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Estimating the Number of States 
of a Finite-State Source 

Jacob Ziv,  Fellow, IEEE, and Neri Merhav, Member, IEEE 

Abstract-The problem of estimating the number of states of 
a finite-alphabet, finite-state source is investigated. An estimator 
is developed that asymptotically attains the minimum probabil- 
ity of underestimating the number of states, among all estima- 
tors with a prescribed exponential decay rate of overestimation 
probability. The proposed estimator relies on the Lempel-Ziv 
data compression algorithm in an intuitively appealing manner. 

Index Terms-Model order estimation, finite-state sources, 
hidden Markov models, universal data compression, Lempel-Ziv 
algorithm. 

I .  INTRODUCTION 

N [ l ] ,  the estimation of the order k of a finite-alphabet I Markov source was studied. An order estimator k* was 
developed and shown to be asymptotically optimal in the 
sense of having an underestimation-probability Pr { k* < k }  
smaller than that of any-estimator k for which the overesti- 
mation probability Pr { k > k }  decays faster than 2-'" for 
some given h > 0, where n is the sample size. This is a 
generalized version of the Neyman-Pearson criterion. 

In this paper, the results of [ l ]  are extended to the estima- 
tion of the number of states of a finite-alphabet, finite-state 
(FS) source. Specifically, let x = xI ,  x2; a ,  x, be a se- 
quence of observable random variables taking on values in a 
finite set X of size I X I = X .  Similarly, let s = sI, 
s2,. . * , s, be another sequence of random variables (states), 
corresponding to x ,  which take on values in another finite set 
S, of size I S, I = M.  An information source P is said to 
be finite-state (with M states) if the joint probability of x 
and s is given by 

where the initial state so E S, is assumed fixed and known, 
and p ( x i ,  si I si- ,) is the joint probability of a letter xi and a 
state si at time instant i given the previous state si- at time 
instant i - 1. The state sequence s is not apparent in general 
(in contrast to the Markovian case [l]). Let 2, denote the 
class of all FS sources with at most M states. We are 
interested in an estimator M* = M * ( x )  for the number of 
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states M ,  that is asymptotically optimal in the following 
sense. Minimize Pr { &f < M }  uniformly for all M and 
every PM E ?,, subject to the constraint 

r 1  

V P E 2 M ,  (2) 

where h > 0 is a given number and logarithms are taken to 
the base 2 unless specified otherwise. 

The main difficulty in generalizing the result of [l] from 
the class of Markov sources to the more general class of FS 
sources is that here the data cannot be summarized by a finite 
dimensional vector of sufficient statistics which allows one to 
focus on relatively simple classes of estimators without sacri- 
ficing optimality. While the proof in [ l ]  relies heavily on the 
fact that Markov types are sufficient statistics in the Marko- 
vian case, here more powerful techniques are required. It is 
pointed out, on the other hand, that for some important 
subclasses of FS sources, e.g., hidden Markov sources, 
unifilar FS sources, Markov sources, we are able to improve 
the performance of our estimator by utilizing more prior 
knowledge about the true underlying model. 

11. MAIN RESULT 

Define the following estimator for the number of states M .  

(3) 

j : - - l o g m a x p ( x ) - - U , , ( x ) < h  1 1 
n n PEP, 

where U L z ( x )  is the length (in bits) of the Lempel-Ziv (LZ) 
codeword [2] for x and P ( x )  = 1, P ( x ,  s ) ,  with P ( x ,  s) 
being defined as in (1). The maximization of P (  x )  over ?jj is 
usually carried out by iterative techniques, e.g., the EM 
algorithm [3], which merely guarantee convergence to a local 
rather than a global maximum of P ( x ) .  An alternative 
approach, which is computationally unattractive, is an ex- 
haustive search over a dense grid of sources in ?j ,  which 
may grow polynomially fast with n.  Observe that M* is a 
generalized version of the estimator proposed in [l] for the 
Markovian case. It has the following intuitive interpretation. 
We seek the smallest model order j for encoding x ,  such that 
the codeword length -log P ( x )  will be sufficiently close 
(difference less than An) to the codeword length associated 
with the LZ algorithm, which in turn, serves as an estimate 
of the source entropy. Our main result is the following. 
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Theorem 1: The estimator M* satisfies the following Next assume that I divides n and sparse x into n / I  nonover- 
conditions. lapping I-blocks x i  = ( x ~ ~ ~ ~ ) [ + ~ , * .  ., x i / ) ,  i = 1 ,  

2 ,  * . . , n / 1. Let s' denote the sequence of initial states of the 
a) lim inf - - l o g P r  { M *  > M }  L h, VP,EP,. resulting blocks x i ,  i.e., 

b) For any competing estimator k that satisfies (2) ,  for 
every M-state source PE PM, and for all large n ,  s' = SA, sf, s; ; * * , s;,/, (7) 

n - m  K 1 
where s,! = s ( ~ -  i = 1, 2 ,  . . , n / I  + 1. Henceforth, the 
sequence s' will be referred to as the sparse state sequence. 
Given s', let K ( x  I s') denote the set of all n-vectors x' 
generated by permuting phrases x, with phrases x, (of x) 
for which sf = s: and = si+', namely, permuting 
phrases with the same initial and final states. Since P ( x ,  
s') = lI:i: P ( x , ,  sf+' I sf) and products are unaffected by 
permutations, it follows that for any x' E K ( X  1 s') 

The theorem tells us that if the underestimation probability 
happens to decay exponentially with n (see, e.g., [ l ,  p. 
1017, Remark l]), then the asymptotic underestimation error 
exponent of M* is optimal. If, however, the overestimation 
probability does not decay exponentially, then still it decays 
at the highest possible rate or it tends to the minimum value 
attainable. The term l / n  on the right-hand side of b) is 
somewhat arbitrary and can be replaced, more generally, by 
any positive a, that decays with n in a subexponential rate, 
i.e., n-' log a, + 0 as n -+ 03. The choice of l / n  is for 
the sake of simplicity and convenience. Note that M* does 
not necessarily satisfy (2)  with strict inequality. In a sense, 
this means that M* is asymptotically €-optimal rather than 
asymptotically optimal, as the strict inequality (2) is satisfied 
if h is replaced by ( h  - E )  for arbitrarily small E > 0. 

Proof of Theorem 1: As for Part a), define 

1 1 

n "PJ n 
x : - -  l o g m a x P ( x )  - - U , . ~ ( X )  < A 

j = 1 , 2 ,  . . .  . (4) 
Then we have 

I 2-Xn-uLz(x) 
X E N ~  

I 2 - h n  C 2-ULL(x) < - 2-X" 
9 ( 5 )  

E X "  

where X "  is the nth Cartesian power of X .  The last step in 
(5) follows from the Kraft inequality [4] for binary, uniquely 
decipherable codeword length functions. This completes the 
proof of Part a). 

To prove Part b), select an arbitrary conmpeting estimator 
k that satisfies (2).  Assume further that M relies on knowl- 
edge of an integer MO that upper bounds the true number of 
states F. It will be shown that the estimator M* is no worse 
than M in spite of the fact that the former does not require 
knowledge o,f MO. Let { n j } 2 '  denote the partition of X "  
induced by M ,  that is, n j  = { x : M = j } ,  j = 1, 2 ; . . ,  MO. 
It follows from (2)  that for any j I M ,  E > 0 and n suffi- 
ciently large, 

P ( x ' ,  s') = P(x, s' ) ,  V P E ? , ,  j = 1 , 2 ,  e * *  . ( 8 )  

Hence, K (  x 1 s') can be thought of as a conditional type of x 
given s'. We now generate from { nj}j",o, an auxiliary parti- 
tion { bj}zl of the sample space of pairs (x,  s') such that 
each decision region b, contains a sufficiently large fraction 
of vectors x from the same conditional type K ( x  I s'). This 
will be useful later when we apply a lower bound on 
I K ( x  I s') 1 (see Lemma 1). Specifically, we use the follow- 
ing rules to create the auxiliary partition. 

a) For every pair (x,  s') where x E Q i  and 1 K ( x  I s') n 
ail > (nMo)- '  I ~ ( x  I s') 1 ,  let (x,  s ' ) E ~ ; ,  i = 1, 
2 ; - * ,  MO. 

b) For every (x,  s') where X E  Q i  and I K ( x  I s') fl Q i  I 
I (nMO)-I 1 K ( x  I s') 1 ,  let (x ,  s') E Q,, where j is 
the smallest integer that maximizes I K ( x  I s') fl Q j  I .  

Since max, 1 ~ ( x  I s') n Q,  I 2 M;' 1 ~ ( x  I s') 1 ,  it fol- 
lows from the previous construction that I ,K( x 1 8') n 
bj(s ' )  1 I (1 + l / n )  I K ( x  I s') f l  Q j  1 ,  where n,(s') is de- 
fined as the collection of sequences x such that (x,  s') E b,. 
Next, observe that K ( x  I s') and K ( x '  I s') are disjoint 
whenever x' $ K ( x  I s'). Hence, for every 1 I j I MO,  we 
have 

(9) 

Let fi denote the estimator_of M induced by { f i j } j L l ,  i.e., 
G ( x ,  s') = j  iff (x,  ~ ' ) E Q ~ .  BY construction of { Q , } , ~ ~ ,  
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we have 1 K ( x  1 s') n fi j(s')  I 2 (nM,,)-' 1 K ( x  1 s') I for 
every 1 5 j I MO. Thus, from (6) and (9), for every P E  Pj 
and every j I M ,  

where 
1 e 

1 4  
E * ( / )  = - l o g [ -  ( l + 2 ) ' M 5 X 4 ] .  (14) 

for every (x,  s') E U J, fij. Unfortunately, the right-most 
side of (10) contains two quantities, K ( x  I s') and maxpEpJ 
P ( x ,  s'), that depend on the unavailable state sequence s'. 
However, since s' is sparse for large I, then intuitively, it 
carries very little information. Indeed, the following two 
lemmas provide lower bounds on these two quantities, that 
are independent of s' and hence will be useful for deriving 
M*, which in turn does not allow dependence on SI. The first 
lemma is, in fact, a generalized version of the well-known 
fact that the cardinality of a type is exponentially under- 
bounded in terms of its associated empirical entropy [5, p. 
30, Lemma 2.31, which in turn is further underestimated by 
the LZ codeword length function [6]. 

Lemma I :  For every x E X "  and s1 E S;r+', 

where 

c, C,l c31x' 
(12) E l ( n , / )  = - + ~ + ~ 

for some positive constants C , ,  C,, and C, depending only 
on X and MO. 

The proof of the Lemma 1, which is based on techniques 
similar to those developed in [6], [7] can be found in [8, 
Appendix A] (see (A.15), (A.16) therein). The next lemma 
tells us that maxpEF, P ( x )  and maxpCpJ P ( x ,  s') are 
exponentially equivalent for large 1. This result allows us to 
underbound maxpEpJ P ( x ,  s') of (10) in terms of maxpepJ 
P ( x ) ,  which is in turn independent of the unavailable d .  

Lemma 2: For every x E X " ,  s' E S;/'+l and j I M ,  

1 log n n 

max P (  x,  s') 2 2-"'z(') max P (  x ) ,  
P€SJ P€9J 

(13) 

The proof of Lemma 2 appears in the Appendix. 
Combining (lo), ( l l ) ,  and (13), we get 

' (15) 2 - ( ' + E ) "  2 max P (  ~)2~LZ(~)-"'3("3' )  
P€PJ 

where 

c , ( n ,  1 )  = c l ( n ,  1)  + E ' ( / )  + - log(nM,,) 
1 

+ - l o g  1 + - . (16) : ( :I 
By letting 1 = I,, grow slowly with n in an appropriate rate, 
e.g., 1, = 0 (m), the sequence {c3(n,  l n ) } n 2 1  will 
vanish as n grows indefinitely. Hence, for sufficiently large 
n ,  E3(n, 1,) I E ,  and we conclude from (15) that for every 
( x ,  SI,) E U j ,  f i j  we have 

P E  9, 
-log max P ( x )  - ULz(x) 2 An, (17) 

or, in other words, (x ,  s',) E N,C, where the superscript c 
denotes the complementary set. This means that Nj x Sgn+l C U j 5  f i j  for every J I M where 1 I M I MO. 
Hence, 

= P r { i ? < M )  I 1 + - P r { n ; C < M } ,  

(18) 

proof of Part b). 0 

( b l  
where the last step follows from (9). This completes the 

111. DISCUSSION 

A slightly different version of Theorem 1 could have been 
obtained if we replaced the overestimation constraint ( 2 )  by 

Pr {$I > M )  I 2-( '+€)" ,  (19) 
for all n, and some E > 0, which is a constraint somewhat 
stronger than (2)  and hence, defines a smaller class of 
competing estimators. In this case, Part b) of Theorem 1 
would have been reformulated in a slightly stronger manner 
as follows: For any competing estimator M that satisfies 
(19), for every M-state source P E  PM and for all large n,  
Pr ( M *  < M }  I Pr { M < M } .  In other words, the factor 
(1 + l / n )  in the original version of Theorem 1, Part b) 
would have been removed. The explanation of this fact is as 
follows: Consider an auxiliary problem of testing the hypoth- 
esis H,: M I J against the alternative H , : M  > j ,  where j is 
a given integer. Again, the Neyman-Pearson criterion is 
adopted, i.e., minimize Pr {accept H,, I H I }  for a given 
P E  PM, M > j ,  subject to the false alarm constraint maxpeFJ 
Pr {reject H, I H,,} I 2-('+')". Assume, temporarily, that 
the sparse state sequence s' of (7) is available to the ob- 
server. Since the false alarm constraint is exponentially 
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equivalent to suffix set S, (with M elements) such that any k-tuple 
w has a unique suffix suf (w) in S,,,, and s, = suf 
( x , - ~ + ~ ,  x , - ~ + ~ , - ~ ~ ,  x , ) .  The optimal estimator M" 
relies on empirical entropies induced by the respective 

max ~ ' ( x ,  s') I 2-('+')", (20) 
(X,S')€A, ""J 

where A ,  is the decision region for H I ,  then by the Ney- 
man-Pearson theorem [9, Theorem 13, [ l o ] ,  the optimal test 
compares the likelihood ratio n-l log [ P ( x ,  s ' ) /maxprEpJ 
P ( x ,  s')] to a threshold function T(A). Observe that this 
optimal test depends on ( x ,  s') only through the conditional 
type K ( x  I s'), which can be thought of as sufficient statis- 
tics. This allows one to confine attention to universal tests 
that depend solely on K(  x 1 s') without loss of optimality and 
hence avoid the use of the modification { fi,}Z, (see Section 
111), which in turn introduces the factor of (1 + l / n )  in the 
original version of Theorem 1. Similarly to (lo), (11), and 
(13), one obtains Nj as an asymptotically optimal acceptance 
region for H,. Finally, observe that M" implements the 
asymptotically optimal test of the above auxiliary hypothesis 
testing problem simultaneously for all positive integers j 
and hence minimizes the underestimation probability for all 
large n. 

4) 

state sequence similarly to Example 2 .  For FSMX 
sources the present estimation approach is extended in 
[12], where an estimator is proposed for the states 
themselves, rather than just the number of states M ,  
under a similar optimality criterion in the 
Neyman-Pearson spirit. This state estimator is then 
employed by a sequential universal data compression 
scheme and shown to asymptotically minimize the re- 
dundancy of the code. 
Markov sources of order k are FSMX sources where 
the current state si depends exactly on the k most 

Again, the estimation of k is similar to tha! described 
for the case of unifilar FS sources, where H?(x I s) is 
replaced by the j th  order empirical conditional entropy 
H ( x  I x') of a letter x given its j preceding letters 
(see [ I ]  for more details). 

recent source letters, i.e., si = ( x  r - k + l r ' " ,  

It should be pointed out that if the FS source is known to 
lie in some subclass QM E B, of FS sources, then ?,, in the 
definition of M" (see (3)), can be replaced by Q,, resulting 
in a smaller underestimation probability. Furthermore, prior 
knowledge of QJ may considerably reduce computational 
complexity. Several important examples of Ql are the follow- 

In [l], it has been shown that if an upper bound k ,  on the 
true Markov order k is available to the observer, then the LZ 
codeword length ULz(x) can be replaced by the empirical 
conditional entropy of order k,, H( x I xk0),  namely, an 
alternative asymptotically optimal estimator of k is given by 

k" = m i n { j :  k ( x l  x') - k ( x (  xk0) < A} 

Hidden Markov Sources are FS sources where p (  x , ,  
s, 1 s,- ,) factorizes into a product p ( x ,  I s , ~  ,) 
p(s ,  I s,- The number of free parameters in this 
subclass is j (  X + j - 2), which may be considerably 
smaller than the j (  jX - 1) free parameters of the 
more general class 9J. This saves a significant amount 
of computations when applying the EM algorithm [3] in 
order to calculate maxpEQJ P ( x ) .  The hidden Markov 
model is used extensively in speech recognition appli- 
cations (see, e.g., [ 1 1 ]  and references therein). 
UniJilar FS sources are FS sources where s, is given 
by a deterministic next state function g ( x , ,  s I p I ) .  In 
this case, the underlying state sequence s can be deter- 
mined recursively from x and so and the resulting 
empirical joint distribution of letters and states, i.e., 

s € S J ,  (where 1(.) denotes an indicator function,) 
serves as sufficient statistics. Specifically, here -n 
log maxpEQ, P ( x )  is given by the conditional empiri- 
cal entropy I?,!( x I s) associated with { q,!( x ,  
s ) } ~ ~  x , sEs , ,  which can be calculated relatively easily. 
If the next state function g ( . ,  e )  isAunknown, then 
H;( x I s) can be replaced by min, H;( x I s), where 
the minimum is taken over all j J x  next state functions 
associated with j-state unifilar FS sources. 
FSMX sources are unifilar FS sources where the cur- 
rent state s, depends on no more than the k most 
recent source letters x , - ~ + , ,  x , - ~ + ~ , * * * ,  x , .  In other 
words, an M-state FSMX source is characterized by a 

qjg(x, s ) = . - I  E:=, l ( x ,  = x ,  s, = s), X € X ,  

max P ( x )  

n m a x : P ( x )  
"8, 

1 P d k "  

where Q j  is the subclass of Markov sources. An interesting 
open problem is whether a similar result holds for general FS 
sources, in other words, is the estimator 

max P ( x )  

n m a x P ( x )  
P€P, 

1 PEPM,, 

asymptotically optimal if MO is a given upper bound on M? 
This question, which is discussed in more depth in [13], is 
important as it may serve as a first step towards an extension 
of the above result to sources with continuous valued obser- 
vations, where the LZ algorithm is not directly applicable but 
probability mass functions in (22)  can be naturally substituted 
by probability density functions. 

APPENDIX 
Proof of Lemma 2: Fix 0 < 6 I ( j X ) - 2  and let P: C P, be 

the set of all j-state sources for which p (  x,  s I U )  e P! { x, = x, 
s, = S I  s,-, = U }  2 6 for all X E X ,  s, UES,.  Let P = { j ( x ,  
s I u ) } ~ , ~ , ~  be a source that maximizes P (x )  over PI. We first show 
that 
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To see that (A. l )  holds, consider a source P‘ = { p’( x, s I u) )x ,s ,o  
E P; that is derived from P as follows. First, index all pairs (x, 
s) E X  X S, by integers 1, 2, * 1 ,  j X .  Then, for every u E SJ repeat 
the following procedure: For every pair (x, s) EX x Si, if a( x, 
s I u) < 6, let p’(x, s I a )  = 6. For every other (x, s), set p’(x, 
s I u) = C(x, s I U ) ,  except for (x*, s*), the pair with the smallest 
index that attains max(,,,, p ( x ,  s I U ) ,  for which p’(x*, s*) = 1 
- C(x,s)+(x*,s*)  p’(x, s I U ) .  It follows from this procedure that 
p’(x, s I u) 2 j(x, S I  u) for all (x, s) except for (x*, s*) where 

p’( x*, s* I U )  2 a( x*, s* I U )  - 6jX 

=j(x*,s*Iu)(1 - 6 j2X2) ,  (A.2) 

where we have used the fact that $(x*, s* 1 a )  2 ( j X ) - ’ .  It now 
follows that 

max P (  x) 2 P’( x)  
P€P; 

n 

= c n P’(x;>s;I.;-l) 
s i = l  

s i = l  

= (1 - 6 j 2 X 2 ) n F ( X ) .  (‘4.3) 

Next, observe that for every P E P;, 

P ( x ; ,  Sf+l I sf) = p ( x ; ,  Si‘ I 4;-1)‘) 

I 

where sp denotes the segment ( s k ,  
Similarly, since p(  x ,  s I u) 5 1 ,  we have 

. ., s,) for m 2 k .  

Since the expression 

does not depend on s(;- 
must have 

and .si/, it follows that any P E  9; we 

for any sf, 5f, sf+ E Sj.  Hence, 

P (  x,  0‘) 
P ( x )  = P ( x ,  0‘) = P ( x ,  s‘) ~ 

0‘ 8‘ P ( x ,  s‘) 

where sk = 5; = so. Since (A.7) holds for any PE P;, it follows by 
(A. 1) and (A.7) that 

max P (  x) = F (  x) 
P€P, 

fll‘ 
I (1 - 6j2X2)- f l (  ;) P ’ ( x ,  s o  

’ n / /  

5 ( 1  - 6 j 2 X 2 ) - n (  $) max P ( x ,  s‘). (A.8) 
P€P, 

Finally, by minimizing the factor (1 - 6 j 2 X 2 ) - ” (  j6-2)n/‘ on the 
right-most side of (A.8) with respect to 6 in the range 0 < 6 5 
( j X )  - I ,  and using the assumption that j 5 M ,  the proof of Lemma 
2 is complete. 
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