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ABSTRACT

Motivation: The occurrence of false positives and false
negatives in a microarray analysis could be easily esti-
mated if the distribution of p-values were approximated
and then expressed as a mixture of null and alternative
densities. Essentially any distribution of p-values can be
expressed as such a mixture by extracting a uniform den-
sity from it.

Results: A model is introduced that frequently describes
very accurately the distribution of a set of p-values
arising from an array analysis. The model is used to
obtain an estimated distribution that is easily expressed
as a mixture of null and alternative densities. Given a
threshold of significance, the estimated distribution is
partitioned into regions corresponding to the occurrences
of false positives, false negatives, true positives, and true
negatives.

Availability: An S-plus function library is available from
http://www.stjuderesearch.org/statistics.

Contact: stanley.pounds@stjude.org
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gene’s expression is unaffected by the selected treatments’
or ‘The gene’s expression is not correlated with another
relevant variable’) versus an alternative hypothesis (‘The
gene’s expression is affected by the selected treatments’
or ‘The gene’s expression is correlated with another
relevant variable’). Thousands of hypotheses are tested,
one hypothesis per gene, resulting in a very complex
multiple-testing problem. The multiple-testing problem
concerns the occurrence of erroneous conclusions among &
such a large set of hypothesis tests. Conclusions should
be based on a statistical method that adequately addresses
the multiple-testing problem by appropriately controlling
the probability of making errorenous conclusions.

Many methods that address the multiple-testing issue
compare the expressions of genes across two treatments
(Pan, 2002). As mentioned above, questions of interest
are not limited to the comparison of two treatments. A
more unified approach to the analysis of microarray data
is needed. In classical statistigsyalues have unified the
determination of significance for a wide variety of exper-
imental designs and hypotheses. In microarray studies, a
technique based upon the analysis of the sgh-ohlues
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INTRODUCTION
could unify the determination of significance across a wide

Microarray technology allows investigators to Sirnulta_variet of experimental designs and adequately address the
neously measure the expression of thousands of genes y b 9 q y

Use of microarray technology allows investigators to askmultlple—testlng ISSue.

questions such as “Which genes’ expressions are aﬁecteﬂNo IMPORTANT PROPERTIES

by selected treatments?” or “Which genes’ expressions are

correlated with another relevant variable?” These types ofwo fundamental properties provide the basis of the

questions comprise a series of questions that are applied g@alyss of a large set gi-values. Firstp-values arising
|

‘ : the null hypothesis are distributed uniformly on the
each gene. For each gene, one could ask ‘Is the expressi m
of this gene affected by selected treatments?’ or ‘Is thd!! erval (0.1) (Casella and Berger, 1990). Second, the

expression of this gene correlated with another reIevang'StribUtion of the set ofp-values can be expressed as
P i 9 L mixture consisting of a unifor®, 1) component and
variable?’ For each gene, the question is termed as

statistical hypothesis test placing a null hypothesis (‘Thegmther component.

THEOREM1. Let X be any continuous random vari-
able with a probability density function (pdf) f(x) such

*To whom correspondence should be addressed.
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Microarray studies

that f(x) > Oonlyif0<x <1.Then f(xX) =7+ (1—  microarray experiments in practice. The distribution in (2)
) fi(x) where0 < 7 < min(f(x)) < 1and fi(x) isa  will be referred to as the BUM distribution or the BUM
well-defined pdf. density because the distribution is a mixture of a special

case of the beta distributiob & 1) and the uniforn, 1)
PrRoOOF Clearly, fol f(x)dx = 1 becausef (x) is a pdf  distribution.
such thatf(x) > Oonly if 0 < x < 1. By the mean-
value theorem (Anton, 1992), miri(x)) < 1. Now let Parameter estimation
0 <7 < min(f(x)). Note that Given a set ofp-valuesx = Xp, ...Xn, One can calculate
MLEs for the parameters of the BUM distribution. First,
FO)=m+ 1) -7 f(x|a,») should be expressed in terms of the new
fxX)—m (1) parameters/ = logit(a), and¢ = logit(1). Second, use
1-7 numerical optimization techniques to find and ¢, the

Lot f 9= Opviously f 0 and values ofy and¢ that maximize the log of the likelihood
= > ~

? 100 - viously %(X) = én (¥, pI1X) = Y log(f(x|a, A). Finally, leta = —=P¥_

fo fi(x)dx = 1, implying that f1(x) is a well-defined 1+exp(y)

pdf.

O andi = -2P9_ The invariance property of the MLE
1+exp(¢)

A p-value is a random variable that satisfies the€nsures thatthe estimat@snd} are the MLEs for and
conditions of Theorem 1 becaugevalues represent a * (Casella and Berger, 1990).
null hypothesis based probability and, therefore, must fal
in the interval[0, 1]. The two properties imply that the N N
distribution of a set ofp-values can be expressed as aThe estimated densitf/(x) = f(x|a, ») can be expressed
mixture of two components: one arising from the nullas a mixture, as in (1). Note that in Theorem 7,
hypothesis and one arising from the alternative hypothesignust be less than or equal to the minimum bfx).
The null component is the uniform density extracted adJnfortunately, the proportion that actually arises from
7 in (1). The alternative component is the remainderthe null hypothesis cannot be estimated. However, the
of the overall distribution expressed és— 7) f1(x) in  logical upper bound of can be estimated by using
Theorem 1. However, the distribution pfvalues must be ) )
approximated before it can be expressed as a mixture of up = A+ (L—A)a. (3)
null and alternative components.

=7+ Q-n)

IExprng the distribution asa mixture

The maximum proportion of the set of thevalues that
THE STATISTICAL MODEL could arise from the null hypothesissgy. The remaining

. . T 1 — 7yp portion of the set ofp-values cannot arise from
Thebeta-uniform mixture (BUM) distribution the null hypothesis; thus it must arise from the alternative

The pdf hypothesis. The alternative component is described by
f(xla,2) =21+ (1—naxdt @) fx) = (f(X)—Au)/(1—#up). Finally, f(x) is expressed
for0 < x < 1,0 < A < 1,and 0 < a < 1 asamixture of anullcomponent (the uniform density) and
provides a reasonable model for the distributionpef an alternative component{(x)). When the distribution
values arising from a microarray experiment. The pdfof p-values is expressed in this manner, the occurrence of
f(x|a,A) is a curve that asymptotes at = 0 and errors in hypothesis testing can be estimated.
monotonically decreases to its minimum bf+ (1 — i ) i
»aatx = 1. This curve approximates the anticipated Confidenceregionsand intervals
distribution of the p-values arising from a microarray Clearly the quantitiesi, A, and 7y, are sample based
experiment. Under the null hypothesis, tipevalues will  estimates that are subject to variation. Therefore, it is
have a uniform density corresponding to a flat horizontaimportant to characterize the uncertainty in the estimation
line. Under the alternative hypothesis, tpevalues will  of a and A with a joint confidence region. In microarray
have a distribution that has high density for smmitalues  studiesA and will be based upon thousands pivalues.

and the density will decrease as thvalues increase. The |n such situations, a & « confidence region foa andx
overall distribution will be a mixture ofp-values arising s given by all values of* andi* such that

from the two hypotheses and will have a shape similar to

the pdf defined in (2). As shown below, the distribution 2(1(&, A|x) — 1(@*, A*|x)) < X22 1w (4
obtained by maximum likelihood estimation (MLE) of ’

the parameters provides an excellent approximation tavhere the function represents the log likelihood and
the observed distribution of th@-values arising from X22,l—oz is the 1— « quantile of the chi-square distribution
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Table 1. Outcomes of a hypothesis test

Declare significance  Fail to declare significance

False null hypothesis True Positive (A) False Negative (B) 3
True null hypothesis False Positive (C) True Negative (D)

Density

with two degrees of freedom (Casella and Berger, 1990).
The confidence region f@ andx can be transformed into Tl ale
a onfidence interval forry,. The 1—o confidence interval

for myp is given by the range ot} = A* + (1 — A")a* 0
for all a* andA* within the confidence region defined by 00 02 04 06 08 10

(4). Confidence intervals for other quantities (such as the prvalue

error quantities mentioned in what follows) based on the

estimates ofa and A can be constructed by finding the Fig. 1. Graphical illustration of error-control quantities. Region A

range of the quantity for values @ and A within the corresponds to the occurrence of true positives because it lies above
confidence region the horizontal line (the alternative component) and to the left of

the vertical line (declared significant). Region B corresponds to the

occurrence of false negatives because it lies above the horizontal
ESTIMATING THE OCCURRENCE OF ERRORS line (the null component) and to the right of the vertical line (not

Four hypothesistesting outcomes declared significant). Region C corresponds to the occurrence of

A hypothesis test is an attempt to use available informatiof@/Se pos“i"es (?fc?#s? f': "feti belo‘t’Y ”I‘T’_ hor(iforl‘ta' O'Ii”‘? (t_';e ”Lt‘”
to infer whether the null hypothesis is false. A hypothesis‘éom_ponen ) and to the left of the vertical line (declared significant).
egion D corresponds to the occurrence of true negatives because it

t.eSt can reach one of wo de_C|5|0n_s:_t0 deCI.are Slgnlflt_:ancltlaes below the horizontal line (the null component) and to the right
(i.e. to conclude that there is sufficient evidence to infer

s . of the vertical line (declared significant).
that the null hypothesis is false) or to fail to declare
significance (i.e. to conclude that there is insufficient ) ) )
evidence to infer that the null hypothesis is false). Becaus80rizontal liney = is the alternative component
the null hypothesis is either true or false, a hypothesi®f the distribution: the portion of the distribution qf-
test can have four possible outcomes: (A) declaringralues arising from the alternative hypothesis. The region
significance when the null hypothesis is false, also know€low the horizontal line is the null component of the
as a true positive; (B) failing to declare significance wherdistribution: th_e Pportion corresponding to t_he distribution
the null hypothesis is false, also known as a false negativef P-values arising from the null hypothesis. The area of
or a Type Il error; (C) declaring significance when the null€ach region is an estimate of the proportion of hypothesis
hypothesis is true, also known as a false positive or a TypteSts resulting in the corresponding outcome. The areas of
| error; and (D) failing to declare significance when thethe regions A, B, C and D in Figure 1 are computed by
null hypothesis is true, also known as a true negative. The R A A
four possible outcomes are illustrated in Table 1. Pa(r) = F(T)A_ TubTs ®)
Pe(r) =1—F(r) — (1 — 7)7tup,
pc(t) = Awpt, and

Partitioning the estimated density

Whenp-values are used in hypothesis testing, significance . .

is determined on the basis of the comparison of phe Po () = (1 — 7)7Tub,
value to a threshold. Significance is declared when the
p-value is less tharr. Failure to declare significance
occurs when thep-value is greater than. Oncet is  Thefalsediscovery rate (FDR)

selected, the estimated densifyx) can be partitioned /5 jo,5 error control guantities of interest can be esti-

into four r_egion_s, and each reg_ion corresponds to a uni_qul%ated by using (5). For example, an estimated upper
hypothesis testing outcome (Fig. 1). There are two straighfi,nq of the FDR (the proportion of tests declared signif-

lines that form. the partition: the vertical line .axt = icantthat are false positives) introduced by Benjamini and
7 and the horizontal line ay = n. The region to Hochberg (1995) is given by

the left of the vertical line corresponds to thpevalues
declared significant and the region to the right corresponds A Pc ()
to p-values declared insignificant. The region above the FDRub(7) = PA(T) + Pc(T) (6)

respectively, wher& (t) = it + (1 — A)72.
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Microarray studies

becausec (r) estimates the proportion of all tests result- Table 2. Confidence intervals

ing in false positives, anghc(t) + pa(r) estimates the

proportion of all tests declared significant. The thresholcbuamtity

- Estimate 95% ClI 99.9% ClI
7 could then be selected to ensure thBXR,,(7) < & for

some prespecified. Selecting the threshold in this man- a 0.367  (0.352,0.382) (0.345, 0.389)

ner yields ) 0.173  (0.130,0.214) (0.107, 0.235)

Tub 0.476  (0.457,0.496) (0.447,0.506)

LA\ 1/@a-1 (@ = 0.05) 0.022  (0.016,0.029) (0.014, 0.034)

2@ = T —aA ) FDRyp(r =0.022)  0.050  (0.046,0.054) (0.045, 0.056)

- a(1—5) : Pip(t = 0.022) 0.868  (0.850,0.885) (0.840, 0.893)

pa(z = 0.022 0.196  (0.189,0.204) (0.185, 0.208)

. , . pe(r = 0.022 0.327  (0.311,0.344) (0.303, 0.353)

Empirical Bayes' probability (EBP) pc(r = 0.022) 0010  (0.009,0.011) (0.009,0.011)

Expressing the estimated density in terms of its twopp(r =0.022 0.466  (0.447,0.485) (0.437,0.495)

components leads immediately to the empirical Bayes’
interpretation introduced by Efrogt al. (2001). For a
given p-value x, the estimated lower bound for the EBP

Fu(x) that x arises from the alternative hypothesis is purified MZ B cells from wild-type FVB mice. Additional

array analyses were performed using RNAs prepared

given by £00) — £ from these two MZ B-cell populations following a brief
Rp(X) = M (8) incubation of the cells with an anti-IgM antibody to cross-
f(x) link and, therefore, activate BCR signaling and NB-

The right-hand side of (8) is simply the proportion of the activation. . .
distribution atx that lies above the horizontal line separat- A tota! of 29 expression measurements were made in
ing the null and alternative components. Significance ca#hese microarray expression profiling studies: eight were
be determined by comparing the empirical probability inPerformed using the wild-type, non-anti-lgM-activated
(8) with a preselected threshojd In such a comparison, MZ B-cells; 10 from the BCL10-overexpressing, non-anti-
the null hypothesis would be rejected whBia(x) > . IgM-act!vated MZ B cells; seven from the wild-type, anti-
In this case, the estimated threshélib IgM-activated MZ B cells; and four from the BCL10-

overexpressing, anti-lgM-activated MZ B cells. A primary
.~ A~ \ l/@-y
R yA+aldl—2a)
t(y) = <— - C)

of genes that were differentially expressed across the
four treatments by comparing all four cellular populations
simultaneously.

focus of the experiments was to determine the identity
al-y)a-7

AN EXAMPLE
Description of the experiment Analysis of the experiment

The B-cell lymphoma/leukemia-10 (BCL10) protein, The genes were not filtered before conducting the follow-
which is aberrantly overexpressed in so-called mucosdld analysis. A Kruskal-Wallis (1952) test comparing all
associated lymphoid tissue (MALT) lymphomas, is four groups was applied to the expression values for each
believed to contribute to the genesis of these hematopoff 12488 probes. For each testpavalue was generated
etic cancers by enhancing the proliferation and survivaPy using thex? approximation, because the sample sizes
of their normal cellular counterpart, the marginal zonewere large enough. For the resulting setpbalues, the
(MZ) B lymphocytes. The normal function of BCL10 BUM distribution MLEs areéd = 0.367 andi = 0.173,
is essential for the activation of the transcription factorwhich implies that up tatys, = 0.476 of the probes’
NF-«B upon the initiation of signaling in lymphocytes expressions are not affected by the treatments. Figure 2
through the B-cell receptor (BCR). The tumorigenic shows 90, 95, 99 and 99.9% confidence regionsifand
effects of BCL10 may be mediated in part by the ability of A. Corresponding confidence intervals far x, wy, and
the overexpressed protein to inappropriately activate thether estimated quantities discussed in this section are
function of NF« B, which in turn regulates the expression given in Table 2.
of a number of genes that positively affect the growth of The thresholdt = 0.022 was selected by using (6)
MZ and other B cells (Zhangt al., 1999). to ensure that the estimated false discovery iatés
Microarray studies were performed to compare thdess than @5. The thresholdd = 0.022 corresponds
global gene expression pattern in MZ B lymphocytesto declaring significance for an EBP greater than 0.868.
purified to homogeneity from transgenic FVB strain miceBy declaring significance for alp-values less thad =
engineered to overexpress BCL10 in their B cells and).022, approximatelypa(?) = 0.196 of the tests result
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p-value

Fig. 3. Error regions. Significance was determined by comparing

p-values tor = 0.022. '_I'_he bottom left regio_n corresponds to the value), the EBP, the quantitigia, Pg, Pc, andpp, or any
occurrence of false positives; the top left region corresponds 1o rug o o rror-control quantity that can be derived from the
positives; the top right region corresponds to false negatives; and the_ ... . . .. .
bottom right region corresponds to true negatives. partition of the estlma_t(_-:‘d denS|ty._In addition, confidence
intervals for the quantities are available.

The estimated BUM density (x) is an excellent ap-
in true positives;pg(f) = 0.327 of the tests result in proximation of the distribution of th@-values, as shown
false negativesfc () = 0.010 of the tests result in false by a quantile—quantile plot (Fig. 6) and by comparing the
positives; andpp(7) = 0.466 of the tests result in true estimated density to a histogram (Fig. 7). This indicates
negatives. The regions corresponding to the four outcomebat the assumption regarding the form of the distribution
are illustrated in Figure 3. of the p-values is a reasonable approximation.

Obviously, other values of could have been selected. .
Figure 4 illustrates how the selectionofvould affectthe Commentson theanalysis
FDR, EBP,p(B) and p(C). Figure 5 illustrates the same The estimate ofr implies that at least 0.524 of the 12488
quantities for values of less than 0.10. The analysis has genes’ expressions are affected by the treatments. This
a \ery rich interpretation. For each probe, the analysis camay seem to be excessive, but this fraction includes
provide thep-value, the FDR (ifr set to that probe’'p-  any gene that is everslightly differentially expressed
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Microarray studies

10 DISCUSSION
To use the proposed technique, first determine the best
08 statistical method to address the question, as if only one

gene or probe was being studied. Second, apply the chosen
method to the set of all genes (or probes) to obtain a set of
p-values. Third, use maximum likelihood to estimate the
distribution of p-values with a BUM distribution. Fourth,
express the estimated distribution as a mixture of a null
and uniform component. Finally, partition the estimated

o
o
!

Observed p-value
o
IS
1

027 distribution for the selected value ef and compute the
error control quantities for eagbrvalue.
00 1 Because p-values can be produced by essentially
00 02 04 0 08 o all existing statistical methods, the technique can be
Expected p-value Under Estimated BUM Model applied to any experiment for which an appropriate

statistical method exists for testing the same question
Fjg. .6. A qugntile—quantile plqt qomparing the estimated BUM g, 4 single gene or probe. The technique has been
distribution with the observed distribution. successfully applied top-values obtained from rank

correlation analysis, the Kruskal-Wallis test, and two-way

ANOVA. In all analyses conducted to date, the agreement

6] between the fitted model and the empirical distribution
has been excellent, very similar to that shown in the
51 example.

The technique addresses the multiple-testing issues by
producing estimates of the occurrence of each of the four
hypothesis-testing outcomes. Unlike existing methods,
which focus almost solely on the control of false positives,
the proposed technique allows one to focus on the control
of false negatives as well. Most techniques have focused
on controlling false positives, because the processes to
study a particular gene in greater detail are costly and time

(T T | consuming. Therefore, it is currently very undesirable to
study a false positive in greater detail. As the processes
0.0 02 04 06 08 e for studying genes in greater detail improve, the cost of
pvalue a false positive relative to a false negative will decrease.

If and when these processes improve, the control of false
negatives may become as important as the control of false
positives.

One needs to carefully consider how to compuyte
) ) values in an appropriate fashion. In one analysis, the
in any one of the four treatments. The experimentaleqpnique was applied to a setpivalues computed from
design is anticipated to strongly affect the expression of,q F_gistribution for two-way ANOVA. The assumptions
NF-«B, which is known to have over 150 targets (Pahl, ¢ two-way ANOVA were not met. As a conseguence,
1999). Included among these NfB target genes are the resultingp-values were not well approximated by the
cytokines/chemokines, immunoreceptors, cell adhesiogstimated BUM distribution. However, when permutation
molecules, acute phase proteins, stress response genggsused to compute thg-values, the proposed technique
cell-surface receptors, regulators of apoptosis (proworked very well. To date, the technique has worked very
grammed cell death), a number of growth factors, earlyyell for all appropriately computed sets @kvalues to
response genes, enzymes, cell-cycle control proteins, &ghich it has been applied. However, it is conceivable that
well as other transcription factors that possess a number @fiere will be a set of appropriately computpdialues that
their own unique target genes. The up- or down-regulationvill not be well represented by the BUM distribution. In
of these genes by NEB leads in turn to alterations in such a case, one could examine methods to estimate the
a huge number of additional genes that are involved irdensity nonparametrically. Any nonparametric technique
multiple cell signaling pathways. to estimate the distribution should appropriately address

Density
w
1

Fig. 7. A comparison of the fitted BUM model to the histogram.
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the endpoints ak = 0, which may have an asymptote, find some candidates for further study. Genes that are
andx = 1. strongly correlated and affected by the treatment will still
One-sided tests are likely to result in distributionspef  likely show up as reasonable candidates for further study.
vaues that do not follow the BUM distribution, because Additionally, absolutely no filtering should be applied
the p-values for the ‘untested’ alternative will concentrate before utilizing the technique. If filtering is applied,
aroundx = 1. This will result in a distribution that the error estimates will apply only to the set of genes
is U-shaped, and will not be well approximated by aincluded when the technique is applied. The technique
BUM density. To perform one-sided tests, first obtpin  will not provide any insight as to how many genes were
values using the corresponding two-sided test. After fittingerroneously filtered prior to its application. The proposed
the BUM model to thep-values, addressing multiplicity, technique could itself serve as an informative method of
and declaring significance, select only those probes witfiltering.
test statistics corresponding to the alternative of interest. The actual algorithm for finding confidence intervals
Alternatively, one could consider using a more generaivorks in the following manner. For quantities that are
form of the beta distribution in the mixture to capture themonotone in botka and 1, intervals are found by deter-
U-shape. In this case, the extracted uniform componermnining the extrema of the quantity along the boundary of
would correspond to the strict null hypothesis, the regiorthe confidence region given by (4). For other quantities,
above the uniform component on the left side wouldconservative intervals are found by finding the extrema of
correspond to the alternative hypothesis of interest, anthe quantity within the smallest rectangle that bounds the
the region above the uniform component on the right sideonfidence region described by (4).
would correspond to the other alternative hypothesis. It should be noted that Efroet al. (2001) define the
This technique is similar to the one proposed byFDR differently from Benjamini and Hochberg (1995).
Efron et al. (2001). However, the proposed method Efron et al. claim that the FDR is equal to + P(x).
will require substantially less computing time when aEfron’s quantity should be considered a localized version
method is available that can estimgtevalues without of the FDR introduced by Benjamini and Hochberg. The
resorting to permutation techniques, as was the case in tlestimate of the FDR proposed in (6) corresponds more
example. Even when permutation is required, the proposedlosely to the definition of Benjamini and Hochberg.
technique will require much less memory, because it
requires less memory to s_torp_rvalues than to store. A ck NOWLEDGEMENTS
the entire permutation distribution of the test statistics. ) o i
Additionally, the local logistic regression step in Efron’s 1€ authors wish to thank Xiaoli Cui, Cheng Cheng,
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