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Estimating the Noise Mitigation Effect of Local
Decoupling in Printed Circuit Boards

Jun Fan, Member, IEEE, Wei Cui, Member, IEEE, James L. Drewniak, Senior Member, IEEE,
Thomas P. Van Doren, Fellow, IEEE, and James L. Knighten, Senior Member, IEEE

Abstract—Local decoupling, i.e., placing decoupling capacitors
sufficiently close to device power/ground pins in order to decrease
the impedance of power bus at frequencies higher than the series
resonant frequency, has been studied using a modeling approach,
a hybrid lumped/distributed circuit model established and an ex-
pression to quantify the benefits of power bus noise mitigation due
to local decoupling developed. In this work, a test board with a local
decoupling capacitor was studied and the noise mitigation effect
due to the capacitor placed adjacent to an input test port was mea-
sured. Closed-form expressions for self and mutual inductances of
vias are developed, so that the noise mitigation effect can then be es-
timated using the previously developed expression. The difference
between the estimates and measurements is approximately 1 dB,
which demonstrates the application of these closed-form expres-
sions in the PCB power bus designs. Shared-via decoupling, capac-
itors sharing vias with device power/ground pins, is also modeled
as an extreme case of local decoupling.

Index Terms—Closed-form expressions for via inductances,
estimation of power-bus noise reduction due to local decoupling,
local decoupling, mutual inductance, printed circuit board layer
stackup, shared-via decoupling.

I. INTRODUCTION

H
IGH-FREQUENCY noise in printed circuit boards
(PCBs) results from both simultaneous switching of

digital logic within the core, as well as simultaneous switching
of device I/O, often referred to as simultaneous switching
noise (SSN) and SSO [1]. This high-frequency noise on the dc
power bus in PCBs can lead to signal integrity (SI) and elec-
tromagnetic interference (EMI) problems. In multilayer PCBs
that use entire layers or large area fills for power and ground
planes, SI and EMI problems are likely to occur at resonances
of the two-dimensional, parallel plate transmission line. The
parallel plate structure is designed to have a low impedance,
however, a disturbance on the power bus that is initiated by
a switching device is easily propagated throughout this low
impedance transmission line. This high-frequency noise can
couple to a signal transitioning through the power planes [2],
or to the power pins of a victim device and contribute to SI
problems. For designs with multiple logic levels and power
areas on different PCB layers, noise resulting from switching
components can easily be coupled among different logic level
portions of the design. The high-frequency noise can also be
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coupled to I/O lines that transition through the power planes
and result in EMI problems [2], as well as coupled off the
PCB from fringing edge fields. Controlling and mitigating this
high-frequency dc power bus noise on a multilayer PCB is a
critical aspect of digital design to ensure signal integrity and to
reduce the risk of EMI problems.

Critical issues for dc power bus design include:

1) whether to place the power and ground layers on adjacent
planes or to sandwich potentially noisy signals between
these layers to obtain some “shielding;”

2) whether to locate surface mount technology (SMT) de-
coupling capacitors close to the IC devices, or to dis-
tribute them more uniformly, or globally on the PCB;

3) what values the SMT decoupling capacitors should have;
4) how much total SMT decoupling capacitance is required

for a given design.

Approaches that demonstrate the benefits of maintaining closely
spaced power and ground layers for minimizing power bus noise
have been reported, [3], [4] and are becoming a matter of design
experience and practice. SMT decoupling capacitors are com-
monly used in dc power bus design to mitigate high-frequency
noise on the dc power bus [5], [6]. Using the largest value of de-
coupling capacitor in a given package size is becoming a matter
of engineering design practice as well. Quantitative reasons are
given for this herein. By contrast, the critical design issues of
where to locate SMT decoupling capacitors and how much total
SMT capacitance is needed, i.e., how many are required for a
specific design, are unresolved questions. While every organ-
ization that designs digital electronics has guidelines for “ac-
cepted best practices” for these two issues, these guidelines can
vary widely. The issue of when locating a decoupling capacitor
in proximity to an integrated circuit (IC) can be beneficial is
quantified in this paper with regard to estimating the reduction
of noise on the parallel plate dc power bus.

Many studies have focused on modeling the power and
ground metal layers of the PCB in order to determine the
power bus impedance at a specific location. A straight-forward,
but fast transmission-line grid method suitable for SPICE
implementation demonstrated the distributed behavior and
impact of resonances on a parallel-plane power bus [7]. A
similar analytical approach using a transmission-line model
has also been reported [8]. Full-wave methods have been used
as well to model the power/ground layer pair, including FEM
[9], partial element equivalent circuit (PEEC) [10], [11], and
finite difference time domain (FDTD) [12]. In addition, an
analytical method based on the cavity-mode theory developed
for microstrip patch antenns [13], has been applied for deter-
mining the input impedance and transfer impedance for the

1521-3323/02$17.00 © 2002 IEEE
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dc power bus parallel planes [14], [15]. Printed substrates are
easily modeled using FDTD [16], including parallel planes.

SMT decoupling capacitors can be included as lumped
circuit elements when extracting a network using the cavity
theory. PEEC modeling that included numerous capacitors
incorporated as lumped elements and uniformly distributed
over a mutlilayer PCB agreed well with experimental studies
[11]. For decoupling capacitors not placed in proximity to a
device, including the capacitor and its interconnect to the power
bus as a lumped element in the modeling can be effective.
However, when a decoupling capacitor is in proximity to the
IC power or ground pins, including it as a lumped element fails
to capture the essential physics of the magnetic field coupling
between the IC and SMT capacitor vias. This coupling results
from the magnetic flux linkage of the current on the two vias
between the power and ground planes [17]. Full-wave modeling
that includes the vias and planes is necessary to adequately
detail the effects that are necessary for quantifying the effect
of an SMT decoupling capacitor located in proximity to an
IC. Previous studies demonstrated the use of FDTD modeling
for including the dispersive effects of FR-4 (glass/epoxy com-
monly used for PCBs) and the decoupling capacitors with their
interconnect vias [18]. PEEC modeling using a layered media
Greens function has also been used that included the loss in
FR-4 as well as the decoupling capacitors and via interconnects
[19]. This work presented curves demonstrating the reduction
of the transfer impedance on the dc power bus for certain cases
when an SMT capacitor was located close to a noise injection
port. While all of these studies provided valuable insight into
the essential physics and direction for good modeling of a
parallel plane dc power bus, design equations for evaluating
the effectiveness of an SMT decoupling capacitor located in
proximity to an IC were not provided. Design equations for
evaluating the effectiveness of a decoupling capacitor as a
function of the spacing between power and ground layers,
proximity of the SMT capacitor to the IC and the interconnect
inductance to the SMT capacitor are developed in this paper.

An expression for determining the noise reduction impact of
local decoupling, i.e., a capacitor placed in proximity to an IC
device is developed in Section II in terms of the ratio of portion
of the SMT capacitor interconnect inductance above the power
ground planes to that between the planes and the mutual cou-
pling between the SMT capacitor and IC vias. This equation
is frequency independent, i.e., indicating that the local decou-
pling capacitor is effective well beyond its series resonant fre-
quency. The frequency independent behavior is demonstrated
experimentally in Section III, as well as comparing modeling
with the measurements. Closed-form expressions to evaluate
the necessary inductances and mutual coupling parameter are
given in Section IV. The local decoupling behavior is shown
and discussed for three different classes of board geometries
in Section V and the closed form expressions compared with
full-wave modeling. Finally, dc power bus design implications
are discussed in Section VI.

II. POWER BUS NOISE REDUCTION DUE TO

LOCAL DECOUPLING

Local decoupling capacitors, i.e., SMT decoupling capaci-

tors placed adjacent to the power/ground pins of IC devices,

TABLE I
PARAMETER DESCRIPTION FOR (1)

can be beneficial in mitigating high-frequency power bus noise.

Local decoupling capacitors can be effective up to the gigahertz

range. Global decoupling capacitors, which can be effective to

frequencies as high as 200 MHz, are restricted by the parasitic

inductances associated with the interconnects and package of

the capacitors. This work addresses the reduction of noise trans-

mission from a noise source switching circuit (IC) to a receptor

point on the PCB power bus by examining the performance of

SMT decoupling capacitors on the PCB. This work does not ad-

dress the reduction of the noise source itself (the IC switching

circuit), which can depend on the package inductance of the IC.

This noise mitigation effect of local decoupling was modeled

using a mixed-potential integral equation formulation with cir-

cuit extraction [19]. It was found that, as compared to the cases

without local decoupling, the inclusion of local decoupling de-

creased the between two ports on the power bus and this

decrease was approximately frequency-independent from

100 MHz to 2 GHz. A hybrid lumped/distributed circuit model

was established from physics and a closed-form expression was

developed to characterize this phenomenon as

dB (1)

where the parameters , , and are detailed in Table I.

Note that also includes the power/ground plane inductance.

For a large power/ground plane pair, the inductance due to the

flux wrapping the planes is negligible [20]. However, currents

in the planes congest in the vicinity of vias, resulting in extra

“plane” inductance [21]. The inductance is included into the

via inductance herein, since it results from the vias. As demon-

strated in [19], it is typically the case that

for a PCB dc power bus structure. Therefore, (1) can be approx-

imated as

dB (2)

Notice that, in (2), the approximate decrease is indepen-

dent of frequency, which is consistent with the modeled results

observed in [19]. This frequency-independent behavior makes it

possible to quantify the local decoupling benefits using a simple

decrease value. Design curves have been generated from

modeling to relate the average decrease to capacitor/IC

spacing and power/ground layer separation in [19].

Via diameters in typical PCB designs are usually constant

across the PCB, which means that the self inductances associ-

ated with the decoupling capacitor via and its adjacent device
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Fig. 1. Schematic representation of the physics associated with the decoupling
effect and the lumped circuit element parameters for (a) the SMT decoupling
capacitor on the same side of the board and (b) on opposite sides of the board.

power/ground pin via are approximately the same. Therefore,

the mutual inductance between them, , can be approximated

as , where is the coupling coefficient, and the mu-

tual inductive coupling between the loop portions outside the

power/ground pin via is neglected. In this case, (2) can be fur-

ther simplified as

dB

(3)

The potential benefits of local decoupling can then be ex-

tracted from (3). In particular the relevant factors are the mutual

coupling between the local decoupling capacitor and IC vias and

the ratio of the portion of the interconnect inductance above the

planes, relative to that in the planes. The portion of the induc-

tance above the planes represented by is comprised of both

the portion of the capacitor via above the power/ground plane

pair and interconnect trace and the equivalent series inductance

(ESL) of the capacitor. In (3), the mutual inductance between

the local decoupling capacitor via above the power planes and

the IC interconnect above the planes is neglected. While this

can easily be accounted for by splitting into the two compo-

nents, the mutual inductance between the planes will be domi-

nant. When it is not dominant, the ratio of is greater than

one and little benefit from local decoupling can be achieved.

The mutual coupling physics and the associated lumped el-

ement parameters are illustrated schematically in Fig. 1. In the

development of (3), the mutual coupling between the local de-

coupling capacitor and IC vias occurs between the power and

ground plane pair to which the components are attached and the

coupling is between the current segments of each component

that penetrate through the plane and connect to the plane oppo-

site the component [19]. Referring to Fig. 1(a) for example, if

both the capacitor and IC are located on the same side of the

board and the ground layer is the closest layer toward the com-

Fig. 2. Test board geometry (top view).

ponents in the power/ground plane pair, then the mutual induc-

tance that is being exploited for the local decoupling effect is be-

tween the power pins of each component, which penetrate the

ground plane and connect to the lower power plane. The por-

tions of the physical layout associated with the lumped circuit

model are also illustrated in Fig. 1.

The modeling approach used to characterize , , and

in this work is denoted circuit extraction approach based on a

mixed-potential integral equation (CEMPIE) and is a formula-

tion [22]. It is a PEEC method applied to a general multilayer

dielectric medium [23]. In the CEMPIE modeling, Rao-Wilton

Glisson (RWG) triangular patches were used to model the planar

metallization surfaces [24], rectangular patches were used to

model the vertical via interconnect and mixed basis functions

at the via/plane junction were used to ensure current continuity

[22]. In this manner, all aspects of the geometry were consid-

ered in order to evaluate the constituent factors in (3).

III. TEST BOARD GEOMETRY AND RESULTS

A test board was built to verify the results from modeling

reported in [19]. It was a two layer PCB with the top layer

shown in Fig. 2 and its bottom layer was a solid copper ground.

The dielectric layer was ordinary FR-4 (Fiberglass/expoy) ma-

terial with a dielectric constant of , loss tangent of

and a thickness of 44 mils. As shown in Fig. 2,

39 global SMT decoupling capacitors were uniformly placed

on the board on a 1 in grid. One end of each capacitor was sol-

dered to the top layer, while the other end was connected to the

bottom layer through a via. All via diameters were 20 mil. An

input port, made from semi-rigid coaxial cable and an SMA con-

nector, was located on the board with a spacing from the left and

bottom edges equal to 2 in. A local SMT decoupling capacitor

was added to the right of the input port and the spacing between

the via walls of the input port and the local capacitor was varied

from 50 to 500 mil. Five output ports, with the same geometry as

the input port, were placed such that the peak and null locations

of the low-order board resonances could be avoided. The decou-

pling capacitors placed on the board were 0805 package size

SMT capacitors. One of them was measured using an Agilent

4291A Impedance Analyzer. The measured ESL, equivalent
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Fig. 3. Measured jZ j averaged over the five output ports for the test board
shown in Fig. 2.

Fig. 4. Comparison between the CEMPIE modeling and the measured results
for the test board shown in Fig. 2.

series resistance (ESR), and capacitance values were 0.5 nH,

85 m , and 7.3 nF, respectively.

The -parameters between the input and an output ports were

measured and transformed to a corresponding [25]. An

Agilent 8753D Network Analyzer was used in the measure-

ments. The 12-term calibration procedure was performed using

an open, short and load. Reference planes were rotated from

the calibration planes to the test port terminals looking into

the PCB. The results, which were averaged over the five

output ports, are shown in Fig. 3, where they are compared with

the case with only 39 global decoupling capacitors placed on

the board. The CEMPIE modeling for the case of 39 global de-

coupling capacitors plus one local decoupling capacitor located

at mils is compared to the measured results in Fig. 4.

In general, the agreement between the measurements and mod-

eling is good. The discrepancies are due in large part because

of the construction by hand of the board. The capacitors were

mounted by hand soldering and the via connections made with

wires inserted into drilled holes. Also, only one SMT capacitor

component was characterized for ESL, ESR, and capacitance

and these values used for modeling every capacitor.

TABLE II
CALCULATED AVERAGE jZ j DECREASES (IN DECIBALS) VERSUS OUTPUT

PORT LOCATION AND IC/CAPACITOR SPACING

Fig. 3 indicates that adding a local decoupling capacitor de-

creases the over a frequency range from approximately

100 MHz to 3 GHz and that as the IC/capacitor spacing de-

creases, the decreases. Furthermore, the decrease is

approximately frequency independent over the entire frequency

range. The decrease in the with regard to the baseline case

that only the 39 global decoupling capacitors were present on

the board were then calculated and averaged over all frequency

points. They are listed in Table II. The values listed in the last

column are those averaged over the five different output ports.

IV. CLOSED-FORM EXPRESSIONS FOR INDUCTANCE

According to (3), the average decrease due to a local

decoupling capacitor can be estimated, if the values of , ,

and are known. In the test board shown in Fig. 2, is ap-

proximately the package parasitic inductance of the local SMT

decoupling capacitor. In other words, nH. In order to

calculate and , two different approaches were developed.

A. CEMPIE Modeling Approach

is the self inductance associated with the via portion be-

tween the power and ground planes. A general procedure was

developed to extract lumped circuit elements based on CEMPIE

and a physics-based circuit prototype in [26], where calculation

of via inductances in dc power bus structures is an example ap-

plication of this general procedure [27]. Further, the closed-form

expression of the self inductance of a via portion between the

power and ground planes in a rectangular power bus, as illus-

trated in Fig. 5, was derived based on curve-fitting [26]. The

derived expression is

(4)

where
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Fig. 5. Via at an arbitrary location in a rectangular power bus.

length of the longer or shorter edge of the rectangular

power bus, in meters;

separation between the power and ground planes, in

meters;

distance between the centers of the via and the power

bus, in meters;

radius of the via, in meters;

dimension ratio, ;

permeability of air.

The coupling coefficient, , can be extracted from the

full-wave CEMPIE modeled results. The with and

without a local decoupling capacitor can be determined using

the CEMPIE modeling approach and the average decrease

due to the local capacitor calculated. The coupling coefficient

can be solved from (3) as

(5)

Then, by determining the decrease as a function of the

decoupling capacitor via spacing with respect to the IC via,

the value of can be extracted as a function of this spacing.

Since the mutual coupling of interest is between the planes,

the CEMPIE modeling used to extract as a function of

capacitor/IC spacing was for a two layer structure, where

the inductance between the planes was dominant and only a

nominal value of ESL for the capacitor was included as the

portion for .

B. Simplified Physical Models

Closed-form expressions for and can be derived based

on physics and some approximations. First, consider a circular

power bus with a via at its center. The radius of the power bus is

and is the separation between the power and ground planes.

The radius of the via is . If the power bus is sufficiently large,

the magnetic field due to a current flowing through the via is ap-

proximately inversely proportional to the distance to the center

of the via. Then, the self inductance associated with the via can

be approximated as

(6)

Fig. 6. Magnetic coupling coefficient k as a function of the via spacing.

where 0.75 is a factor used to compensate for the edge effects of

the finite power bus. For other shapes of power bus, an equiva-

lent , such as the average distance to the board edges, can be

used in (6) to estimate the value. Specifically, for a rectan-

gular power bus with length and width , an approximated

can be

Similarly, the mutual inductance between two vias can be ap-

proximated as

where is the spacing between the two via centers and the two

vias are assumed to have the same radius . If a pair of two

closely spaced vias is located in the center of a power bus, the

self inductance of each via is approximately the same, provided

that . Then, the coefficient can be obtained as

(7)

Both (6) and (7) were derived based on the assumption that the

via/via pair is located in the center of the power bus. However,

the change of via inductance in a power bus due to its loca-

tion has been found to be insignificant in most of the board re-

gion, except for the small areas in proximity to board edges [28].

Therefore, (6) and (7) should be sufficiently accurate for many

engineering calculations.

The two approaches to calculate the magnetic coupling coef-

ficient , using CEMPIE modeling and (5) and the analytical ex-

pression (7), were applied for the 6 in 9 in two-sided modeling

geometry shown in Fig. 2. The results using (5) and (7) are com-

pared in Fig. 6. In general, the two equations give comparable

results. As suggested by (7), is not a function of power/ground

layer separation and it is not expected to be.
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TABLE III
ESTIMATES VERSUS MEASUREMENTS OF THE AVERAGE jZ j DECREASE DUE TO THE LOCAL DECOUPLING CAPACITOR FOR THE TEST BOARD SHOWN IN FIG. 2

C. Estimation With the Developed Expressions

With the developed closed-form expressions for and , the

average decrease due to a local decoupling capacitor was

estimated for the test board shown in Fig. 2 using (3), where

nH as discussed before. The values using (4) and

(6) were 1.51 and 1.18 nH, respectively. The coupling coeffi-

cient was obtained from (7). The calculated and measured

results are compared in Table III. The difference between the

measured and estimated results is approximately 1 dB for all

cases. This difference is due in part to the assumption in (3) that

and partly due to possible measurement errors. How-

ever, the estimated results are sufficiently accurate for typical

engineering designs.

V. DISCUSSION

In (3), is a portion of the self inductance associated with

the local decoupling capacitor. It is the inductance of the inter-

connects above the power/ground layer to the capacitor package

plus the package parasitic inductance as illustrated in Fig. 1. In

the two-sided test board, was the package parasitic induc-

tance only. However, in practical multilayer PCB designs,

will also typically include additional interconnect inductance.

The effects of this value on local decoupling benefits will be

discussed further in this section. The limiting case for local de-

coupling is to let the decoupling capacitor share a common via

with the IC power or ground pin. In that case, the via spacing is

zero and, the maximum mutual inductive coupling is achieved.

This will be also discussed in this section.

A. Modeling Multiple Layers Using CEMPIE

The previously reported CEMPIE results were all for the

two-layer boards with one solid ground that was included in

the calculation of Green’s functions in the modeling and one

power/signal layer that was meshed using RWG triangular

patches. The multilayer Green’s functions are general and can

handle multiple power/signal layers [2]. As an example, a test

board with two connected power areas on different layers was

modeled with CEMPIE. The three-layer board had a dimension

of 8 cm 5 cm, as shown in Fig. 7. The entire bottom layer

was used as the ground plane. There was a 4.3 cm 5 cm

power area (PWR1) on the left top layer; and another power

area (PWR2) with a dimension of 4.1 cm 5 cm on the right

hand portion of the second layer. A via at (40, 25) mm from

the lower left corner connected the two power areas. The

layer spacing was 45 mils and the total board thickness was

90 mils. The relative dielectric constant of the board material

was . Two test ports were placed on the test board

Fig. 7. Test board with two connected power areas on different layers.

Fig. 8. Modeled and measured jS j for the test geometry shown in Fig. 7.

with SMA connectors. Port 1 was located at (15, 20) mm and

Port 2 at (65, 10) mm from the lower left corner of the board.

Ports 1 and 2 were connected to the PWR1 and PWR2 power

areas, respectively. The center conductors of these ports had

a diameter of 50 mils. The between the two ports was

measured with an Agilent 8753D Network Analyzer and mod-

eled using the CEMPIE approach. The results are compared in

Fig. 8. In the CEMPIE modeling, was calculated at 401

frequency points from 10 MHz to 3 GHz. The total number of

unknowns was approximately 1400, with a fine discretization

of the power areas surrounding the connecting via. Dielectric
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Fig. 9. Board configuration for determining the inductance associated with the
via interconnects between and above the power/ground plane pair.

loss was included in the modeling with a loss tangent of

. The vertical discontinuities associated with the

test ports were also included in the modeling. The first peak

of at approximately 600 MHz was due to the connecting

via inductance and the parallel capacitances between the power

areas and the ground plane. In constructing the test board, a

thin wire with a diameter of 20 mils was soldered to both power

areas at the location (40, 25). Any extra solder in the hole at the

wire connection would decrease the equivalent wire inductance

in the measurements, but was not accounted for in the CEMPIE

modeling. This is evident at the lumped element resonances at

both approximately 600 and 1550 MHz, which are impacted by

the via inductance connecting the two power areas. As a result,

the measured resonances were shifted to approximately

650 and 1660 MHz. The peak at approximately 1.4 GHz

was a resonance related to the board’s short edge dimension.

At frequencies higher than 1.6 GHz, the test board exhibited

distributed characteristics. Overall, the agreement between the

measurements and the modeling is satisfactory, supporting the

CEMPIE modeling of multiple layers.

B. Determining

The parasitic inductance associated with the interconnects of

a decoupling capacitor can be determined from the resonant fre-

quency of the PCB [29]. This inductance resonates with the

inter-plane capacitance of the power/ground plane pair. Since

the inter-plane capacitance can be easily measured or calcu-

lated, the inductance value can then be obtained from the res-

onant frequency.

A test configuration, shown in Fig. 9, was modeled as an ex-

ample. The PCB was a three-layer board with a dimension of

44 in 7 in. The relative dielectric constant was

and the loss tangent was . The second and bottom

planes were power and ground planes and two mounting pads

Fig. 10. Modeled jZ j for the test geometry shown in Fig. 9.

were placed on the top plane. The 1.2 mm 1.2 mm pads had

the approximate size for mounting an 0805 SMT capacitor with

a spacing of 0.8 mm. The 0805 SMT capacitor is 79 mil long,

48 mil wide and 50 mil high. Two vertical vias with a diameter

of 30 mils were placed in the middle of the pad edges and con-

nected the capacitor to the power/ground planes. The spacing

between the power and ground planes was 40 mils. As defined

before, the inductance associated with the via portion between

the power and ground planes is . The inductance associated

with the rest of the vias above the power/ground plane pair and

the bonding pads, is . is the sum of and the parasitic

inductance of the capacitor package.

The and values were determined by calculating the

input impedance of the test structure. To calculate , a

shorting post with the same diameter as the via portion between

the power and ground planes shown in Fig. 9, was used to re-

place the via portion. The shorting post connected the power and

ground planes together and the input impedance looking into the

input port was modeled. The modeled results are shown as the

solid curve in Fig. 10. The peak at MHz was due

to the inter-plane capacitance ( ) and . The power/ground

planes were modeled again with the shorting post removed.

Since the input impedance in this case was approximately the

impedance of the inter-plane capacitance at low frequencies, the

was determined from the CEMPIE modeling to be 0.78 nF,

which is comparable to 0.74 nF using a simple parallel plate

capacitor model. Then, was determined from and as

nH. Again, as discussed be-

fore, the value includes the plane inductance as well. The

closed-form expressions developed in the previous section were

also used to estimate this inductance value and (4) and (6) gave

the results of 1.08 and 0.96 nH, respectively.

The value of was calculated by shorting the bonding pads

on the top plane shown in Fig. 9 using an ideal inductance

nH and modeling the input impedance. Two cases

were studied with the spacing between the top and middle planes

to be 10- and 40-mil. The modeled results are shown in Fig. 10

and exhibit a resonant frequency of MHz and
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Fig. 11. Test board configuration (top view) for the shared-via decoupling
study.

MHz for the 10 and 40 mil cases, respectively. This res-

onant frequency is due to the total inductance ( )

combined with . Therefore, was determined to be 0.19

and 1.12 nH for the 10- and 40-mil cases, respectively. Then,

the corresponding values are 1.01 and 1.94 nH. These

values are used in the next section to compare the estimate (3)

to rigorous full-wave modeling.

The above approach to extract , the portion of the inter-

connect inductance above the plane, using CEMPIE modeling

is one possibility. However, for engineering design, a full-wave

simulation to obtain to use in (3), the estimate of the noise

mitigation effects of a local decoupling capacitor is undesirable.

In particular since design equations have been developed for

and . An alternative for calculating is to use inductance

equations available for square loops [30].

C. Modeling Shared-Via Decoupling

As a limiting case of local decoupling, shared-via decoupling

is studied herein as an extension of the work reported in [19].

Also, the modeled geometry is changed from two-layer to three-

layer, so that the effects of on local decoupling benefits can

be investigated. Shared-via decoupling refers to the design that

the decoupling capacitor shares a common via with the IC power

or ground pin.

The modeled test board is shown in Fig. 11. The three-layer

board had a dimension of 4 in 7 in. The second and bottom

planes were power and ground planes, respectively. The board

dielectric material had a dielectric constant of and

loss tangent of . There were 27 decoupling ca-

pacitors uniformly distributed on the board on a 1 in grid for

global decoupling. An input port was placed 1.5 in from the left

and bottom edges, simulating an IC ground via. A local decou-

pling capacitor was placed close to the input port. As shown

in Fig. 12, the decoupling capacitor was mounted between two

bonding pads on the top plane and connected to the power and

ground planes with vias. In Fig. 12(a), the local capacitor was

located from the input port at a distance of ; while in Fig. 12(b),

it shared a common via to the ground plane with the input port,

modeling the shared-via decoupling. An ideal current source

was applied between the two bonding pads of the input port on

the top plane, as shown in Fig. 12, to generate a frequency-do-

Fig. 12. Local decoupling study of (a) the capacitor ground via is placed in
adjacent to the port ground via with a spacing of s and (b) the capacitor and the
port share a common ground via.

main response. The bonding pads had a dimension of 1.2 mm

1.2 mm and were separated by 0.8 mm. The vertical vias were

located at the pad edges with a diameter of 30 mils. Five ideal

voltage probes were placed on the board, as output ports, to

monitor the voltages between the power and ground planes.

The signal layer thickness (from the top to the middle plane)

was and the power/ground plane spacing was , as shown

in Fig. 12. Several values of and were selected to compare

the effectiveness of local decoupling. In particular, the modeled

test configurations were as follows.

1) Board #1 ( mils, mils).

2) Board #2 ( mils, mils).

3) Board #3 ( mils, mils).

For each test configuration, four placements of local decoupling

were studied with the CEMPIE approach.

1) Only global decoupling capacitors were placed, no local

decoupling.

2) A local decoupling capacitor was placed at a relatively far

location with mils.

3) A local decoupling capacitor was placed close to the input

port with mils.

4) A local decoupling capacitor shared a ground via with the

input port.

The global decoupling capacitors were placed on the board for

all test cases. All capacitors had a value of 0.01 F and an

ESR of 120 m , ESL of 0.82 nH. The between the input

port and five output ports was modeled at 401 frequency points

from 1 MHz to 3 GHz. The modeled results averaged over the

five output ports are shown in Figs. 13–15 for Boards #1–#3,

respectively.

For Boards #1 and #2 where a 40-mil thick power/ground

layer was used, the decreases as the local decoupling ca-

pacitor was placed closer to the input port, with the case without

the local decoupling capacitor having the highest magnitude.

The mutual inductance between the vias of the input port and the

decoupling capacitor was beneficial for extending the effective-

ness of the local decoupling capacitor to higher frequencies far

higher than its series resonant frequency. When the decoupling
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Fig. 13. Modeled jZ j averaged over the five output ports for Board #1.

Fig. 14. Modeled jZ j averaged over the five output ports for Board #2.

capacitor shared a common ground via with the input port, the

mutual inductance was maximized and it is clear from Figs. 13

and 14 that the decrease in this case is the largest. The

average decreases for the shared-via case over frequency

points and output ports were obtained from the CEMPIE mod-

eled results and are listed in Table IV, where they are compared

with the corresponding estimates using (3). In the rough estima-

tion, and values were obtained in the previous discussion.

The magnetic coupling coefficient was set to be 0.8 as calcu-

lated from CEMPIE as shown in Fig. 6, as opposed to

from (7). The decrease of may be due to the diminished mu-

tual coupling above the power/ground plane pair that is not ac-

counted for in the closed-form expression (7).

is a limiting factor for local decoupling in (3). When

its value is considerably greater than , which sometimes

is true for a PCB with many layers or interior power/ground

layers, the noise mitigation benefit of local decoupling is

negligible. In order to achieve any potential local decoupling

benefit, minimum parasitic inductance above the power/ground

plane pair (eliminating traces between bonding pads and

Fig. 15. Modeled jZ j averaged over the five output ports for Board #3.

vias, small package parasitics, applying multiple vias, etc.)

is required. Boards #1 and #2 studied here demonstrate the

effect of . The value of for Board #1 was 1.94 nH and it

decreased to 1.01 nH for Board #2 since the thickness above

the power/ground plane pair was reduced from 40 mils to

10 miles. The value remained the same for the two boards.

Therefore, Board #2 achieved a greater average decrease

accordingly, as shown in Table IV.

Board #3 behaved differently as compared to Boards #1 and

#2. As shown in Fig. 15, the overall changes due to the

local decoupling, even the shared-via decoupling, are negligible,

though the resonant peaks shift in frequency. Board #3 had a

10 mil thick power/ground plane pair, compared to 40 mil for

both Boards #1 and #2; therefore, the values of and were

much smaller, resulting in little decrease as suggested in

(3). It is worthy to point out that the overall for Board #3

is approximately 10 dB lower than Boards #1 and #2. This is

beneficial for power bus noise reduction. The impedance of a

power/ground plane pair is nearly proportional to the thickness

[14], [18]; therefore, a thin power/ground plane pair always has

superior performance for power bus noise, which impacts signal

integrity and EMI, as compared to a thick power/ground plane

pair [18].

VI. DC POWER BUS DESIGN IMPLICATIONS FOR

MULTILAYER PCBS

The physics and design equations quantifying the benefits

of local decoupling detailed in the previous sections, together

with previous work reported in the literature, allow for a more

complete design methodology of dc power buses in multilayer

PCBs. Of particular interest herein are those designs that use

entire layers or large area fills for power/ground plane pairs.

Specifically, a design approach is

1) to minimize the plane separation between the

power/ground layers so as to maximize the inter-

plane capacitance;

2) to evaluate the power bus noise mitigation benefits as in

(3), which is dominated by the ratio of the portion of the
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TABLE IV
AVERAGE jZ21j DECREASE FOR THE SHARED-VIA DECOUPLING IN THE TEST BOARD SHOWN IN FIG. 11

decoupling capacitor interconnect inductance above the

plane to that in the power/ground plane pair and determine

if local decoupling can be beneficial and if so to minimize

the separation between the SMT capacitor and IC;

3) to use the largest value of SMT capacitor available in a

given package size;

4) to attach the SMT capacitor to the power/ground plane

pair through minimal interconnect inductance for both

global and local decoupling capacitors.

The first, third, and fourth items are becoming accepted prac-

tice as a matter of experience for many designers of leading edge

high-speed digital circuits. However, the present work allows

the potential benefits of local decoupling to be quantified within

engineering accuracy and is an essential piece of a more com-

plete dc power bus design strategy.

The first design priority for a power bus that uses entire planes

is to minimize the spacing between the planes, which also max-

imizes the inter-plane capacitance (though this is not the reason

for minimizing the spacing). In short, thin is best. By mini-

mizing the plane pair spacing, the input impedance seen looking

into the power bus at the IC terminals is reduced. In fact, the

power bus input impedance and are proportional to

thickness [14], [18], [28] and minimizing the impedance re-

duces the noise voltage on the planes.

The estimate for power bus noise reduction with (3) is dom-

inated by the ratio of the inductance above the planes to that

in the planes for the SMT capacitor interconnect, as well as

the via spacing between the capacitor and IC. For PCBs with

many layers, where the power/ground layer pairs may be sev-

eral layers into the planes and following the first priority of thin

is best, there may be no benefit derived from local decoupling.

Two cases in particular where the power/ground layer pair might

be sufficiently thick to obtain some benefit from local decou-

pling is the case of four-layer boards where a thick core is used

for the ground and power planes on layers two and three, or

a six-layer board where each of four signal layers must have

controlled impedance signal lines and so the ground and power

planes are on layers two and five. In these cases, the power and

ground planes may be sufficiently thick and benefits of local

decoupling can be achieved. There may be other types of spe-

cial cases where design constraints limit the ability to maintain

a thin power/ground plane pair and power bus noise mitigation

from local decoupling achieved because the power/ground pair

is thick, e.g., a multilayer board that may have several logic

levels on different layers, but only a single ground layer. A case

where there may also be benefits of local decoupling that is not

indicated by (3) is placing many decoupling capacitors in the

unused area beneath an application-specific integrated circuit

(ASIC) (on the opposite side of the board) in which the pins or

balls are only on the periphery of the package. The power and

ground planes may be on adjacent layers and so the power bus

is thin and the ratio of the portion of the inductance above the

plane to that in the plane for a single capacitor is on the order

of one or greater, however, for many capacitors placed close to-

gether, there is the mutual coupling through the magnetic field

among all the capacitors and then to the ground/power pins of

the ASIC that may provide some benefit of local decoupling.

Finally, a critical aspect when striving to achieve some noise

mitigation benefit from local decoupling is that the current on

the via segments coupling the capacitor and IC must be cou-

pled between the power/ground plane pair as illustrated in the

two examples of Fig. 1. This dictates whether the capacitor is

placed in proximity to the power or ground pin of the IC.

The value of the decoupling capacitor for local decoupling

does not appear in (3) because it is assumed sufficiently large

so that the impedance of the capacitor is small relative to the

impedance associated with the interconnect inductance, which

is typically the case in practice. Then, beyond this, using the

largest value in any given package size is beneficial in providing

charge for maintaining signal fidelity and reducing power bus

noise at lower frequencies below the board resonances. For

global decoupling, the effectiveness of the SMT decoupling

capacitor is dictated by the impedance seen looking into the

SMT as compared to the power bus at the SMT location. The

impedance seen looking into the SMT at high frequencies

is dominated by the interconnect inductance, because the

impedance associated with the capacitance is very small with

respect to the impedance associated with the interconnect

inductance plus ESL. Then, a larger capacitance value in a

particular package size does not limit any performance and

again is beneficial for signal fidelity and lower-frequency

power bus noise.

Finally, as indicated by (3) and for the reasons indicated in

the previous paragraph, minimizing the interconnect inductance

achieves the best performance and in practice is a common habit

among most high-speed digital designers.

VII. CONCLUSION

A test board was investigated to support the previously re-

ported modeling studies on local decoupling. Closed-form ex-

pressions for via inductance and the magnetic coupling coeffi-

cient were developed and used to estimate the average de-

crease due to an added local decoupling capacitor. The approxi-

mately 1 dB difference between the estimates and measurements

demonstrates the application of these closed-form expressions

in practical engineering for power bus design and decoupling.
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The IC/capacitor spacing, as well as the power/ground plane

separation, determines whether the capacitor is local or global.

For a fixed IC/capacitor spacing, the thicker the power/ground

plane separation is, the greater the decrease that can be

achieved in a frequency band up to several gigahertz. Previous

studies concluded that, for a power/ground plane pair with a

thickness of 30 mils or more, placing a decoupling capacitor

closely enough to an IC power/ground pin can effectively re-

duce the power bus noise. However, for a thin power/ground

plane pair with a thickness of 10 mils or less, it is not easy to

achieve local decoupling benefits by simply placing the capac-

itor physically close to the device power/ground pin. In this case,

decoupling capacitors are normally global. In other words, it is

not necessary to put capacitors near devices; rather, they can be

placed where space is available on the PCB, though should be

connected through minimal interconnect inductance.

The shared-via decoupling was studied in this work as a lim-

iting case of local decoupling. It demonstrated the possible max-

imum benefits that a local decoupling capacitor can achieve. The

modeling results again corroborated the previous conclusions.

For a 10-mil thick power/ground plane pair, the noise reduc-

tion exceeded that of the widely spaced planes with good local

decoupling by 10 dB. The shared-via decoupling for the 10-mil

thick plane pair resulted in negligible power bus noise reduction,

because the impedance seen looking into the planes at the device

terminals was much lower, than that looking into the decoupling

capacitor branch, even with the effects of mutual inductance.
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