
ar
X

iv
:1

50
7.

00
82

7v
2 

 [
st

at
.M

L
] 

 1
5 

N
ov

 2
01

9

ESTIMATING THE NUMBER OF COMMUNITIES BY SPECTRAL

METHODS

CAN M. LE AND ELIZAVETA LEVINA

Abstract. Community detection is a fundamental problem in network analysis with
many methods available to estimate communities. Most of these methods assume that
the number of communities is known, which is often not the case in practice. We study
a simple and very fast method for estimating the number of communities based on the
spectral properties of certain graph operators, such as the non-backtracking matrix and
the Bethe Hessian matrix. We show that the method performs well under several models
and a wide range of parameters, and is guaranteed to be consistent under several asymp-
totic regimes. We compare this method to several existing methods for estimating the
number of communities and show that it is both more accurate and more computationally
efficient.

1. Introduction

The problem of clustering similar objects into groups is a fundamental problem in data
analysis. In network analysis, it is known as community detection ([34, 3, 10, 4]). Given
a network, which consists of a set of nodes and a set of edges between them, the goal of
community detection is to cluster the nodes into groups (communities) so that nodes in
the same community share a similar connectivity.

One of the simplest ways of modeling a community structure is the stochastic block
model (SBM), proposed by [17]. Given the number of communities K, n node labels ci
are drawn independently from a multinomial distribution with parameter π = (π1, ..., πK).
The edges between pairs of nodes (i, j) are then drawn independently from a Bernoulli
distribution with parameter Pcicj and collected in the n × n adjacency matrix A, with
Aij = 1 if nodes i and j are connected by an edge, and 0 otherwise. A limitation of
the stochastic block model is that all nodes in the same communities are equivalent and
follow the same degree distribution, whereas many real networks contain a small number of
high-degree nodes, the so called hubs. To address this limitation, [19] proposed the degree-
corrected stochastic block model (DCSBM). It assigns a degree parameter θi to each node
i, and edges between nodes are drawn independently with probabilities θiθjPcicj . The
community detection task is to recover the labels ci given the adjacency matrix A.

A large number of methods have been proposed for finding the underlying community
structure ([28, 33, 3, 10, 37, 12, 4, 20, 41, 30, 38]). Most of these methods require the
number of communities K as input, but in practice K is often unknown. To address
this problem, a few likelihood-based methods have been proposed to estimate K under
either the SBM or the DCSBM ([14, 21, 35, 39, 43]). These methods use BIC-type crite-
ria for choosing the number of communities from a set of possible values, which requires
computing the likelihood, done using either MCMC or the variational method, which are
both computationally very challenging for large networks. A different approach based on
the distribution of leading eigenvalues of an appropriately scaled version of the adjacency
matrix was proposed by [9, 23]. Under the SBM, distributions of the leading eigenvalues
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converge to the Tracy-Widom distribution; this fact is used to determine K through a
sequence of hypothesis tests. Since the rate of convergence is slow for relatively sparse
networks, a bootstrap correction procedure was employed, which also leads to a high com-
putational cost. Cross-validation approaches were proposed by [13] and [24]. While they
have good properties under the SBM and the DCSBM, they require estimating commu-
nities on many random network splits, and are computationally costly.

To the best of our knowledge, all existing methods are either restricted to a specific
model or computationally intensive. In this paper we study a fast and reliable method
that uses spectral properties of either the Bethe Hessian or the non-backtracking matrices.
Under a simple SBM in the sparse regime, these matrices have been used to recover
the community structure ([20, 38, 11]); It was observed in the physics literature that
the informative eigenvalues (i.e., those corresponding to eigenvectors which encode the
community structure) of these matrices are well separated from the bulk and can be used to
estimate the number of communities, but the properties of this estimator have never been
investigated, either theoretically or empirically. We show that the number of “informative”
(to be defined explicitly below) eigenvalues of these matrices directly estimates the number
of communities, and the estimate performs well under different network models and over a
wide range of parameter values, outperforming existing methods designed specifically for
estimating K under either SBM or DCSBM. This method is extremely computationally
efficient, since all it requires is computing a few leading eigenvalues of just one typically
sparse matrix, and to the best of ourknowledge, is by far the fastest available accurate
method for estimating the number of communities.

Several new methods for estimating the number of communities K have been developed
concurrently with the present paper. For example, [36] use a variant of the Chinese restau-
rant process to generate community assignments, which automatically yields a choice ofK;
this method is implemented via a Monte Carlo sampling scheme, which is computationally
intensive. A method based on semi-definite programming, another very computationally
intensive technique, was derived and proved to be consistent for assortative networks by
[44]. Improving on [43], the authors of [18] proposed a corrected BIC criterion in [43] to
correct for under-estimation. More recently, [26] combined spectral clustering with binary
segmentation to derive a new estimate of K. Compared to all these new methods, the
estimators based on Bethe Hessian or non-backtracking matrices we study is still the most
computationally efficient, arguably the simplest, and competitive on estimation accuracy
(see [26] for some numerical comparisons). The theoretical analysis of the Bethe-Hessian
and the nonbactracking matrices we provide in this paper explain this performance and
cover a wider range of settings, including sparse, dense, assortative and disassortative
networks; no other method is known to be applicable under a wider range of settings, and
most are narrower.

2. Preliminaries

Recall A is the n × n symmetric network adjacency matrix. Let di =
∑n

j=1Aij be the
degree of node i. Treating A as a random matrix, let EA be the expectation of A, and
let d = 1

n

∑n
i=1 E di be the average expected node degree.

2.1. The non-backtracking matrix. Let m be the number of edges in an undirected
network, 2m =

∑n
i,j=1Aij . To construct the non-backtracking matrix, we represent the

edge between node i and node j by two directed edges, one from i to j and the other from
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j to i. The 2m× 2m matrix B̃, indexed by these directed edges, is defined by

B̃i→j,k→l =

{

1 if j = k and i 6= l
0 otherwise.

It is well-known [5, 20] that the spectrum of B̃ consists of ±1 and eigenvalues of an 2n×2n
matrix

B =

(

0n D − In
−In A

)

. (2.1)

Here 0n is the n× n matrix of all zeros, In is the n×n identity matrix, and D = diag(di)
is n × n diagonal matrix with degrees di on the diagonal. It was observed by [20] that
if a network has K communities then the first K largest (in absolute value) eigenvalues
of B are real-valued and well separated from the bulk, which is contained in a circle of
radius ‖B‖1/2. We refer to these K eigenvalues as informative eigenvalues of B. It was
also shown by [20] that the spectral norm of the non-backtracking matrix is approximated
by

d̃ =
(

n
∑

i=1

di

)−1(
n
∑

i=1

d2i

)

− 1. (2.2)

For a special case of a sparse SBM with a bounded expected node degree, [11] proved
that the leading eigenvalues of B concentrate around non-zero eigenvalues of EA and
the bulk is contained in a circle of radius ‖B‖1/2, and used the corresponding leading
eigenvectors to recover the community labels. The spectrum of B for denser Erdos-Renyi
graphs was later analyzed in [42]. In particular, if d ≫ n5/6, then every eigenvalue of

(d − 1)−1/2B is within a vanishing distance from a limiting spectrum supported on the
unit circle of the complex plane. In Theorem A.1 below we extend this result to much
sparser and more general random graphs and require only that d ≫ log n.

2.2. The Bethe Hessian matrix. The Bethe Hessian matrix is defined by

H(r) = (r2 − 1)I − rA+D, (2.3)

where r ∈ R is a parameter. In graph theory, the determinant of H(r) is the Ihara-Bass
formula for the graph zeta function. It vanishes if r is an eigenvalue of the non-backtracking
matrix [16, 6, 5]. The Bethe Hessian was used for community detection by [38] Under the

SBM, they argued that the best choice of r is rc = ±
√
d, depending on whether the network

is assortative or disassortative; for a more general network, they take rc = ±‖B‖1/2. For
assortative sparse networks withK communities and a bounded d, they empirically showed
that the K eigenvalues of H(rc) whose corresponding eigenvectors encode the community
structure are negative, while the bulk of H(rc) are positive. Thus, the number of negative
eigenvalues of H(rc) corresponds to the number of communities. In Theorem 4.3 below,
we prove that this method isindeed consistent for graphs with d ≫ log n.

3. Spectral estimates of the number of communities

The spectral properties of the non-backtracking and the Bethe Hessian matrices lead
to natural estimates of the number of communities, but they have not been previously
considered in this context. We next outline several spectral methods to determine the
number of communities K. They are based on simple counts of eigenvalues of either the
non-backtracking matrix or the Bethe Hessian matrix, and therefore do not require any
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Method Parameter Estimated number of communities K̂

NB None
∣

∣

{

λ(B) ∈ R : λ(B) ≥ ‖B‖1/2
}
∣

∣

BHm rm =
(∑n

i=1
d2i∑n

i=1
di

− 1
)1/2

max {k : λn−k(H(rm)) ≤ 0}

BHmc rm =
(∑n

i=1
d2
i∑n

i=1
di

− 1
)1/2

max{k : tλn−k+1(H(rm)) ≤ λn−k(H(rm))}

BHa ra =
(

1
n

∑n
i=1 di

)1/2
max{k : λn−k(H(ra)) ≤ 0}

BHac ra =
(

1
n

∑n
i=1 di

)1/2
max{k : tλn−k+1(H(ra)) ≤ λn−k(H(ra))}

Table 1. Spectral methods for estimating the number of communities.

adjustment for different models such as SBM or DCSBM. We list them in Table 1, and
proceed to explain the motivation for each one.

3.1. Estimating K from the non-backtracking matrix. As we will show in The-
orems 4.1 and 4.2 under the SBM, the informative eigenvalues of the non-backtracking
matrix are real-valued and separated from the bulk of radius ‖B‖1/2. Therefore we can

estimate K by counting the number of real eigenvalues of B that are at least ‖B‖1/2. We
denote this method by NB (for non-backtracking). As shown by Theorem 4.2 and numer-
ical results in Section 5, this estimate of K also works under much more general models
with low-rank structure such as DCSBM. When the network is balanced (communities
have similar sizes and edge densities), NB performs well; however, the accuracy of NB
drops if the communities are unbalanced in either size or edge density. Since B is not
symmetric, computing the eigenvalues of B is slightly more demanding than that of the
Bethe Hessian matrix for large networks.

3.2. Estimating K from the Bethe Hessian matrix. The number of communities
corresponds to the number of negative eigenvalues of H(r); the challenge is in choosing
an appropriate value of r. It was argued by [38] that when r = ‖B‖1/2, the informative
eigenvalues of H(r) are negative, while the bulk are positive; by [20], ‖B‖ can be approx-

imated by d̃ from (2.2). Following these results, we first choose r to be rm = d̃1/2 and call

the corresponding method BHm. Simulations show that using r = rm and r = ‖B‖1/2
produce similar results; we choose r = rm because computing rm is less demanding than
computing ‖B‖1/2.

Another choice of r is ra =
√

(d1 + · · ·+ dn)/n, which was proposed by [38] for recov-
ering the community structure under the SBM; we call the corresponding method BHa.
We have found that when the network is balanced, NB, BHm and BHa perform similarly;
when the network is unbalanced, BHa produces better results.

Both BHm and BHa tend to underestimate the number of communities, especially when
the network is unbalanced. In that setting, some informative eigenvalues of H(r) become
positive, although they may still be far from the bulk. Based on this observation, we
correct BHm and BHa by also using positive eigenvalues of H(r) that are much close
to zero than to the bulk. Namely, we sort eigenvalues of H(r) in non-increasing order
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λ1 ≥ λ2 ≥ · · · ≥ λn, and estimate K by

K̂ = max{k : tλn−k+1 ≤ λn−k}, (3.1)

where t > 0 is a tuning parameter. Note that if λn−k0+1 < 0 then K̂ ≥ k0 because
λn−k0+1 ≤ λn−k0 , therefore the number of negative eigenvalues of H(r) is always upper

bounded by K̂. Heuristically, if the bulk follows the semi-circular law and λn−k ≥ 0 is
given, then the probability that 0 ≤ λn−k+1 ≤ λn−k/t is less than 1/t. When 1/t is
sufficiently small, we may suspect that λn−k+1 is an informative eigenvalue. In practice
we find that t ∈ [4, 6] works well; we will set t = 5 for all computations in this paper.

Simulations show that K̂ performs well, especially for unbalanced networks. The resulting
methods are denoted by BHmc and BHac, respectively. We will also use BH to refer to
all the methods that use the Bethe Hessian matrix. For a summary of these methods, see
Table 1.

4. Consistency

The consistency of the non-backtracking matrix based method (NB) for estimating the
number of communities in the sparse regime under the stochastic block model follows
directly from Theorem 4 of [11]. We state this consistency result here for completeness.
The proof given by [11] is combinatorial in nature and this approach unfortunately does
not extend to any other regimes or the Bethe-Hessian matrix.

Theorem 4.1 (Consistency in the sparse regime). Consider a stochastic block model with

π = (π1, ..., πK) and P = (Pkl) = 1
nP

(0) for some fixed K × K symmetric matrix P (0).

Assume that (diag(π)P )r has positive entries for some positive integer r. Further, assume

that E(di) = d > 1 for all i, and all K non-zero eigenvalues of P are greater than
√
d.

Then with probability tending to one as n → ∞, the number of real eigenvalues of B that

are at least ‖B‖1/2 is equal to K.

To better understand the condition on the eigenvalues of P , consider the simple model
G(n, a

n ,
b
n). This model assumes that there are two communities of equal sizes and nodes

are connected with probability a/n if they are in the same community, and b/n otherwise.
Since the two non-zero eigenvalues of P are (a + b)/2 and (a − b)/2, the condition on
eigenvalues of P is (a − b)2 > 2(a + b). This matches the phase transition condition for
the detectability in the sparse regime [29, 31, 27].

Next, we prove the consistency of the proposed methods in the denser regime d ≫ log n,
sometimes referred to as semi-dense in contrast to the dense regime of d = O(n). For this
regime, we make the following assumptions.

Assumption 4.1. All nodes have the same expected degree satisfying

E

n
∑

j=1

Aij = d ≥ C log n, 1 ≤ i ≤ n.

Assumption 4.2. Matrix EA is of rank K and nonzero eigenvalues of EA satisfy

|λ1(EA)| ≥ |λ2(EA)| ≥ · · · ≥ |λK(EA)| ≥ 4d1/2 +C(d1/4 + (log n)1/2).

Assumption 4.3. The expected degree d in Assumption 4.1 satisfies

d5 max
i,j

EAij ≤ n−1/13.
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Following [11], we assume in Assumption 4.1 that all nodes have the same expected
degree. This corresponds perhaps to the most challenging setting where expected degrees
alone do not contain information about the latent structure of interest. As in [11] and
[42], this assumption allows us to simplify our analysis of the non-backtracking matrix
considerably. If some communities have different expected degrees, we can first use node
degrees to identify them and divide the network into sub-networks of similar expected node
degrees and apply our results on the sub-networks. Note that for the degree-corrected
stochastic block model, if the underlying stochastic block model satisfies this assumption
and the degree parameters are drawn from the same distribution, then the degree-corrected
stochastic block model itself will also satisfy the assumption.

The lower bound on λK(EA) in Assumption 4.2 is of the form |λK(EA)| ≥ 4(1 +

o(1))
√
d when d ≫ log n. Under G(n, a

n ,
b
n), this bound is (a − b)2 ≥ 32(1 + o(1))(a + b).

For a comparison, exact community recovery under G(n, a
n ,

b
n) with known number of

communities requires (a− b)2 > 2(a+ b+ 2
√
ab) log n (see e.g. [1, Theorem 13]).

Assumption 4.3 guarantees a sharp bound on ‖A−EA‖, which is established by [7]. We
use this bound in the proofs of Theorem 4.2 and Theorem 4.3 below. For the Erdös-Rényi
model, Assumption 4.3 is equivalent to d ≤ n2/13. It is unclear if this condition can be
removed from the result of [7] and consequently from Theorem 4.2 and Theorem 4.3.

Theorem 4.2 (Consistency of NB based method in the semi-dense regime). Consider

random graphs that satisfy Assumptions 4.1, 4.2 and 4.3. Then with probability at least

1−1/n, the nonbacktracking matrix has exactly K real eigenvalues with magnitude at least

(1 + ε)
√
d and the remaining eigenvalues are of magnitude smaller than (1 + ε)

√
d, where

ε = C

[

(

log n

d

)1/4

+

(

1

d

)1/8
]

.

According to Theorem 4.2, theK informative eigenvalues of the nonbacktracking matrix
are separated from the bulk by a circle of radius (1 + ε)

√
d, where ε is vanishing for

d ≫ log n. Unlike in Theorem 4.1, K is allowed to depend on n in Theorem 4.2.
To compute this estimator in practice, we simply set ε = 0 and estimate d with the

average observed degree d̄ = (d1+ · · ·+dn)/n. It is straightforward to show that d̄ is close
to d with high probability.

The key result for proving Theorem 4.2 is Theorem A.1 in Appendix A, which establishes
a connection between the spectra of nonbacktracking and adjacency matrices, and may also
be of independent interest. Theorem A.1 is a significant improvement on Theorem 1.5 in
[42], which only considers the Erdös-Rényi model and requires a much stronger condition,

d ≫ n5/6 instead of d ≫ log n.
For the Bethe Hessian, no formal results have been previously established. We show in

the following theorem that both BHm and BHa methods produce consistent estimator of
K = rank(EA), provided that the following stronger version of Assumption 4.2 holds.

Assumption 4.4. Matrix EA is of rank K and nonzero eigenvalues of EA satisfy

λ1(EA) ≥ λ2(EA) ≥ · · · ≥ λK(EA) ≥ 4d1/2 + C(d1/4 + (log n)1/2).

Note that Assumption 4.2 allows networks to be disassortative, meaning probabilities of
connections between communities are higher than within communities, in which case the
eigenvalues of EA may be negative. In contrast, Assumption 4.4 requires all eigenvalues
of EA to be non-negative.
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Theorem 4.3 (Consistency of the Bethe Hessian matrix method). Consider random

graphs that satisfy Assumptions 4.1, 4.3 and 4.4. Then with probability at least 1− 1/n,

the Bethe Hessian H(r) with r = (1 + ε)rm or r = (1 + ε)ra and ε = C
√

log n/d has

exactly K negative eigenvalues.

Again in practice, we set ε = 0 to compute the estimator.

5. Numerical results

In this section, we briefly compare the empirical accuracy of estimating the number of
communities by using the non-backtracking matrix (NB), and all the versions based on
the Bethe Hessian matrix (BHm, BHmc, BHa, and BHac), described in Section 3.1 and
Section 3.2. We compare them with two other methods representative of approaches in
the literature to estimating the number of communities in networks: the network cross-
validation method (NCV) proposed by [13] and a likelihood-based BIC-type method (VLH,
for variational likelihood) proposed by [43]. We use NCVbm and NCVdc to denote the
versions of the NCV method specifically designed for the SBM and the DCSBM, respec-
tively; VLH is only designed to work under the SBM, so it is not included in the DCSBM
comparisons. To make comparisons with VLH computationally feasible, instead of using
the variational method to estimate the posterior of the community labels as done by [43],
we first estimate the node labels by the pseudo-likelihood method proposed by [4] and then
compute the posterior following [43]. In small-scale simulations where both approaches are
computationally feasible (results omitted) we found that substituting pseudo-likelihood for
the variational method has very little effect on the estimate of K. The tuning parameter
of VLH is set to one following [43]. We do not include the method of [9] in these compar-
isons due to its high computational cost. Note that our theoretical analysis assumes for
simplicity that all expected node degrees are equal (Theorems 4.1, 4.2 and 4.3); however,
we allow different expected node degrees in simulations. In this section, d = 1

n

∑n
i=1 E di

denotes the average expected node degree.

5.1. Synthetic networks. To generate synthetic networks, we fix the labels c ∈ {1, ...,K}n
so that ci = k if nπk−1 + 1 ≤ i < nπk, where π0 = 0. The label matrix Z ∈ R

n×K , given
by Zik = 1(ci = k), encodes c by representing each node’s label with a row of K ele-

ments, exactly one of which is equal to 1, and the rest are equal to 0. Let P̃ be a K ×K
matrix with the diagonal w = (w1, ..., wK) and off-diagonal entries β, and M = ZPZT .
Under the stochastic block model, we generate entires of A using the edge probability
matrix E(A) = ρnM ; the average degree d is controlled by ρn. The parameter w con-
trols the relative edge densities within communities, and β controls the out-in probability
ratio. Smaller values of β and larger values of d make the problem easier. For the
DCSBM, we generate the degree parameters θi from a distribution that takes two values,
P(θ = 1) = 1 − γ and P(θ = 0.2) = γ. Parameter γ controls the fraction of “hubs”,
the high-degree nodes allowed under the DCSBM, and setting γ = 0 gives back the regu-
lar SBM. Given θ = (θi, ..., θn), the edges are generated independently with probabilities
E(A) = ρndiag(θ)Mdiag(θ), where diag(θ) is a diagonal matrix with θi’s on the diagonal.

The number of nodes is set to n = 1200, the out-in probability ratio β = 0.2, and we
vary the average degree d, weights w, and community sizes determined by the vector π.
We consider three different values for the number of communities, K = 2, 4, and 6. For
each setting, we generate 200 replications of the network and record the accuracy, defined
as the fraction of times a method correctly estimates the true number of communities K.
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The methods NCV and VLH require a pre-specified set of K values to choose from; we
use the set {1, 2, ..., 8} for synthetic networks and {1, 2, ..., 15} for real-world networks.

We start by varying the average degree d, which controls the overall difficulty of the
problem, while keeping community sizes equal. Figure 1 shows the performance of all
methods for the balanced community density case, wi = 1 for all 1 ≤ i ≤ K. Figure 2
shows the unbalanced case, with w = (1, 2) for K = 2, w = (1, 1, 2, 3) for K = 4, and
w = (1, 1, 1, 1, 2, 3) for K = 6. In every figure, the top row corresponds to the SBM (γ = 0)
and the bottom row to the DCSBM (γ = 0.9, meaning 10% of nodes are hubs).

In general, we see that when everything is balanced (Figure 1), all spectral methods
perform fairly similarly and outperform both cross-validation (NCV) and the BIC-type
criterion (VLH). Also, for larger K and especially under DCSBM, the corrected versions
are somewhat better than the uncorrected ones, and the best Bethe Hessian methods are
better than the non-backtracking estimator.

For networks with equal size communities but different edge densities within communi-
ties (Figure 2), cross-validation performs poorly, but VLH relatively improves. For larger
K the spectral methods are also distinguishable, with all BH methods dominating NB,
and corrected versions providing improvement. Overall, BHac is the best spectral method,
with VLH comparable for the SBM in this case. The BHac method is the best overall for
DCSBM where VLH is not applicable.
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Figure 1. The accuracy of estimating K as a function of the average
degree. All communities have equal sizes, and wi = 1 for all 1 ≤ i ≤ K.

Communities of different sizes present a challenge for community detection methods in
general, and the presence of relatively small communities makes the problem of estimat-
ing K difficult. To test the sensitivity of all the methods to this factor, we change the
proportions of nodes falling into each community setting π1 = r/K, πK = (2 − r)/K,
and πi = 1/K for 2 ≤ i ≤ K − 1, and varying r in the range [0.2, 1]. As r increases,
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Figure 2. The accuracy of estimating K as a function of the average
degree. All communities have equal sizes; w = (1, 2) for K = 2, w =
(1, 1, 2, 3) for K = 4, and w = (1, 1, 1, 1, 2, 3) for K = 6.

the community sizes become more similar, and are all equal when r = 1. Figure 3 shows
the performance of all methods as a function of r. The top row corresponds to the SBM
(γ = 0), the bottom row to the DCSBM (γ = 0.9), and the within-community edge den-
sity parameters wi = 1 for all 1 ≤ i ≤ K. Here we see that VLH is less sensitive to
r than the spectral methods, but unfortunately it is not available under the DCSBM.
Cross-validation is still dominated by spectral methods except for very small values of r,
where all methods perform poorly. The corrections still provide a slight improvement for
Bethe Hessian based methods, although all spectral methods perform fairly similarly in
this case.

5.2. Real world networks. Finally, we apply the proposed methods on several popular
network datasets which come with the “ground truth” node labels and the corresponding
number of communities. We note that the network structure itself can indicate a different
number of communities than those given in the ground truth, since those are typically
derived from one specific node attribute and there may be other communities or sub-
communities corresponding to different attributes. However, these ground truth labels
still provide a reasonable baseline against which to compare estimators.

The college football network [15] represents 115 US college football teams and the games
they played in 2000. The “ground truth” communities are the 12 conferences that the
teams belong to. The political books network [32], compiled around 2004, consists of
105 books about US politics; an edge is “frequently purchased together” on Amazon.
The K = 3 communities are “conservative”, “liberal”, or “neutral”, labelled manually
based on contents. The dolphin network [25] is a social network of 62 dolphins, with
edges representing social interactions, and K = 2 communities are based on a split which
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Figure 3. The accuracy of estimating K as a function of the community-
size ratio r: π1 = r/K, πK = (2− r)/K, and πi = 1/K for 2 ≤ i ≤ K − 1.
In all plots, wi = 1 for 1 ≤ i ≤ K; the average degrees are λn = 10 (left),
15 (middle), and 20 (right).

happened after one dolphin left the group. Similarly, the karate club network [45] is a social
network of 34 members of a karate club, with edges representing friendships, and K = 2
communities based on a split following a dispute. Finally, the political blogs network
[2], collected around 2004, consists of blogs about US politics, with edges representing
web links, and K = 2 communities are “conservative” and “liberal”, based on manual
labelling. For this dataset, as is commonly done in the literature, we only consider its
largest connected component of 1222 nodes.

Table 2 shows the estimated number of communities in these networks. All spectral
methods estimate the correct number of communities for dolphins and the karate club,
and do a reasonable job for the college football and political books data. For political
blogs, all methods but NCV and VLH estimate a much larger number of communities,
suggesting the estimates correspond to smaller sub-communities with more uniform degree
distributions that have been previously detected by other authors. We also found that the
VLH method was highly dependent on the tuning parameter, and the estimates by NCVbm
and NCVdc varied noticeably from run to run due to their use of random partitions.

6. Discussion

The numerical experiments suggest that the spectral methods provide extremely fast
and reliable estimates of the number of communities K for balanced networks, with the
Bethe Hessian based method with the threshold choice ra and the correction described in
(3.1) the best choice in most scenarios. With communities of significantly different sizes,
they tend to underestimate K by combining small communities together, which seems to
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Dataset NB BHm BHmc BHa BHac NCVbm NCVdc VLH Truth

College football 10 10 10 10 10 14 13 9 12

Political books 3 3 4 4 4 8 2 6 3

Dolphins 2 2 2 2 2 4 3 2 2

Karate club 2 2 2 2 2 3 3 4 2

Political blogs 8 7 8 7 8 10 2 1 2

Table 2. Estimates of the number of communities in real-world networks.

be an intrinsic limitation of spectral methods. This suggests that their estimates can be
used as a lower bound on K and a starting point for a more elaborate and computationally
demanding likelihood-based method like VLH, in the same way that spectral clustering
can be used to initialize a more sophisticated community detection method. Having a
small set of plausible values of K to focus on can significantly reduce the computational
cost and improve the accuracy of estimating the number of communities.

For semi-dense networks, we show in Theorems 4.2 and 4.3 that estimating the num-
ber of communities is possible below the exact recovery threshold. For example, under
G(n, a

n ,
b
n), our results require (a− b)2 ≥ 32(1+ o(1))(a+ b) while exact community recov-

ery is feasible if (a− b)2 > 2(a + b+ 2
√
ab) log n. Determining the exact condition under

which estimating the number of communities is possible is an interesting and challenging
question and we leave it for future research.

Appendix A. Proof of Theorem 4.2

Following [42], we will work with the following rescaled conjugation of the nonbacktrack-
ing matrix B defined in (2.1) (which has the same eigenvalues as B/

√
α where α = d− 1)

( 1√
α
A 1√

α
(I −D)

I 0

)

=

( 1√
α
A −I

I 0

)

+

(

0 1
α (ED −D)

0 0

)

=: H + E. (A.1)

The key result for proving Theorem 4.2 is Theorem A.1 below, which establishes a con-
nection between spectra of H + E and H. The spectrum of H is closely related to the
spectrum of the adjacency matrix, and is discussed in Section A.1.

To prove Theorem A.1, we only need a crude bound on ‖A−EA‖ that is known to hold
for very general graph models, including SBM, DCSBM and inhomogeneous Erdos-Renyi
models [22]. For clarity, we put this bound in Assumption A.1 below. We will replace it
with a sharper bound in Theorem A.2 to prove Theorem 4.2.

Assumption A.1. With probability at least 1− 1/n, the following inequality holds

‖A− EA‖ ≤ C
√
d.

It is easy to see that Assumption A.1 implies ‖E‖ = O(1/
√
d) with high probability

while [42] shows that H is diagonalizable as follows.

A.1. Spectrum of H. Denote by v1, ..., vn and λ1, λ2, ..., λn eigenvectors and correspond-
ing eigenvalues of A/

√
α ordered so that |λ1| ≥ |λ2| ≥ ... ≥ |λn|. For each i, H has two

eigenvalues µ2i−1 and µ2i that are solutions of equation µ2 − λiµ+ 1 = 0, that is

µ2i−1 =
λi +

√

λ2
i − 4

2
, µ2i =

λi −
√

λ2
i − 4

2
. (A.2)
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The corresponding left (unit) eigenvectors of H are

y∗2i−1 =
1

√

1 + |µ2i−1|2
(−µ2i−1v

T
i , v

T
i ), y∗2i =

1
√

1 + |µ2i|2
(−µ2iv

T
i , v

T
i )

and their inner product is

〈y2i−1, y2i〉 =
{

λ2

i+λi

√
λ2

i
−4

4 , if |λi| < 2
2

|λi| , if |λi| ≥ 2
=

{

λiµ2i−1

2 , if |λi| < 2
2

|λi| , if |λi| ≥ 2.
(A.3)

The corresponding right eigenvectors of H are proportional to

x2i−1 =

√

1 + |µ2i−1|2
µ2i − µ2i−1

(

vi
µ2ivi

)

, x2i =

√

1 + |µ2i|2
µ2i−1 − µ2i

(

vi
µ2i−1vi

)

, (A.4)

with inner product

〈x2i−1, x2i〉 =







λ2

i+λi

√
λ2

i
−4

λ2

i
−4

, if |λi| < 2
2|λi|
4−λ2

i

, if |λi| ≥ 2
=







2λiµ2i−1

λ2

i
−4

, if |λi| < 2
2|λi|
4−λ2

i

, if |λi| ≥ 2
(A.5)

Note that x2i−1 and x2i are not unit vectors. Their squared norms are

‖x2i−1‖2 = ‖x2i‖2 =







4
4−λ2

i

, if |λi| < 2

λ2

i

λ2

i
−4

, if |λi| ≥ 2.
(A.6)

It is convenient to not normalize x2i−1 and x2i because H admits the decomposition

H =

n
∑

i=1

(

µ2i−1x2i−1y
∗
2i−1 + µ2ix2iy

∗
2i

)

.

Note that from the formulas above we have

x2i−1 ⊥ y2i, x2i ⊥ y2i−1, 〈x2i−1, y2i−1〉 = 〈x2i, y2i〉 = 1.

The space C2n can be decomposed as a direct sum of orthogonal two-dimensional subspaces
span{x2i−1, x2i} = span{y2i−1, y2i}, which are invariant under the action of H. Moreover,
the orthogonal projection onto span{x2i−1, x2i} is given by x2i−1y

∗
2i−1 + x2iy

∗
2i.

A.2. Spectrum of H + E. The main difficulty of analyzing the spectrum of H + E is
that H and E are not symmetric so standard Weyl’s inequalities do not apply even though
‖E‖ is small. Wang and Wood [42] use the Bauer-Fike theorem instead and show that for
Erdos-Renyi random graphs, the perturbation of E is negligible if the average degree is
at least of order n5/6. This strong assumption is likely an artifact of their proof because
the Bauer-Fike bound is often not tight. In fact, by a direct and more careful analysis we
show in the following theorem that the spectrum of H + E is close to the spectrum of H
for much sparser graphs.

Theorem A.1 (Connection between spectra of non-backtracking and adjacency matrices).
There exists a constant C > 0 such that the following holds. Consider random graphs

satisfying Assumptions 4.1 and A.1. Then with probability at least 1 − 1/n, for each

eigenvalue β of H + E, there exists an eigenvalue µ of H such that

|β − µ| ≤ Cd−1/8.
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For proving Theorem 4.2, we replace Assumption A.1 with the following shaper bound
on ‖A−EA‖, which holds under stronger assumptions. This bound follows directly from
[7] and [40]; see also [42].

Theorem A.2 (Concentration of adjacency matrix). There exists a constant C1, C2 > 0
such that the following holds. Assume that

d ≥ C1 log n and d5max
i,j

EAij ≤ n−1/13.

Then with probability at least 1− 1/n, we have

‖A− EA‖ ≤ 2
√
d+ C2

√

log n.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let λ1(EA), ..., λK (EA) be the nonzero eigenvalues of EA and
λ1(A), · · · , λn(A) be eigenvalues of A, ordered so that |λ1(EA)| ≥ · · · ≥ |λK(EA)| > 0 and
|λ1(A)| ≥ · · · ≥ |λn(A)|. Then by Weyl’s inequality and Theorem A.2, with probability at
least 1− 1/n we have

|λi(A)| ≤ 2
√
d+ C

√

log n for i ≥ K + 1,

|λi(A)− λi(EA)| ≤ 2
√
d+ C

√

log n for 1 ≤ i ≤ K.

Since |λK(EA)| ≥ 4
√
d + 4C( 4

√
d +

√
log n) by Assumption 4.2, it follows that |λi(A)| ≥

2
√
d+ 2C( 4

√
d+

√
log n) for 1 ≤ i ≤ K. Therefore for 1 ≤ i ≤ K, from (A.2) we have

max{|µ2i−1(H)|, |µ2i(H)|} ≥ 1 +
2C( 4

√
d+

√
log n)1/2

d1/4
> 1,

min{|µ2i−1(H)|, |µ2i(H)|} =
1

max{|µ2i−1(H)|, |µ2i(H)|} < 1.

Similarly, for i ≥ K + 1 we have

max{|µ2i−1(H)|, |µ2i(H)|} < 1 + 2C

(

log n

d

)1/4

.

Theorem A.1 and the continuity of eigenvalues with respect to small perturbation then
imply that for 1 ≤ i ≤ K,

max{|µ2i−1(H + E)|, |µ2i(H + E)|} ≥ 1 +
2C( 4

√
d+

√
log n)1/2

d1/4
−Cd−1/8

≥ 1 + 2C

(

log n

d

)1/4

+ Cd−1/8,

while the remaining eigenvalues of H + E have magnitude at most

1 + 2C

(

log n

d

)1/4

+ Cd−1/8.

Since B =
√
α(H +E) by (2.1) and (A.1), it follows that the nonbacktracking matrix has

exactly K eigenvalues with magnitude at least (1 + ε)
√
d and the remaining eigenvalues

are of magnitude smaller than (1 + ε)
√
d.
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To show that the K largest eigenvalues in magnitude of B are real, we use the following
deterministic inclusion bound for the spectrum of B; see [5, Theorem 3.7]. Let dmin ≥ 2
and dmax be the minimal and maximal degrees of a graph. Then the spectrum of B satisfies

σ(B) ⊆
{

λ ∈ C :
√

dmin − 1 ≤ |λ| ≤
√

dmax − 1
}

∩ {λ ∈ R : 1 ≤ |λ| ≤ dmax − 1} .

In our setting, we bound dmax using standard Bernstein’s inequality: with probability at
least 1− 1/n,

√

dmax − 1 ≤
√

d+ C
√

d log n ≤ (1 + ε)
√
d.

Since all complex eigenvalues of B are contained in a circle of radius at most
√
dmax − 1, the

K largest eigenvalues of B in magnitude, which are outside the circle of radius (1+ ε)
√
d,

must be real. The proof is complete. �

The rest of this section is devoted to proving Theorem A.1. Besides the facts listed in
Section A.1, we need the following elementary lemmas, the proofs of which are postponed
until the end of this section.

Lemma A.3. Let x, y, v be unit vectors with |〈x, y〉| ≤ 1 − ε for some ε ∈ [0, 1], v ∈
span{x, y} and a, b ∈ C be any complex numbers. Then

‖ax+ by‖2 ≥ ε(|a|2 + |b|2), |〈v, x〉|2 + |〈v, y〉|2 ≥ ε.

Lemma A.4. Let x2i−1, x2i be right eigenvectors of H given by (A.4). Then for any

a, b ∈ C and 1 ≤ i ≤ n we have

‖ax2i−1 + bx2i‖ ≥ max{|a|, |b|}.

Lemma A.5. Let x2i−1, x2i be right eigenvectors of H given by (A.4) and denote Wi =
span{x2i−1, x2i}. Then for any 1 ≤ i ≤ n we have

sup
w∈Wi

‖Hw‖ ≤ 4max{|λi|, 1} · ‖w‖.

We are now ready to prove Theorem A.1.

Proof of Theorem A.1. Denote by Pi the orthogonal projection onto span{x2i−1, x2i}. Let
u be a unit eigenvector of H + E with corresponding eigenvalue β and ui = Piu/‖Piu‖.
Note first that

u =
∑

i

Piu =
∑

i

(x2i−1y
∗
2i−1 + x2iy

∗
2i)Piu.

This allows us to write Eu as follows:

Eu = βu−Hu =
∑

i

[

(β − µ2i−1)x2i−1y
∗
2i−1 + (β − µ2i)x2iy

∗
2i

]

Piu.

Note that the terms in above sum belong to orthogonal subspaces of C2n. Therefore

‖E‖2 ≥
∑

i

∥

∥

[

(β − µ2i−1)x2i−1y
∗
2i−1 + (β − µ2i)x2iy

∗
2i

]

ui
∥

∥

2 ‖Piu‖2 =
∑

i

Ti‖Piu‖2 (A.7)

where Ti denotes the first factor of the corresponding term in the sum.

Let ε ∈ (0, 1/4) be a small number to be chosen later. Consider first the eigenvalues
λi with magnitude not close to 2, namely those satisfying ||λi| − 2| > ε. From (A.5) and
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(A.6) we have

|〈y2i−1, y2i〉| =
|〈x2i−1, x2i〉|
‖x2i−1‖ · ‖x2i‖

=

{

|λi|/2, if |λi| < 2− ε

2/|λi|, if |λi| > 2 + ε
≤ 1− ε/3. (A.8)

It also follows from (A.6) that ‖x2i−1‖ = ‖x2i‖ > 1. Since ui ∈ span{x2i−1, x2i} =
span{y2i−1, y2i}, if ||λi|−2| > ε then by (A.8) and Lemma A.3 (applied to ‖x2i−1‖−1x2i−1,
‖x2i‖−1x2i first and then to y2i−1, y2i) we have

Ti ≥ ε/3 ·
(

|β − µ2i−1|2|y∗2i−1ui|2 + |β − µ2i|2|y∗2iui|2
)

· ‖x2i‖2

≥ ε2/9 ·min{|β − µ2i−1|2, |β − µ2i|2}. (A.9)

We now consider two cases of u, namely whether the following inequality holds:

∑

||λi|−2|>ε

‖Piu‖2 > ε. (A.10)

We will show that in both cases there exists an eigenvalue of H that is close to β. Assume
first that (A.10) holds. Then from (A.7), (A.9) and (A.10) we have

‖E‖2 ≥
∑

||λi|−2|>ε

Ti · ‖Piu‖2

≥
∑

||λi|−2|>ε

ε2/9 ·min{|β − µ2i−1|2, |β − µ2i|2} · ‖Piu‖2

≥ ε2/9 · min
||λi|−2|>ε

{|β − µ2i−1|2, |β − µ2i|2} ·
∑

||λi|−2|>ε

‖Piu‖2

≥ ε3/9 · min
||λi|−2|>ε

{|β − µ2i−1|2, |β − µ2i|2}.

It follows that there exists i with ||λi| − 2| > ε such that

min{|µ2i−1 − β|2, |µ2i − β|2} ≤ 9‖E‖2
ε3

. (A.11)

We now consider the second case of u when (A.10) does not hold, or equivalently

∑

||λi|−2|≤ε

‖Piu‖2 > 1− ε. (A.12)

We partition the set of indices i satisfying ||λi| − 2| ≤ ε as a union of J and I, where J is
the set of indices i such that ||λi| − 2| ≤ ε and max{|y∗2i−1ui|, |y∗2iui|} > ε, and I is the set
of indices i such that ||λi| − 2| ≤ ε and max{|y∗2i−1ui|, |y∗2iui|} ≤ ε. It follows from (A.12)
that at least one of the following inequalities hold:

∑

i∈J
‖Piu‖2 > ε,

∑

i∈I
‖Piu‖2 > 1− 2ε.
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If the first inequality holds then by (A.7) and Lemma A.4 we have

‖E‖2 ≥
∑

i∈J
Ti · ‖Piu‖2

≥
∑

i∈J
max

{

|(β − µ2i−1)y
∗
2i−1ui|2, |(β − µ2i)y

∗
2iui|2

}

· ‖Piu‖2

≥ min
i∈J

max
{

|(β − µ2i−1)y
∗
2i−1ui|2, |(β − µ2i)y

∗
2iui|2

}

·
∑

i∈J
‖Piu‖2

≥ ε ·min
i∈J

max
{

|(β − µ2i−1)y
∗
2i−1ui|2, |(β − µ2i)y

∗
2iui|2

}

.

Since max{|y∗2i−1ui|, |y∗2iui|} > ε for i ∈ J , it follows that there exists i ∈ J such that

min{|β − µ2i−1|2, |β − µ2i|2} ≤ ‖E‖2
ε3

. (A.13)

We now assume that the following inequality holds:
∑

i∈I
‖Piu‖2 > 1− 2ε. (A.14)

This inequality implies that |β| is bounded. Indeed, from identities (H + E)u = βu and
u =

∑

i ‖Piu‖ui we get
∑

i

‖Piu‖Hui +Eu = β
∑

i

‖Piu‖ui. (A.15)

Note that Hui ∈ span{x2i−1, x2i} because ui ∈ span{x2i−1, x2i} and {x2i−1, x2i} are eigen-
vectors of H. Denote PI =

∑

i∈I Pi and apply PI to both sides of (A.15), we have
∑

i∈I
‖Piu‖Hui + PIEu = β

∑

i∈I
‖Piu‖ui.

If i ∈ I then H is bounded on span{x2i−1, x2i} by Lemma A.5. Therefore from (A.14) we
obtain

(1− 2ε)1/2|β| ≤
∥

∥

∥
β
∑

i∈I
‖Piu‖ui

∥

∥

∥
≤

∥

∥

∥

∑

i∈I
‖Piu‖Hui

∥

∥

∥
+ ‖PIEu‖ ≤ C + ‖E‖.

Since ε ≤ 1/4 and ‖E‖ ≤ 1, this implies |β| ≤ 2C. Applying PIc =
∑

i 6∈I Pi to both sides

of (A.15), using (A.14) and the boundedness of β, we have
∥

∥

∥

∑

i∈Ic
‖Piu‖Hui

∥

∥

∥
≤ ‖PIcEu‖+ |β| ·

∥

∥

∥
PIc

∑

i∈Ic
‖Piu‖ui

∥

∥

∥
≤ ‖E‖+ C

√
2ε. (A.16)

Therefore using (H +E)u = βu and inequalities (A.14), (A.16) we have
∥

∥

∥
βu− (H + E)

∑

i∈I
‖Piu‖ui

∥

∥

∥
=

∥

∥

∥

∑

i∈Ic
‖Piu‖Hui + E

∑

i∈Ic
‖Piu‖ui

∥

∥

∥

≤ (‖E‖ + C
√
2ε) + ‖E‖

≤ 2C(
√
ε+ ‖E‖). (A.17)

Denote x̄2i−1 = ‖x2i−1‖−1x2i−1 and x̄2i = ‖x2i‖−1x2i. Since x̄2i−1 ⊥ y2i, x̄2i ⊥ y2i−1 and
max{|y∗2i−1ui|, |y∗2iui|} ≤ ε for i ∈ I, it follows that |〈ui, x̄2i−1〉| ≥ 1 − 2ε and |〈ui, x̄2i〉| ≥
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1− 2ε. By multiplying x̄2i with a complex number of magnitude one if necessary, we may
assume that 〈ui, x̄2i〉 ≥ 1− 2ε for i ∈ I, and consequently

‖ui − x̄2i‖2 ≤ 4ε. (A.18)

We are now ready to show that β is close to an eigenvalue of H. By (A.18), (A.14), (A.17),
the fact that β and µ2i are bounded for i ∈ I, and triangle inequality we have

∥

∥

∥

∑

i∈I
‖Piu‖(µ2i − β)ui

∥

∥

∥
=

∥

∥

∥

∑

i∈I
‖Piu‖µ2iui −

∑

i∈I
‖Piu‖βui

∥

∥

∥

≤
∥

∥

∥

∑

i∈I
‖Piu‖µ2ix̄2i −

∑

i∈I
‖Piu‖βui

∥

∥

∥
+ C

√
4ε

≤
∥

∥

∥

∑

i∈I
‖Piu‖µ2ix̄2i −

n
∑

i=1

‖Piu‖βui
∥

∥

∥
+ C(

√
4ε+

√
2ε)

=
∥

∥

∥
H

∑

i∈I
‖Piu‖ x̄2i − βu

∥

∥

∥
+ C(

√
4ε+

√
2ε)

≤
∥

∥

∥
H

∑

i∈I
‖Piu‖ ui − βu

∥

∥

∥
+C(2

√
4ε+

√
2ε)

≤
∥

∥

∥
(H + E)

∑

i∈I
‖Piu‖ ui − βu

∥

∥

∥
+ C(2

√
4ε+

√
2ε) + ‖E‖

≤ 2C(
√
ε+ ‖E‖) + C(2

√
4ε+

√
2ε) + ‖E‖

≤ 8C(
√
ε+ ‖E‖).

Together with (A.14) this implies

min
i∈I

|β − µ2i|2 ≤
1

1− 2ε
·
∑

i∈I
‖Piu‖2|β − µ2i|2 ≤ C(ε+ ‖E‖2). (A.19)

Finally, it follows from (A.11), (A.13) and (A.19) that if β is an eigenvalue of H +E then
there exists an eigenvalue µ of H such that

|β − µ| ≤ C(‖E‖+ ε2)

ε3/2
= 2C‖E‖1/4

for ε = ‖E‖1/2. It follows from Assumption A.1 that ‖E‖ = O(1/
√
d) and therefore the

proof is complete. �

Proof of Lemma A.3. We prove the first inequality:

‖ax+ by‖2 = |a|2 + |b|2 + 2 ·Re{āb〈x, y〉}
≥ |a|2 + |b|2 − 2|ab|(1 − ε)

= (1− ε)(|a| − |b|)2 + ε(|a|2 + |b|2)
≥ ε(|a|2 + |b|2).

To prove the second inequality, denote z = x−y and w = x+y. Then z, w are perpendicular
and x = (z + w)/2, y = (w − z)/2. Therefore

|〈v, x〉|2 + |〈v, y〉|2 = v∗(xx∗ + yy∗)v = v∗(zz∗ + ww∗)v/2.
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Note that the restriction of zz∗ + ww∗ on span{x, y} is a positive definite matrix with
eigenvalues ‖z‖2 and ‖w‖2 because z and w are perpendicular. By the first inequality

min{‖z‖2, ‖w‖2} = min{‖x− y‖2, ‖x+ y‖2} ≥ 2ε.

Since v ∈ span{x, y}, it follows that

v∗(zz∗ + ww∗)v/2 ≥ 2εv∗v/2 = ε.

The proof is complete. �

Proof of Lemma A.4. We decompose x2i−1 as x2i−1 = z + w where z ⊥ x2i and w ∈
span{x2i}. Then

‖ax2i−1 + bx2i‖2 = |a|2‖z‖2 + ‖aw + bx2i‖2 ≥ |a|2‖z‖2.

To calculate z, denote x̄2i−1 = ‖x2i−1‖−1x2i−1, x̄2i = ‖x2i‖−1x2i and τ = 〈x̄2i−1, x̄2i〉.
From (A.5) and (A.6) we get

τ =

{

−λ2

i
+λi

√
λ2

i
−4

4 , if |λi| < 2

− 2
|λi| , if |λi| ≥ 2.

Since ‖x2i−1‖ = ‖x2i‖, it follows that

z = x2i−1 − 〈x2i−1, x̄2i〉x̄2i = x2i−1 − τx2i.

Therefore by (A.6), we obtain

‖z‖2 = ‖x2i−1‖2 + |τ |2‖x2i‖2 − 2Re(τ〈x2i−1, x2i〉)
= ‖x2i‖2

(

|τ |2 + 1− 2Re(τ2)
)

=







4
4−λ2

i

(

λ2

i

4 + 1− λ4

i
−2λ2

i

4

)

, if |λi| < 2

λ2

i

λ2

i
−4

(

1− 4
λ2

i

)

, if |λi| ≥ 2

=

{

λ2
i + 1, if |λi| < 2

1, if |λi| ≥ 2

≥ 1.

This implies ‖ax2i−1 + bx2i‖ ≥ |a| · ‖z‖ ≥ |a|. By decomposing x2i instead of x2i−1 and
repeating the same argument, we obtain ‖ax2i−1 + bx2i‖ ≥ |b|. The proof is complete. �

Proof of Lemma A.5. Since x̄2i−1 = ‖x2i−1‖−1x2i−1 and y2i form an orthonormal basis of
Wi, it is enough to bound ‖Hx̄2i−1‖ and ‖Hy2i‖. Note that the restriction Hi of H on Wi

has the formula

Hi = µ2i−1x2i−1y
∗
2i−1 + µ2ix2iy

∗
2i.

Therefore ‖Hix̄2i−1‖ = ‖µ2i−1x̄2i−1‖ ≤ |λi|. For the more involved calculation of Hy2i we
will repeatedly use identities

µ2i−1µ2i = 1, µ2i−1 + µ2i = λi (A.20)

which follow directly from the formulas of µ2i−1 and µ2i in (A.2).
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The case |λi| < 2. From (A.3), (A.4) and identities |µ2i−1| = |µ2i| = 1, µ2i−1µ2i = 1 we
have

Hiy2i =
λiµ

2
2i−1√

2(µ2i − µ2i−1)

(

vi
µ2ivi

)

+

√
2µ2i

µ2i−1 − µ2i

(

vi
µ2i−1vi

)

=
1√

2(µ2i − µ2i−1)

(

(λiµ
2
2i−1 − 2µ2i)vi

(λiµ2i−1 − 2)vi

)

.

Using (A.20) we get

λiµ
2
2i−1 − 2µ2i = (µ2i−1 + µ2i)µ

2
2i−1 − 2µ2i

= µ3
2i−1 + µ2i−1 − 2µ2i

= (µ2i−1 − µ2i)(µ
2
2i−1 + 1).

Similarly,

λiµ2i−1 − 2 = (µ2i−1 + µ2i)µ2i−1 − 2 = µ2
2i−1 − 1 = µ2i−1(µ2i−1 − µ2i).

Therefore
‖Hy2i‖2 = (|µ2

2i−1 + 1|2 + |µ2i−1|2)/2 ≤ 5/2.

The case λi ≥ 2. In this case µ2i−1 and µ2i are real positive numbers. Then from (A.3),
(A.4) and (A.20) we have

Hiy2i =
2µ2i−1

√

1 + µ2
2i−1

λi(µ2i − µ2i−1)

(

vi
µ2ivi

)

+
µ2i

√

1 + µ2
2i

µ2i−1 − µ2i

(

vi
µ2i−1vi

)

.

It follows from (A.20) that
√

1 + µ2
2i−1 = µ2i−1

√

1 + µ2
2i.

Therefore

Hiy2i =

√

1 + µ2
2i

λi(µ2i − µ2i−1)

(

(2µ2
2i−1 − λiµ2i)vi

(2µ2i−1 − λi)vi

)

= −

√

1 + µ2
2i

λi

(

(µ2i−1 + λi)vi
vi

)

.

Note that µ2i ≤ 1 and µ2i−1 ≤ λi by (A.2). Hence

‖Hiy2i‖2 =
(1 + µ2

2i)(1 + (µ2i−1 + λi)
2)

λ2
i

≤ 10.

The case λi ≤ −2. In this case µ2i−1 and µ2i are real negative numbers. Then from
(A.3), (A.4) and (A.20) we have

Hiy2i =
2µ2i−1

√

1 + µ2
2i−1

λi(µ2i−1 − µ2i)

(

vi
µ2ivi

)

+
µ2i

√

1 + µ2
2i

µ2i−1 − µ2i

(

vi
µ2i−1vi

)

.

It follows from (A.20) that
√

1 + µ2
2i−1 = −µ2i−1

√

1 + µ2
2i.

Therefore

Hiy2i =

√

1 + µ2
2i

λi(µ2i − µ2i−1)

(

(2µ2
2i−1 − λiµ2i)vi

(2µ2i−1 − λi)vi

)

= −

√

1 + µ2
2i

λi

(

(µ2i−1 + λi)vi
vi

)

.
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Note that µ2
2i ≤ λ2

i and |µ2i−1| ≤ 1 by (A.2). Hence

‖Hiy2i‖2 =
(1 + µ2

2i)(1 + (µ2i−1 + λi)
2)

λ2
i

≤ 10λ2
i .

The proof is complete. �

Appendix B. Proof of Theorem 4.3

Proof of Theorem 4.3. We first rewrite the Bethe Hessian as follows:

H(r) = (r2 − 1)I − r(A− EA) +D − rĀ =: Ĥ(r)− rEA.

We show that eigenvalues of Ĥ(r) are non-negative and are of smaller order than non-zero
eigenvalues of rEA. This in turn implies that K eigenvalues of H(r) are negative while
the rest are positive.

By Theorem A.1, with probability at least 1− 1/n we have

‖A− EA‖ ≤ 2
√
d+ C

√

log n. (B.1)

To bound the node degrees, we use the standard Bernstein’s inequality: with probability
at least 1− 1/n,

‖D − ED‖ ≤ C
√

d log n, |r2 − (1 + ε)2d| ≤ C
√

d log n. (B.2)

For square matrices X,Y we use X � Y to signify that X − Y is positive semidefinite.
Then by (B.1), (B.2) and Assumption 4.2, we have

Ĥ(r) �
[

(r2 − 1)− r
(

2
√
d+ C

√

log n
)

+ (1 + ε)2d− C
√

d log n
]

I

�
[

(

r −
√
d
)2

+ (2ε+ ε2)d−C
√

d log n

]

I

� 0 (B.3)

because ε = C
√

log n/d.

For a subspace U ⊆ R
n, we denote by dim(U) the dimension of U , and by U⊥ the

orthogonal complement of U . Also, let col(EA) be the column space of EA. Using the
Courant min-max principle (see e.g. [8, Corollary III.1.2]) and (B.3), we have

ρn−K(H(r)) = max
dim(U)=n−K

min
x∈U,‖x‖=1

〈H(r)x, x〉 ≥ min
x∈col(EA)⊥,‖x‖=1

〈H(r)x, x〉 ≥ 0.

Therefore the n−K largest eigenvalues of H(r) are non-negative.
It remains to show that the K smallest eigenvalues of H(r) are negative. From (B.1),

(B.2), and a triangle inequality, we have

‖Ĥ(r)‖ ≤ 4d+ C
√

d log n. (B.4)

On the other hand, from (B.2) and Assumption 4.2 we get

λK(rEA) ≥ (1 + ε)
√
d
(

4
√
d+ C

√

log n
)

≥ 4d+ C
√

d log n. (B.5)

Combining (B.4), (B.5), and using the Courant min-max principle again, we conclude that
the K smallest eigenvalues of H(r) are negative, which completes the proof. �
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