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Abstract

This paper proposes a novel method to address

the problem of estimating the number of people in

surveillance scenes with people gathering and waiting.

The proposed method combines a MID (Mosaic Image

Difference) based foreground segmentation algorithm

and a HOG (Histograms of Oriented Gradients) based

head-shoulder detection algorithm to provide an accu-

rate estimation of people counts in the observed area. In

our framework, the MID-based foreground segmenta-

tion module provides active areas for the head-shoulder

detection module to detect heads and count the number

of people. Numerous experiments are conducted and

convincing results demonstrate the effectiveness of our

method.

1. Introduction

Crowd management is a very important task in pub-

lic places with people gathering and waiting, like bus

stations, subway platforms and waiting rooms. Auto-

matic crowd density estimation systems in these scenes

can supply useful information for applications such as

security surveillance.

Much work has been done on estimation of the num-

ber of people in crowded scenes. In [10], the number of

people is computed as a function of foreground pixels

obtained by background removal using a reference im-

age. But it may fail if background changes. In [4], Haar

features [6] are extracted and applied for head detection

(shoulder is not included). However, only head is not

distinguishing enough for head detection because the

appearance and shape of head vary greatly in surveil-

lance scenes. Wu et al[12] extract texture features first

and then utilize SVM to solve the regression problem of

counting people. However, the training process of this

method is highly related to specific scenes. Rabaud et al

[8] propose a method to count crowded moving objects

based on clustering a set of extended tracked features.

Kilambi et al [3] present a heuristic-based and a shape-

based method for estimating moving group population.

These two methods, however, assume that objects are

moving.

A direct method to count people in crowded scenes

is to detect the salient omega shapes (head-shoulder

shapes). In this paper, a MID (Mosaic Image Differ-

ence) based foreground segmentation algorithm is per-

formed first to detect active areas, then a head-shoulder

detection algorithm is utilized to detect heads and count

the number from the detected foreground areas.

The remainder of the paper is organized as follows.

In Section 2, a Mosaic Image Difference (MID) based

foreground segmentation algorithm is proposed. Sec-

tion 3 describes the HOG (Histograms of Oriented Gra-

dients) based head-shoulder detection in detail. Exper-

imental results and analysis are presented in Section 4.

Finally, we draw our conclusions in Section 5.

2. MID Based Foreground Segmentation

It is difficult to segment foreground by background

modeling methods, like GMM (Gaussian Mixture

Model) [9], in places with people gathering and waiting.

However, small motions, like people’s turning around,

wandering and raising heads, surely happen now and

then in crowds. It is assumed that these motions ap-

proximately satisfy temporal and spatial uniform distri-

butions in a considerably long period of time, because

where and when they would happen are completely ran-

dom. These motions can be effectively represented by

the MID (Mosaic Image Difference) feature. Suppose

image plane is evenly divided into Mosaic Blocks (MB)

with the size of LM×LM (typically LM = 4), the mean

RGB vector of MB(m, n) at frame #t is Mt(m,n), then



the MID feature of MB(m, n) at frame #t can be de-

fined as an indicator function:

MIDt(m,n) =

{

1 if ‖Mt − Mt−1‖∞ > T0

0 otherwise
(1)

where ‖·‖
∞

denotes the maximum absolute component

of a vector; T0 is a threshold.

By dividing MID series into a number of subsections

and normalizing them, the motion occurrence probabil-

ity of MB(m,n) in each time piece (time of a subsection)

of a given period of time can be estimated by:

Pl(m, n) =







∑

k∈Sub.#l
MIDk

∑

k
MIDk

if
∑

k
MIDk > 0

0 otherwise

(2)

where MIDk represents MIDk(m,n); l = 1, 2, .., NS ,

and NS is the number of subsections.

According to the given assumption, if a MB belongs

to foreground, its MID series in an observing period of

time would satisfy temporal uniform distribution. Three

statistics are very important for MID series analysis in

a period of time: 1) MT: the mean time when motions

happened. 2) VAR: the variance of time when motions

happened. 3) NNZ: the number of subsections in which

motions happened. MT and VAR can be computed as:

MT(m,n) =
∑

lPl(m, n) (3)

VAR(m,n) =
∑

(l −MT (m, n))2Pl(m, n) (4)

If the three computed statistics of the MID series of a

MB are in the given neighborhoods (parameters related

to specific scenes) of their theoretical values, it could be

labeled as foreground area.

Those foreground MBs obtained by temporal sta-

tistical analysis are just small areas sampled from the

crowded areas. According to the given assumption, they

would satisfy spatial uniform distribution. So the whole

crowded areas can be obtained by the Griding method:

1) evenly divide the whole image into grids with size of

LG × LG (typically LG = 3LM ). 2) Label a grid as

foreground if there is at least one MB in it being labeled

as foreground.

3. HOG Based Head-Shoulder Detection

The most reliable feature for head-shoulder detection

in surveillance scenes is its omega-like shape shown in

Figure 1 (a). HOG (Histograms of Oriented Gradients)

feature has been proven to be a good shape descriptor

[1] for human detection. We evaluate several local fea-

ture descriptors for head-shoulder detection in the ex-

periment section, and find HOG gives the best results.

Feature Representation Each 32× 32 pixel sample

is divided into 64 cells with the size of 4 × 4 pixels,

and 4 adjacent cells form a block with the size of 8 × 8
pixels. There are totally 49 blocks with the overlap of

two cells between two adjacent blocks. For each cell

in each block, a histogram of 8 orientation bins in 0o

- 360o is calculated and normalized within this block

to represent the local features. The final descriptor is

then a vector with the dimension of 1,568. Details about

HOG feature extraction can be seen in [1].

4. Experimental Results

4.1 Dataset

Because of lacking of open large dataset for head-

shoulder detection, we created one, which is available

at [2]. There are 1,755 positive samples with the size of

32 × 32, together with their left-right reflections (3,510

images in all) for training and 906 (1,812 in all) for test-

ing. Typical head-shoulder samples can be seen in Fig-

ure 1 (b). They vary in ethnicities, view angles, ap-

pearances and scenes. About two thirds of the positive

samples are cropped from two well-known pedestrian

datasets, the MIT set [7] and INRIA set [1], and others

are cropped from images from the Internet or surveil-

lance videos. For negative samples, most are selected

from the INRIA set. For diversity, we add some human-

body images without head-shoulders to the negative set.

There are 399 head-shoulder-free images with the size

of 320 × 240 for training and 331 for testing respec-

tively.

(
a
)
 (
b
)


Figure 1. The salient omega feature. (a)
Average edge map (like an omega) of
head-shoulder samples in the training set
(b) Typical head-shoulder samples.

4.2 Training

The positive training set and 11,000 randomly sam-

pled patches from 399 head-shoulder-free images con-

stitute the initial training set, then AdaBoost is used to

train the head-shoulder detector. However, collecting

a representative set of none-head-shoulder samples is

difficult. To overcome the problem of defining this ex-

tremely large negative class, a bootstrapping training is



adopted. A preliminary classifier is trained on the ini-

tial training set, then used to predict the class categories

of a large set of patches randomly sampled again from

the 399 head-should-free images. False alarms are col-

lected and added to the negative training set for the next

iteration of training.

4.3 Testing

Three experiments are conducted. The first two ex-

periments are designed to evaluate the performances of

the MID-based foreground segmentation module and

the HOG based head-shoulder detection module sepa-

rately. Then, the combination of the two modules is

tested in the third experiment.

In the first experiment, the MID-based foreground

segmentation algorithm is tested by a real video (dura-

tion:12min) taken from a bus station in the rush hour.

Figure 2 (a), (d) and (g) show some selected frames in

this video; (b), (e) and (h) show the segmented MBs

whose MID series satisfy temporal uniform distribu-

tion; and (c), (f) and (i) are the results of the Grid-

ing Method. It can be seen that in most cases, our

method can exactly detect the crowed areas, no matter

how crowded it is.
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Figure 2. MID based foreground segmen-
tation results in a real scene video.

The second experiment compares performances of

the HOG feature and another two popular features :

Haar feature [11] and SIFT descriptor [5] for head-

shoulder detection. All classifiers are trained on the

initial training set (No bootstrapping process) by Ad-

aBoost and evaluated on the testing set (About 331,000

random patches are sampled for the negative set). Re-

sults are shown in Figure 3 (a). Apparently, the HOG

feature performs much better than the other two fea-

tures. Dalal [1] mentioned that signed gradients (In

0o - 360o) decreases the performance of HOG feature

in pedestrian detection. But as shown in Figure 3 (a),

signed gradients performs better than unsigned gradi-

ents (In 0o - 180o) in head-shoulder detection.

Figure 3 (b) shows that the bootstrapping process can

decrease the missing rate from about 40% to about 23%

at 10−4 false positive per window. Figure 4 shows some

detection results of our final detector on some surveil-

lance images or daily-life photos.

Figure 4. Some detection results of the fi-
nal head-shoulder detector

In the third experiment, the whole proposed method

of estimating the number of people in crowded scenes

is tested by a real video taken in another bus station.

Figure 5 shows the detection results: (i)-(vi) are seg-

mented foreground maps of some selected frames, blue

squares in (a)-(f) are the corresponding head-shoulder

shapes detected (The large polygon in red is region of

interest). Though the MID-based segmentation is not

very accurate, it could decrease the search scope for the

head-shoulder detector when there are few people in the

observed area. The curve of NOP (number of people)

vs. time is shown in Figure 6. As we can see, the num-

ber of people detected approximately goes up and down

following the ground truth correctly.

5. Conclusions

In this paper, we have proposed a method to estimate

the number of people in crowded scenes. This method

consists of two modules: a MID based foreground

segmentation module to obtain the active areas in the

observed area and a head-shoulder detection module

to detect the head-shoulder shapes from the detected

foreground areas and count the number. This method

can not only count the number of people in crowded

scenes, but also locate the position of each individual,

which has great potential for applications beyond

people counting. Experimental results have shown the

effectiveness of the proposed method.
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Figure 3. Performance comparison of (a) different features and (b) different number of iterations
in the bootstrapping process

(
a
)
 (
b
)
 (
c
)


(
d
)
 (
e
)
 (
f
)


(
i
)
 (
i
i
)
 (
i
i
i
)
 (
i
v
)
 (
v
)
 (
v
i
)


Figure 5. Segmentation and detection re-
sults in another testing video.
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Figure 6. Curve of NOP vs. time for the
testing video
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