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Abstract

A personalized treatment policy requires defining the optimal treatment for each patient based on 

their clinical and other characteristics. Here we consider a commonly encountered situation in 

practice, when analyzing data from observational cohorts, that there are auxiliary variables which 

affect both the treatment and the outcome, yet these variables are not of primary interest to be 

included in a generalizable treatment strategy. Furthermore, there is not enough prior knowledge 

of the effect of the treatments or of the importance of the covariates for us to explicitly specify the 

dependency between the outcome and different covariates, thus we choose a model that is flexible 

enough to accommodate the possibly complex association of the outcome on the covariates. We 

consider observational studies with a survival outcome and propose to use Random Survival Forest 

with Weighted Bootstrap (RSFWB) to model the counterfactual outcomes while marginalizing 

over the auxiliary covariates. By maximizing the restricted mean survival time, we estimate the 

optimal regime for a target population based on a selected set of covariates. Simulation studies 

illustrate that the proposed method performs reliably across a range of different scenarios. We 

further apply RSFWB to a prostate cancer study.
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1 Introduction

It has been shown that patients can exhibit significant heterogeneity in response to 

treatments in many different diseases (Ishigooka et al. 2000; Rothwell 2005). The emerging 

field of personalized medicine, which focuses on making treatment decisions for an 

individual patient based on his/her clinical, genomic, and other information, is of 

considerable interest, as it has the potential of maximizing the treatment benefits (Piquette-
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Miller and Grant 2007). When customized therapy for each patient is assigned, individuals 

could benefit the most from the treatment they receive, therefore the optimal treatment effect 

can be achieved for the whole population.

Studies of biological mechanisms have identified several biomarkers that affect patients’ 

responses to certain drugs and have been successfully applied clinically in treatment 

assignment (Ellsworth et al. 2010). To better understand the treatment mechanism, 

developing statistical approaches to study the heterogeneity of the treatment from data is of 

great importance. Various methods have been developed for testing and identifying 

subgroups of patients who can effectively respond to the treatment under investigation from 

randomized controlled trial data (Foster et al. 2011; Doove et al. 2014). However, 

observational studies are the most commonly available data source in practice. Qian and 

Murphy (2011), among others, have proposed causal inference methods to learn about the 

optimal regime from observational data. Commonly, methods in this category always involve 

postulating some parametric structure for the counterfactual models (e.g. Zhang et al. 2012), 

however, the optimal treatment regime identified from such models could suffer from bias if 

those parametric models are misspecified. Recently, machine learning based approaches are 

becoming more and more popular in this area, as they generally put less structural 

assumptions on the models and thus also acquire more flexibility on the form of the optimal 

regime (Zhao et al. 2012; Laber and Zhao 2015; Zhao et al. 2015; Lu et al. 2017).

One important feature of observational studies is that they typically have the tendency to 

collect as many variables as possible, particularly in situations where the underlying 

mechanisms of the treatments and the disease are not well understood. In certain situations, 

there could be some confounders of the effect of treatment on the outcome that may not be 

considered as primary or desirable factors to include for a generalizable treatment rule. For 

example, variables such as social economic status and health insurance plan may be 

collected and used when making treatment assignment in a clinic, however, such factors are 

not helpful in situations where there may be changes in the health policies and economic 

environment. The primary interest of a future treatment assignment rule should be based on 

more intrinsic factors, such as the patient’s biological and clinical characteristics. Variables 

which are associated with treatment assignment in the observational data but not desirable to 

be included in a generalizable treatment rule for the targeted population, are called auxiliary 

variables. Another situation when auxiliary variables exist is when some markers are hard to 

obtain for the targeted population due to economic, logistical or other reasons. Directly 

excluding such auxiliary variables or their interactions with treatment from the outcome 

models may lead to severe model misspecification, especially when the auxiliary variables 

are correlated with the confounders of interest.

When the primary outcome of interest is a censored survival time, the task of properly 

accounting for the auxiliary variables is even more challenging. In this paper, we propose the 

Random Survival Forest with Weighted Bootstrapping (RSFWB) method to correctly model 

the survival outcome conditional on the selected subset of covariates. The method consists of 

a modified version of Random Survival Forest to provide a flexible model, and an inverse 

probability weighted bootstrap procedure to account for the potential selection bias on the 

auxiliary variables. The optimal regime is identified as the one that maximizes the estimated 
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counterfactual restricted mean survival time, which allows comparison of survival time 

nonparametrically. We introduce the notation and more details of the proposed method in the 

next section. In Section 3, we present the numerical results under different simulation 

schemes, and in Section 4, we apply the proposed method to a prostate cancer study and 

estimate the generalizable optimal regime to lengthen the time to clinical failure after 

treatment. Some concluding points and a discussion are included in Section 5.

2 Notation and Methods

Consider a study of n patients. Let W
i

= X
i
T, Z

i
T T

 denote a d -dimensional vector of baseline 

covariates for patient i, i = 1,…, n, where Xi denotes the subset of d1 covariates that would 

be included to form the generalizable treatment regime (d1 < d), and Zi is a d2 -dimensional 

vector (d2 = d – d1) denoting the auxiliary variables. We consider two possible treatments, 

which could both be active treatments, but for convenience in this paper we will arbitrarily 

denote one of them as treatment and the other as no treatment (control). Let Ai be the 

observed treatment status, with Ai =1 if the patient received the treatment, and Ai =0 if the 

patient was on the control arm. We consider the case where the treatment decision is only 

made at time zero, and therefore Ai is time-independent. For the outcome, let T
i
0 denote the 

survival time if subject i did not receive the treatment (control), and T
i
1 denote the survival 

time if subject i received the treatment, one of which is counter to the fact, because the 

patient can only be assigned to one arm. Let Ti denote the actual survival time for subject i 

and Ci is the censoring time. The observed outcome is then (Yi, ∆i;) where Yi=min(Ti, Ci) 

and ∆i = I(Ti ≤ Ci). We can use the framework of causal inference to connect the 

observational data to the counterfactual outcomes T
i
0 and T

i
1, and then the outcomes of 

patients for arbitrary regimes. Specifically, to facilitate the estimation for these 

counterfactual quantities, we need to impose the following causal inference assumptions:

1. Consistency assumption:T
i

= A
i
T

i
1 + 1 − A

i
T

i
0;

2. Positivity assumption: P(Ai|Wi) > ε for some small positive ε for Ai =0,1;

3. No unmeasured confounders assumption (NUCA):T
i
a∐ A

i
W

i
, for a = 0,1.

In addition, we assume that the counterfactual survival time is independent of the censoring 

mechanism given the other covariates, i.e., T
i
a∐C

i
X

i
, for a = 0,1, which also guarantees that 

T
i
∐C

i
X

i
. We focus on identifying the optimal regime based only on Xi, which we denote 

by g(Xi) ∈ {0,1}. For simplicity, we will suppress the patient index i in the future when no 

confusion exists.

2.1 Flexible Modeling of the Counterfactual Outcomes

The optimal treatment regime would assign each individual the treatment that leads to the 

most favorable counterfactual outcome. However, in the observational study, one and only 

one of the counterfactual outcomes can be observed for each individual. Therefore, one 

needs to employ causal models to make statistical inferences on the counterfactual 
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outcomes. Typically, some parametric models are used in the modeling strategies, and 

therefore the method’s performance depends on whether those parametric models are 

specified correctly or not. When the outcome is subject to censoring, the Cox proportional 

hazard regression model (Cox 1972) and its extensions have been widely used, where the 

semiparametric structure of the model can accommodate various families of distribution 

functions. However, a Cox model typically uses a linear combination of covariates, and this 

may not be appropriate. If it is desired to model the counterfactual outcomes in a less 

constrained way, a survival tree (LeBlanc and Crowley 1995) is one method that allows for 

more flexibility. In tree methods, a binary tree is grown by dividing patients at each node 

into two groups, where the split is chosen to maximize a criterion function which measures 

heterogeneity. It has the feature of automatically identifying interactions between the 

variables without prespecifying their structure. While tree methods can be unstable, 

ensemble approaches can effectively compensate for the instability of tree based models by 

combining many trees (Breiman 2001; Bou-Hamad et al. 2011). For right-censored survival 

data, the Random Survival Forest method (Ishwaran et al. 2008) draws B bootstrap samples 

from the original data, survival trees are then grown for each bootstrap sample. At each node 

of each tree, a random set of p candidate variables are chosen and the node is split using the 

candidate variable that maximizes the survival difference between daughter nodes. After 

growing the tree to full size, the Cumulative Hazard Function (CHF) is obtained from each 

tree, and the ensemble estimation is then calculated by averaging over these CHFs.

2.2 Inverse Probability Weighting

In observational studies, the covariates may have different distributions across different 

subgroups for both counterfactual and observational data, this would apply to both X and Z 

in our setting. In general, for regime g (X) based on X, we have E[I{A=g(X)}T|X,Z]≠ 

E[I{A=g(X)}T|X]unless T is independent of the auxiliary variables Z given X. Since our 

primary interest is in E[I{A=g(X)}T|X] for regime g(X), we need to correctly model the 

counterfactuals conditional on X. To this end, it is important to account for the discrepancy 

of the distribution of Z between the observational data and the counterfactual data, 

especially for nonparametric and/or semi-parametric models where the model structure is 

not fully specified. Inverse probability weighting can be employed to account for the 

discrepancy between observational data distribution law and counterfactual data distribution 

law, and correctly estimate the conditional mean counterfactuals for each subject. Here, 

given the NUCA assumption, Ta∐ A W, we can estimate the probability of treatment 

assignment conditional on W, π(W), using the following logistic model,

logitP(A = 1 W) = logit π(W) = θ0 + W
T

q1 (1)

Note that here Z is included as part of W. Then π(W) = P(A = 1 W), which we denote by p, 

can be used to calculate the estimated weights for regime g = 1 and g = 0 given by

wt
1 =

I(A = 1)
p

and wt
0 =

I(A = 0)
1 − p
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To illustrate the role of these weights, let � denote the measure generated by the 

observational data, and �g denote the corresponding measure generated by the 

counterfactual data under any arbitrary regime g. Because 

d� = p(T X, Z, A)p(A X, Z)p(X Z)p(Z) and d�
g = p(T X, Z, A)I A = g(X) p(X Z)p(Z), we 

have

d�
g

d�
=

p(T X, Z, A)I A = g(X) p(X Z)p(Z)
p(T X, Z, A)p(A X, Z)p(X Z)p(Z)

=
I A = g(X)

p(A X, Z)
≡ wt

g

For T, the outcome in the observational data and the corresponding regime g specific 

counterfactual outcome Tg, we have

E T
g = E

g(T) = ∫ Td�
g = ∫ T

d�
g

d�
d� = E

I A = g(X)
p(A X, Z)

T

Similarly,

E T
g

X = E
I A = g(X)

p(A X, Z)
T X

In general, this is not equal to I {A ~ g(X)}· E (T | X) or I{A ~ g(X)} · E (T | X) / p(A | X), 

which correspond to the case of using either no weights or weights based only on X. Thus 

the weights defined above (wtg ‘s) provide the correct adjustment when estimating E(Tg | X) 

from the observational data.

2.3 Estimating the Optimal Treatment Regime with RSFWB

In order to make valid causal inference while providing the flexibility to account for 

potentially complicated heterogeneity in the outcome model, we incorporate wtg into 

Random Survival Forest (RSF). A possible implementation is to incorporate the weights into 

the splitting criterion. This may not be appropriate for our purpose here, because it would 

lead to the model where the hypothetical group of patients in the weighted population which 

are represented by one single patient in the original cohort would always end up in the same 

leaf for any tree. Here, we propose the RSFWB method, where we propose to directly 

implement the weights through a weighted bootstrap procedure. The intuition behind the 

weighted bootstrap is the following: in the standard bootstrap the weights are 1 / n, it thus 

gives a sample resembling one from the original population, while for weighted bootstrap, 

observations are resampled with probability proportional to weights thus giving a sample 

resembling one from a different population. The idea of weighted bootstrap has been used 

before (Norazan et al. 2009; Makarenkov et al. 2010; Barbe and Bertail 2012), with a major 

application being to account for potential sampling bias (Nahorniak et al. 2015; Xu et al. 

2016). As mentioned earlier, when modeling E(Tg | X), we need to marginalize Z in the 

counterfactual data, while the conditional distribution of {Z | X = x} in regime g specific 

counterfactual data would be different than the one in the observed regime g compliant 

sample {Z | X = x, A = g(x)}. Here we use this weighted bootstrap resampling procedure to 

mimics the scenario that the samples were drawn from regime g specific counterfactual data 
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and adjust for the selection bias when sampling from observational data. RSF models are 

then built on each weighted bootstrap sample. The final estimate will then be obtained by 

counting the contribution of each RSF estimate equally. We implement the proposed method 

in R, where we use cforest () function to serve as the base leaner on each weighted bootstrap 

sample. This is one of the earliest implementation of a random forest type method for 

survival data, where the ensemble forest models are built based on conditional inference 

trees (Hothorn et al. 2006; Strobl et al. 2009). To proceed, we propose to use the RSFWB 

method separately for the two counterfactual outcomes. For treatment counterfactual T1, we 

draw bootstrap samples with p
i
1 as the weight for subject i, where p

i
1 = wt

i
1/(∑ j = 1

n
wt

j
1). The 

R function treeresponse() is used to obtain the survival probabilities S1(m)(t) (Kaplan-Meier 

estimator) from the model built on the m th weighted bootstrap sample, m = 1,…, B. The 

final survival estimate is obtained by averaging the cumulative hazard function (CHF) at 

each time point with equal weights over the B bootstrap sample specific estimates,

S
1(t) = exp{ − ∑

m = 1

B

−logS
1(m)(t)}

The survival estimate for the counterfactual of being assigned to control arm S0(t) can be 

constructed following the same procedure with weights p
i
0 = wt

i
0/(∑ j = 1

n
wt

j
0).

The performance of machine learning methods always depends on the choice of tuning 

parameters. For our proposal, the tuning parameters we have are the number of covariates to 

be considered at each split for the conditional inference tree (mtry) and the number of trees 

(the number of RSF models and the number of trees in each model) to grow. For the later 

parameter, due to practical concern of computation load, we fix the number of weighted 

bootstrap samples (the number of RSF models to build) as B = 200, and perform selection 

on mtry and ntree based on single forest model. Following Mogensen et al. (2012), we use 

the Integrated Brier Score (IBS) to assess the model performance over a grid of tuning 

parameter values:

IBS(BS, τ) =
1
τ
∫ 0

τ
BS(t, S)dt

where BS(t, S) = n
−1∑i = 1

n
{Y

i
(t) − S(t |X

i
)}2 is the Brier score at time t, with Yi (t) = I(Ti ≤ t) 

denoting whether subject i is at risk at time t. A smaller IBS would suggest better prediction 

accuracy in S . 5-fold cross-validation is used to avoid the potential issue of overfitting. 

Although growing more trees is likely to give better prediction accuracy, it also substantially 

increases the computation burden. Thus we limit our grid search for ntree only from 

{50,100}, and mtry is also chosen from a given set of values ({2,4,8,16} for simulation, 

{1,2,3,4,5,6} for data application). The one set of parameters that yields the smallest IBS is 

then applied to RSFs across all weighted bootstrap samples. More details on tuning 

parameter selection procedure and results can be found in Appendix A4.
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By comparing S0(t |x
i
) and S1(t |x

i
), one determines the optimal treatment for subject i. Since 

the primary outcome is right censored in our case, we choose to compare the restricted mean 

survival time for the regime g -specific counterfactual μg = E (min{Tg,τ}) where we choose 

τ >0 to be the longest follow-up time. This may lead to slightly different conclusion than the 

optimal regime determined base on E (Tg) (more details can be found in Appendix A2). The 

optimal regime gopt is then the one that provides the largest μg over the regime space  = 

{g : g(X) ∈ 0,1}, that is, gopt = arg maxg∈εμg. Note that

μ
g = E E min T

g, τ |X = E E min g(X)T1 + 1 − g(X) T
0, τ |X

= E g(X)E min T
1, τ |X + 1 − g(X) E min T

0, τ |X

= E g(X)μ1(X) + 1 − g(X) μ
0(X)

= E μ
0(X) + g(X) μ

1(X) − μ
0(X)

where μ0(X) = E{min(T0,τ)| X} and μ1(X) = E{min(T1,τ)| X} are the counterfactual 

restricted conditional mean survival time given X. Thus, the optimal regime takes the form 

gopt(X) = I {μ1 (X) > μ0(X)}. We can estimate these restricted conditional mean survival 

times from the corresponding counterfactual survival function estimates, such that,

μ
1(X) = ∫ 0

τ
S

1(t)dt and μ
0(X) = ∫ 0

τ
S

0(t)dt .

Then the estimated optimal regime is gopt(X) = I{μ
1(X) > μ

0(X)} .

3 Simulations

To assess the performance of the proposed method, we conduct simulation studies in various 

scenarios and compare the results with other commonly used methods.

Three competing methods are considered here for the counterfactual models. First, as a 

widely used approach for survival analysis, we consider a standard Cox model, where we fit 

(Y,∆) ~ X + A + X × A. Then we estimate the counterfactuals as S1(t, X) = P(T > t | A = 1, X)

and S0(t, X) = P(T > t | A = 0, X). As the second approach, we consider the weighted Cox 

models for the treatment and control counterfactuals, where we fit a Cox model (Y,∆) ~ X 

with weight ŵt1 to calculate the treatment specific S1(t, X) and with weight ŵt0 to calculate 

the control specific S0(t, X). The third method we consider is a regular RSF model, where we 

fit (Y,Δ) ~ X + A using the unweighted version of RSF model (in this case, cforest (), the 

same model as the base learner used in RSFWB), and then calculate S1(t, X) and S0(t, X) by 

arbitrarily setting A to either 1 or 0 similarly as in the first method. For all methods, the 

counterfactual restricted conditional mean survival time and the optimal regime are then 

calculated following the same procedure as described for RSFWB.
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3.1 Simulation Schemes

For simulation studies, we generate X = {X1,X2,…,X20} with dimension d1 =20 from 

independent N(0,1), and a scalar auxiliary variable Z (d2 =1) which is correlated with X, 

specifically with X2 as Z | X2 = x2 ~ N(x2,1). The observed treatment indicator A is then 

generated from a logistic model

P(A = 1|X, Z) = θ0 + θ1X1 + … + θ20X20 + θzZ, (2)

and the two counterfactual survival outcomes are generated from log-normal models of the 

form

logT
0 = β0 + β1X1 + … + β20X20 + βzZ + ε

0, (3)

logT
1 = β0 + β1X1 + … + β20X20 + βzZ + h(X, Z) + ε

1, (4)

where ε0 and ε1 are generated from N(0,σ2). The observed survival time can then be 

calculated as T = AT1 + (1- A)T0. The censoring time is then generated from uniform 

distribution C ~ Uniform(0,�). We observe time Y = min(T, C) and the event indicator Δ = 

I(T ≤ C). The true optimal regime gopt(X) would mainly depend on the form of h(X, Z). As 

mentioned in the previous section, it may also be affected by the choice of the time boundary 

τ. More on the calculation details of gopt(X) based on models (3) and (4) can be found in 

Appendix A1 and A2.

3.2 Different Scenarios

We consider multiple simulation scenarios with different h(X, Z) functions to mimic 

different type of optimal treatment rules. In Scenario 1, we set θ0 =0.1, θ1 =0.5, θ2 = −1, θz 

= −2, and all other θj set to 0 (for j = 3,4,…,20). We generate the counterfactual survival 

outcome from models (3) and (4), with σ2=1, β0=0.5, β1=1, β2 = −1, βz =2, all other βj = 0 

(for j = 3,4,…,20). Simple linear interaction is considered here as h(X,Z) = 2(X1 – X2). If we 

ignore the influence of τ and directly exam the counterfactual survival time, the optimal 

regime can be approximated as to assign treatment A = 1 in the region of patient 

characteristic space defined by the linear combination X1 – X2> 0. This regime fell in the 

regime space considered by the Cox models used in the competing methods, thus this 

scenario favors the model specification in the Cox model based methods.

For Scenario 2, we set coefficients in treatment model (2) as θ0=0.1, θ1=0.5, θ2 = −0.2, θz = 

−1.2, and all other θj set to 0 (for j = 3,4,…,20). For the counterfactual outcome model, we 

set σ2=1, β0=0.8, β1,=0.5, β2 = −0.5, βz =1.2, all other ßj =0 (j = 3,4,.,20), and 

h(X, Z) = 1.5X1
2 − 0.6X1 − 0.5X2 + 0.3Z − 0.74 in models (3) and (4). When the influence of τ 
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is small, the optimal regime can be approximated as to assign the treatment to patients with 

h(X, Z) = 1.5(X1 - 0.2)2 – 0.2(X2 + 4) > 0.

In Scenario 3, we consider treatment assignment model with θ0=0.5, θ1 = −0.5, θ2 = −0.5, 

θz = 2, and all other θj set to 0 (for j = 3, 4,…, 20). For models (3) and (4), we set σ2 =4, β0 

=0.5, β1 = −0.2, β2 =0.3, βz =0.5, all other βj = 0 (j = 3,4,…, 20), and h(X, Z) = 2.5 · I(X1 > 

−0.5) · I(X2 < 0.5) −1. Here the optimal regime can be approximated as to treat patients with 

X1 > −0.5 and X2< 0.5, which is a tree-type decision rule.

For each scenario, we consider two cases with different censoring time distributions, where 

the values of τ are chosen to create one case with about 20% censoring and another case 

with about 45% censoring.

3.3 Simulation Results

For each simulation setting, we generate data with n = 500 patients for 200 replicates, and 

apply the proposed method and the other three competing methods to each replicate. We 

compare different methods through both the fitting of counterfactual models and the 

performance of the estimated regime. To evaluate the model fit, we calculate the Root Mean 

Squared Difference (RMSD) as follows:

RMSD(0) =
1
n

∑
i = 1

n

μ
0

X
i

− μ
0

X
i

2
and RMSD(1) =

1
n

∑
i = 1

n

μ
1

X
i

− μ
1

X
i

2
,

It indicates how close the model estimates are to the true counterfactual restricted 

conditional mean survival times. Table 1 shows the average RMSDs from all four methods, 

where we can see that, in Scenario 1, Cox model based methods tend to give slightly smaller 

RMSDs than RSF based methods, while in Scenarios 2 and 3, RSF based methods achieve 

smaller RMSD. One reason for this phenomenon is that in Scenario 1, the data generating 

procedure creates an optimal treatment regime with a linear boundary X1 = X2, and the 

hazards are approximately proportional for each covariate, thus the Cox model structure 

would perform nicely in revealing X - A interactions which are linear in X. The differences 

in RMSDs for all methods in Scenario 1 are not large, which suggests that even in the 

scenario that favors the Cox models, the proposed method can still provide comparable 

model fit. In Scenarios 2 and 3, the Cox models are severely misspecified, thus yield much 

larger RMSDs than regular RSF and RSFWB. In addition, RSFWB tends to yield better fits 

of the counterfactual outcomes than the regular RSF. Compared to regular RSF, the inverse 

probability of treatment weighting can effectively reduce selection bias and the additional 

bootstrap procedure actually increases the randomness and thus the overall model fit for 

RSFWB is expected to be improved. One may notice that, compared to the cases with 20% 

censoring, we have much smaller RMSDs when the censoring rates are 45% in Table 1. This 

is related to the fact that when similar data generating procedures are used in one scenario, 

much smaller τ would be needed in order to yield 45% censoring case comparing to the one 

used for 20% censoring. This would in turn lead to smaller restricted conditional mean 

survival time μ.
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The optimal treatment regime will benefit the whole population. Therefore in order to 

evaluate the performance of the estimated optimal regime, we also calculate the regime 

specific restricted mean survival time under the estimated optimal treatment regime ĝopt, 

which can be calculated based on the true counterfactuals μ0(Χi) ‘s and μ1(Χi) ‘s:

μ
g =

1
n

∑
i = 1

n

g X
i

μ
0

X
i

+ 1 − g X
i

μ
1

X
i

This can be interpreted as the population average outcome when everybody in the cohort 

follows regime ĝ. A better regime would yield larger μĝ. The results from regimes estimated 

from different methods are summarized in Table 2, where we can see that in all scenarios, 

the true optimal regime gopt always yields the largest μg. By comparing to the last two 

columns where all patients in the cohort are either assigned to the treatment or the control 

arm, the results suggest that applying the personalized treatment regime does benefit the 

study cohort compared to using a unified treatment assignment strategy. Since this is the 

underlying true optimal regime, it can serve as the upper bound that one can achieve by 

applying any treatment regime. In Scenario 1, RSFWB yields very close yet slightly smaller 

μĝ than the Cox model based methods. In Scenarios 2 and 3, RSFWB yields larger μĝ than 

the Cox model based methods and the regular RSF, suggesting that the proposed method can 

lead to better regime estimation for such nonlinear cases.

Furthermore, since in all scenarios, we make the true regime based on only X1 and X2, we 

can plot the estimated optimal treatment regime in the X1 - X2 plane. When the true optimal 

regime has a simple shape, for example an approximately linear boundary as in Scenario 1, 

all four methods can yield a partition very close to the true optimal regime (results not 

shown). When the true optimal regime has a more complicated and nonlinear shape, Figure 

1 shows the plots of the estimated treatment regimes for Scenario 2 with 20% censoring, and 

Figure 2 is the result for Scenario 3 with 45% censoring. We can see that in both cases, the 

Cox model based methods tend to provide a partition of treatment decisions with a close to 

linear boundary on the X1 - X2 plane, while for both regular RSF and RSFWB, the partition 

does not seem to have any restrictions on its form, and thus can yield estimation much closer 

to the shape of the true optimal. Similar results are seen in the other cases in Scenario 2 and 

3 (results not shown). These plots suggest that the estimated treatment regime from the 

proposed method is close to the true optimal for most of the patients. Similar results are also 

seen in other simulation settings along with higher censoring rate cases (see Appendix A3 

for additional simulation studies). In summary, across all the scenarios considered here, the 

proposed method performs robustly in modeling the counterfactual outcomes and estimating 

the optimal treatment regime.

4 Analysis of the Prostate Cancer Data

In this section, we apply the proposed RSFWB to a prostate cancer dataset, which included a 

total of 4544 patients with clinically localized prostate cancer. Each patient received either 

surgery or radiation therapy at time zero at the University of Michigan. Both treatments are 

widely used to treat prostate cancer and neither has been established to be superior to the 
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other. The two treatments do have different potential adverse side effects and there may also 

be other personal or logistical reasons that lead a patient to prefer one treatment over the 

other. There is a tendency for older and less healthy patients who have more advanced 

disease to choose radiation therapy and for others to receive surgery, but whether this 

approach is the best for reducing the chance of the prostate cancer recurring after treatment 

is unknown. In the available data, pretreatment prognostic factors are measured at baseline, 

including age, prostate cancer stage (with values T1-T3), PSA (ng/ml), the Charlson 

comorbidity score, Gleason grade, presence of perineural invasion at biopsy (PNI) and date 

of the treatment (1996–2013). After treatment, all the patients were followed for clinical 

failure, which is defined as the occurrence of distant metastasis. We focus on the subset of 

3540 patients with complete records of all the variables listed above, of which 702 patients 

(19.8%) received radiation therapy. The median follow-up time for the whole cohort was 5.6 

years, with 5.13 years for surgery group and 7.56 years for radiation group. 93 patients 

(2.6%) were observed to experience a clinical failure during the study, which includes 47 

patients from surgery group (1.7%) and 46 patients from radiation group (6.6%). Table 3 

lists some summary statistics of the dataset. Note that the PSA values were already log 

transformed, i.e. log(PSA +1). As can be seen, patients who were older and with worse 

tumor characteristics (higher PSA, Gleason, Stage, PNI) tended to be assigned to receive 

radiation therapy.

It is of great interest to learn from the observational data about how different treatments are 

expected to perform in the future and whether some common guidelines could be suggested 

regarding whether to recommend one therapy versus the other for the purpose of prolonging 

the survival time until clinical failure. In the current observational study, one of the variables 

available is the treatment initiation time (the date of the treatment). The distributions of the 

treatment initiation time of the two treatment groups are quite different (data not shown), 

and the treatment time is also correlated with the time to clinical failure, with p -value < 

0.001 from the likelihood ratio test in a marginal univariate Cox model. Thus, treatment 

initiation time is a confounder for both treatment assignment and outcome. However, for 

obvious reasons, it is not useful for assigning a treatment for future patients. Thus, we apply 

RSFWB while treating treatment initiation as an auxiliary variable. We choose � = 12 years 

as only 6.2% patients had follow-up time longer than 12 years. For more stable estimation 

we also truncate the weights at 15, which changes the extreme weights for 2.03% patients.

–Figure 3 shows the estimated optimal regime using RSFWB. Figure 3a is the estimated 

optimal treatment assignment on the PSA-Age plane, which is not partitioned linearly. Thus 

it is not likely to be captured by the Cox model with assumptions of simple linear 

interactions. Besides, it is clear from the figure that other variables in addition to age and 

PSA are important in defining the optimal regime. Figure 3b shows the boxplot of age in 

different treatment groups according to the estimated optimal regime. We can see that the 

marginal distributions of age are not identical in the two groups, and older patients are more 

likely to be assigned to radiation therapy. Figure 3 c shows the distribution of recommended 

treatment by age and PNI, which suggests that, for PNI negative group, surgery is 

recommended for most patients under 45, and radiation is recommended for most patients 

over 75. While for PNI positive group, radiation therapy is preferred for a large portion of 

the patient population. Figures 3d and 3e illustrate the magnitude of the difference in e 
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stimated restricted conditional mean survival time between radiation and surgery therapy 

(μ1
X

i
− μ

0
X

i
). In Figures 3d, we colored the points differently when the time differences 

are larger than 0.5 years, and a histogram of these time differences are shown in Figures 3e. 

We can see that, for many patients, the (estimated) benefit of choosing one therapy over the 

other was rather small. Considering the uncertainty in the estimation procedure, there may 

not be a clear gain for these patients to switch treatment in practice. Thus we would only 

recommend a treatment switch if the estimated gain for the patient’s restricted conditional 

mean survival time is more than 0.1 years. The recommended therapy thus estimated would 

suggest 182 patients (25.9%) who were observed to receive radiation therapy to switch to 

surgery, while 259 patients (9.1%) in the surgery group should switch to the radiation 

therapy. Such recommendation yields a maximal restricted mean failure free survival time of 

μ
g = 11.779 years, while for the as-treated regime it was μ = 11.759 years. Comparing to the 

case where all patients were assigned to surgery (μ
0 = 11.752 years), and where all patients 

were assigned to radiation therapy (μ
1 = 11.731 years), there is a gain by following the 

recommended regime. We further use the bootstrap with 500 iterations to calculate the 95% 

confidence interval for μg − μ
0 which is (0.032,0.207), and 95% confidence interval for 

μ
g − μ

1 which is (0.017,0.114). Both confidence intervals do not include 0, thus, there is 

significant gain in customizing the treatment assignment according to the recommended 

regime comparing to treating everyone with the same therapy.

5 Discussion

The idea of personalized treatment regimes is very attractive as it maximizes the treatment 

effect for the entire cohort. In this paper, we focus on observational data when the outcome 

is subject to right censoring, and show that the proposed RSFWB method can effectively 

marginalize over the auxiliary variables and correctly identify the optimal regime based on a 

subset of clinically important covariates. The machine learning based modeling technique 

employed in RSFWB provides flexibility in capturing the complex variable dependency and 

puts less constraints on the regimes under consideration. This would be a desirable feature 

for clinical studies where the disease and treatment mechanisms are not well understood. 

Furthermore, RSFWB is essentially a regression tree based algorithm, which would be 

suitable for detecting interactions among variables. Thus it would be a good choice in 

estimating heterogeneity in treatment effect and thus identifying the optimal regime (Loh 

2002). An attractive feature of Random Forest models is their ability to deal with high 

dimensional data (Genuer et al. 2010). As an ensemble of RSFs, RSFWB can also provide 

variable importance measures using similar procedures as for individual RSF, thus variable 

selection could also be performed in a similar fashion for RSFWB. This could facilitate 

variable selection for interactions and lead to a more parsimonious model and simple 

treatment rules. To this end, Wager and Athey (2017) provides more discussion on applying 

Random Forest type methods in treatment regime construction for high dimensional settings.

In addition, literature has suggested that heterogeneity and randomness induced by bootstrap 

resampling in Random Forest type ensemble methods, can substantially increase the 

diversity of the trees and thus improve the performance of the predictions (Dietterich 2000; 
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Biau et al. 2008; Zhu and Kosorok 2012). RSFWB’s resampling based implementation of 

the weighting procedure allows a varying number of co pies of each subject to be included in 

one leaf of a tree, which increases the randomness of the tree building process. Although the 

theoretical properties of Random Forest based methods have not been fully explored, the 

consistency of tree based regression models has been studied since Gordon and Olshen 

(1984). In addition, theories from bagging methods have suggested the connection between 

the asymptotics of the ensemble estimator and its base learners (Biau et al. 2008; Biau and 

Devroye 2010; Wager et al. 2014; Scornet et al. 2015). Intuitively, the weighted 

bootstrapping scenario used here is equivalent to sampling from the corresponding 

counterfactual data, which would be expected to yield unbiased counterfactual models.

In this paper we have focused on using a non-parametric approach for the outcome model 

and used a simple logistic model to estimate the weights. In the cases when the mechanism 

of treatment assignment is not fully understood, we may also consider semi-parametric or 

nonparametric models for weight estimation, an example of which is provided in Shen et al. 

(2016).

In RSFWB, we propose to build the counterfactual models for treatment and control 

separately. Thus it is straightforward to extend RSFWB to problems when more than two 

lines of treatments are available for each patient. The optimal regime can then be identified 

by comparing all possible counterfactual outcomes.

We propose to incorporate the inverse probability weights through a weighted bootstrap 

resampling scheme. Although we chose to use the conditional inference forest in R as the 

base learner, the same idea can be easily implemented with other RSF algorithms in 

commonly used statistical software. This weighted bootstrap scheme provides a natural 

solution, because most existing RSF codes either do not have an option to include weights or 

do not weight samples in a way that was appropriate for our purpose here. In addition, this 

proposal actually provides a rather general framework for people to implement weights with 

methods other than RSF as base learner. However, for a particular algorithm or software, it 

may be possible to incorporate the weights in a more computationally efficient way.
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Appendix

A1. True Conditional Quantities for Simulation Models

In the simulation studies, we generate survival time based on lognormal model. To identify 

the true optimal regime, ideally, we would like to find the regime which gives the largest 

conditional mean survival time E{T | X} for each subject. However, since the observed 

survival time is subject to censoring, we make comparison of different regimes through the 

restricted conditional mean survival time μ = E{min(T,τ)| X} for some τ>0. From now on, 

we will denote it as μ(τ, X) to emphasis its dependency on both X and τ. As a first step to 
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understand the true optimal regime here, we investigate the relationship between various 

conditional expectations and the covariates under the lognormal models.

Without loss of generality, we start with simple model where both X and Z are one 

dimensional. Consider the lognormal model

logT = β0 + β1X + β2Z + ε

where Z = ηX + ε
z
, X ∼ N 0, σ1

2 , ε
z

∼ N 0, σ2
2 , and ε ∼ N 0, σ0

2  are independently distributed. 

Now the quantity of interest is μ(τ, X). As the first step, the conditional mean for logT is

E logT | X = x = β0 + β1 + ηβ2 x

and then the conditional mean survival time is

E T | X = x = ∬ e
β0 + β1x + β2z + ε

f
Z | X(z | x) f

ε
(ε)dzdε

= ∬ e
β0 + β1 + ηβ2 x + β2ε

z
+ ε

f
ε
z

ε
z

f
ε
(ε)dε

z
dε = e

β0 + β1 + ηβ2 x
∫ e

β2ε
z

f
ε
z

ε
z

dε
z
∫ e

ε
f
ε
(ε)dε

Where fZ|X(· | ·), fε(·) and f
ε
z
( ⋅ ) are the density function of the corresponding random 

variables, and

∫ e
ε

f
ε
(ε)dε = ∫ e

ε 1
σ0 2π

e

ε
2

σ0
2

dε = e

σ0
2

2

∫ e
β2ϵ

z
f
ε
z

ε
z

dε
z

= ∫ e
β2ε

z 1
σ2 2π

e

−
ε
z
2

σ2
2

dε
z

= e

β2
2
σ2

2

2

thus

E{T | X = x} = e
β0 + β1 + ηβ2 x +

1
2

β2
2
σ2

2 + σ0
2

The restricted mean survival (conditional on W = (X, Z)T) is:
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E min(T , τ) | X, Z = ∫ 0

∞
min(t, τ) f

T | X, Z
(t | x, z)dt

= ∫ 0

τ
t f

T | X, Z
(t | x, z)dt + ∫

τ

∞
τ f

T | X, z
(t | x, z)dt = ∫ 0

τ
t f

T | X, Z
(t | x, z)dt + τP(T > τ | X, Z)

= e
β0 + β1x + β2z +

1
2

σ0
2

Φ
logτ − β0 + β1x + β2z − σ0

2

σ0
+ τΦ

β0 + β1x + β2z − logτ

σ0

with Φ(·) be the cumulative distribution function (cdf) for the standard normal distribution. 

Next, we can calculate the restricted conditional mean survival (conditional on X):

E min(T , τ) | X = x = ∫ 0

τ
t f

T | X(t | x)dt + ∫
τ

∞
τ f

T | X(t | x)dt

= ∫ −∞

+∞∫ −∞

u
e
β0 + β1 + ηβ2 x + β2ε

z
+ ε

f
ε
(ε)dε f

ε
z

ε
z

dε
z

+ τ∫ −∞

+∞∫
u

∞
f
ε
(ε)dε f

ε
z

ε
z

dε
z

= e
β0 + β1 + ηβ2 x

∫ −∞

+∞
e
β2ε

z∫ −∞

u
e
ε

f
ε
(ε)dε f

ε
z

ε
z

dε
z

+ τ∫ −∞

+∞∫
u

∞
f
ε
(ε)dε f

ε
z

ε
z

dε
z

= e
β0 + β1 + ηβ2 x +

σ0
2

2 ∫ −∞

+∞
e
β2ε

zΦ
logτ − β0 − β1 + ηβ2 x − β2ε

z
− σ0

2

σ0
f
ε
z

ε
z

dε
z

+ τ∫ −∞

+∞
Φ

−
logτ − β0 − β1 + ηβ2 x − β2ε

z

σ0
f
ε
z

ε
z

dε
z

= e
β0 + β1 + ηβ2 x +

σ0
2

2 ∫ −∞

+∞
e
β2σ2v

Φ
logτ − β0 − β1 + ηβ2 x − β2σ2v − σ0

2

σ0
ϕ(v)dv

+ τ∫ −∞

+∞
Φ −

logτ − β0 − β1 + ηβ2 x − β2σ2v

σ0
ϕ(v)dv

where fT|X(· | ·) is the density function for the conditional distribution of T | X, ϕ(·) is the 

density function (pdf) for the standard normal distribution. The integral here does not 

generally have a closed form. In practice, we propose to use Gaussian quadrature to 

calculate the above quantity numerically using the function gauss.quad.prob() in the 

{statmod} package in R. Following this procedure, we can calculate the true restricted 
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conditional mean survival time μ0(τ, X) and μ1(τ,X) from the counterfactual models, and 

thus numerically identify the true optimal regime as defined.

A2. The Relationship Between the Optimal Regime and τ

As shown in the previous section, μ0 (τ, X) and μ1 (τ,X) depend on both the values of τ and 

X, so the optimal treatment regime defined by the restricted conditional mean survival time 

would also depend on the choice of τ. Here we study the influence of τ on the optimal 

regime under lognormal models. Consider the counterfactual models:

logT
0 = β0 + β1X + β2Z + ε

0 and logT
1 = β0 + β1X + h(X, Z) + β2Z + ε

1

where, again, for simplicity, we consider scalar X and Z. Similar results can be obtained 

when both X and Z are multi-dimensional. Then the regime which yields the largest mean 

survival time would be to give the treatment when E[h(X, Z)|X]> 0. However, when we 

define the optimal regime with the restricted mean survival time. The difference between the 

restricted conditional mean survivals is

μ
1(τ; x) − μ

0(τ; x)

= e
β0 + β1 + ηβ2 x +

σ0
2

2 ∫ −∞

+∞
e
h x, ηx + ε

z
+ β2ε

zΦ
logτ − β0 − β1 + ηβ2 x − h x, ηx + ε

z
− β2ε

z
− σ0

2

σ0
f
ε
z

ε
z

dε
z

+ τ∫ −∞

+∞
Φ −

logτ − β0 − β1 + ηβ2 x − h x, ηx + ε
z

− β2ε
z

σ0
f
ε
z

ε
z

dε
z

− e
β0 + β1 + ηβ2 x +

σ0
2

2 ∫ −∞

+∞
e
β2ε

zΦ
logτ − β0 − β1 + ηβ2 x − β2ε

z
− σ0

2

σ0
f
ε
z

ε
z

dε
z

− τ∫ −∞

+∞
Φ −

logτ − β0 − β1 + ηβ2 x − β2ε
z

σ0
f
ε
z

ε
z

dε
z

= A + B

where we let
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A = e
β0 + β1 + ηβ2 x +

σ0
2

2 ∫ −∞

+∞
e
h x, ηx + ε

z Φ
logτ − β0 − β1 + ηβ2 x − h x, ηx + ε

z
− β2ε

z
− σ0

2

σ0

− Φ
logτ − β0 − β1 + ηβ2 x − β2ε

z
− σ0

2

σ0
⋅ e

β2ε
z

f
ε
z

ε
z

dε
z

and

B = τ∫ −∞

+∞
Φ −

logτ − β0 − β1 + ηβ2 x − h x, ηx + ε
z

− β2ε
z

σ0

−Φ −
logτ − β0 − β1 + ηβ2 x − β2ε2

σ0
ϕ ε

z
dε

z

In general, the true optimal regime g(x) = I(μ1(τ; x) –μ0 (τ; x) > 0) would have a 

complicated shape, which is not equal to h(x,ηx) > 0 or E[h(X, Z) | X = x] > 0. If τ → ∞ 
and h(X) only depends on X then μ1(τ;X) = μ0(τ;X) if and only if h(X) = 0. In practice, 

people usually choose time to study end or the largest follow-up time, i.e. τ is likely to be 

large, in such cases, if the interaction term is mainly about X, i.e. h(X), then the optimal 

regime defined by restricted conditional mean survival can be well approximated by the 

shape of h(X).

A3. Additional Simulation with High Censoring Rate

In this section, we conduct further simulation studies to investigate the performance of the 

proposed method in cases with higher censoring rate. We generate data similarly as Scenario 

3, but with slightly different parameter setting to make the lower tail of T not too small and 

to guarantee that there would be enough events in the data to better illustrate the different 

performance for various methods especially under higher censoring cases. In detail, we 

generate A, T0 and T1 as

P(A = 1|X, Z) = 0.1 − 0.5X1 − 0.5X2 + 2Z,

logT
0 = 2.5 − 0.2X1 + 0.3X2 + 0.5Z + ε

0,

logT
1 = 2.5 − 0.2X1 + 0.3X2 + 0.5Z + 2 ⋅ I X1 > − 0.5 ⋅ I X2 < 0.5 − 1 + ε

1 .

with ε0 and ε1 are generated from N(0,4). We generate the censoring time C from 

Uniform(0,τ), with τ chosen to yield cases with 20%, 45%, 70% and 85% censoring, 

respectively. Tables A1 and A2 show the results from different estimation methods. Similar 
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to the results shown in Scenario 3 of main text, the proposed method yields the smallest 

RMSD(0) and RMSD(1), and the largest regime specific restricted mean survival time 

among all four methods. This is true even for 70% and 85% censoring cases. As shown in 

Figure 3, for the case of 85% censoring, the shape of the estimated optimal regime yielded 

by RSFWB is the one closest to the true optimal. This suggests that the proposed method 

works robustly when the censoring rate is high.

A4. Effect of Tuning Parameters in RSFWB

The choice of tuning parameters always has a big impact on the performance of machine 

learning based methods. For RSFWB, we fix the number of base learners, i.e. the number of 

weighted bootstrap samples, as 200. Then the tuning parameters to select for better 

performance are the number of candidate covariates at each split (mtry), and the number of 

trees in one forest (ntree). The same set of parameters will be applied to each base learner 

(conditional inference survival forest). We propose to use grid search to select the set 

(mtry,ntree) that gives the smallest cumulative prediction error, i.e IBS. In practice, to limit 

the computation load for tuning parameter selection, we use the IBS calculated from a single 

forest model for the full dataset (both treatment and control arm data) with covariates (Xi, 

Ai) as a proximal criteria to measure the prediction. For a given set of (mtry,ntree), the {pec} 

package in R is employed to calculate such IBS from 5-fold cross-validation 

mogensen2012evaluating. In this process, we choose the marginal Kaplan-Meier estimator 

for the censoring weight and default values for other parameters. In simulation studies, we 

perform the grid search for mtry ∈ {2, 4,8,16} and ntreee {50,100}. Table A3 illustrates an 

example of the tuning parameter selection, where the approximated prediction error (IBS) 

calculated from the procedure described here, as well as the RMSD(0), RMSD(1) calculated 

from RSFWB with the same set of tuning parameters are presented. The data generation 

models for this example are the same as the ones used for additional simulations in 

Appendix A3. The mean and standard deviation of these three measures from 200 

simulations are shown. We can see the set of tuning parameters that minimizes the 

approximated prediction error, also yields the smallest RMSD(0) and RMSD(1). Thus this 

procedure seems helpful in optimizing RMSD(0) and RMSD(1), and thus improve the 

accuracy of regime estimation.

Table A1:

Root Mean Squared Differences (RMSD) for Additional Simulation Studies. The mean and 

standard deviation of RMSDs for different censoring rates are recorded.

Cox weighted Cox RSF RSFWB

censoring mean (SD) mean (SD) mean (SD) Mean (SD)

20% RMSD(1) 26.37 (1.67) 27.55 (2.29) 16.94 (1.29) 16.12 (1.36)

RMSD(0) 12.15 (2.09) 14.24 (2.80) 17.39 (1.99) 16.84 (2.57)

45% RMSD(1) 9.57 (0.43) 10.10 (0.58) 6.60 (0.61) 6.52 (0.60)

RMSD(0) 5.32 (0.93) 5.64 (0.99) 6.80 (0.87) 6.52 (1.03)

70% RMSD(1) 2.53 (0.16) 2.71 (0.20) 2.08 (0.16) 1.95 (0.23)

RMSD(0) 1.67 (0.27) 1.61 (0.28) 1.72 (0.22) 1.67 (0.25)
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Cox weighted Cox RSF RSFWB

85% RMSD(1) 1.00 (0.08) 1.09 (0.11) 0.85 (0.06) 0.81 (0.10)

RMSD(0) 0.73 (0.13) 0.69 (0.13) 0.63 (0.09) 0.61 (0.10)

Table A2:

Regime Specific Restricted Mean Survival Time for Additional Simulation.

Cox Weighted Cox RSF RSFWB opt all ctrl all trt

20% censoring 37.77 36.89 37.99 38.02 43.96 26.50 33.05

45% censoring 21.16 21.07 22.11 22.39 24.18 17.14 19.23

70% censoring 9.43 9.46 9.52 9.83 10.32 8.63 8.95

85% censoring 5.30 5.31 5.38 5.41 5.63 5.09 5.14

Table A3:

Effect of the Tuning Parameters. RMSDs and approximated cumulative prediction errors 

(IBS) calculated from 5-fold cross-validation are obtained for different tuning parameter 

settings (mtry and ntree), and the mean and standard deviation of these measures from 200 

simulations with the setting for additional simulation scenario described in Appendix A3 are 

listed.

IBS RMSD(1) RMSD(0)

mtry ntree mean (SD) mean (SD) mean (SD)

2 50 0.1126 (0.0068) 19.53 (0.78) 19.75 (1.82)

100 0.1123 (0.0067) 19.41 (0.72) 19.77 (1.78)

4 50 0.1079 (0.0064) 18.35 (0.99) 18.43 (2.15)

100 0.1077 (0.0063) 18.25 (0.93) 18.42 (2.14)

8 50 0.0976 (0.0067) 16.16 (2.28) 15.89 (2.82)

100 0.0973 (0.0067) 16.05 (2.24) 15.84 (2.82)

16 50 0.1024 (0.0064) 17.08 (1.42) 16.84 (2.60)

100 0.1020 (0.0065) 16.95 (1.35) 16.83 (2.56)
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Figure 1: 

Cumulative Plot for Estimated Optimal Treatment Regime for Scenario 2 with 20% 

Censoring. In each plot, the treatment regime is presented in term of the treatment 

assignment for all patients over the 200 replicates, black plus symbols are the ones assigned 

to treatment arm, and light grey circles are the ones assigned to control arm. The five 

regimes are the true optimal regime and the ones estimated by the four methods (Cox, 

weighted Cox, RSF and RSFWB).
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Figure 2: 

Cumulative Plot for Estimated Optimal Treatment Regime for Scenario 3 with 45% 

Censoring. Similar as in Figure 1, the true optimal regime and the ones estimated by the four 

methods (Cox, weighted Cox, RSF and RSFWB) are plotted separately.
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Figure 3: 

Illustration of the Estimated Optimal Treatment Regime from the Prostate Cancer Study. 

Panel (a) shows the optimal regime assignment estimated by RSFWB on the Age- PSA 

plane. The circle symbols stand for assignments of radiation therapy, and the plus symbols 

stand for assignments of surgery. Panel (b) shows the boxplot of age for patients for each 

treatment arm in the estimated optimal treatment regime. Panel (c) is the estimated optimal 

treatment assignment on the Age-PNI plane. Panel (d) shows the estimated treatment effect 

on the Age-PSA plane, where the treatment effect is defined by the difference in restricted 

conditional mean time to clinical failure between radiation therapy and surgery. The color 

and shape of each point indicates its value of the estimated treatment effect as shown in the 

legend. Panel (e) is the histogram of the treatment effect.
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Figure A1: 

Cumulative Plot for Estimated Optimal Treatment Regime for the Additional Simulation 

Study with 85% Censoring. Similar as in Figure 1, the true optimal regime and the ones 

estimated by the four methods (Cox, weighted Cox, RSF and RSFWB) are plotted 

separately.
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Table 1:

Root Mean Squared Differences (RMSD) for Different Counterfactual Models: For each setting, 4 methods are 

compared, Cox: standard Cox model; weighted Cox: weighted Cox counterfactual models; RSF: regular RSF 

model (without weights); RSFWB: proposed method. For each method, the mean and standard deviation of 

RMSDs are recorded.

Cox weighted Cox RSF RSFWB

mean (SD) mean (SD) mean (SD) mean (SD)

Scenario 1 20% censoring

RMSD(1) 17.03 (1.82) 16.00 (2.67) 17.10 (1.76) 16.80 (2.17)

RMSD(0) 19.40 (4.21) 15.99 (4.52) 22.66 (2.89) 16.86 (2.51)

45% censoring

RMSD(1) 2.42 (0.29) 2.28 (0.32) 1.92 (0.15) 1.90 (0.22)

RMSD(0) 3.56 (0.53) 2.82 (0.63) 3.54 (0.29) 3.16 (0.39)

Scenario 2 20% censoring

RMSD(1) 14.54 (0.71) 14.52 (0.74) 10.97 (0.93) 10.65 (1.12)

RMSD(0) 6.13 (1.28) 4.70 (1.04) 5.56 (0.87) 4.15 (0.82)

45% censoring

RMSD(1) 3.63 (0.19) 3.51 (0.17) 2.76 (0.22) 2.60 (0.28)

RMSD(0) 2.10 (0.35) 1.77 (0.32) 1.89 (0.24) 1.77 (0.29)

Scenario 3 20% censoring

RMSD(1) 6.16 (0.57) 6.76 (0.90) 4.57 (0.36) 4.38 (0.39)

RMSD(0) 3.98 (0.58) 5.27 (1.07) 3.84 (0.58) 3.87 (0.71)

45% censoring

RMSD(1) 1.36 (0.11) 1.51 (0.14) 1.11 (0.09) 1.05 (0.10)

RMSD(0) 0.98 (0.16) 1.21 (0.19) 0.97 (0.14) 0.93 (0.17)
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Table 2:

Regime Specific Restricted Mean Survival Time from Different Methods: The regimes under consideration 

include: the optimal regime estimated for all four methods (Cox, weighted Cox, RSF, and RSFWB), the true 

optimal treatment regime (opt), and the regime where everybody does not receive treatment (all ctrl) and the 

regime where everybody receives the treatment (all trt).

Cox weighted Cox RSF RSFWB opt all ctrl all trt

Scenario 1 20% censoring 29.07 31.39 28.89 29.85 33.53 16.06 28.28

45% censoring 6.35 6.75 5.92 6.23 7.07 4.94 5.67

Scenario 2 20% censoring 10.32 11.63 12.64 12.97 14.35 7.38 12.83

45% censoring 4.93 5.20 5.32 5.46 6.06 4.26 5.39

Scenario 3 20% censoring 9.51 9.18 9.58 9.97 11.12 7.58 8.78

45% censoring 3.34 3.28 3.37 3.42 3.77 2.93 3.17
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Table 3:

Summary Statistics of the Prostate Cancer Study Data

All Patients Received Surgery Received Radiation

Variable n=3540 n=2838 (80.2%) n=702 (19.8%)

Mean/Count (SD/Freq) Mean/Count (SD/Freq) Mean/Count (SD/Freq)

Age 61.4 (8.0) 59.9 (7.2) 67.6 (8.1)

Stage T1 2508 (70.8%) 2104 (74.1%) 404 (57.6%)

T2 986 (27.9%) 722 (25.4%) 264 (37.6%)

T3 46 (1.3%) 12 (0.5%) 34 (4.8%)

PSA 2.01 (0.58) 1.94 (0.54) 2.30 (0.66)

#Comorbidity 1 274 (7.7%) 266 (9.4%) 8 (1.2%)

2 1088 (30.7%) 993 (35.0%) 95 (13.5%)

3 1103 (31.2%) 942 (33.2%) 161 (22.9%)

4+ 1075 (30.4%) 637 (22.4%) 438 (62.4%)

Gleason 5–7 2711 (76.6%) 2281 (80.4%) 430 (61.3%)

Grade 7.5 437 (12.3%) 316 (11.1%) 121 (17.2%)

8–10 392 (11.1%) 241 (8.5%) 151 (21.5%)

PNI N 2579 (72.9%) 2139 (75.4%) 440 (62.7%)

Y 961 (27.1%) 699 (24.6%) 262 (37.3%)

Treatment Initiation 10.6 (3.9) 11.2 (3.6) 8.1 (3.9)

Note: PSA is logarithm transformed by log(PSA+1); Treatment Initiation is the time from 1996/01/01 to the date of the treatment (in years); All 7 

variables are statistically different between the radiation and surgery groups (p < 0.01).
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