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Abstract. Concept classes can canonically be represented by matrices with entries 1 and −1. We use the
singular value decomposition of this matrix to determine the optimal margins of embeddings of the concept
classes of singletons and of half intervals in homogeneous Euclidean half spaces. For these concept classes the
singular value decomposition can be used to construct optimal embeddings and also to prove the corresponding
best possible upper bounds on the margin. We show that the optimal margin for embedding n singletons is n

3n−4
and that the optimal margin for half intervals over {1, . . . , n} is π

2 ln n + �( 1
(ln n)2 ). For the upper bounds on the

margins we generalize a bound by Forster (2001). We also determine the optimal margin of some concept classes
defined by circulant matrices up to a small constant factor, and we discuss the concept classes of monomials to
point out limitations of our approach.
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1. Introduction

Recently there has been a lot of interest in maximal margin classifiers. Learning algorithms
that calculate the hyperplane with the largest margin on a sample and use this hyperplane
to classify new instances have shown excellent empirical performance (see Cristianini &
Shawe-Taylor, 2000). Often the instances are mapped (implicitly when a kernel function is
used) to some possibly high dimensional space before the hyperplane with maximal margin
is calculated. If the norms of the instances are bounded and a hyperplane with large margin
can be found, a bound on the VC-dimension can be applied (Vapnik, 1998; Cristianini &
Shawe-Taylor, Theorem 4.16). A small VC-dimension means that a concept class can be
learned with a small sample (Vapnik & Chervonenkis, 1971; Blumer et al., 1989; Kearns &
Vazirani, 1994, Theorem 3.3). The success of maximal margin classifiers raises the question
which concept classes can be embedded in half spaces with a large margin.

Another motivation for studying the margins of embeddings of concept classes is dis-
cussed in Forster et al. (2001). There a close connection between margins and the bounded
error model of probabilistic communication complexity is shown.

What do we mean by an embedding of a concept class in half spaces? Let C be a concept
class over an instance space X . A k-dimensional Euclidean half space consists of the points
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p ∈ R
k that lie on one side of some k-dimensional hyperplane. A collection of k-dimensional

half spaces is called an embedding of the concept class C if for all instances x ∈ X there
are points px in the unit ball of R

k such that for each concept c ∈ C there is a half space Hc

in the collection such that for all instances x ∈ X the point px lies in the half space Hc if
and only if x ∈ c. The minimum of the distances of the points px to the boundaries of the
half spaces is called the margin γ of the embedding.

For technical reasons we will only consider homogeneous half spaces in this paper, i.e.
half spaces whose boundaries contain the null vector. Note that it is not really a restriction
to assume that the half spaces are homogeneous: There is a standard way to transform an
embedding with inhomogeneous half spaces into an embedding with homogeneous half
spaces that has at least half the old margin.

For every concept class there is a trivial embedding into half spaces. Ben-David, Eiron,
and Simon (2001) show that most concept classes cannot be embedded with a margin that
is much larger than the margin of this trivial embedding. They use counting arguments that
do not give upper bounds on the margins of particular concept classes. Vapnik (1998) also
showed an upper bound on the margin in terms of the VC-dimension. A stronger result
was shown by Forster (2001): First note that a concept class C over an instance space X
can be represented by any matrix M ∈ R

X×C for which the entry Mxc is positive if x ∈ c
and is negative otherwise. An embedding of such a matrix in homogeneous half spaces is
defined analogously to an embedding of a concept class (we require that px ∈ Hc if and
only if Mxc > 0). Forster showed that a matrix M ∈ {−1, 1}X×C can only be embedded in
homogeneous half spaces with margin at most

γ ≤ ‖M‖√|X | |C| , (1)

where ‖M‖ denotes the operator norm of M .
In this paper we give a straightforward generalization of Forster’s result to the case

where the entries of the matrix M can be arbitrary real numbers. We introduce a new tool
from functional analysis, the singular value decomposition, to estimate the optimal margins
of concept classes. The singular value decomposition can not only be used to construct
embeddings, but also to show upper bounds on the margins of all embeddings. We show
that for two types of concept classes, namely singletons and half intervals, our techniques
can be used to calculate the best possible margins exactly. For some concept classes that
lie between singletons and half intervals our bounds are tight up to a small constant factor.
However, we also show that our singular value decomposition techniques fail for concept
classes of monomials.

The paper is organized as follows: In Section 2 we fix some notation for the rest of the
paper. In Section 3 we show that a matrix M ∈ R

X×Y can only be embedded in homogeneous
half spaces with margin at most

‖M‖√|X |√∑
y∈Y

( ∑
x∈X |Mxy |

)2
.
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Next we show in Section 4 how the singular value decomposition can be used to apply
the upper bound from Section 3. In Sections 5 and 6 we use the results from the previous
sections to calculate the optimal margins for the concept classes of singletons and of half
intervals. In Section 7 we study a family of concept classes that generalizes singletons and
half intervals. Finally, we discuss the concept class of monomials in Section 8.

2. Notation and preliminaries

For a finite set X , R
X is the vector space of real functions (“vectors”) on X , and C

X is
the space of complex valued functions on X . The Euclidean norm of a vector u ∈ C

X is
‖u‖2 := √∑

x∈X |ux |2, the supremum norm is ‖u‖∞ := maxx∈X |ux |. As usual we write
R

n = R
{1,...,n} and C

n = C
{1,...,n}. The vectors u ∈ C

X are column vectors. For two finite
sets X, Y we write C

X×Y for the set of complex matrices with rows indexed by the elements
of X and columns indexed by the elements of Y . The transpose of a matrix A ∈ C

X×Y is
denoted by A� ∈ C

Y×X and the complex conjugate transpose by A∗ ∈ C
Y×X . We define

ex ∈ C
X , x ∈ X , to be the canonical base of C

X for which

(ex )y =
{

1, x = y,

0, x �= y,

for x, y ∈ X . For a complex vector u ∈ C
X , ū is the complex conjugate and u∗ is the complex

conjugate transpose of u. IX is the identity matrix. A nonsingular matrix A ∈ R
X×X is called

orthogonal if A−1 = A�.
We use the following formal definition of the margin γ of an embedding of a matrix in

homogeneous half spaces in the rest of the paper:

Definition 2.1. For finite sets X , Y we say that a matrix M ∈ R
X×Y can be embedded in

homogeneous half spaces with margin γ if there are vectors ux , x ∈ X , and vy , y ∈ Y , that
lie in the unit ball of some R

k (where k can be arbitrarily large) such that Mxy and 〈ux , vy〉
have the same sign and |〈ux , vy〉| ≥ γ for all x ∈ X , y ∈ Y .

A vector vy can be interpreted as a normal vector of the boundary of the homogeneous
half space {z ∈ R

k | 〈vy, z〉 ≥ 0}. Then 〈ux , vy〉 > 0 means that the vector ux lies in
the interior of this half space. The sign of Mxy determines whether ux must lie in the half
space or not. The requirement |〈ux , vy〉| ≥ γ means that the point ux has distance at least γ

from the boundary of the half space. Analogously we can interpret the vectors ux as normal
vectors of half spaces and the vectors vy as points.

It is crucial that we require the vectors to lie in a unit ball (or that they are bounded)
because otherwise we could increase the margin by simply stretching all vectors.

For every matrix M ∈ R
X×Y there exists an optimal embedding: We can assume without

loss of generality that the vectors of any embedding lie in the unit ball of R
X . (Because the

linear span of the vectors ux has dimension at most |X | and we can project the vectors vy

to this span without changing the scalar products 〈ux , vy〉.) The margin of the embedding
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is continuous in the vectors ux , vy , and the unit ball of R
X is compact. Thus the maximal

margin is attained.
Ben-David, Eiron, and Simon (2001) observed that a matrix M ∈ {−1, +1}X×Y can

always be represented by an arrangement of homogeneous half spaces with margin

γ = 1√
min(|X |, |Y |) . (2)

For the case |X | ≤ |Y | this trivial arrangement consists of canonical unit vectors and
of normalized columns of M : For x ∈ X , we define ux to be the vector ex from the
canonical base of R

X , and we set vy := |X |− 1
2 (Mxy)x∈X ∈ R

X for y ∈ Y . This leads to
an arrangement of homogeneous half spaces representing M with margin |X |− 1

2 (because
‖ux‖2 = ‖vy‖2 = 1, sign〈ux , vy〉 = Mxy and |〈ux , vy〉| = |X |− 1

2 for all x ∈ X , y ∈ Y ).
In the upper bound (1) on the margin of matrices M with entries ±1 the operator norm

of M appears. The operator norm of an arbitrary matrix A ∈ R
X×Y is

‖A‖ = sup
u∈R

Y

‖u‖≤1

‖Au‖ = max
u∈R

Y

‖u‖≤1

‖Au‖.

The supremum is attained because ‖Au‖ is a continuous function of u ∈ R
X and the unit

ball {u ∈ R
X | ‖u‖ ≤ 1} is compact. It is well known that ‖A‖2 = ‖A� A‖ = ‖AA�‖ for

any matrix A ∈ R
X×Y , and it is not hard to see that for every matrix M ∈ {−1, 1}X×Y :

max(
√

|X |,
√

|Y |) ≤ ‖M‖ ≤
√

|X | |Y |

(see for example Krause, 1996, Lemma 1.1.) The equality ‖M‖ = √|Y | holds if and only
if the rows of M are orthogonal, ‖M‖ = √|X | holds if and only if the columns of M
are orthogonal, and ‖M‖ = √|X | |Y | holds if and only if rank(M) = 1. The Hadamard
matrices Hn ∈ R

2n×2n
are examples of matrices with orthogonal rows and columns. They

are recursively defined by

H0 = 1, Hn+1 =
(

Hn Hn

Hn −Hn

)
.

From the upper bound (1) on the margin (with C = Y ) it follows easily that for matrices
M ∈ {−1, 1}X×Y with orthogonal rows or orthogonal columns the trivial embedding has
the optimal margin

γ = 1√
min(|X |, |Y |) . (3)
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The signum function sign: R → R is given by

sign(x) =




1, x > 0,

0, x = 0,

−1, x < 0.

3. An upper bound on the margins of embeddings

It was previously known that the margin of any embedding of a matrix M ∈ {−1, 1}X×Y in
homogeneous Euclidean half spaces is at most ‖M‖√|X ||Y | (see Forster, 2001, Theorem 3). In
the following theorem we prove a straightforward generalization of this result to matrices
M ∈ R

X×Y with arbitrary entries. This improved result is needed in the following sections
to show new optimal bounds on the margin in some cases.

Theorem 3.1. Let M ∈ R
X×Y be a matrix. Any embedding (in the sense described in

Section 1) of M in homogeneous Euclidean half spaces has margin γ at most

γ ≤
√|X | ‖M‖√∑

y∈Y

(∑
x∈X |Mxy |

)2
.

Proof: Let an embedding ux , vy of M with margin γ be given. For every y ∈ Y we have
that

γ
∑
x∈X

|Mxy | ≤
∑
x∈X

Mxy〈ux , vy〉 =
〈∑

x∈X

Mxyux , vy

〉
‖vy‖≤1

≤
∥∥∥∥∥ ∑

x∈X

Mxyux

∥∥∥∥∥, (4)

where we used the Cauchy-Schwartz Inequality. We square the above inequality and sum
over y ∈ Y :

γ 2
∑
y∈Y

( ∑
x∈X

|Mxy |
)2

(4)≤
∑
y∈Y

〈∑
x∈X

Mxyux ,
∑
x̃∈X

Mx̃ yux̃

〉

=
∑

x,x̃∈X

(MM�)x x̃ 〈ux , ux̃ 〉
(∗)≤

∑
x,x̃∈X

(‖M‖2 IX )x x̃ 〈ux , ux̃ 〉

= ‖M‖2
∑
x∈X

‖ux‖2 ≤ |X | ‖M‖2.

Here inequality (∗) holds because A := ‖M‖2 IX − MM� and B := (〈ux , ux̃ 〉)x,x̃∈X are
positive semi-definite, thus

∑
x,x̃∈X Axx̃ Bx x̃ ≥ 0 because of Fejer’s Theorem (see Horn &

Johnson, 1985, Corollary 7.5.4).

If we apply Theorem 3.1 to a matrix M ∈ {−1, 1}X×Y with entries −1 and 1 we get the
upper bound ‖M‖√|X | |Y | from Forster (2001), Theorem 3. For an arbitrary matrix M ∈ R

X×Y
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we also get the upper bound

γ ≤
√|Y | ‖M‖√∑

x∈X

( ∑
y∈Y |Mxy |

)2

on the margin γ if we apply Theorem 3.1 to M�.

4. The singular value decomposition

The problem of embedding a matrix M ∈ R
X×Y in Euclidean half spaces with a large margin

can be stated as follows: We are looking for two matrices B, C with rows of norm 1 such
that the signs of the entries of BC� are equal to the signs of the entries of M , and such that
the smallest absolute value of the entries of BC� is as large as possible.

One possibility of writing M as a product of matrices is the singular value decomposition
of M : Let r be the rank of M . Then there always exist matrices U ∈ R

X×r and V ∈ R
Y×r

with orthonormal columns and nonnegative numbers s1, . . . , sr , called the singular values
of M , such that M = Udiag(s1, . . . , sr )V � (see Horn & Johnson, 1985). Obviously the
matrices

B = Udiag(
√

s1, . . . ,
√

sr ), C = V diag(
√

s1, . . . ,
√

sr )

satisfy M = BC�. If we normalize the rows of B and C we get an embedding of M .
Surprisingly, we can show that for the concept classes of singletons and of half intervals
this embedding has the best possible margin. For both of these concept classes we can
also use the singular value decomposition to show the optimal upper bound on the margin:
We can simply apply Theorem 3.1 to the matrix UV�. Trying this matrix can be a good
idea because it is orthogonal, which means that all its singular values are equal, they are
“optimally balanced”. Of course we have to check that the entries of UV� have correct
signs, since this is not true for all matrices M .

Theorem 4.1. Let M ∈ {−1, 1}X×Y be a matrix with singular value decomposition
Udiag(s1, . . . , sr )V �. Let û, v̂ be the vectors whose entries are the squared Euclidean
norms of the rows of the two matrices Udiag(

√
s1, . . . ,

√
sr ) and V diag(

√
s1, . . . ,

√
sr ), i.e.

û :=
(

r∑
j=1

s jU
2
x j

)
x∈X

∈ R
X , v̂ :=

(
r∑

j=1

s j V
2
y j

)
y∈Y

∈ R
Y .

Then the embedding

ux := 1√
ûx

(
√

s jUx j ) j=1,...,r ∈ R
r , x ∈ X, (5)

vy := 1√
v̂y

(
√

s j Vyj ) j=1,...,r ∈ R
r , y ∈ Y, (6)



MARGINS OF EMBEDDING IN HALF SPACES 269

of the matrix M has margin γ

γ = 1√‖û‖∞‖v̂‖∞
≤

√|X | |Y |∑r
j=1 s j

. (7)

If the entries of M and of UV� have the same signs, then every embedding of M in
homogeneous Euclidean half spaces has margin γ at most

γ ≤ min

(√|X |
‖v̂‖2

,

√|Y |
‖û‖2

)
≤

√|X ||Y |∑r
j=1 s j

. (8)

If additionally all norms of the rows of Udiag(
√

s1, . . . ,
√

sr ) and all norms of the rows of
V diag(

√
s1, . . . ,

√
sr ) are equal, then the embedding (5), (6) of M has margin γ

γ = 1√‖û‖∞‖v̂‖∞
=

√|X | |Y |∑r
j=1 s j

,

and this margin is optimal.

Proof: Obviously ‖ux‖ = 1 = ‖vy‖ holds, and from 〈ux , vy〉 = Mxy√
ûx v̂y

it follows that the

margin of the embedding is 1/
√‖û‖∞‖v̂‖∞. The upper bound

√|X |/‖v̂‖2 on the margin
follows if we apply Theorem 3.1 to the matrix UV�, because ‖UV�‖ ≤ ‖U‖‖V ‖ = 1 and
because of∑

x∈X

|(UV�)xy | =
∑
x∈X

Mxy(UV�)xy

=
∑
x∈X

r∑
j=1

s jUx j Vyj

r∑
k=1

Uxk Vyk =
r∑

j=1

s j V
2
y j = v̂y .

The first equality holds because the entries of M and UV� have the same signs, for the
second equality we used that Udiag(s1, . . . , sr )V � is the singular value decomposition of
M , and for the third equality we used that the rows of U are orthonormal. Both the sum of
the components of û and the sum of those of v̂ are equal to

∑r
j=1 s j . From this it follows that

‖û‖2 ≥
∑r

j=1 s j√|X | , ‖v̂‖2 ≥
∑r

j=1 s j√|Y | ,

‖û‖∞ ≥
∑r

j=1 s j

|X | , ‖v̂‖∞ ≥
∑r

j=1 s j

|Y | ,

and this implies the inequalities in (7) and (8). If all the components of û are equal, and all
the components of v̂ are equal, then equality holds in (7) and (8).

It is easy to see that Theorem 4.1 gives an embedding with optimal margin for matrices that
have orthogonal rows or orthogonal columns. Note that it was already observed by Forster
(2001) that the margin of the trivial embedding is optimal in this case. In the following two
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sections we show that Theorem 4.1 can also be used to construct optimal embeddings for
the concept classes of singletons and of half intervals.

5. The optimal margins of singleton concept classes

One of the most fundamental concept classes are singletons. For a parameter n ∈ N, the
singleton concept class over an instance space of size n can be represented by the matrix

SINGLETONSn =




1 −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1

−1 · · · −1 1


 ∈ {−1, 1}n×n.

It is obvious that this matrix can be embedded with constant margin: We can get an embed-
ding in inhomogeneous half spaces if we choose the points to be the canonical unit vectors
e1, . . . , en of R

n and choose the half spaces {z ∈ R
n | 〈ei , z〉 ≥ 1

2 } with the canonical unit
vectors as normal vectors and thresholds 1

2 . This leads to a margin of 1
2 . Ben-David, Eiron,

and Simon (2001) observed that the optimal margin that can be achieved with inhomoge-
neous half spaces is 1

2 + 1
2(n−1) .

We show that Theorem 4.1 can be used to calculate the optimal margin for embeddings
with homogeneous half spaces. The matrix SINGLETONSn is symmetric and has the eigen-
value 2 with eigenspace null(M − 2In) = {x ∈ R

n | ∑n
k=1 xk = 0} and the eigenvalue

2 − n with eigenvector (1, . . . , 1)�. The eigenvectors

a j = 1√
j2 + j

(1, . . . , 1︸ ︷︷ ︸
j times

, − j, 0, . . . , 0)�, j = 1, . . . , n − 1,

an = 1√
n

(1, . . . , 1)�,

of M form an orthonormal basis of R
n . From this it follows that a singular value decompo-

sition of M is given by

(a1 · · · an)︸ ︷︷ ︸
U

diag(2, . . . , 2, n − 2)︸ ︷︷ ︸
diag(s1,...,sn )

(a1 · · · an−1 − an)︸ ︷︷ ︸
V

�

(to check this we can apply the above to the vectors a1, . . . , an .) For n ≥ 3 the entries of

UV� = 1

2
M +

(
n

2
− 2

)
ana�

n =




1 − 2
n − 2

n · · · − 2
n

− 2
n

. . .
. . .

...
...

. . .
. . . − 2

n

− 2
n · · · − 2

n 1 − 2
n
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have the same signs as the corresponding entries of SINGLETONSn and we can apply
Theorem 4.1. From

r∑
j=1

s jU
2
k j =

r∑
j=1

s j V
2

k j = 2 − 2

k
+ 2

n−1∑
j=k

= 1
j − 1

j+1︷ ︸︸ ︷
1

j( j + 1)︸ ︷︷ ︸
= 1

k − 1
n

+ 1 − 2

n
= 3 − 4

n
= 3n − 4

n

for k = 1, . . . , n it follows that

Theorem 5.1. For n ≥ 3 the maximal margin of an embedding of the matrix

SINGLETONSn =




1 −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1

−1 · · · −1 1


 ∈ {−1, 1}n×n

with homogeneous Euclidean half spaces is

n

3n − 4
= 1

3
+ 4

9n − 12
= 1

3
+ �

(
1

n

)
.

6. The optimal margins of half interval concept classes

Let X = {1, . . . , n} be an instance space of size n. The concept class of half intervals over
X consists of the concepts c = {1, . . . , k} for k = 1, . . . , n. This concept class can be
represented by the following matrix:

HALF-INTERVALSn =




1 −1 · · · −1
...

. . .
. . .

...
...

. . . −1

1 · · · · · · 1


 ∈ {−1, 1}n×n.

As observed by Ben-David (2000), we can use Novikoff’s Theorem (Novikoff, 1962)
to get an upper bound on the margins of embeddings of this matrix in half spaces: If
there exists an embedding with margin γ , then it follows from Novikoff’s Theorem that
the concept class can be learned with at most γ −2 EQ-queries. The learning complexity
of HALF-INTERVALSn with arbitrary EQ-queries is �log2 n� (see Maass & Turan, 1992,
Proposition 4.2.) This shows that γ −2 ≥ �log2 n�, or equivalently γ ≤ 1/

√�log2 n�.
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We can show a much stronger result: From Theorem 4.1 we get an exact formula for the
optimal margin. In the following we consider only the case that n is even, but the case of n
being odd is very similar.

We start by calculating the complex eigenvalues and eigenspaces of M = HALF-
INTERVALSn . Let µ be an nth complex root of −1, i.e. µ ∈ C, µn = −1. Then the
vector xµ := (µk−1)k=1,...,n ∈ C

n is an eigenvector of M for the eigenvalue 2µ

µ−1 :

Mxµ =
(

k∑
j=1

µ j−1 −
n∑

j=k+1

µ j−1

)
k=1,...,n

=
(

1 − µk

1 − µ
− µk + 1

1 − µ

)
k=1,...,n

=
(−2µk

1 − µ

)
k=1,...,n

= 2µ

µ − 1
xµ.

Because the eigenvectors xµ are pairwise orthogonal and because of ‖xµ‖2 = n this means
that we can write M as

M =
∑

µ∈C:µn=−1

2µ

n(µ − 1)
xµx∗

µ.

(To check this we can apply the above to the vectors xµ for the n complex roots µ of −1.)
Now the entries of M can be written as

M jk = 2

n

∑
µ∈C:µn=−1

µ

µ − 1
µ j−1µ1−k

= 2

n

∑
µ∈C:µn=−1

µ j−k+1

µ − 1
µ=eiπ (2l−1)/n= 2

n

n∑
l=1

eiπ (2l−1)( j−k+1)/n

eiπ (2l−1)/n − 1

= 2

n

n/2∑
l=1

(
eiπ (2l−1)( j−k+1)/n

eiπ (2l−1)/n − 1
+ e−iπ (2l−1)( j−k+1)/n

e−iπ (2l−1)/n − 1

)

= 2

n

n/2∑
l=1

eiπ (2l−1)(2 j−2k+1)/2n − e−iπ (2l−1)(2 j−2k+1)/2n

eiπ (2l−1)/2n − e−iπ (2l−1)/2n

= 2

n

n/2∑
l=1

sin π (2l−1)(2 j−2k+1)
2n

sin π (2l−1)
2n

= 2

n

n/2∑
l=1

(
sin

π (2l − 1)

2n

)−1(
sin

π (2l − 1) j

n
cos

π (2l − 1)(2k − 1)

2n

− cos
π (2l − 1) j

n
sin

π (2l − 1)(2k − 1)

2n

)
.

Thus we can write M = UDV�, where U, D, V ∈ R
n×n are given by

U =
(√

2

n
sin

π (2l − 1) j

n
;

√
2

n
cos

π (2l − 1) j

n

)
j=1,...,n

l=1,...,n/2
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D = diag

((
sin

π (2l − 1)

2n

)−1

,

(
sin

π (2l − 1)

2n

)−1)
l=1,...,n/2

V =
(√

2

n
cos

π (2l − 1)(2k − 1)

2n
; −

√
2

n
sin

π (2l − 1)(2k − 1)

2n

)
k=1,...,n

l=1,...,n/2

.

It is not hard to check that the rows of U and V are orthonormal, i.e. UDV� is a sin-
gular value decomposition of M . The entries of UV� have the same signs as those of
HALF-INTERVALSn , because for all j, k ∈ {1, . . . , n} (for shortness let α := π (2 j−2k+1)

2n )

(UV�) jk = 2

n

n/2∑
l=1

(
sin

π (2l − 1) j

n
cos

π (2l − 1)(2k − 1)

2n

− cos
π (2l − 1) j

n
sin

π (2l − 1)(2k − 1)

2n

)

= 2

n

n/2∑
l=1

sin
π (2l − 1)(2 j − 2k + 1)

2n︸ ︷︷ ︸
=Im(exp(i(2l−1)α))

= 2

n
Im

(
eiα

n/2−1∑
l=0

(e2iα)l

)

= 2

n
Im

(
eiα

1 − e2iα︸ ︷︷ ︸
= 1

e−iα−eiα = i
2 sin α

(1 − einα︸︷︷︸
= ±i

)

)
= 1

n sin α

is positive if and only if j ≥ k. Now we can apply Theorem 4.1, and because the sums

n∑
l=1

DllU
2
jl =

n∑
l=1

Dll V
2

kl = 1

n

n∑
l=1

Dll

are equal for all j , k (the above equalities follow immediately from the special structure of
the matrices U , D, V ) we get

Theorem 6.1. The maximal margin of an embedding of the concept class of half intervals
with matrix

HALF-INTERVALSn =




1 −1 · · · −1
...

. . .
. . .

...
...

. . . −1

1 · · · · · · 1


 ∈ {−1, 1}n×n
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in Euclidean homogeneous half spaces is

γmax(HALF-INTERVALSn) = n

(
n∑

l=1

(
sin

π (2l − 1)

2n

)−1
)−1

= π

2 ln n
+ �

(
1

(ln n)2

)
.

Proof: We still have to show that the optimal margin is asymptotically π
2 ln n . This is done

by proving the following two claims:

Claim 1:

γmax(HALF-INTERVALSn) ≥
(

2 ln n

π
+ 2 ln 2

π
+ 2

)−1

(9)

This holds because we can upper bound the sum of the singular values as follows:

2
n/2∑
l=1

(
sin

π (2l − 1)

2n

)−1

≤ 2

sin π
2n︸ ︷︷ ︸

≤2n

+2
∫ n/2

1

(
sin

π (2x − 1)

2n

)−1

dx

y= π (2x−1)
2n≤ 2n

π

∫ π
2 − π

2n

π
2n

1

sin y
dy + 2n = 2n

π

[
ln

sin y

1 + cos y

] π
2 − π

2n

π
2n

+ 2n

= 2n

π

(
ln

cos π
2n

1 + sin π
2n︸ ︷︷ ︸

≤1

− ln
sin π

2n

1 + cos π
2n︸ ︷︷ ︸

≥ 1
2n

)
+ 2n ≤ 2n

π
ln(2n) + 2n.

We used that sin π
2n ≥ 1

n for all positive integers n. This follows from the concavity of the
sine function on [0, π/2].

Claim 2:

γmax(HALF-INTERVALSn) ≤
(

2 ln n

π
+ 2 ln 2

π

π

)−1

(10)

This holds because we can lower bound the sum of the singular values as follows:

2
n/2∑
l=1

(
sin

π (2l − 1)

2n

)−1

≥ 2
∫ (n+1)/2

1

(
sin

π (2x − 1)

2n

)−1

dx

y= π (2x−1)
2n= 2n

π

∫ π
2

π
2n

1

sin y
dy = 2n

π

[
ln

sin y

1 + cos y

] π
2

π
2n

= −2n

π
ln

sin π
2n

1 + cos π
2n︸ ︷︷ ︸

≤ π
2n

≥ 2n

π
ln

2n

π
.
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7. Circulant matrices

In this section we consider concept classes defined by circulant matrices. Circulant matrices
are matrices of the form

M =




m1 m2 · · · · · · mn

mn m1 m2
...

... mn m1
. . .

...
...

. . .
. . . m2

m2 · · · · · · mn m1




∈ R
n×n.

The singleton concept classes are simple examples of circulant matrices. Furthermore, a half
interval matrix M = HALF-INTERVALSn has the same maximal margin as the circulant
matrix ( M −M

−M M
).

There is a convenient way to calculate the eigenvectors and eigenvalues of a circulant
matrix: Any n × n circulant matrix M can be written as

M =
n−1∑
l=0

ml+1Cl , (11)

where C is the basic circulant permutation matrix

C =




0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0
. . . 1

1 0 . . . . . . 0




∈ {0, 1}n×n.

It is easy to check that the eigenvalues of C are µk = e
k
n 2π i , k = 0, . . . , n − 1, and the

eigenvectors are (e
jk
n 2π i ) j=0,...,n−1 ∈ R

n , k = 0, . . . , n − 1. From (11) we see that M has
the same eigenvectors and it has eigenvalues

νk =
n−1∑
l=0

ml+1µ
l
k . (12)

Because M has an orthonormal set of n eigenvectors, it follows that M is unitarily diago-
nizable, i.e. M is a normal matrix (see Horn & Johnson, 1985, Theorem 2.5.4).

The following theorem gives a lower bound on the best possible margin for normal
matrices:
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Theorem 7.1. Let M ∈ {−1, 1}n×n be a normal matrix with eigenvalues ν1, . . . , νn. Then
there is a unitary matrix U ∈ C

n×n such that M = U diag(ν1, . . . , νn) U ∗. Let û ∈ R
n be

the vector with entries

û j =
n∑

k=1

|U jk |2|νk |,

j = 1, . . . , n. Then M can be embedded with margin

γ = 1

‖û‖∞
≤ n∑n

k=1 |νk | . (13)

Equality in (13) holds if and only if all entries of û are equal.

The proof of Theorem 7.1 is omitted here because it is very similar to the proof of
Theorem 4.1.

It is easy to see that for circulant matrices equality holds in (13):

Corollary 7.1. Let M ∈ {−1, 1}n×n be a circulant matrix with complex eigenvalues νk .
Then the maximal margin γmax(M) for embedding M is at least

γmax(M) ≥ n∑
k |νk | .

Proof: We have already seen that we can use the matrix

U =
(

1√
n

exp

(
jk

n
2π i

))
j,k=0,...,n−1

in Theorem 7.1. We get immediately that the entries of û are equal:

û j =
∑

k

∣∣∣∣ 1√
n

e
jk
n 2π i

∣∣∣∣2

|νk | = 1

n

∑
k

|νk |.

For the following class of circulant matrices we can determine the optimal margin up to
a small factor: For positive integers m, n satisfying m ≤ n

2 consider the matrix Z (m, n) =∑n−1
l=0 ml+1Cl where

ml =
{

1, l = 1, . . . , m,

−1, l = m + 1, . . . , n.

For simplicity we only consider the case where m and n are even and m divides n. The
following theorem holds for the matrices Z (m, n):

Theorem 7.2. For m ≤ n
2 the maximal margin for embedding Z (m, n) in Euclidean half

spaces is of the order γmax(Z (m, n)) = �(1/ ln m).
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Proof: For the upper bound note that HALF-INTERVALSm is a submatrix of Z (m, n). It
follows that

γmax(Z (m, n)) ≤ γmax(HALF-INTERVALSm)
(10)≤ 1

2
π

ln m + 2
π

ln 2
π

(for the last inequality see the proof of Theorem 6.1).
For the lower bound we use Corollary 7.1. The eigenvalues νk of Z (m, n) can be calculated

using (12):

νk =
m−1∑
l=0

el k
n 2π i −

n−1∑
l=m

el k
n 2π i = 2

1 − em k
n 2π i

1 − e
k
n 2π i

for 0 < k < n. Some further elementary algebraic transformations lead to |νk | = 2| sin(m k
n π )

sin( k
n π )

|,
0 < k < n. For k = 0 we get ν0 = 2m − n.

This means that Z (m, n) can be embedded with margin

γmax(Z (m, n)) = n

|2m − n| + 4
∑ n

2 −1
k=1

∣∣∣ sin(m k
n π )

sin( k
n π )

∣∣∣ ,
where we used that |νk | = |νn−k |.

The sum in the denominator can be bounded as follows:
n
2 −1∑
k=1

∣∣∣∣∣ sin
(
m k

n π
)

sin
(

k
n π

)
∣∣∣∣∣︸ ︷︷ ︸

≤m

≤ n

m
m +

n
2∑

k= n
m +1

1

sin
(

k
n π

)

≤ n +
∫ n

2

n
m

1

sin
(

k
n π

) dl
(∗)
< n + n

π
ln

2
2
m

= n + n

π
ln m.

For (∗) we use a calculation similar to that in the proof of Theorem 6.1. It follows that

γmax(Z (m, n)) >
n

|2m − n| + 4
(
n + n

π
ln m

) ≥ 1
1
π

ln m + 4 + 1
n

.

8. Monomials

In this section we discuss the concept class of monomials. We show that there is an em-
bedding of this class with a margin of �( 1

n ), and we prove an upper bound of O( 1√
n

) on
the best possible margin. Furthermore, we show that the margin of the embedding from
Theorem 4.1 decreases exponentially in n, i.e. the use of the singular value decomposition
leads to a very poor margin in the case of monomials.

For the concept class of monomials over n Boolean variables x1, . . . , xn , the instances
are all possible assignments to these variables. The concepts are all conjunctions of literals
x1, ¬x1, . . . , xn, ¬xn . The matrix MONOMIALSn = Mn representing this concept class is
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recursively given by

M0 = (1), Mn =


Mn−1 −1

Mn−1 Mn−1

−1 Mn−1


 ∈ {−1, 1}3n×2n

.

For n = 0 we have only the empty monomial which is always true. For n ≥ 1 the first 2n−1

columns of Mn correspond to the assignments of the variables for which xn is true, and the
last 2n−1 columns correspond to the assignments for which xn is false. The first 3n−1 rows
correspond to the monomials m containing the literal xn , the next 3n−1 rows to the monomials
containing neither xn nor ¬xn , and the last rows to the monomials containing ¬xn .

There is an embedding of MONOMIALSn in inhomogeneous half spaces with margin
1/n: We map each monomial m to the half space {z ∈ R

n | 〈um, z〉 ≥ tm} given by a
normal vector um and threshold tm . The j-th component of um ∈ R

n is 1 if m contains the
positive literal x j , −1 if m contains ¬x j , and 0 otherwise. If lm is the number of literals
contained in m, we define the threshold tm as lm − 1 ∈ R. For each assignment a of the
variables x1, . . . , xn we define a vector va ∈ R

n by (va) j = 1 if a assigns true to x j and
(vy) j = −1 otherwise. Given a monomial m, the scalar product 〈um, va〉 attains its maximal
value lm = tm + 1 for the assignments a that fulfill m. For all other assignments a we have
〈um, va〉 ≤ lm − 2 = tm − 1. This shows that 〈um, va〉 > tm if and only if a fulfills m, and
that |〈um, va〉 − tm | ≥ 1. After dividing the vectors by

√
n and dividing the thresholds by n

we have an embedding with margin 1/n.
Now we show that the margin of any embedding of MONOMIALSn with homogeneous

half spaces is at most 1/
√

n. This can be seen as follows. The matrix MONOMIALSn

has n orthogonal rows: We consider only the monomials that consist of a single positive
literal. The corresponding rows of MONOMIALSn are orthogonal because two distinct
literals differ on exactly half of all of the assignments to the variables x1, . . . , xn . As noted
in Section 1 (see (3)) we cannot embed this n × 2n-submatrix of MONOMIALSn with a
margin larger than 1/

√
n.

A slightly stronger upper bound of 1/
√

n + 1 on the margin was pointed out to us by one
of the anonymous referees. To show this bound we apply Novikoff’s Theorem in the same
way as described at the beginning of the section on half interval concept classes (Section 6).
We use the well known fact that the learning complexity of MONOMIALS with arbitrary
EQ-queries is at least n + 1.

We want to argue now that the embedding of Theorem 4.1 does not give good margins
for the concept classes of monomials. For this we first calculate the sum of the singular
values of Mn . Consider the matrix

An = 1

2
(Mn + 13n×2n ) ∈ {0, 1}3n×2n

which results from Mn if we replace the −1 entries of Mn by zeros. To find the singular
values of An we look at the matrices

A�
0 A0 = (1), A�

n An =
(

2A�
n−1 An−1 A�

n−1 An−1

A�
n−1 An−1 2A�

n−1 An−1

)
∈ R

2n×2n
.
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Obviously x (0)
1 = (1) is an eigenvector of A�

0 A0 for the eigenvalue λ
(0)
1 = 1. It is easy to

see that if x (n−1)
j is an eigenvector of A�

n−1 An−1 for the eigenvalue λ
(n−1)
j then

x (n)
2 j−1 =

(
x (n−1)

j

−x (n−1)
j

)
, x (n)

2 j =
(

x (n−1)
j

x (n−1)
j

)

are linearly independent eigenvectors of the matrix A�
n An for the eigenvalues λ

(n)
2 j−1 = λ

(n−1)
j

and λ
(n)
2 j = 3λ

(n−1)
j .

The singular values of An are the square roots of the eigenvalues of A�
n An . Thus each

singular value s(n−1)
j of An−1 produces two singular values s(n)

2 j−1 = s(n−1)
j and s(n)

2 j =√
3 s(n−1)

j for An . Because of s(0)
1 = 1 the sum of the singular values of An is

∑2n

j=1 s(n)
j =

(1 + √
3)n .

Because each column of An contains exactly 2n ones, it follows that

M�
n Mn = (2An − 13n×2n )�(2An − 13n×2n )

= 4A�
n An − 2A�

n 13n×2n − 2 · 12n×3n An + 12n×3n 13n×2n

= 4A�
n An + (3n − 4 · 2n) · 12n×2n .

By construction it follows inductively that each vector x (n)
j for 1 ≤ j < 2n contains as many

1s as −1s, i.e. 12n×2n x (n)
j = 0. Thus x (n)

j is an eigenvector of M�
n Mn for the eigenvalue 4λ

(n)
j

for 1 ≤ j < 2n .
The vector x (n)

2n contains only 1s, thus 12n×2n x (n)
2n = 2n x (n)

2n . Because of λ
(n)
2n = 3n , this

vector is an eigenvector of M�
n Mn for the eigenvalue

4λ
(n)
2n + 2n(3n − 4 · 2n) = 4 · 3n + 6n − 4n+1.

The singular values of Mn are the square roots of the eigenvalues of M�
n Mn . Thus the

sum of the singular values of Mn is almost equal to twice the sum of the singular values of
An . We just have to add a term that takes care of the special case of the largest eigenvalue
of M�

n Mn . The sum of the singular values of M�
n Mn is

S := 2((1 +
√

3)n −
√

3n) +
√

4 · 3n + 6n − 4n+1.

Now it follows from Theorem 4.1 that the margin of the embedding obtained with
the singular value decomposition method for the matrix MONOMIALSn is at most

√
3n2n

S
= O

(( √
6

1 + √
3

)n)
.

Because of
√

6/(1 + √
3) ≈ 0.8966 < 1 this margin is exponentially small in n. Since

we have already seen that there is an embedding of MONOMIALSn with margin 1/n,
Inequality (8) of Theorem 4.1 does not hold for all embeddings of MONOMIALSn . In
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particular it follows that for large values of n not all entries of the matrix UV� given by a
singular value decomposition of MONOMIALSn have the correct signs.

9. Conclusion and open problems

We have calculated the optimal margins γ = n/(3n − 4) for embedding singleton concept
classes and γ = π

2 ln n +�( 1
(ln n)2 ) for half intervals. We also considered a more general case,

namely the matrices Z (m, n) of Section 7. The optimal margin of these was shown to be of
the order (ln m)−1. An intuitive interpretation of these results is still missing.

There is a gap between our upper and lower bounds for monomials: We only know that
monomials can be embedded with margin �( 1

n ), and that the margin cannot be larger than
O( 1√

n
).

For better upper bounds it would be interesting to know if there are other ways of finding
matrices M that give stronger bounds in Theorem 3.1.

We have also seen how the singular value decomposition can be used to construct em-
beddings, i.e. to show lower bounds on the margin. However, these embeddings have very
poor margins for monomials. Thus new techniques for finding nontrivial embeddings of
concept classes are needed.
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