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ABSTRACT

It is an important and challenging problem in unsupervised learning to estimate the number of clusters in a dataset. Knowing the

number of clusters is a prerequisite for many commonly used clustering algorithms such as k-means. In this paper, we propose a

novel diversity based approach to this problem. Specifically, we show that the difference between the global diversity of clusters

and the sum of each cluster’s local diversity of their members can be used as an effective indicator of the optimality of the number

of clusters, where the diversity is measured by Rao’s quadratic entropy. A notable advantage of our proposed method is that it

encourages balanced clustering by taking into account both the sizes of clusters and the distances between clusters. In other words,

it is less prone to very small “outlier” clusters than existing methods. Our extensive experiments on both synthetic and real-world

datasets (with known ground-truth clustering) have demonstrated that our proposed method is robust for clusters of different

sizes, variances, and shapes, and it is more accurate than existing methods (including elbow, Caliński-Harabasz, silhouette, and

gap-statistic) in terms of finding out the optimal number of clusters.
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1. INTRODUCTION

Clustering is an important unsupervised learning task aiming

to group a collection of items into subsets (clusters) such

that those within the same cluster are more closely related

(similar) to each other than to those in different clusters.[1]

For many commonly used clustering algorithms (such as

k-means,[1] k-medoids,[1] Gaussian mixtures,[2] and spec-

tral clustering[3]), it is necessary to specify beforehand the

number of clusters, a parameter often denoted by k as in k-

means/k-medoids, to run the algorithm. However, we often

do not have prior knowledge about the correct choice of k,

and it is a very challenging problem to accurately estimate

it by analysing the dataset itself only.[4–6] On one hand, in-

creasing k will reduce the amount of error (in terms of data

recovery[7]) in the resulting clustering, to the extreme case

of full accuracy when k = n the total number of items in

the dataset. On the other hand, decreasing k will offer a

higher compression ratio, to the extreme case of maximum

compression when k = 1. The optimal choice of k proba-

bly lies somewhere in the middle ground, depending on the

characteristics of the dataset such as its size, variance, and

shape.

In this paper, we propose a novel diversity based approach to

the problem of estimating the number of clusters in a dataset.

A notable advantage of our proposed method is that it en-

courages balanced clustering by taking into account both

the sizes of clusters and the distances between clusters. In

other words, it is less prone to “outlier” clusters (that are

much smaller than most other clusters in the dataset) than

existing methods. Such a property of clustering is usually

desirable in practice. For example, when using a clustering

algorithm to perform image segmentation,[8] a very small

cluster (segment) probably corresponds not to a complete

meaningful object but only part of it, and therefore should

∗Correspondence: Dell Zhang; Email: dell.z@ieee.org; Address: Department of Computer Science and Information Systems, Birkbeck, University

of London, Malet Street, London WC1E 7HX, UK.

Published by Sciedu Press 15



http://air.sciedupress.com Artificial Intelligence Research 2018, Vol. 7, No. 1

be avoided. For another example, when using a clustering

algorithm to perform market segmentation,[9] a very small

cluster (segment) probably means that the market segment

has too few customers to be profitable, and therefore should

be discouraged. Obviously in some scenarios, small outlier

clusters can be useful, e.g., for revealing exceptions or ab-

normalities in the data. However, there are many real-world

applications where balanced clusters are preferred, which is

the focus of this paper.

The rest of this paper is organised as follows. In Section 2,

we review well-known existing methods for determining the

number of clusters in a dataset. In Section 3, we describe

our diversity based approach to this problem in detail. In

Section 4, we present the experimental results on a number

of datasets and empirically compare our proposed method

with the existing methods. In Section 5, we make concluding

remarks and discuss the future work.

2. RELATED WORK

The problem of estimating the number of clusters k in a

dataset has been studied extensively, and many different

methods have been proposed by researchers from various

disciplines.[10] In this section, we review a few representative

ones.

2.1 The elbow method

The elbow method[11] examines the percentage of variance

explained by the clustering as a function of the number of

clusters k. If we plot the percentage of variance explained

against k, the first clusters will be able to explain a lot of vari-

ance, but at some point the marginal gain will drop, giving an

“elbow” in the graph. The optimal k is chosen at this point, as

introducing more clusters would not give a better explanation

of variance in the dataset, though such an “elbow” cannot

always be unambiguously identified.[12] In this paper, we use

a slight variation of this method which plots the curve of the

intra-cluster variance:[13]

E(k) =

k∑

r=1

W (Cr) (1)

where W (Cr) is the variance within the r-th cluster Cr.

2.2 The Caliński-Harabasz method

Milligan et al.[4] compared 30 different approaches to es-

timating the number of clusters in a dataset and found

that the best performing method is given by Caliński and

Harabasz:[14]

CH(k) =
B(k)/(k − 1)

W (k)(n − k)
(2)

where B(k) is the inter-cluster variance (i.e. the sum of

squared distances for the k clusters), and W (k) is the intra-

cluster variance. Maximising CH(k) against different values

of k gives the estimated number of clusters.

2.3 The silhouette method

Rousseeuw et al.[15] proposed the silhouette method, of

which the main purpose is to examine whether an item i is

classified well in the cluster or not. For every item or point i,

its silhouette is calculated as:

S(i) =
b(i) − a(i)

max(a(i), b(i))
(3)

where a(i) is the average distance of item i to all the items

in the same cluster and b(i) is its average distance to all the

items in the nearest cluster. The i-th item is well clustered if

the value of S(i) approaches the maximum which is 1; and a

S(i) value 0 means that item i belongs to the other cluster.

After plotting the silhouette score averaged over all the items

against different values of k, the right number of clusters is

estimated to be the k yielding the highest average silhouette

score.

2.4 The gap-statistic method

Tibshirani et al.[16] proposed another method, gap-statistic,

which compares intra-cluster variance with the expected val-

ues under the null reference distribution of the dataset. After

clustering the dataset for different values of k, we get the

intra-cluster variance for the observed dataset as well as the

reference dataset, and then calculate the gap-statistic as:

Gapn(k) = E∗
n{log(W (k))} − log(W (k)) (4)

where W (k) is the total intra-cluster variance and E∗
n{.}

denotes the expectation under a sample of size n from the

reference distribution. The gap-statistic measures the devi-

ation of the observed W (k) value from its expected value

under the null hypothesis.

3. OUR APPROACH

One drawback of the above mentioned methods for estimat-

ing the number of clusters is that they could lead to very

imbalanced clustering, where some “outlier” clusters are

much smaller than the other clusters. This is often unde-

sirable for real-life clustering applications (see Section 1).

Here we propose a novel diversity based approach to the

problem of estimating the number of clusters, which is less

tolerant to such “outlier” clusters and encourages balanced

clustering by taking into account both the sizes of clusters

and the distances between clusters.
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3.1 Rao’s quadratic entropy

The requirement of balance among clusters, in fact, implies

that there should be no particular cluster dominating the

dataset, i.e., there should be a certain level of diversity among

clusters.

The concept of diversity, originated from ecology,[17] has

been widely diffused into many other scientific disci-

plines[18, 19] (such as linguistics and sociology). In recent

years, a variety of quantitative measures of diversity have

been successfully applied in computer science for web

search,[20–24] text mining,[25] and recommender systems.[26]

Although there exist many different diversity measures (such

as Simpson’s and Shannon’s) and it is debatable which diver-

sity index is the best,[27, 28] we choose to use Rao’s quadratic

entropy[29] to measure the diversity of data, because it takes

into account both the sizes of species (groups) and the dis-

tances between species (groups). Rao’s quadratic entropy is

defined as:

Div =

s∑

i=1

s∑

j=1

pipjδ(i, j) (5)

where s is the number of species, pi and pj are the propor-

tions of species i and j respectively, and δ(i, j) is the distance

between them. Euclidean distance is used throughout this

paper, but other distance metrics could be used as well.

3.2 The diversity method

To find out the optimal number of clusters in a dataset with

n items, we use the output of the given clustering algorithm

(such as k-means) and then measure the difference between

the global diversity of clusters and the sum of each cluster’s

local diversity of their members, denoted by Q(k) and given

by

Q(k) = DivG −

k∑

r=1

DivL
r (6)

where DivG is the global diversity of k clusters (with each

cluster as a species) while DivL
r is the local diversity of

the r-th cluster (with each member item of the cluster as a

species) as measured by Rao’s quadratic entropy given in

Equation (5). We calculate the diversity based statistic Q(k)

for various values of k, i.e., for k from 1 to n, and the max-

imum value of Q(k) should be able to tell us the optimal

number of clusters in the dataset, i.e.,

k̂ = arg max
1≤k≤nQ(k) (7)

The underlying intuition of this diversity method is that in a

good clustering, the items within each cluster should be as

homogeneous as possible (i.e., less local diversity), while the

clusters themselves should be as heterogeneous as possible

(i.e., more global diversity). The balance of cluster sizes is

actually implied by a high level of diversity among clusters.

The approaches to estimating the number of clusters can

be divided into two categories, global methods and local

methods, as pointed out by Gordon.[30] The former evaluate

some measure over the entire dataset and optimise it as a

function of the number of clusters; the latter consider indi-

vidual pairs of clusters and decide whether they should be

amalgamated.[16] Obviously the diversity method proposed

by us is a global method. According to Gordon,[30] most

global methods suffer from a serious disadvantage that they

are undefined for one cluster (i.e., k = 1) and therefore cannot

be used to determine whether the dataset should be clustered

at all. It is worth mentioning that our diversity method does

not have this shortcoming: Q(k) is well defined for k = 1, as

we show later in Section 4.2.

4. EXPERIMENTS

4.1 Balance

As can be seen in Equation (5), Rao’s quadratic entropy takes

into account the sizes of clusters and the distances between

clusters, which is important to achieve balanced clustering

desirable in many real-life clustering applications.

For the purpose of investigating the trade-off between the

sizes of clusters and the distances between clusters, we first

create two clusters from two 2-dimensional standard normal

distributions which have 1,000 items each and are centred at

(0,0) and (0,5) respectively, and then we create another clus-

ter from one 2-dimensional standard normal distribution with

varying number of items from 1 to 1,000 (i.e., we generate

1,000 different datasets). Following this, we move the third

cluster’s centre (x, y) as follows: we keep y at 2.5 (halfway

from the first cluster’s centre to the second cluster’s centre),

and gradually increase x from 0 to +∞ until the third cluster

is detected by our proposed diversity method as a separate,

third, cluster.

The results of the simulation study are shown in Figure 1,

which indicates that using the diversity method to estimate

the number of clusters, a small cluster needs to be distant

from the other clusters in the dataset to be regarded as a

separate cluster, otherwise it will be assimilated into another

nearby cluster: the smaller the cluster, the larger its distance

to the other clusters should be. In other words, the diversity

method tends to avoid suggesting very small clusters unless

they are very far away from the rest of data.

Published by Sciedu Press 17



http://air.sciedupress.com Artificial Intelligence Research 2018, Vol. 7, No. 1

Figure 1. The trade-off between the sizes of clusters and the

distances between clusters

4.2 Robustness

In this section, we investigate how robust our proposed di-

versity method is when it is applied to different types of

datasets.

For this purpose, we create five synthetic datasets of differ-

ent sizes, variances, and shapes. In addition, we also make

use of three real-world datasets — Wine, Breast Cancer,

and Thyroid Disease — from the UCI Machine Learning

Repository.[31] On these synthetic and real-world datasets,

we cluster the data points into k clusters with k from 1 to

n (using k-means for the first three synthetic datasets and

the first real-world dataset, but average-link hierarchical ag-

glomerative clustering[32] for the remaining datasets), and

calculate the value of Q(k) for each k. The actual number of

clusters in the dataset is estimated to be the k that maximises

Q(k) (see Section 3). It can be seen from the experimental

results in Figures 2-7 that for both synthetic and real-world

data, no matter what size, variance, or shape the dataset has,

our proposed diversity method can successfully discover the

correct number of clusters.

Figure 2. Experimental results on the synthetic dataset of five clusters with equal sizes and equal variances

Figure 3. Experimental results on the synthetic dataset of five clusters with equal sizes but different variances
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Figure 4. Experimental results on the synthetic dataset of four clusters with different sizes and some random noise

Figure 5. Experimental results on the synthetic dataset of two ring-shape clusters

Figure 6. Experimental results on the synthetic dataset of two moon-shape clusters
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Figure 7. Experimental results on three real-world datasets from the UCI Machine Learning Repository, where m and k*

are the number of features/dimensions and the actual number of clusters respectively in the corresponding dataset.

4.3 Comparison

We use four synthetic datasets to evaluate the proposed diver-

sity method and compare it with the other methods reviewed

in Section 2, i.e., elbow, Caliński-Harabasz, silhouette, and

gap-statistic. Note that the same experimental methodology

was used by the gap-statistic paper.[16]

Those datasets are intentionally made to differ in the number

of clusters, the number of dimensions, and the number of

items. They are defined as follows.

• Four clusters in 2 dimensions; their sizes are 250, 250,

250, and 500 respectively; their centres are (1,3), (0,8),

(8,0) and (4,-2) respectively.

• Four “normal” clusters and one small “outlier” cluster

in 2 dimensions; the sizes of those “normal” clus-

ters are 1,000, 900, 900, and 850 respectively while

the size of that “outlier” cluster is randomly set to a

number between 50 and 100; their centres are chosen

randomly.

• Five clusters in 10 dimensions; their number of items

are randomly set to either 50 or 100; their centres are

chosen randomly.

• Six clusters with the same settings as in the previous

case of five clusters except that the number of dimen-

sions is set to 4.

The items (data points) in each such cluster are all sampled

from a particular standard multivariate normal distribution.

For each scenario defined above, we generated 50 concrete

datasets so as to carry out 50 simulation trials. Then we

used the chosen clustering algorithm to divide the generated

dataset into k clusters with k varying from 1 to 9. On the

basis of the clustering results, we apply the diversity method

and the other methods in comparison to make estimations

about the actual number of clusters.

The experimental results of the simulation study are sum-

marised in Table 1. Each number in the table shows how

many times a particular method detected the number of clus-

ters mentioned in its column header. In the first case where

there is little noise, all the methods performed almost equally

well. In the second case where there is a lot of noise, it can

be clearly seen that the diversity method outperformed all

the other methods significantly. In the third and fourth cases,

the diversity method worked best with near-perfect accuracy,

closely followed by the gap-statistic method (which is widely

regarded as the state-of-the-art).
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Table 1. Experimental results on the synthetic datasets showing how many times out of 50 simulation trials a particular

method estimated the number of clusters to be k̂, where the column corresponding to the correct number of clusters is

annotated with *.

Method 
Estimates of the following numbers of clusters  

1 2 3 4 5 6 7 8 9 

a) Ground truth: 4 clusters (relatively clean) 

elbow 0 0 1 49
*

 0 0 0 0 0 

silhouette 0 0 0 50
*

 0 0 0 0 0 

Caliński-Harabasz 0 0 0 50
*

 0 0 0 0 0 

gap-statistic 0 0 0 50
*

 0 0 0 0 0 

diversity 0 0 0 50
*
 0 0 0 0 0 

b) Ground truth: 4 clusters (relatively noisy) 

elbow 0 0 5 29
*

 16 0 0 0 0 

Caliński-Harabasz 0 0 1 0
*

 49 0 0 0 0 

silhouette 0 0 0 39
*

 11 0 0 0 0 

gap-statistic 0 0 0 14
*

 36 0 0 0 0 

diversity 0 0 0 48
*

 2 0 0 0 0 

c) Ground truth: 5 clusters 

elbow 0 1 0 5 44
*
 0 0 0 0 

Caliński-Harabasz 0 7 0 6 37
*
 0 0 0 0 

silhouette 0 2 0 9 39
*

 0 0 0 0 

gap-statistic 0 0 0 0 48
*

 2 0 0 0 

diversity 0 0 0 1 49
*

 0 0 0 0 

d) Ground truth: 6 clusters 

elbow 0 0 0 0 8 42
*

 0 0 0 

Caliński-Harabasz 0 6 0 0 8 36
*

 0 0 0 

silhouette 0 0 0 0 12 38
*

 0 0 0 

gap-statistic 0 0 0 0 0 49
*

 1 0 0 

diversity 0 0 0 0 0 50
*

 0 0 0 

5. CONCLUSIONS

The main research contribution of this paper is a novel diver-

sity based approach to the problem of estimating the number

of clusters in a dataset. To the best of our knowledge, the

underlying connection between diversity and clustering has

not been revealed before in research literature.

Specifically, we show that the difference between the global

diversity of clusters and the sum of each cluster’s local diver-

sity of their members can be used as an effective indicator of

the optimality of the number of clusters, where the diversity

is measured by Rao’s quadratic entropy. A notable advan-

tage of our proposed method is that it encourages balanced

clustering by taking into account both the sizes of clusters

and the distances between clusters. In other words, it is less

prone to very small “outlier” clusters than existing methods.

Our extensive experiments on both synthetic and real-world

datasets (with known ground-truth clustering) have demon-

strated that our proposed method is robust to clusters of

different sizes, variances, and shapes, and it is more accurate

than existing methods (including elbow, Caliński-Harabasz,

silhouette, and gap-statistic) in terms of finding out the opti-

mal number of clusters.

It would be meaningful to explore the usage of diversity

measures other than Rao’s quadratic entropy, which is left

for future work. It would also be interesting to compare our

approach to estimating the number of clusters with those
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clustering algorithms that have built-in ability of detecting

the number of clusters (such as DBSCAN,[33] OPTICS,[34]

and affinity propagation[35]).
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