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ABSTRACT
Motivation: The occurrence of false positives and false
negatives in a microarray analysis could be easily esti-
mated if the distribution of p-values were approximated
and then expressed as a mixture of null and alternative
densities. Essentially any distribution of p-values can be
expressed as such a mixture by extracting a uniform den-
sity from it.
Results: A model is introduced that frequently describes
very accurately the distribution of a set of p-values
arising from an array analysis. The model is used to
obtain an estimated distribution that is easily expressed
as a mixture of null and alternative densities. Given a
threshold of significance, the estimated distribution is
partitioned into regions corresponding to the occurrences
of false positives, false negatives, true positives, and true
negatives.
Availability: An S-plus function library is available from
http://www.stjuderesearch.org/statistics.
Contact: stanley.pounds@stjude.org

INTRODUCTION
Microarray technology allows investigators to simulta-
neously measure the expression of thousands of genes.
Use of microarray technology allows investigators to ask
questions such as “Which genes’ expressions are affected
by selected treatments?” or “Which genes’ expressions are
correlated with another relevant variable?” These types of
questions comprise a series of questions that are applied to
each gene. For each gene, one could ask ‘Is the expression
of this gene affected by selected treatments?’ or ‘Is the
expression of this gene correlated with another relevant
variable?’ For each gene, the question is termed as a
statistical hypothesis test placing a null hypothesis (‘The

∗To whom correspondence should be addressed.

gene’s expression is unaffected by the selected treatments’
or ‘The gene’s expression is not correlated with another
relevant variable’) versus an alternative hypothesis (‘The
gene’s expression is affected by the selected treatments’
or ‘The gene’s expression is correlated with another
relevant variable’). Thousands of hypotheses are tested,
one hypothesis per gene, resulting in a very complex
multiple-testing problem. The multiple-testing problem
concerns the occurrence of erroneous conclusions among
such a large set of hypothesis tests. Conclusions should
be based on a statistical method that adequately addresses
the multiple-testing problem by appropriately controlling
the probability of making errorenous conclusions.

Many methods that address the multiple-testing issue
compare the expressions of genes across two treatments
(Pan, 2002). As mentioned above, questions of interest
are not limited to the comparison of two treatments. A
more unified approach to the analysis of microarray data
is needed. In classical statistics,p-values have unified the
determination of significance for a wide variety of exper-
imental designs and hypotheses. In microarray studies, a
technique based upon the analysis of the set ofp-values
could unify the determination of significance across a wide
variety of experimental designs and adequately address the
multiple-testing issue.

TWO IMPORTANT PROPERTIES
Two fundamental properties provide the basis of the
analysis of a large set ofp-values. First,p-values arising
from the null hypothesis are distributed uniformly on the
interval (0, 1) (Casella and Berger, 1990). Second, the
distribution of the set ofp-values can be expressed as
a mixture consisting of a uniform(0, 1) component and
another component.

THEOREM 1. Let X be any continuous random vari-
able with a probability density function (pdf) f (x) such
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Microarray studies

that f (x) > 0 only if 0 ≤ x ≤ 1. Then f (x) = π + (1 −
π) f1(x) where 0 ≤ π ≤ min( f (x)) ≤ 1 and f1(x) is a
well-defined pdf.

PROOF. Clearly,
∫ 1

0 f (x)dx = 1 becausef (x) is a pdf
such that f (x) > 0 only if 0 ≤ x ≤ 1. By the mean-
value theorem (Anton, 1992), min( f (x)) ≤ 1. Now let
0 ≤ π ≤ min( f (x)). Note that

f (x) = π + f (x) − π

= π + (1 − π)
f (x) − π

1 − π
. (1)

Let f1(x) = f (x)−π
1−π

. Obviously f1(x) ≥ 0 and∫ 1
0 f1(x)dx = 1, implying that f1(x) is a well-defined

pdf. �

A p-value is a random variable that satisfies the
conditions of Theorem 1 becausep-values represent a
null hypothesis based probability and, therefore, must fall
in the interval[0, 1]. The two properties imply that the
distribution of a set ofp-values can be expressed as a
mixture of two components: one arising from the null
hypothesis and one arising from the alternative hypothesis.
The null component is the uniform density extracted as
π in (1). The alternative component is the remainder
of the overall distribution expressed as(1 − π) f1(x) in
Theorem 1. However, the distribution ofp-values must be
approximated before it can be expressed as a mixture of
null and alternative components.

THE STATISTICAL MODEL
The beta-uniform mixture (BUM) distribution
The pdf

f (x |a, λ) = λ + (1 − λ)axa−1 (2)

for 0 < x ≤ 1, 0 < λ < 1, and 0 < a < 1
provides a reasonable model for the distribution ofp-
values arising from a microarray experiment. The pdf
f (x |a, λ) is a curve that asymptotes atx = 0 and
monotonically decreases to its minimum ofλ + (1 −
λ)a at x = 1. This curve approximates the anticipated
distribution of the p-values arising from a microarray
experiment. Under the null hypothesis, thep-values will
have a uniform density corresponding to a flat horizontal
line. Under the alternative hypothesis, thep-values will
have a distribution that has high density for smallp-values
and the density will decrease as thep-values increase. The
overall distribution will be a mixture ofp-values arising
from the two hypotheses and will have a shape similar to
the pdf defined in (2). As shown below, the distribution
obtained by maximum likelihood estimation (MLE) of
the parameters provides an excellent approximation to
the observed distribution of thep-values arising from

microarray experiments in practice. The distribution in (2)
will be referred to as the BUM distribution or the BUM
density because the distribution is a mixture of a special
case of the beta distribution (b = 1) and the uniform(0, 1)

distribution.

Parameter estimation
Given a set ofp-valuesx = x1, . . . xn, one can calculate
MLEs for the parameters of the BUM distribution. First,
f (x |a, λ) should be expressed in terms of the new
parametersψ ≡ logit(a), andφ ≡ logit(λ). Second, use
numerical optimization techniques to find̂ψ and φ̂, the
values ofψ andφ that maximize the log of the likelihood

l(ψ, φ|x) = ∑
log( f (x |a, λ). Finally, let â = exp(ψ̂)

1+exp(ψ̂)
,

and λ̂ = exp(φ̂)

1+exp(φ̂)
. The invariance property of the MLE

ensures that the estimatesâ andλ̂ are the MLEs fora and
λ (Casella and Berger, 1990).

Expressing the distribution as a mixture

The estimated densitŷf (x) = f (x |â, λ̂) can be expressed
as a mixture, as in (1). Note that in Theorem 1,π

must be less than or equal to the minimum off̂ (x).
Unfortunately, the proportionπ that actually arises from
the null hypothesis cannot be estimated. However, the
logical upper bound ofπ can be estimated by using

π̂ub = λ̂ + (1 − λ̂)â. (3)

The maximum proportion of the set of thep-values that
could arise from the null hypothesis isπ̂ub. The remaining
1 − π̂ub portion of the set ofp-values cannot arise from
the null hypothesis; thus it must arise from the alternative
hypothesis. The alternative component is described by
f̂ (x) = ( f̂ (x)−π̂ub)/(1−π̂ub). Finally, f̂ (x) is expressed
as a mixture of a null component (the uniform density) and
an alternative component (f̂1(x)). When the distribution
of p-values is expressed in this manner, the occurrence of
errors in hypothesis testing can be estimated.

Confidence regions and intervals

Clearly the quantitieŝa, λ̂, and π̂ub are sample based
estimates that are subject to variation. Therefore, it is
important to characterize the uncertainty in the estimation
of a andλ with a joint confidence region. In microarray
studies,̂a andλ̂ will be based upon thousands ofp-values.
In such situations, a 1− α confidence region fora andλ

is given by all values ofa� andλ� such that

2(l(â, λ̂|x) − l(a�, λ�|x)) ≤ χ2
2,1−α (4)

where the functionl represents the log likelihood and
χ2

2,1−α is the 1− α quantile of the chi-square distribution
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Table 1. Outcomes of a hypothesis test

Declare significance Fail to declare significance

False null hypothesis True Positive (A) False Negative (B)
True null hypothesis False Positive (C) True Negative (D)

with two degrees of freedom (Casella and Berger, 1990).
The confidence region fora andλ can be transformed into
a confidence interval forπub. The 1−α confidence interval
for πub is given by the range ofπ�

ub = λ� + (1 − λ�)a�

for all a� andλ� within the confidence region defined by
(4). Confidence intervals for other quantities (such as the
error quantities mentioned in what follows) based on the
estimates ofa and λ can be constructed by finding the
range of the quantity for values ofa and λ within the
confidence region.

ESTIMATING THE OCCURRENCE OF ERRORS
Four hypothesis testing outcomes
A hypothesis test is an attempt to use available information
to infer whether the null hypothesis is false. A hypothesis
test can reach one of two decisions: to declare significance
(i.e. to conclude that there is sufficient evidence to infer
that the null hypothesis is false) or to fail to declare
significance (i.e. to conclude that there is insufficient
evidence to infer that the null hypothesis is false). Because
the null hypothesis is either true or false, a hypothesis
test can have four possible outcomes: (A) declaring
significance when the null hypothesis is false, also known
as a true positive; (B) failing to declare significance when
the null hypothesis is false, also known as a false negative
or a Type II error; (C) declaring significance when the null
hypothesis is true, also known as a false positive or a Type
I error; and (D) failing to declare significance when the
null hypothesis is true, also known as a true negative. The
four possible outcomes are illustrated in Table 1.

Partitioning the estimated density
Whenp-values are used in hypothesis testing, significance
is determined on the basis of the comparison of thep-
value to a thresholdτ . Significance is declared when the
p-value is less thanτ . Failure to declare significance
occurs when thep-value is greater thanτ . Once τ is
selected, the estimated densitŷf (x) can be partitioned
into four regions, and each region corresponds to a unique
hypothesis testing outcome (Fig. 1). There are two straight
lines that form the partition: the vertical line atx =
τ and the horizontal line aty = π . The region to
the left of the vertical line corresponds to thep-values
declared significant and the region to the right corresponds
to p-values declared insignificant. The region above the
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Fig. 1. Graphical illustration of error-control quantities. Region A
corresponds to the occurrence of true positives because it lies above
the horizontal line (the alternative component) and to the left of
the vertical line (declared significant). Region B corresponds to the
occurrence of false negatives because it lies above the horizontal
line (the null component) and to the right of the vertical line (not
declared significant). Region C corresponds to the occurrence of
false positives because it lies below the horizontal line (the null
component) and to the left of the vertical line (declared significant).
Region D corresponds to the occurrence of true negatives because it
lies below the horizontal line (the null component) and to the right
of the vertical line (declared significant).

horizontal line y = π is the alternative component
of the distribution: the portion of the distribution ofp-
values arising from the alternative hypothesis. The region
below the horizontal line is the null component of the
distribution: the portion corresponding to the distribution
of p-values arising from the null hypothesis. The area of
each region is an estimate of the proportion of hypothesis
tests resulting in the corresponding outcome. The areas of
the regions A, B, C and D in Figure 1 are computed by

p̂A(τ ) = F̂(τ ) − π̂ubτ, (5)

p̂B(τ ) = 1 − F̂(τ ) − (1 − τ)π̂ub,

p̂C (τ ) = π̂ubτ, and

p̂D(τ ) = (1 − τ)π̂ub,

respectively, wherêF(τ ) = λ̂τ + (1 − λ̂)τ â .

The false discovery rate (FDR)
Various error control quantities of interest can be esti-
mated by using (5). For example, an estimated upper
bound of the FDR (the proportion of tests declared signif-
icant that are false positives) introduced by Benjamini and
Hochberg (1995) is given by

ˆFDRub(τ ) = p̂C (τ )

p̂A(τ ) + p̂C (τ )
(6)
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becausêpC (τ ) estimates the proportion of all tests result-
ing in false positives, and̂pC (τ ) + p̂A(τ ) estimates the
proportion of all tests declared significant. The threshold
τ could then be selected to ensure thatˆFDRub(τ ) ≤ α̃ for
some prespecified̃α. Selecting the threshold in this man-
ner yields

τ̂ (α̃) =
(

π̂ − α̃λ̂

α̃(1 − λ̂)

)1/(â−1)

. (7)

Empirical Bayes’ probability (EBP)
Expressing the estimated density in terms of its two
components leads immediately to the empirical Bayes’
interpretation introduced by Efronet al. (2001). For a
given p-value x , the estimated lower bound for the EBP
P̂lb(x) that x arises from the alternative hypothesis is
given by

P̂lb(x) = f̂ (x) − π̂ub

f̂ (x)
. (8)

The right-hand side of (8) is simply the proportion of the
distribution atx that lies above the horizontal line separat-
ing the null and alternative components. Significance can
be determined by comparing the empirical probability in
(8) with a preselected thresholdγ . In such a comparison,
the null hypothesis would be rejected whenP̂lb(x) ≥ γ .
In this case, the estimated thresholdτ̂ is

τ̂ (γ ) =
(

γ λ̂ + â(1 − λ̂)

â(1 − γ )(1 − λ̂)

)1/(â−1)

. (9)

AN EXAMPLE
Description of the experiment
The B-cell lymphoma/leukemia-10 (BCL10) protein,
which is aberrantly overexpressed in so-called mucosa-
associated lymphoid tissue (MALT) lymphomas, is
believed to contribute to the genesis of these hematopoi-
etic cancers by enhancing the proliferation and survival
of their normal cellular counterpart, the marginal zone
(MZ) B lymphocytes. The normal function of BCL10
is essential for the activation of the transcription factor
NF-κB upon the initiation of signaling in lymphocytes
through the B-cell receptor (BCR). The tumorigenic
effects of BCL10 may be mediated in part by the ability of
the overexpressed protein to inappropriately activate the
function of NF-κB, which in turn regulates the expression
of a number of genes that positively affect the growth of
MZ and other B cells (Zhanget al., 1999).

Microarray studies were performed to compare the
global gene expression pattern in MZ B lymphocytes
purified to homogeneity from transgenic FVB strain mice
engineered to overexpress BCL10 in their B cells and

Table 2. Confidence intervals

Quantity Estimate 95% CI 99.9% CI

a 0.367 (0.352, 0.382) (0.345, 0.389)
λ 0.173 (0.130, 0.214) (0.107, 0.235)
πub 0.476 (0.457, 0.496) (0.447, 0.506)
τ (α̃ = 0.05) 0.022 (0.016, 0.029) (0.014, 0.034)
FDRub(τ = 0.022) 0.050 (0.046, 0.054) (0.045, 0.056)
Plb(τ = 0.022) 0.868 (0.850, 0.885) (0.840, 0.893)
pA(τ = 0.022) 0.196 (0.189, 0.204) (0.185, 0.208)
pB (τ = 0.022) 0.327 (0.311, 0.344) (0.303, 0.353)
pC (τ = 0.022) 0.010 (0.009, 0.011) (0.009, 0.011)
pD(τ = 0.022) 0.466 (0.447, 0.485) (0.437, 0.495)

purified MZ B cells from wild-type FVB mice. Additional
array analyses were performed using RNAs prepared
from these two MZ B-cell populations following a brief
incubation of the cells with an anti-IgM antibody to cross-
link and, therefore, activate BCR signaling and NF-κB
activation.

A total of 29 expression measurements were made in
these microarray expression profiling studies: eight were
performed using the wild-type, non-anti-IgM-activated
MZ B-cells; 10 from the BCL10-overexpressing, non-anti-
IgM-activated MZ B cells; seven from the wild-type, anti-
IgM-activated MZ B cells; and four from the BCL10-
overexpressing, anti-IgM-activated MZ B cells. A primary
focus of the experiments was to determine the identity
of genes that were differentially expressed across the
four treatments by comparing all four cellular populations
simultaneously.

Analysis of the experiment
The genes were not filtered before conducting the follow-
ing analysis. A Kruskal–Wallis (1952) test comparing all
four groups was applied to the expression values for each
of 12 488 probes. For each test, ap-value was generated
by using theχ2 approximation, because the sample sizes
were large enough. For the resulting set ofp-values, the
BUM distribution MLEs areâ = 0.367 andλ̂ = 0.173,
which implies that up toπ̂ub = 0.476 of the probes’
expressions are not affected by the treatments. Figure 2
shows 90, 95, 99 and 99.9% confidence regions fora and
λ. Corresponding confidence intervals fora, λ, πub and
other estimated quantities discussed in this section are
given in Table 2.

The thresholdτ̂ = 0.022 was selected by using (6)
to ensure that the estimated false discovery rateα̃ is
less than 0.05. The threshold̂τ = 0.022 corresponds
to declaring significance for an EBP greater than 0.868.
By declaring significance for allp-values less than̂τ =
0.022, approximatelyp̂A(τ̂ ) = 0.196 of the tests result
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Fig. 2. Confidence regions forλ anda. The contours above represent
confidence regions fora and λ. Beginning with the innermost
contour and moving outward, the contours represent 90, 95, 99, and
99.9% confidence regions respectively. The point in the center is the
maximum likelihood estimate (λ̂, â).
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Fig. 3. Error regions. Significance was determined by comparing
p-values toτ = 0.022. The bottom left region corresponds to the
occurrence of false positives; the top left region corresponds to true
positives; the top right region corresponds to false negatives; and the
bottom right region corresponds to true negatives.

in true positives;p̂B(τ̂ ) = 0.327 of the tests result in
false negatives;̂pC (τ̂ ) = 0.010 of the tests result in false
positives; andp̂D(τ̂ ) = 0.466 of the tests result in true
negatives. The regions corresponding to the four outcomes
are illustrated in Figure 3.

Obviously, other values ofτ could have been selected.
Figure 4 illustrates how the selection ofτ would affect the
FDR, EBP, p̂(B) and p̂(C). Figure 5 illustrates the same
quantities for values ofτ less than 0.10. The analysis has
a very rich interpretation. For each probe, the analysis can
provide thep-value, the FDR (ifτ set to that probe’sp-
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Fig. 4. Various error control quantities. The triangles showpB(τ );
the circles showpC (τ ); the crosses show ˆFDRub(τ ); andthe ×’s
show P̂lb(τ ).
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Fig. 5. Various error control quantities. The same quantities as in
Figure 4 for smallτ .

value), the EBP, the quantitieŝpA, p̂B , p̂C , and p̂D, or any
other error-control quantity that can be derived from the
partition of the estimated density. In addition, confidence
intervals for the quantities are available.

The estimated BUM densitŷf (x) is an excellent ap-
proximation of the distribution of thep-values, as shown
by a quantile–quantile plot (Fig. 6) and by comparing the
estimated density to a histogram (Fig. 7). This indicates
that the assumption regarding the form of the distribution
of the p-values is a reasonable approximation.

Comments on the analysis
The estimate ofπ implies that at least 0.524 of the 12 488
genes’ expressions are affected by the treatments. This
may seem to be excessive, but this fraction includes
any gene that is evenslightly differentially expressed
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Expected p-value Under Estimated BUM Model
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Fig. 6. A quantile–quantile plot comparing the estimated BUM
distribution with the observed distribution.
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Fig. 7. A comparison of the fitted BUM model to the histogram.

in any one of the four treatments. The experimental
design is anticipated to strongly affect the expression of
NF-κB, which is known to have over 150 targets (Pahl,
1999). Included among these NF-κB target genes are
cytokines/chemokines, immunoreceptors, cell adhesion
molecules, acute phase proteins, stress response genes,
cell-surface receptors, regulators of apoptosis (pro-
grammed cell death), a number of growth factors, early
response genes, enzymes, cell-cycle control proteins, as
well as other transcription factors that possess a number of
their own unique target genes. The up- or down-regulation
of these genes by NF-κB leads in turn to alterations in
a huge number of additional genes that are involved in
multiple cell signaling pathways.

DISCUSSION
To use the proposed technique, first determine the best
statistical method to address the question, as if only one
gene or probe was being studied. Second, apply the chosen
method to the set of all genes (or probes) to obtain a set of
p-values. Third, use maximum likelihood to estimate the
distribution of p-values with a BUM distribution. Fourth,
express the estimated distribution as a mixture of a null
and uniform component. Finally, partition the estimated
distribution for the selected value ofτ , and compute the
error control quantities for eachp-value.

Because p-values can be produced by essentially
all existing statistical methods, the technique can be
applied to any experiment for which an appropriate
statistical method exists for testing the same question
for a single gene or probe. The technique has been
successfully applied top-values obtained from rank
correlation analysis, the Kruskal-Wallis test, and two-way
ANOVA. In all analyses conducted to date, the agreement
between the fitted model and the empirical distribution
has been excellent, very similar to that shown in the
example.

The technique addresses the multiple-testing issues by
producing estimates of the occurrence of each of the four
hypothesis-testing outcomes. Unlike existing methods,
which focus almost solely on the control of false positives,
the proposed technique allows one to focus on the control
of false negatives as well. Most techniques have focused
on controlling false positives, because the processes to
study a particular gene in greater detail are costly and time
consuming. Therefore, it is currently very undesirable to
study a false positive in greater detail. As the processes
for studying genes in greater detail improve, the cost of
a false positive relative to a false negative will decrease.
If and when these processes improve, the control of false
negatives may become as important as the control of false
positives.

One needs to carefully consider how to computep-
values in an appropriate fashion. In one analysis, the
technique was applied to a set ofp-values computed from
the F-distribution for two-way ANOVA. The assumptions
of two-way ANOVA were not met. As a consequence,
the resultingp-values were not well approximated by the
estimated BUM distribution. However, when permutation
wasused to compute thep-values, the proposed technique
worked very well. To date, the technique has worked very
well for all appropriately computed sets ofp-values to
which it has been applied. However, it is conceivable that
there will be a set of appropriately computedp-values that
will not be well represented by the BUM distribution. In
such a case, one could examine methods to estimate the
density nonparametrically. Any nonparametric technique
to estimate the distribution should appropriately address
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the endpoints atx = 0, which may have an asymptote,
andx = 1.

One-sided tests are likely to result in distributions ofp-
values that do not follow the BUM distribution, because
the p-values for the ‘untested’ alternative will concentrate
around x = 1. This will result in a distribution that
is U-shaped, and will not be well approximated by a
BUM density. To perform one-sided tests, first obtainp-
values using the corresponding two-sided test. After fitting
the BUM model to thep-values, addressing multiplicity,
and declaring significance, select only those probes with
test statistics corresponding to the alternative of interest.
Alternatively, one could consider using a more general
form of the beta distribution in the mixture to capture the
U-shape. In this case, the extracted uniform component
would correspond to the strict null hypothesis, the region
above the uniform component on the left side would
correspond to the alternative hypothesis of interest, and
the region above the uniform component on the right side
would correspond to the other alternative hypothesis.

This technique is similar to the one proposed by
Efron et al. (2001). However, the proposed method
will require substantially less computing time when a
method is available that can estimatep-values without
resorting to permutation techniques, as was the case in the
example. Even when permutation is required, the proposed
technique will require much less memory, because it
requires less memory to storep-values than to store
the entire permutation distribution of the test statistics.
Additionally, the local logistic regression step in Efron’s
technique is not required.

The proposed technique implicitly assumes that the
p-values for the gene are independently and identically
distributed according to the BUM model. This assump-
tion is made primarily for computational ease, but also
could imply that genes behave independently, which is
obviously untrue. Nevertheless, the model appears to
be a very useful and reasonable approximation for the
example data set, as shown in Figure 6. Future statistical
advances may allow the assumption of independence to
be relaxed. In the meantime, the validity of the assump-
tions can be assessed by utilizing the quantile–quantile
plot and by examining the correlations of genes to one
another, keeping in mind the inherent multiplicity in
examining those correlations. If correlation analysis or the
quantile–quantile plot suggests radical violation of these
assumptions, it is recommended that one explore other
techniques for analysis. The validity of all estimates will
depend upon how well the assumptions approximate real-
ity. No attempts have been made to date to experimentally
verify the obtained estimated error quantities obtained
by the proposed method. The proposed technique is
intended primarily to provide a reasonable estimate of
the occurrence of errors for use in screening genes to

find some candidates for further study. Genes that are
strongly correlated and affected by the treatment will still
likely show up as reasonable candidates for further study.
Additionally, absolutely no filtering should be applied
before utilizing the technique. If filtering is applied,
the error estimates will apply only to the set of genes
included when the technique is applied. The technique
will not provide any insight as to how many genes were
erroneously filtered prior to its application. The proposed
technique could itself serve as an informative method of
filtering.

The actual algorithm for finding confidence intervals
works in the following manner. For quantities that are
monotone in botha andλ, intervals are found by deter-
mining the extrema of the quantity along the boundary of
the confidence region given by (4). For other quantities,
conservative intervals are found by finding the extrema of
the quantity within the smallest rectangle that bounds the
confidence region described by (4).

It should be noted that Efronet al. (2001) define the
FDR differently from Benjamini and Hochberg (1995).
Efron et al. claim that the FDR is equal to 1− P̂(x).
Efron’s quantity should be considered a localized version
of the FDR introduced by Benjamini and Hochberg. The
estimate of the FDR proposed in (6) corresponds more
closely to the definition of Benjamini and Hochberg.
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