are
0.81, 12.75 µg/m3, 41%, and 7.93 µg/m3, respectively, in validation datasets by the Z-score,
which is beyond that of the minimum–maximum method; therefore, the next experimental
datasets were normalized by the Z-Score.

Table 1. Experimental results of two normalization methods.

Methods Dataset R2 RMSE MRE MAE

minimum–maximum
Train 0.89 9.84 30% 6.06

Validation 0.79 13.30 40% 8.06

Z-score
Train 0.96 6.39 18% 3.23

Validation 0.81 12.75 41% 7.93

4.1.2. Parameter Validation

Other research has examined meteorological parameters, NDVI, and DOY as input
parameters impacting PM2.5 [30], while we mainly focused on the effect of LON and LAT
information on the accuracy of model fitting. Table 2 shows the effect of including LON
and LAT information factors in the training data on the simulation outcomes. The training
and validation results of the CapsNet model for 2018, 2019, and 2020 data showed R2

value increasing by 0.05, 0.05, and 0.04; RMSE decreasing by 3.30 µg/m3, 2.43 µg/m3, and
1.33 µg/m3; MRE decreasing by 10%; and MAE decreasing by 1.35 µg/m3, 1.37 µg/m3,
and 1.57 µg/m3. Therefore, the introduction of LON and LAT pixel information as input
parameters in this study performed better on both training and validation datasets. The
density scatter plots of the fitting results are shown in Figure 5. There were differences in
model accuracy from 2018 to 2020. The majority of the data are concentrated around the
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1:1 fit line, the slope of the fit line is greater than 0.8, and the difference in the coefficient
of determination of the validation set is small, which indicates that CapsNet obtained
good accuracy.

Table 2. Comparison validation of the CapsNet model fitting accuracy with and without longitude
and latitude (2018–2020).

Year Factors
Train (Validation)

R2 RMSE MRE MAE

2018
- 0.92 (0.75) 9.92 (16.60) 26% (45%) 4.84 (10.01)

LON, LAT 0.94 (0.82) 7.99 (13.30) 21% (35%) 4.58 (8.66)

2019
- 0.90 (0.78) 8.96 (13.46) 18% (44%) 3.55 (8.58)

LON, LAT 0.91 (0.83) 8.45 (11.03) 24% (36%) 5.11 (7.21)

2020
- 0.92 (0.80) 8.75 (12.31) 24% (42%) 4.77 (8.11)

LON, LAT 0.94 (0.84) 5.34 (10.98) 24% (37%) 3.25 (6.59)
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4.1.3. Accuracy Validation

Training and validation of the data samples collated in this study area revealed that
different regions may lead to differences in the fitting accuracy of each station. R2, RMSE,
MRE, and MAE of the fitted sites are plotted in Figure 6, which shows that the parameters
have significant consistency in spatial distribution. In 2020, for example, most stations in
the Liaoning, Beijing, Tianjin, Hebei, Shandong, Shanxi, Henan, Hubei, Anhui, Shanghai,
and Hunan regions had R2 values greater than 0.9, with high fitting accuracy. The R2

values for most stations in the Jilin, Zhejiang, Fujian, Jiangxi, Guangdong, Guangxi, Shanxi,
Yunnan, Guizhou, Sichuan Basin, and Chongqing areas were between 0.8 and 0.9, with R2

values greater than 0.9 for a few stations and R2 values between 0.5 and 0.7 for a few others.
The R2 values for the Tibet, Xinjiang, Qinghai, Inner Mongolia, and Heilongjiang regions
are all lower. The RMSEs of most stations were less than 5 µg/m3, with relatively high
values between 5 and 10 µg/m3 in Beijing, Tianjin, Hebei, Shandong, Henan, and other
regions, while the RMSEs of sites in Xinjiang were between 10 and 15 µg/m3, with only
one site larger than 15 µg/m3. MAEs were less than 5 µg/m3 in 93% of the locations. The
MREs were mainly between 10 and 20%, while the MREs were mainly distributed between
20 and 30% in Tibet and Heilongjiang.
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4.2. Model Comparison

We used the DNN model to estimate the PM2.5 concentration to compare the ability of
the CapsNet model. We selected four hidden layers with the structure of 300-300-10-20;
please refer to the study by Sun [16] for other detailed parameters. The same dataset as
the CapsNet model was used for DNN. Table 3 shows the results of building the DNN
model using the same dataset to assess the ability of the CapsNet model. The results of
using LON and LAT as input parameters in the DNN model were more accurate, especially
in the validation dataset, similar to the findings of the CapsNet model. When comparing
the DNN and CapsNet models, we found that the R2 values improved by 3%, 2%, and 6%
from 2018 to 2020, respectively, when using the CapsNet model. The RMSEs decreased by
1.84, 1.40, and 1.02 µg/m3, respectively, in different years. The MREs and MAEs showed
some reduction.

To assess the fitting capacity of the two models in terms of seasons, the data were
divided into the cold season (January, February, and September–December) and warm
season (March–August), as shown in Table 4. Both the CapsNet and DNN models exhibited
higher accuracy in the cold season than in the warm season, and the R2 values were
0.83 ± 0.02 and 0.74 ± 0.03 in the validation dataset, respectively. The RMSEs, MAEs,
and MREs also had large differences. When comparing the CapsNet and DNN models
on the training dataset in the cold and warm seasons, the difference in R2 values was
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approximately 0.2, and the DNN models showed better performance. However, we found
that the CapsNet model was better in the validation dataset, and then the DNN model
showed severe overfitting. For example, R2, RMSE, MRE, and MAE of the CapsNet
model the warm 2020 validation dataset were 0.72, 10.14 µg/m3, 43%, and 6.64 µg/m3,
respectively, but they were 0.67, 11.15 µg/m3, 43%, and 6.76 µg/m3, respectively, in the
DNN model. Overall, the CapsNet model had a higher fitting accuracy.

Table 3. Comparison validation of the DNN model fitting accuracy with and without longitude and
latitude (2018–2020).

Year Factors
Train (Validation)

R2 RMSE MRE MAE

2018
- 0.92 (0.74) 9.43 (17.10) 25% (47%) 5.06 (10.36)

LON, LAT 0.94 (0.79) 7.89 (15.14) 22% (40%) 4.52 (9.14)

2019
- 0.90 (0.77) 8.96 (13.83) 18% (42%) 3.55 (8.65)

LON, LAT 0.94 (0.81) 7.14 (12.43) 21% (37%) 3.87 (7.83)

2020
- 0.94 (0.73) 5.57 (13.27) 23% (45%) 3.46 (7.90)

LON, LAT 0.94 (0.78) 5.63 (12.00) 29% (42%) 3.64 (7.07)

Table 4. The DNN and CapsNet model fitting accuracies in both the cold and warm seasons in 2018,
2019, and 2020.

Time Method Train or
Validation R2 RMSE MRE MAE

2018cold
DNN

Train 0.95 6.65 18% 3.67
Validation 0.83 14.16 39% 8.76

CapsNet Train 0.95 7.09 18% 3.75
Validation 0.83 13.93 36% 8.46

2018warm
DNN

Train 0.94 8.47 18% 4.27
Validation 0.72 19.39 38% 10.17

CapsNet Train 0.95 6.29 15% 2.73
Validation 0.75 18.23 37% 9.82

2019cold
DNN

Train 0.95 7.44 17% 3.68
Validation 0.82 13.33 36% 8.40

CapsNet Train 0.93 8.86 23% 4.67
Validation 0.84 12.52 36% 7.87

2019warm
DNN

Train 0.94 6.22 22% 3.19
Validation 0.75 12.59 47% 7.47

CapsNet Train 0.88 8.63 26% 4.52
Validation 0.77 12.20 42% 7.03

2020cold
DNN

Train 0.95 6.18 19% 2.98
Validation 0.81 11.52 33% 7.36

CapsNet Train 0.95 6.29 15% 2.73
Validation 0.82 11.50 31% 7.34

2020warm
DNN

Train 0.94 5.13 19% 2.53
Validation 0.67 11.15 43% 6.76

CapsNet Train 0.94 5.25 14% 2.35
Validation 0.72 10.14 43% 6.64

4.3. Spatiotemporal Patterns of PM2.5
4.3.1. Seasonal Distribution

According to the comparative experiments in Section 4.2, the CapsNet model had
better accuracy, and we used it to estimate daily PM2.5 concentrations from 2018 to 2020.
The spatial distribution of the seasonal average PM2.5 concentration is shown in Figure 7.
Comparing four seasons, we found that the PM2.5 concentration in winter (December,
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January, and February) > spring (March, April, and May) > autumn (September, October,
and November) > summer (June, July, and August) in 2018 and 2019, and the phenomenon
was similar to other studies. However, in 2020, the PM2.5 concentration in autumn exceeded
that in spring, which can be explained by the fact that the industrial and anthropogenic
activities were limited in spring owing to the COVID-19 epidemic, and the emissions of
pollutants into the atmosphere were reduced. With the containment of the COVID-19
epidemic, the economy has begun to recover by increasing industrial and human activity;
therefore, the PM2.5 concentration could increase. For example, Song et al. discussed the
air pollution during COVID-19 lockdown and found the PM2.5 decreased by 44.1% in
February 2020. Liu et al. demonstrated that the COVID-19 lockdown led to the lowest
intensity of human activities in recent decades, which provided a unique opportunity to
gain insights into the relationship between emission sources and aerosol chemistry [43].
The COVID-19 lockdown led to significant decreases in PM2.5. Therefore, the trends of
PM2.5 concentration are consistent with previous studies [44]. We can see that the PM2.5
concentration in summer was the lowest, which was mainly influenced by atmospheric
conditions. Comparing the winter and spring from 2018 to 2020, we found an obvious
gradual reduction in the PM2.5 concentration, especially in the Beijing–Tianjin–Hebei and
southwestern regions.
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4.3.2. Annual Distribution

The annual average PM2.5 concentration over China was calculated and is shown in
Figure 8. According to Figure 8, the PM2.5 concentrations estimated by satellite and ground-
based monitoring were highly consistent in spatial distribution, when remote sensing
data were available. The heavily polluted areas were primarily in the Taklimakan Desert,
North China Plain, and Sichuan Basin in mid-China. In addition, PM2.5 concentrations in
2018–2020 show a decreasing trend, which was related to a series of emission reduction
measures taken by the environmental regulatory authorities, while a greater reduction in
PM2.5 concentrations in 2020 may have been related to the reduction of industrial activities
and anthropogenic emissions during the COVID-19 epidemic.
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5. Discussion

The different advanced capsule layers influenced the fitting accuracy of the results,
and we discussed three different structures: (1) an advanced capsule layer of a single
capsule, that is, all the information of the primary capsule layer was collected into one
capsule for output; (2) an advanced capsule layer with multiple capsules and a single
weight, in which we set four capsule layers; and (3) multi-capsule and multi-weight, thus
setting a weight for each advanced capsule instead of using shared weights. Taking the
2019 as an example, the results are shown in Table 5. Among the three structure designs,
the single-capsule structure achieved the worst fitting accuracy. Because all information
was input to one high-level capsule, it could not reflect the screening characteristics of the
information, and the accuracy was degraded to the fully connected structure. Multi-capsule
and single-weight and multi-capsule and multi-weight methods have achieved similar R2

values. The multi-weight effect obtained a lower RMSE, but the single weight was better
in MRE and MAE. In addition, the multi-capsule and multi-weight structure spent more
time in the training stage. Therefore, considering the accuracy and running efficiency, the
multi-capsule and single weight used in this study was a better choice.

Table 5. The results of different capsule structures.

Structures R2 RMSE MRE MAE

single capsule 0.92 8.79 0.37 5.87
Multiple capsules and single weight 0.93 8.02 0.22 4.14

Multi-capsule and multi-weight 0.93 7.85 0.28 4.98

In addition, we selected PM2.5 monitoring stations in typical regions for fitting assess-
ment, and selected station datasets on a city basis (with 2020 data as an example). Beijing
on the North China Plain and Shanghai on the middle and lower Yangtze River Plain were
selected, both of which are located in areas with high PM2.5 concentrations and have dense
ground-based stations around the cities. Afterward, Lhasa in Tibet Province and Urumqi
in Xinjiang Province were selected, which are located in south-central Tibet and northern
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Xinjiang, respectively, and have few ground-based stations around them. Guangzhou,
which has experienced large climate change in southern China, and Harbin, which has a
stable climate, were also selected, and the validation scatter plot is shown in Figure 9. The
results showed that the accuracy is highest in Beijing and Shanghai, followed by Harbin
and Guangzhou, and the lowest in Urumqi and Lhasa, indicating that the accuracy of
the model may be related to the number of stations, regional distribution, and weather
conditions. In addition, the accuracy of AOD retrieval shows a significant difference in
different regions. For example, there was a complex aerosol type (mainly dust) in Xinjiang
province, and the accuracy is relatively low. In the northeast, there was a large amount of
snow and ice cover, leading to ineffective retrieval AOD in winter.
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we found that there were some regional disparities in model accuracy, and the overall 
accuracy is higher. Not only can the CapsNet model suggested in this work be used to 
predict PM2.5 concentrations, but it can also be used to estimate other atmospheric com-
ponents. 
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Figure 9. Scatter plot of model results for typical cities. (a)—Beijing, (b)—Shanghai, (c)—Guangzhou,
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and 1:1 line, respectively.

Finally, this study applied the CapsNet model to the field of PM2.5 estimation for
the first time and introduced longitude and latitude information to reflect the spatial
variation, resulting in improved findings, but there are still some limitations. (1) Because the
MAIAC AOD lacked data under clouds, the estimation results only represented the PM2.5
concentration when data were available. In the case of clouds, ground-based observation
data are combined to obtain the annual average (365 days) results of air quality conditions
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under clouds. (2) According to the Table 3, the accuracy of the CapsNet model was
different in 2018, 2019, and 2020, which may be affected by dataset quality. Besides, there
were significant differences between the seasons according to the results of the models
constructed in Table 4, and the specific influencing factors need to be investigated further.
(3) This study mainly considered the feasibility of the CapsNet model for estimating PM2.5
concentrations, and only obtained meteorological parameters and the NDVI to construct
the model for comparison with the DNN. More factors affecting PM2.5 generation can be
considered in future work.

6. Conclusions

In this study, we proposed a CapsNet model to estimate the daily PM2.5 concentrations
at a national scale from 2018 to 2020. The CapsNet model was applied to atmospheric
research for the first time. First, we discussed whether introducing longitude and latitude
information as input factors could improve the accuracy of both the CapsNet and DNN
models. Compared with the DNN models with the same input parameters, the CapsNet
model developed by us achieved the better validation performance. Next, we separately
built CapsNet and DNN in the cold and warm seasons. The results indicated that the cold
season had better fitting accuracy. The PM2.5 seasonal and annual distributions were shown
in 2018–2020, which presented that the PM2.5 concentration decreased. We found that the
PM2.5 concentration in autumn was beyond that in spring of 2020, which could have mainly
been influenced by the COVID-19 epidemic. In addition, we found that there were some
regional disparities in model accuracy, and the overall accuracy is higher. Not only can the
CapsNet model suggested in this work be used to predict PM2.5 concentrations, but it can
also be used to estimate other atmospheric components.
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