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Abstract: Multivariate analysis methods such as independent component analysis (ICA) have been
applied to the analysis of functional magnetic resonance imaging (fMRI) data to study brain function.
Because of the high dimensionality and high noise level of the fMRI data, order selection, i.e., estimation
of the number of informative components, is critical to reduce over/underfitting in such methods. De-
pendence among fMRI data samples in the spatial and temporal domain limits the usefulness of the
practical formulations of information-theoretic criteria (ITC) for order selection, since they are based on
likelihood of independent and identically distributed (i.i.d.) data samples. To address this issue, we pro-
pose a subsampling scheme to obtain a set of effectively i.i.d. samples from the dependent data samples
and apply the ITC formulas to the effectively i.i.d. sample set for order selection. We apply the proposed
method on the simulated data and show that it significantly improves the accuracy of order selection
from dependent data. We also perform order selection on fMRI data from a visuomotor task and show
that the proposed method alleviates the over-estimation on the number of brain sources due to the intrin-
sic smoothness and the smooth preprocessing of fMRI data. We use the software package ICASSO (Him-
berg et al. [2004]: Neuroimage 22:1214–1222) to analyze the independent component (IC) estimates at dif-
ferent orders and show that, when ICA is performed at overestimated orders, the stability of the IC esti-
mates decreases and the estimation of task related brain activations show degradation. Hum Brain Mapp
28:1251–1266, 2007. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) data have
been analyzed successfully by multivariate methods such
as independent component analysis (ICA) to explore brain
function (Biswal and Ulmer, 1999; Calhoun et al., 2001;
McKeown et al., 1998). Because of the high dimensionality
and high noise level of fMRI data, applying ICA on the full
spatial or temporal dimension is likely to overfit the data
and thus degrades the ICA estimation (Sarela and Vigario,
2003). Therefore, the number of informative components is
often assumed to be less than the spatial or temporal
dimension of the fMRI data. A lower dimensional subspace
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containing the informative sources thus needs to be identi-
fied prior to ICA and this step has important implications
in the final results of ICA as discussed by Beckmann and
Smith (2004), Calhoun et al. (2001), and McKeown (2000).
ICA can be performed to either estimate the independent

spatial maps (spatial ICA) or the independent time courses
(temporal ICA) of the fMRI data (Calhoun et al., 2003). In
this work, the more commonly used spatial ICA approach
is adopted, with the generative model:

X ¼
X

M

k¼1

aks
T
k þ n ð1Þ

where sk is an N � 1 vector containing the voxel values,
i.e., the intensity of activations at each voxel, for the kth in-
dependent spatial map, ak is a T � 1 vector expressing the
temporal dynamics (time course) of the kth independent
brain activation, M is the number of informative brain
sources (a set of spatial maps and their time courses) con-
tained in the data, i.e., the order of the fMRI data, and n is
a T � N matrix of Gaussian noise, which can be explicitly
incorporated into the estimation, as in the noisy ICA
model, or neglected as in the noiseless ICA model used in
this work. It is worth noting that within each independent
spatial map, the voxel values are not independent in gen-
eral, which is the issue we address in this work in the con-
text of order selection.
Among different approaches for model order selection,

the information-theoretic criteria (ITC) have proven to be
particularly attractive for many signal processing applica-
tions. Since ITC do not require the specification of an empiri-
cal threshold for order selection, they fit naturally into the
framework of exploratory data analysis methods such as
ICA. A commonly used ITC for order selection, Akaike’s in-
formation criterion (AIC), is developed based on the minimi-
zation of the Kullback–Leibler divergence between the true
model and the fitted model (Akaike, 1973). AIC is extended
by Cavanaugh as the Kullback–Leibler information criterion
(KIC) (Cavanaugh, 1999) using a symmetric Kullback–Lei-
bler divergence between the true and fitted models. The
minimum description length (MDL) criterion and the Bayes-
ian information criterion (BIC) are developed based on the
minimum code length (Rissanen, 1978) and the Bayes solu-
tion to model order selection (Schwartz, 1978), respectively.
The practical formulations of ITC are developed by Wax

and Kailath (1985) in the context of detecting the number of
signals in noise where both the signals and the noise are mod-
eled by multidimensional complex stationary Gaussian ran-
dom processes. Wax and Kailath’s formulations are directly
applicable to the multivariate order selection problem and
have been used in estimating the number of latent sources in
blind source separation (Karhunen et al., 1997) as well as in
ICA of fMRI data (Calhoun et al., 2001; Beckman and Smith,
2004).
Wax and Kailath’s order selection formulations are de-

rived based on the i.i.d. sample assumption. When the for-

mulations are applied in the spatial ICA model for order
selection on fMRI data, it is assumed that the voxel values of
the spatial maps are i.i.d. In fact, however, there is inherent
spatial smoothness due to the point spread function of the
scanner. Furthermore, smoothing is a common preprocess-
ing step used to suppress the high frequency noise in the
fMRI data and to minimize the impact of spatial variability
among subjects. Both factors contribute to dependence
among the samples in fMRI volume data, thus, weaken the
i.i.d. sample assumption. When the dependent samples are
taken as if they were i.i.d. samples for order selection, as we
show in the next section, Wax and Kailath’s formulations
tend to over-estimate the order. Overestimation on the di-
mension of the signal subspace in fMRI data could result in
splitting of the informative sources in ICA estimation
(Beckman and Smith, 2004), making the interpretation of the
ICA results difficult and thus limiting its utility.
To address the voxel-wise sample dependence, we model

the fMRI volume data by a three-dimensional (3D) finite-
order moving average (MA) process in the spatial domain.
Since the local spatial dependence in the fMRI data is due
to the MRI spatial point spread function as well as spatial
correlation induced by the hemodynamic sources being
measured, its effective span does not extend beyond few
voxels (Calhoun, 2002; Menon and Goodyear, 1999; Parkes
et al., 2005). The spatial distribution of the fMRI signal is of-
ten modeled as a Gaussian random field (Friston et al.,
1996; Worsley and Friston, 1995), which is a specific type of
MA model. A moving average process is the output of a lin-
ear system, in this case, a smoothing filter, having an i.i.d.
Gaussian process as the input. Assume that the linear sys-
tem is shift invariant, the resulting moving average process
is a stationary Gaussian random process. Based on this
model, we propose a subsampling scheme on the fMRI vol-
ume data to identify an effectively i.i.d. sample set, i.e., deter-
mine a grid of locations at which the dependence among
the samples is small enough such that it can be easily
ignored. Specifically, an information-theoretic concept, en-
tropy rate, is used to measure the sample dependence in
the stationary Gaussian process to control the subsampling
scheme. By comparing the entropy rate of the subsampled
data with that of an i.i.d. Gaussian process, we infer the
grid of locations on which the data samples can be consid-
ered to be effectively i.i.d.
Once the effectively i.i.d. samples are identified, Wax and

Kailath’s order selection formulations can be applied on the
identified sample set without violating the underlying i.i.d.
sample assumption.
In the next section, we discuss details of ITC for order

selection and develop the entropy rate matching principle
applied to identify the effectively i.i.d. sample set. In
Experiments section, we show experimental results of the
proposed scheme on order selection of both the simulated
data and the fMRI data from a visuomotor test. Further-
more, we study the impact of order selection on the subse-
quent ICA estimation. We conclude the work with a discus-
sion of the results.
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METHODS

Information-Theoretic Criteria for Order Selection

The formulas for AIC, KIC, and MDL criterion all have
similar structures:

EAICðkÞ ¼ �2Lðxj�kÞ þ 2Gð�kÞ ð2Þ

EKICðkÞ ¼ �2Lðxj�kÞ þ 3Gð�kÞ ð3Þ

EMDLðkÞ ¼ �Lðxj�kÞ þ
1

2
Gð�kÞ logN ð4Þ

where L(x|Yk) is the maximum log-likelihood of the
observations, x, based on the model parameter set Yk of
the kth order and G(Yk) is the penalty for model com-
plexity given by the total number of free parameters in
Yk. For MDL, the penalty term is scaled by log N, where
N is the sample size.
The original Wax and Kailath’s order selection formula-

tions are derived for complex-valued data, the adaptation
to the real-valued case is straightforward. The maximum
log-likelihood is given by

Lðxj�kÞ ¼
N

2
log

QT
i¼kþ1 l

1=ðT�kÞ
i

1
T�k

PT
i¼kþ1 li

 !ðT�kÞ

ð5Þ

where T is the original dimension of the multivariate
data, k is the candidate order, N is the sample size, and
lis are the eigenvalues of the sample covariance matrix
of the multivariate observations. The number of free pa-
rameters in Yk for the real-valued data is given by

Gð�kÞ ¼ 1þ Tk� 1

2
kðk� 1Þ:

When dependent samples are used, the actual number
of i.i.d. sample is less than N, as a result, the likelihood
term given by Eq. (5) improperly dominates the ITC crite-
ria (for MDL, even though N is included in the penalty,
since its effect is through the logarithm of N, it has a
slower growing rate compared to the N as a scaling factor
in the likelihood), resulting in an over-estimation of the
order. Figure 1 shows the spectra of the negative log-likeli-
hood of eleven spatially unsmoothed and smoothed fMRI
data sets. It is observed that the log-likelihood of the
smoothed fMRI data is ‘‘inflated’’ due to the increased
sample dependence. Details of the data sets are discussed
in the Experiments section.
One way to address the above problem is to identify a set

of i.i.d. samples within the original data and use the i.i.d.
samples for order selection. Hence, a feasible statistical
model of the sample space is needed for the i.i.d. sample
identification. We propose to model the fMRI volume data
as a finite-order MA process, i.e., a stationary Gaussian ran-
dom process.

Stationary Gaussian Process and Its Properties

Let x[n], n ¼ 1, 2,. . ., N be a stationary Gaussian random
sequence. Without loss of generality, we assume that x[n]
has zero mean and unit variance, i.e., E{x[n]} ¼ 0 and
E{x2[n]} ¼ 1. The entropy rate of x[n], a measure of the
amount of information carried by each sample of a Gaus-
sian random sequence, is given by (Papoulis, 1991)

hx ¼ ln
ffiffiffiffiffiffiffiffi

2pe
p

þ 1

4p

Z p

�p

ln sðoÞ do ð6Þ

where s(o) is the power spectral density function of the
Gaussian random sequence x[n]. It is a differential en-
tropy measure due to the continuous nature of the Gaus-
sian distribution.
The entropy rate can be used to measure the autocorrelation

of a Gaussian random process. For example, when an i.i.d.
Gaussian process is smoothed, its entropy rate decreases. This
is intuitively meaningful, since the smoothing operation also
filters out part of the information carried by the data. We gen-
erate a two-dimensional (2D) i.i.d. Gaussian process and filter
it by 2D Gaussian smoothing kernels with full-width half-
maximum (FWHM) values 1�1, 2�2, and 3�3 voxel(s). The
estimated entropy rate of the original process is 1.41, the esti-
mated entropy rates of the three smoothed processes are,
respectively, 1.40, 0.67, and �0.17. In this example, the entropy
rate measures the average smoothness in the sample space, or,
in other words, the average sample dependence. High sample
dependence results in low entropy rate of the process.
In our development, the following observation plays the

key role:
The entropy rate of a stationary Gaussian random sequence

with unit variance is upper bounded by ln
ffiffiffiffiffiffiffiffi

2pe
p

and the upper

Figure 1.

Comparison of the negative log-likelihood between eleven

unsmoothed (solid) and smoothed (dash-dot) fMRI data sets for

different candidate order K.

r Estimating the Number of Independent Components for fMRI Data r

r 1253 r



bound is achieved if and only if the sequence is a white Gaus-
sian sequence, i.e., all the samples of the sequence are i.i.d.
The above argument can be verified by using the log in-

equality ln(x) � x�1, where x > 0, such that
Z p

�p

ln sðoÞ do �
Z p

�p

sðoÞ do�
Z p

�p

1do ¼ 0: ð7Þ

The last equality in Eq. (7) is due to the fact that x[n] has
unit variance, i.e.

s2
x ¼ r½0� ¼ 1

2p

Z p

�p

sðoÞ do ¼ 1:

We have equality in Eq. (7) if and only if s(o) : 1, i.e.,
when x[n] is a white Gaussian sequence.
As an extension of the argument, the entropy rate of any

stationary random sequence with a continuous distribution
is upper bounded by ln

ffiffiffiffiffiffiffiffi

2pe
p

. This is true because among
all continuous probability distributions with equal var-
iance, Gaussian distribution achieves the maximum
entropy.
The second observation that leads us to the sampling

scheme proposed in the next section can be stated as:
Assume that a stationary Gaussian random sequence x[n] has an

autocorrelation function of finite length, i.e., r[m] ¼ E{x[n]x[n+m]}
¼ 0 for |m| � L, the subsampled sequence xs[n] ¼ x[Ln] is a white
Gaussian random sequence.
To observe this, let rs[m] be the autocorrelation function

of the subsampled sequence xs[n]

rs½m� ¼ Efxs½n�xs½nþm�g ¼ Efx½Ln�x½Lnþ Lm�g ¼ r½Lm�

since x[n] is stationary. Because r[m] is of finite length, we
have rs[m] ¼ r[Lm] ¼ d[m] where d[m] is the Kronecker
delta function that assumes value ‘‘1’’ at m ¼ 0 and ‘‘0’’

otherwise. Therefore, the subsampled sequence xs[n] is a
white Gaussian sequence.
In our work, the spatial dependence in the fMRI data is

modeled by a finite length correlation in the sample space,
i.e., a finite order moving average process, which is reason-
able because the major factors contributing to sample de-
pendence in the fMRI data are localized (Grinvald et al.,
1994; Menon and Goodyear, 1999; Parkes et al., 2005).

Entropy Rate Matching Principle for Identification

of the Effectively i.i.d. Samples

Entropy rate matching principle and its applicability

The properties discussed in last section indicate that (i)
the entropy rate upper bound can be used to identify an
i.i.d. Gaussian sequence; and (ii) an i.i.d. Gaussian sequence
can be obtained by subsampling a finite order moving aver-
age sequence. Therefore, we propose the following entropy
rate matching principle:
If the estimated entropy rate of a subsampled Gaussian

sequence reaches the upper bound of the entropy rate, ln
ffiffiffiffiffiffiffiffi

2pe
p

,
the subsampled sequence is an i.i.d. sequence.
In general, the fMRI volume data acquired at each time

point are not Gaussian distributed. We calculate the nor-
malized kurtosis values of the fMRI volume data at each
time point from the eleven spatially unsmoothed and
smoothed fMRI data sets. We observe that the kurtosis val-
ues are typically distributed around a positive value for all
the unsmoothed data sets and most of the smoothed data
sets, as shown in Figure 2a. The theoretical value of the nor-
malized kurtosis for a Gaussian distribution is zero. When
the kurtosis measure is taken on the principal components
calculated from the fMRI data, a group of the least signifi-
cant principal components are observed to have kurtosis

Figure 2.

Kurtosis distribution of the spatially unsmoothed (solid) and smoothed (dash-dot) fMRI volume

data (Panel a) and the kurtosis distribution of the corresponding principal components (Panel b),

for the eleven fMRI data sets.
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values close to zero as shown in Figure 2b. The normality of
the least significant components can also be examined by a
statistical test such as the Jarque–Bera test (Judge et al., 1988)
or goodness-of-fit to a normal distribution (Conover, 1980).
To study the variation of sample dependence of the fMRI

volume data, we directly calculate the entropy rate of the
fMRI volume data at each time point by slightly violating
the Gaussian assumption. It is observed that entropy rate is
invariant with respect to time, as being observed in Figure
3a. This is also true for a large portion of the least significant
principal components obtained by PCA from the original
volume data as being observed in Figure 3b. For the most
significant principal components, the entropy rates assume
large variation, a result from the mismatch with the Gaus-
sian distribution assumption. Based on the observation that
the entropy rate of the fMRI volume data is stationary in the
temporal domain, the effectively i.i.d. samples are inferred
from the least significant principal components since their
distributions better match the Gaussian assumption.
Therefore, we use PCA to obtain a set of least significant

components of the fMRI data and estimate the effectively
i.i.d. sample set from the least significant components with
the subsampling scheme controlled by the entropy rate
matching principle. Since the principal components share
the same sample space with the original volume data, once
the grid of effectively i.i.d. sample set is identified in the
volume, the original fMRI data can be subsampled on the
grid and the resulting subsampled data can be considered
to be effectively i.i.d.

Procedure for the identification of

effectively i.i.d. samples

We first subsample the selected least significant principal
components by the smallest subsampling depth D ¼ 2, i.e.,

keep every-other sample. Since there is less dependence in
the subsampled sequence, the entropy rate of the sub-
sampled sequence increases. We progressively increase the
depth of subsampling till the estimated entropy rate of the
subsampled sequence reaches its upper bound. At this
point, the resulting sequence is closest to a white Gaussian
sequence and the resulting subsampling depth defines the
grid in the sample space on which the samples are deemed
to be effectively i.i.d. Correspondingly, Ne ¼ N/D is the
effective number of i.i.d. samples. If subsampling is per-
formed on the 3D fMRI volume data, Ne ¼ N/D3, where N
is the total number of in-brain voxels. To improve the esti-
mation, we estimate D from a set of least significant princi-
pal components and take the average values of those.

Calculation of the entropy rate

To estimate the entropy rate of a Gaussian sequence
numerically, summation is used to approximate the integral
in Eq. (6), i.e.,

hx � ln
ffiffiffiffiffiffiffi

2pe
p

þ 1

4p

X

k

ln ŝðokÞ�o

where Do is given by Do ¼ 2p/Sŝ(ok) since the
sequence has unit variance. The power spectral density
estimate ŝ(o) is obtained by taking discrete Fourier
transform of the estimated autocorrelation sequence
smoothed by a Parzen window (Wei, 1989), i.e.,

ŝðokÞ ¼
X

N�1

m¼�Nþ1

r̂½m�W½m�e�j2p
mok
N

where ok is the discrete frequency index and W[m] is the
windowing sequence.

Figure 3.

Entropy rate distribution of the spatially unsmoothed (solid) and smoothed (dash-dot) fMRI vol-

ume data (Panel a) and the entropy rate distribution of the corresponding principal components

(Panel b), for the eleven fMRI data sets.
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The autocorrelation sequence is estimated by

r̂½m� ¼ 1

N � jmj
X

N�jmj�1

n¼0

x½nþ jmj�x½n�:

Since the fMRI volume data are 3D, all the computations
above are extended into their 3D forms.

Order selection with effectively i.i.d. samples

A set of effectively i.i.d. samples of the original fMRI data
is obtained by subsampling the data at the grid resulting
from the proposed subsampling scheme. Since the subsam-
pling causes a decrease in the amount of samples for estimat-
ing the eigenvalues of the covariance matrix in Eq. (5), an
eigenspectrum adjustment (Beckmann and Smith, 2004) is
used to mitigate the finite sample effect. It is also worth not-
ing that the eigenspectrum adjustment does not address the
effect of sample dependence in order selection. As we show
in the simulations, incorporating such an adjustment on the
original dependent data can not avoid the over-estimation on
the order due to sample dependence. However, this adjust-
ment plays an important role in correcting the finite sample
effect that becomes significant due to the subsampling.
The proposed procedure for order selection is summar-

ized in the following pseudo code:

X1 ¼ PCAðXÞ;
X2 ¼ X1ðkurtosisðX1Þ < kthÞ;
fkth is the kurtosis threshold of Gaussianityg

½M;N� ¼ sizeofðX2Þ;
for i ¼ 1 to M do

�i ¼ 1;

while hðX2ðiÞÞ � ln
ffiffiffiffiffiffiffiffi

2pe
p

do

X2ðiÞ ¼ subsamplingðX2ðiÞ;�iÞ;
�i ¼ �i þ 1;

end while

end for

�� ¼ 1

M

X

i

�i;

X3 ¼ subsampling ðX; ��Þ;
fligi¼1;2;3;...;T ¼ eigenvalueðcovarianceðX3ÞÞ;
Ne ¼ N= ��3;

fligi¼1;2;3;...;T ¼ eigenspectrum-adjustmentðfligi¼1;2;3;...;T;NeÞ;

EðkÞ ¼ Ne

2
log

QT
i¼kþ1 l

1=ðT�kÞ
i

1
T�k

PT
i¼kþ1 li

 !ðT�kÞ

þbðTk� 1

2
kðk� 1ÞÞ;

fb is the weight of the penalty term specific to the

ITC usedg
K ¼ argminfEðkÞg;

EXPERIMENTS

We perform two sets of experiments: (i) order selection
on simulated data and (ii) order selection on fMRI data
acquired from subjects performing a visuomotor task. We
compare the order selection results based on the original
data with the results based on the effectively i.i.d. samples
obtained by the proposed subsampling scheme. For both
the two approaches, eigenspectrum adjustment (Beckmann
and Smith, 2004) is used to compensate the finite sample
effect. We also compare the estimated independent compo-
nents in the subspace of the different selected orders to
study the impact of order selection on the ICA estimation.

Order Selection on Simulated Data

We generate eight sources and the associated time
courses similar to the ones used by Correa et al. (2005) to
create the simulated fMRI data according to the model

Figure 4.

Eight simulated sources and their time courses.
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described in Eq. (1). Each simulated spatial source is a 60 �
60 pixels 2D image, each time course is a 100 point wave-
form simulating the temporal dynamics of the correspond-
ing spatial sources. The spatial sources are rearranged into
1D vectors and mixed by the time courses according to the
generative model as Eq. (1), resulting in a 100 � 3600 spatio-
temporal data set. Zero mean Gaussian noise is added to
the data set on each of the 100 channels independently with
the contrast to noise ratio (CNR) value of 1 (0 dB), typical
for the fMRI scan from a robust task paradigm. The sources
and the time courses are shown in Figure 4.

Figure 5 shows the order selection results on the simulated
data spatially smoothed by the Gaussian kernel with the
FWHM of three different sizes. Both order selection based
on the original data samples and the effectively i.i.d. samples
are implemented. In each panel of Figure 5, ‘‘M’’ indicates
the actual number of sources used to generate the data and
‘‘K’’ is the estimated number of sources by order selection.
All the results are based on the average of 20 Monte Carlo
simulations with M ¼ 1, 2,. . ., 8 randomly selected sources.
The standard deviation is stacked on the mean value in each
bar plot.

Figure 5.

Order selection on simulated data (CNR ¼ 1 and T ¼ 100) at

three different smoothness levels: (a) No smoothing, using origi-

nal data; (b) No smoothing, using effectively i.i.d. samples; (c)

FWHM ¼ 2 voxels, using original data; (d) FWHM ¼ 2 voxels,

using effectively i.i.d. samples; (e) FWHM ¼ 3 voxels, using origi-

nal data; (f) FWHM ¼ 3 voxels, using effectively i.i.d. samples.
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From the results, we observe that when the original data
samples are i.i.d., the order selection results based on the
original data are correct (Fig. 5a). However, for the smoothed
data, the order selection criteria based on the original data
samples over-estimate the number of sources. Although all
the criteria over-estimate the true order due to the sample
dependence, over-estimation by MDL is less severe, which
can be directly explained by its heavier penalty term com-
pared to that of AIC and KIC [see Eqs. (2)–(4)]. However,
MDL still can not select the true order accurately with-
out the correction for sample dependence, as observed in
Figure 5e. When order selection is performed on the effec-
tively i.i.d. samples, the effect of sample dependence is
removed and the results are accurate and stable as shown
in Figure 5b,d,f.
To demonstrate the impact of order selection on ICA esti-

mation, we apply the Infomax algorithm (Bell and Sejnowski,
1995) to the smoothed data (FWHM ¼ 3 voxels) with CNR ¼
1, T ¼ 100, and M ¼ 8. Dimension of the data is reduced by

PCA according to the order selected by the MDL criterion
based on the original data samples (K ¼ 13) and the one
based on effectively i.i.d. samples (K ¼ 8). Dimension reduc-
tion is achieved by performing PCA and keeping a set of the
most significant components, i.e., the principal components
with the largest variances. Figure 6a,b shows, respectively,
the estimated sources and time courses by Infomax after the
dimension is reduced to K ¼ 13 and K ¼ 8. Because of the
scaling ambiguity of ICA, both the estimated spatial sources
and estimated time courses are normalized for a uniform rep-
resentation. The correlation between each true and estimated
spatial source is calculated and presented in Table I.
By comparing the two cases, degradation on the ICA esti-

mation is observed for sources S3, S4, and S8 when the
dimension of the signal subspace is over-estimated. Besides
the degradation of the ICA estimation, performing ICA in
the over-estimated dimension introduces unnecessary com-
putation load and longer convergence time for iterative ICA
algorithms.

Figure 6.

Estimated sources and time courses by ICA from the data set with CNR ¼ 1 and smoothed by

the Gaussian kernel with FWHM ¼ 3 voxels: (a) ICA after dimension reduction to K ¼ 13; (b)

ICA after dimension reduction to K ¼ 8.
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Order Selection on fMRI Data From

Visuomotor Task

Participants and Experimental Paradigm

Eleven right-handed participants with normal vision—
five females, six males, average age 30 years – participated
in the study. Subjects performed a visuomotor task involv-
ing two identical but spatially offset, periodic, visual stimu-
lus, shifted by 20 s from one another. The visual stimuli
were projected via an LCD projector onto a rear-projection
screen subtending �258 of visual field, visible via a mirror
attached to the MRI head coil. The stimuli consisted of an
8 Hz reversing checkerboard pattern presented for 15 s in
the right visual hemifield, followed by 5 s of an asterisk fix-
ation, followed by 15 s of checkerboard presented to the left
visual hemifield, followed by 20 s of asterisk fixation. The
55-s set of events was repeated four times for a total of
220 s. The motor stimuli consisted of participants touching
their thumb to each of their four fingers sequentially, back
and forth, at a self-paced rate using the hand on the same
side on which the visual stimulus is presented.

Imaging parameters

Scans were acquired at the Olin Neuropsychiatry Research
Center at the Institute of the Living on a Siemens Allegra 3T
dedicated head scanner equipped with a 40 mT/m gradients
and a standard quadrature head coil. The functional scans
were acquired using gradient-echo echo-planar imaging
with the following parameters: repeat time (TR) ¼ 1.50 s,
echo time (TE) ¼ 27 ms, field of view ¼ 24 cm, acquisition
matrix ¼ 64 � 64, flip angle ¼ 608, slice thickness ¼ 4 mm,
gap ¼ 1 mm, 28 slices, ascending acquisition. Six ‘‘dummy’’
scans were performed at the beginning to allow for longitu-
dinal equilibrium, after which the paradigm was automati-
cally triggered to start by the scanner.

Preprocessing

Data were processed using the MATLAB Toolbox for sta-
tistical parametric mapping (SPM; http://www.fil.ion.ucl.
ac.uk/spm2). Images were realigned using INRIalign—a
motion correction algorithm unbiased by the local signal
changes (Freire et al., 2001; Freire and Mangin, 2001). Data
were spatially normalized into the standard Montreal

Neurological Institute space (Friston et al., 1995). The data
(originally acquired at 3.75 � 3.75 � 4 mm3) were slightly
resampled to 3 � 3 � 5 mm3, resulting in 53 � 63 � 28 voxels.
The data is spatially smoothed with an 8 � 8 � 8 mm3

FWHM Gaussian kernel, resulting in the smoothed fMRI data
set. To study the effect of sample dependence on order selec-
tion, the data obtained after motion correction and spatial nor-
malization but not spatial smoothing is also used in the
experiments as the ‘‘unsmoothed’’ fMRI data set in contrast to
the ‘‘smoothed’’ fMRI data, which are fully preprocessed.

Order selection

Order selection is performed on the fMRI data for each
subject using the practical formulations of AIC, KIC, and
MDL criteria, based on the original fMRI data samples and
the effectively i.i.d. samples obtained by the proposed sub-
sampling scheme.
Figure 7 shows the entropy rate increase during the

subsampling on the eleven fMRI data sets. It can be ob-
served that as the subsampling depth increases, the entropy
rate approaches the theoretical upper bound. Since the
smoothed data have more sample dependence, greater sub-
sampling depth is required to achieve the entropy rate
upper bound.
Figure 8a shows the order selection results based on the

original fMRI data, while Figure 8b shows the results based
on the effectively i.i.d. samples. The standard deviation
across different subjects is stacked on the mean value in
each bar plot.
Orders selected based on the original fMRI data are high

for both the unsmoothed and the smoothed fMRI data,
given the typically observed components of significance
from ICA estimation. For the smoothed fMRI data, the esti-
mated orders are even higher than the unsmoothed data
and close to the original temporal dimension. This is patho-
logical since smoothing—a filtering operation—can not lead
to an increase in the number of components, i.e., an increase
in the information contained in the data.
For order selection results based on the effectively i.i.d.

samples, the estimated orders are close for the unsmoothed
and the smoothed fMRI data. In this case, the selected order
of the smoothed fMRI data is slightly lower than that of the
unsmoothed fMRI data due to a loss of the data variability
by smoothing.

TABLE I. Correlation between the true sources and the sources estimated by ICA after

dimension reduction to K 5 13 and K 5 8

Source

S1 S2 S3 S4 S5 S6 S7 S8

K ¼ 13a 0.97 6 0.01 0.97 6 0.01 0.81 6 0.08 0.71 6 0.12 0.97 6 0.01 0.94 6 0.20 0.98 6 0.01 0.70 6 0.01
K ¼ 8b 0.97 6 0.01 0.97 6 0.01 0.93 6 0.01 0.86 6 0.01 0.97 6 0.01 0.98 6 0.01 0.98 6 0.01 0.92 6 0.01

aK ¼ 13 is the order selected by MDL criterion based on the original data.
bK ¼ 8 is the order selection result by MDL based on the effectively i.i.d. samples.
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ICA estimation

Unlike the case of the simulated data where the true

order is known and thus can be used to justify the order

selection results, the order selection on the fMRI data can
not be directly verified. However, the impact of order selec-

tion manifests itself on the ICA estimation at different
selected orders. For example, the stability of the IC esti-

mates from multiple Monte Carlo ICA trials is a relevant

index closely linked to the order selection. The stability on
the ICA estimation is studied by, e.g., Himberg et al. (2004),

Meinecke et al. (2002), and Ylipaavalniemi and Vigario
(2004). In this work, the Infomax algorithm is applied to

dimension reduced data at different orders for multiple

Monte Carlo trials and the ICA estimation results at each
order are analyzed with the ICASSO software package

(Himberg et al., 2004).

In ICASSO, absolute correlation is used as the similarity
measure among the IC estimates and group-average
agglomeration strategy is used to identify the cluster of IC
estimates attributing to the same underlying independent
source. The reliable IC estimates are obtained by retrieving
the centrotype of each cluster, i.e., the one of the estimates
that is most similar to other estimates in the cluster.
ICASSO also provides quantitative evaluations on the com-
pactness of the clusters of IC estimates, which is used in
this work to validate order selection with respect to the sta-
bility of ICA estimation. A compactness index close to unity
indicates that the estimation is stable and consistent, i.e.,
similar components are estimated at each run of the ICA
algorithm.
Figure 9 shows the compactness indices of the clusters of

IC estimates for the eleven data sets. The three panels corre-
spond to the results from the subspace of different dimen-

Figure 8.

Order selection results on fMRI data of eleven subjects performing a visuomotor task. For the

smoothed fMRI data, 8 � 8 � 8 mm3 FWHM Gaussian smoothing kernel is used. (a) Order selec-

tion from original fMRI data; (b) Order selection from effectively i.i.d. fMRI data samples.

Figure 7.

The increase on entropy rate of the subsampled data during the estimation of effectively i.i.d. sam-

ples: (a) Entropy rate increase of the unsmoothed fMRI data sets; (b) Entropy rate increase of the

smoothed data sets.
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sions indicated by K. The compactness index of each cluster
is calculated as the average intra-cluster similarity sub-
tracted by the average extra-cluster similarity (Himberg
et al., 2004). For the cases of K ¼ 20, the resulting stability
indices of most of the clusters range from 0.6 to 0.9. For K ¼
40, the stability indices decrease below 0.6 for some of the
least stable clusters between cluster 30 and 40. For the case
of K ¼ 90, the stability indices of most of the data sets de-
crease below 0.6 after the first 20–30 clusters.
In line with the stability indices, Figure 10 shows the 2D

projections of the clustered IC estimates of one subject
given by ICASSO. Each IC cluster is prescribed by a convex
hull with the black dots representing the individual IC esti-
mates. The background color of the convex hull indicates
the average intra-cluster similarity (darker background
indicates higher similarity). By comparing the three panels

in Figure 10, it is observed that the clusters of IC estimates
are mostly compact and well separated when ICA is per-
formed in the subspace of K ¼ 20 dimensions. As the
dimension of the subspace increases to K ¼ 40, most clus-
ters become less compact and some of the clusters run into
each other. When the dimension is increased to K ¼ 90, a
large portion of the IC estimates distributed in the central
part of the graph does not have significant correlation with
each other. As a result, the clustering for the ICs in this case
is pathological. The pathological clustering of the IC esti-
mates at high orders indicates that ICA estimation becomes
less stable in these dimensions. Same pattern is observed on
the cluster plots of data sets from all the eleven subjects.
We retrieve each of the reliable IC estimates from ICASSO

to obtain the independent brain activations and the associ-
ated time courses. The task-related ICs are selected accord-

Figure 9.

The stability index of the components estimated in the subspace of different dimensions for eleven

subjects: (a) K ¼ 20, (b) K ¼ 40, and (c) K ¼ 90.
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ing to the correlation between the spatial map and the ana-
tomical template of the visual and motor cortices, and the
correlation between the time course and the task paradigm.
The anatomical templates for the visual and motor cortices
include (Correa, 2005):

� Broadman’s areas (BAs) 1–3: somatosensory areas
� Broadman’s area (BA) 4: primary motor area
� BA 6: secondary motor area
� BA 17: primary visual area
� BAs 18, 19: secondary visual areas

Figure 10.

The 2D clustered representation of the estimated components

in the subspace of different dimensions: (a) K ¼ 20, (b) K ¼
40, and (c) K ¼ 90. Clustering is based on the similarity

between the components, the 2D projection is based on the

Euclidean distance as a metric of the dissimilarity between the

components.
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The right and left hemispheres containing the above regions are
chosen for the right and left task-related templates, respectively.
Table II shows the coefficient of determination (R2) of the

estimated task-related time courses in representing the corre-
sponding task paradigm by a simple linear regression Y ¼ aX
+ b, where Y is the task paradigm and X is the estimated time
course. R2 measures the fraction of variability in the task para-
digm that can be explained by the variability in the estimated
time courses. In a simple linear regression, R2 also equals to
the square of the correlation coefficient between Y and X.
The splitting components are identified as those compo-

nents whose spatial maps (resp., time courses) assume signif-
icant correlation with the same anatomical template (resp.,
task paradigm). It is observed that, for K ¼ 40 and 90, the
task-related ICs in Subjects 3, 4, 6, and 10 are splitting. For
the cases where we observe splitting, the respective R2 values
between each of the splitting time course and the task para-
digm are calculated. Furthermore, the correlation between
the two splitting time courses in each case is calculated and
found to range from 0.45 to 0.92, indicating that the splitting
time courses represent similar temporal processes.
As an example, Figure 11 shows the two splitting right

task-related (RTR) components of Subject 10 at K ¼ 90, while
Figure 12 shows the integrated RTR component estimated at
K ¼ 20. The activation maps are converted to Z-score and
thresholded with Z � 1. In this example, the task-related vis-
ual activations are estimated in two ICs at K ¼ 90, as marked
by the arrows on the activation maps in Figure 11.

DISCUSSION

We propose an i.i.d. sampling scheme to improve the
order selection performance of different ITCs. The impact
of order selection to the estimation of the brain activations
is investigated on data sets from eleven subjects performing

a visuomotor task. The ICASSO software package is used for
the quantitative evaluation on the stability of the ICA estima-
tion at different selected orders. As an exploratory data anal-
ysis method, ICA is expected to find statistically significant
independent sources from the noisy fMRI data. The inde-
pendent sources come from different types of non-Gaussian
distributions, including artifacts contributing to the fMRI
data with significant variances. The selection of the useful
sources from the ICA estimation result is an ongoing re-
search topic closely related to the objective of the cognitive
experiment. In this work, we study the order selection and
compare the ICA estimation on the task-related components
at different orders for each individual subject. ICA estima-
tion on a group of subjects can be addressed, e.g., by per-
forming ICA on the aggregated fMRI data (Calhoun et al.,
2004), or clustering on the IC estimates from each individual
subject (Esposito et al., 2005). The experimental results in
this work give a preliminary justification that performing
ICA in an unnecessarily high dimensional subspace decreases
the stability of ICA estimation and hence could degrade the
integrity of the ICA representation on brain activations. The
dimension of the signal subspace of fMRI data can be decided
with information criteria so that the reliability of the ICA esti-
mation is guaranteed at a reasonable level.
Two major issues for research in order selection are the

study of the effects of finite sample size and the compensa-
tion of the effect of dependencies in the sample space. In our
current work, we address the latter issue and propose a
scheme to identify the set of effectively i.i.d. samples from
the dependent data by subsampling and entropy rate match-
ing. The i.i.d. sample set is used to improve data order selec-
tion. Hence, the proposed scheme we show can facilitate the
subsequent analysis procedures such as ICA. Incorporation
of a dependent data model and derivation of the likelihood,
and hence the information-theoretic criterion for this case is

TABLE II. ICA estimation of the left task-related (LTR) and right task-related (RTR)

activations of eleven subjects at three different ordersa

Subject

20 40 90

LTR RTR LTR RTR LTR RTR

1 0.58 0.42 0.61 0.38 0.61 0.34
2 0.77 0.59 0.61 0.77 0.61 0.77
3 0.48 0.61 0.48 0.58 (s)0.46/0.17b (s)0.62/0.10b

4 0.69 0.26 (s)0.77/0.22b 0.27 0.81 0.26
5 0.71 0.59 0.74 0.55 0.72 0.50
6 0.72 0.69 0.71 0.71 0.71 (s)0.67/0.41b

7 0.50 0.44 0.44 0.38 0.46 0.40
8 0.38 0.69 0.44 0.76 0.42 0.76
9 0.61 0.62 0.67 0.64 0.62 0.44
10 0.59 0.55 0.53 (s)0.59/0.52b (s)0.46/0.55b (s)0.64/0.19b

11 0.28 0.69 0.64 0.22 0.66 0.38

The values 20, 40, and 90 represent the K values.
aThe coefficient of determination (R2) between the estimated time course and the corresponding task para-
digm is tabulated.
b ‘‘(s)’’ followed by two R2 values ‘‘i/ii’’ indicates a splitting case, where ‘‘i’’ and ‘‘ii’’ are the R2 values
between each of the splitting time course and the task paradigm.
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another approach to address the problem of dependencies in
the sample space. Although this is a rigorous approach, it is
not likely to lead to an easily tractable solution. We model
the spatial data as a moving average process to justify that
subsampling can remove the sample dependence. Another
approach to address the sample dependence especially for
image processing is to represent the data in the transformed
domain by certain basis functions such as linear scale space
and wavelets. These models are more involved with
machine vision tasks and could possibly be used in the inter-
pretation of the estimated fMRI activation maps.
The proposed method to address the sample dependence

effect in order selection is motivated by the characteristics

of the fMRI data. Because of the localization and connection
of the functional organization of the brain (Pascual-Marqui
et al., 1994; Phillips et al., 1984), the latent sources in the
fMRI data are typically smoother than noise in the spatial
domain. Therefore, spatial smoothing reduces noise var-
iance more significantly than it does the variance of the in-
formative spatial maps. As a result, the dynamic range of
the eigenvalues, i.e., the difference between the source var-
iance and the noise variance, increases after the smoothing
operation. Therefore, the likelihood term given in Eq. (5)
decreases for the smoothed data at each order because of
the greater difference between the geometric mean and the
arithmetic mean of the least significant T–K eigenvalues.

Figure 11.

Split of the RTR activation estimated from the smoothed fMRI

data of Subject 10 in the subspace of dimension K ¼ 90: (a) The

estimated spatial map containing part of the RTR activations; (b)

The estimated time course of the activations in (a); (c) The esti-

mated spatial map containing another part of the RTR activations;

(d) The estimated time course of the spatial map in (c). [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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Since the penalty terms are not affected by the smoothing
operation, the increase of the negative log-likelihood shifts
the minimum of the ITC order selection formulas to higher
orders. This is a typical case of over-estimation caused by
sample dependence and can be observed in the two groups
of bar plots in Figure 8a. When order selection is based on
the effectively i.i.d. samples, since the effective sample size
Ne of the smoothed data is much less than that of the
unsmoothed data, it cancels out the increase of the negative
log-likelihood due to the dispersion of the eigenvalues.
It is also important to note that there is temporal depend-

ence in both the fMRI signal and the noise, which have
been studied by, e.g., Bullmore et al. (2001) and Friston
et al. (2000). The temporal dependence is considered in the
estimation of the intrinsic dimensionality of the fMRI data
with the noise modeled by a first-order autoregressive pro-
cess (Cordes and Nandy, 2006), where the dimension is
inferred by comparing the eigenspectrum of the fMRI data
against the assumed noise spectrum adjusted for the tempo-
ral dependence. In this work, we focus on addressing the
spatial dependence for order selection in spatial ICA. Spe-
cifically, ITC are used for order selection with the adjust-
ment for sample dependence in the spatial domain. In gen-
eral, the proposed scheme can be applied to address the
temporal dependence for order selection in temporal ICA,
provided that the short time dependence model is plausible
and the temporal length of the fMRI data is long enough for
subsampling and entropy rate estimation. The proposed
scheme can be easily automated and incorporated into the
fMRI analysis procedure between PCA and ICA.
Beckmann and Smith (2004) propose an adjustment on

the eigenspectrum of the sample covariance matrix of mul-
tidimensional Gaussian noise based on the empirical distri-
bution function of the eigenvalues developed in random
matrix theory. The adjustment improves the eigenspectrum
estimation for limited amount of data samples and is tech-
nically applicable to the ITC for order selection. However,

as we show in the simulations, the eigenspectrum adjust-
ment, which is based on the i.i.d. sampling model, is not
capable of correcting the effect of sample dependence in
order selection. We incorporate this adjustment in our
approach to compensate for the decrease of sample size due
to the proposed i.i.d. sampling scheme.
In our scheme, the i.i.d. sample identification is performed

on the least significant components of the fMRI volume data
to better match the Gaussian process condition for the calcula-
tion of the entropy rate. When the test of normality is per-
formed on the least significant principal components, it indi-
cates normality in most cases. However, for the unsmoothed
fMRI data, most of the components, though close to passing,
fail the test. Upon further inspection, the normalized kurtosis
values for these components are found to be close to zero and
hence these components, though slightly violating the Gaus-
sian assumption of the entropy rate matching principle, are
nonetheless near Gaussian. It is observed that for fMRI data
with long temporal records, the least significant components
are more close to Gaussian process (results not shown). How-
ever, the spatial properties such as the entropy rate assume
larger variation across different principal components. There-
fore, proper strategy is required for selecting the set of Gaus-
sian components for i.i.d. sample identification.
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