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Abstract 
Background: A novel coronavirus disease (COVID-19) outbreak has 
now spread to a number of countries worldwide. While sustained 
transmission chains of human-to-human transmission suggest high 
basic reproduction number R0, variation in the number of secondary 
transmissions (often characterised by so-called superspreading 
events) may be large as some countries have observed fewer local 
transmissions than others. 
Methods: We quantified individual-level variation in COVID-19 
transmission by applying a mathematical model to observed outbreak 
sizes in affected countries. We extracted the number of imported and 
local cases in the affected countries from the World Health 
Organization situation report and applied a branching process model 
where the number of secondary transmissions was assumed to follow 
a negative-binomial distribution. 
Results: Our model suggested a high degree of individual-level 
variation in the transmission of COVID-19. Within the current 
consensus range of R0 (2-3), the overdispersion parameter k of a 
negative-binomial distribution was estimated to be around 0.1 
(median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 
80% of secondary transmissions may have been caused by a small 
fraction of infectious individuals (~10%). A joint estimation yielded 
likely ranges for R0 and k (95% CrIs: R0 1.4-12; k 0.04-0.2); however, the 
upper bound of R0 was not well informed by the model and data, 
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which did not notably differ from that of the prior distribution. 
Conclusions: Our finding of a highly-overdispersed offspring 
distribution highlights a potential benefit to focusing intervention 
efforts on superspreading. As most infected individuals do not 
contribute to the expansion of an epidemic, the effective reproduction 
number could be drastically reduced by preventing relatively rare 
superspreading events.
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Introduction
A novel coronavirus disease (COVID-19) outbreak, which is 

considered to be associated with a market in Wuhan, China, is 

now affecting a number of countries worldwide1,2. A substantial 

number of human-to-human transmission has occurred;  

the basic reproduction number R
0
 (the average number of  

secondary transmissions caused by a single primary case in a 

fully susceptible population) has been estimated around 2–33–5.  

More than 100 countries have observed confirmed cases 

of COVID-19. A few countries have already been shifting 

from the containment phase to the mitigation phase6,7, with a  

substantial number of locally acquired cases (including those 

whose epidemiological link is untraceable). On the other hand, 

there are countries where a number of imported cases were  

ascertained but fewer secondary cases have been reported 

than might be expected with an estimated value of  

R
0
 of 2–3.

This suggests that not all symptomatic cases cause a  

secondary transmission, which was also estimated to be the 

case for past coronavirus outbreaks (SARS/MERS)8,9. High  

individual-level variation (i.e. overdispersion) in the distri-

bution of the number of secondary transmissions, which can  

lead to so-called superspreading events, is crucial information 

for epidemic control9. High variation in the distribution of  

secondary cases suggests that most cases do not contribute to 

the expansion of the epidemic, which means that containment  

efforts that can prevent superspreading events have a dispropor-

tionate effect on the reduction of transmission.

We estimated the level of overdispersion in COVID-19  

transmission by using a mathematical model that is charac-

terised by R
0
 and the overdispersion parameter k of a negative  

binomial branching process. We fit this model to worldwide  

data on COVID-19 cases to estimate k given the reported range  

of R
0
 and interpret this in the context of superspreading.

Methods
Data source
We extracted the number of imported/local cases in the affected 

countries (Table 1) from the WHO situation report 3810 published 

on 27 February 2020, which was the latest report of the number 

of imported/local cases in each country (as of the situation  

report 39, WHO no longer reports the number of cases strati-

fied by the site of infection). As in the WHO situation reports, 

we defined imported cases as those whose likely site of infection  

is outside the reporting country and local cases as those  

whose likely site of infection is inside the reporting country. 

Those whose site of infection was under investigation  

were excluded from the analysis (Estonia had no case with 

a known site of infection and was excluded). In Egypt and 

Iran, no imported cases have been confirmed, which cause 

the likelihood value to be zero; data in these two countries  

were excluded. To distinguish between countries with and  

without an ongoing outbreak, we extracted daily case counts 

from an online resource11 and determined the dates of the latest  

case confirmation for each country (as of 27 February).

Model
Assuming that the offspring distributions (distribution of the 

number of secondary transmissions) for COVID-19 cases are 

identically- and independently-distributed negative-binomial  

distributions, we constructed the likelihood of observing the 

reported number of imported/local cases (outbreak size) of 

COVID-19 for each country. The probability mass function for 

the final cluster size resulting from s initial cases is, according  

to Blumberg et al.12, given by 
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If the observed case counts are part of an ongoing outbreak 

in a country, cluster sizes may grow in the future. To address 

this issue, we adjusted the likelihood for those countries  

with ongoing outbreak by only using the condition that  

the final cluster size of such a country has to be larger than  

the currently observed number of cases. The corresponding  

likelihood function is 
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growth of a cluster in a country had ceased if 7 days have 

passed since the latest reported case (denoted by set A). We 

applied the final size likelihood c(x; s) to those countries and 

c
o
(x; s) to the rest of the countries (countries with an ongoing  

outbreak: B). The total likelihood is 
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Statistical analysis
Varying the assumed R

0
 between 0–5 (fixed at an evenly-

spaced grid of values), we estimated the overdispersion  

parameter k using the likelihood function described above. 

We used the Markov-chain Monte Carlo (MCMC) method to  

provide 95% credible intervals (CrIs). The reciprocal of k was 

sampled where the prior distribution for the reciprocal was  

weakly-informed half-normal (HalfNormal(σ = 10)). We  

employed the adaptive hit-and-run Metropolis algorithm13 
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Table 1. The number of confirmed COVID-19 cases reported (as of 27 February 2020).

Country Total 
cases

Imported 
cases

Local 
cases

Site of infection 
unknown

Deaths Latest date of case 
confirmation

South Korea 1766 17 605 1144 13 27/02/2020

Japan 186 39 129 18 3 27/02/2020

Singapore 93 24 69 0 0 27/02/2020

Australia 23 20 3 0 0 26/02/2020

Malaysia 22 20 2 0 0 27/02/2020

Vietnam* 16 8 8 0 0 13/02/2020

Philippines* 3 3 0 0 1 05/02/2020

Cambodia* 1 1 0 0 0 30/01/2020

Thailand 40 23 7 10 0 26/02/2020

India* 3 3 0 0 0 03/02/2020

Nepal* 1 1 0 0 0 24/01/2020

Sri Lanka 1 1 0 0 0 27/01/2020

USA 59 56 2 1 0 26/02/2020

Canada 11 9 1 1 0 27/02/2020

Brazil 1 1 0 0 0 26/02/2020

Italy 400 3 121 276 12 27/02/2020

Germany 21 3 14 4 0 27/02/2020

France 18 8 7 3 2 27/02/2020

UK 13 12 1 0 0 27/02/2020

Spain 12 10 1 1 0 27/02/2020

Croatia 3 2 1 0 0 26/02/2020

Austria 2 2 0 0 0 27/02/2020

Finland 2 2 0 0 0 26/02/2020

Israel 2 2 0 0 0 27/02/2020

Russia* 2 2 0 0 0 31/01/2020

Sweden 2 2 0 0 0 27/02/2020

Belgium* 1 1 0 0 0 04/02/2020

Denmark 1 1 0 0 0 27/02/2020

Estonia† 1 0 0 1 0 27/02/2020

Georgia 1 1 0 0 0 26/02/2020

Greece 1 1 0 0 0 27/02/2020

North Macedonia 1 1 0 0 0 26/02/2020

Norway 1 1 0 0 0 27/02/2020

Romania 1 1 0 0 0 26/02/2020

Switzerland 1 1 0 0 0 27/02/2020

Iran† 141 0 28 113 22 27/02/2020

Kuwait 43 43 0 0 0 27/02/2020

Bahrain 33 33 0 0 0 26/02/2020

UAE 13 8 5 0 0 27/02/2020

Iraq 6 6 0 0 0 27/02/2020

Oman 4 4 0 0 0 27/02/2020

Lebanon 1 1 0 0 0 27/02/2020

Pakistan 2 1 0 1 0 26/02/2020

Afghanistan 1 1 0 0 0 24/02/2020

Egypt*† 1 0 1 0 0 14/02/2020

Algeria 1 1 0 0 0 25/02/2020

* Countries considered to be without an ongoing outbreak

† Countries excluded from analysis
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and obtained 500 thinned samples from 10,000 MCMC steps  

(where the first half of the chain was discarded as burn-in). We  

confirmed that the final 500 samples have an effective sample size 

of at least 300, indicating sufficiently low auto-correlation.

We also performed a joint-estimation of R
0
 and k by the 

MCMC method (with a weakly-informed normal prior  

N(µ = 3, σ = 5) for R
0
 and the weakly-informed half-normal  

prior (HalfNormal(σ = 10)) for the reciprocal of k.

Statistical analysis was implemented in R-3.6.1 with a  

package {LaplacesDemon}-16.1.1. The reproducible code for  

this study is available on GitHub14.

Proportion responsible for 80% of secondary transmissions
Using the estimated R

0
 and k, we computed the estimated  

proportion of infected individuals responsible for 80% of  

the total secondary transmissions. Such proportion p
80%

 is given as 
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We computed p
80%

 for each MCMC (Markov-chain Monte  

Carlo) sample to yield median and 95% CrIs.

Model comparison with a Poisson branching process model
To test if our assumption of overdispersed offspring distribution 

better describes the data, we compared our negative-binomial 

branching process model with a Poisson branching process  

model, which assumes that the offspring distribution follows 

a Poisson distribution instead of negative-binomial. Since a 

negative-binomial distribution converges to a Poisson distri-

bution as k → ∞, we approximately implemented a Poisson 

branching process model by fixing k of the negative-binomial 

model at 1010. We compared the two models by the widely- 

applicable Bayesian information criterion (WBIC)15.

Simulation of the effect of underreporting
We used simulations to investigate potential bias caused by 

underreporting, one of the major limitations of the present 

study. Underreporting in some countries may be more  

frequent than others because of limited surveillance and/or 

testing capacity, causing heterogeneity in the number of 

cases that could have affected the estimated overdispersion. 

See Extended data (Supplementary materials)16 for detailed  

methods. 

The effect of a differential reproduction number for imported 
cases
Due to interventions targeting travellers (e.g. screening and  

quarantine), the risk of transmission from imported cases may  

be lower than that from local cases. As part of the sensitivity  

analysis in Extended data, we estimated k assuming that the  

reproduction number of imported cases is smaller than that of  

local cases.

Results
Our estimation suggested substantial overdispersion (k << 1) 

in the offspring distribution of COVID-19 (Figure 1A and 

Figure 2). Within the current consensus range of R
0
 (2–3), k 

was estimated to be around 0.1 (median estimate 0.1; 95%  

CrI: 0.05–0.2 for R
0
 = 2.5). For the R

0
 values of 2–3, the  

estimates suggested that 80% of secondary transmissions may 

Figure 1. MCMC estimates given assumed R
0
 values. (A) Estimated overdispersion parameter for various basic reproduction number R

0
. 

(B) The proportion of infected individuals responsible for 80% of the total secondary transmissions (p
80%

). The black lines show the median 
estimates given fixed R

0
 values and the grey shaded areas indicate 95% CrIs. The regions corresponding to the likely range of R

0
 (2–3) are 

indicated by colour.
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have been caused by a small fraction of infectious individuals  

(~10%; Figure 1B).

The result of the joint estimation suggested the likely bounds 

for R
0
 and k (95% CrIs: R

0
 1.4–12; k 0.04–0.2). The upper 

bound of R
0
 did not notably differ from that of the prior  

distribution (=13.5), suggesting that our model and the data only  

informed the lower bound of R
0
. This was presumably because 

the contribution of R
0
 to the shape of a negative-binomial  

distribution is marginal when k is small (Extended data,  

Figure S1)16. A scatterplot (Extended data, Figure S2)16 exhib-

ited a moderate correlation between R
0
 and k (correlation  

coefficient -0.4).

Model comparison between negative-binomial and Poisson  

branching process models suggested that a negative-binomial 

model better describes the observed data; WBIC strongly  

supported the negative-binomial model with a difference of 

11.0 (Table 2). The simulation of the effect of underreporting  

suggested that possible underreporting is unlikely to cause  

underestimation of overdispersion parameter k (Extended data,  

Figure S3)16. A slight increase in the estimate of k was observed 

when the reproduction number for imported cases was assumed 

to be lower due to interventions (Extended data, Table S1).

Discussion
Our results suggested that the offspring distribution of  

COVID-19 is highly overdispersed. For the likely range of R
0
  

of 2–3, the overdispersion parameter k was estimated to be  

around 0.1, suggesting that the majority of secondary transmission  

may be caused by a very small fraction of individuals 

(80% of transmissions caused by ~10% of the total cases). 

These results are consistent with a number of observed  

superspreading events observed in the current COVID-19  

outbreak17, and also in line with the estimates from the previous  

SARS/MERS outbreaks8.

The overdispersion parameter for the current COVID-19  

outbreak has also been estimated by stochastic simulation18 and 

from contact tracing data in Shenzhen, China19. The former  

study did not yield an interpretable estimate of k due to 

the limited data input. In the latter study, the estimates 

of R
e
 (the effective reproduction number) and k were 0.4 

(95% confidence interval: 0.3–0.5) and 0.58 (0.35–1.18),  

respectively, which did not agree with our findings. However, 

these estimates were obtained from pairs of cases with a clear 

epidemiological link and therefore may have been biased  

(downward for R
0
 and upward for k) if superspreading events  

had been more likely to be missed during the contact tracing.

Although cluster size distributions based on a branching  

process model are useful in inference of the offspring distri-

bution from limited data12,20, they are not directly applicable  

to an ongoing outbreak because the final cluster size may 

not yet have been observed. In our analysis, we adopted 

an alternative approach which accounts for possible future 

Figure 2. Possible offspring distributions of COVID-19. (A) Offspring distribution corresponding to R
0
 = 2.5 and k = 0.1 (median estimate). 

(B) Offspring distribution corresponding to R
0
 = 2.5 and k = 0.05 (95% CrI lower bound), 0.2 (upper bound). The probability mass functions 

of negative-binomial distributions are shown.

Table 2. Model comparison between negative-binomial and 
Poisson branching process models.

Model
Parameter 95% CrIs

WBIC ΔWBIC
R

0
k

Negative-binomial 1.4–12 0.04-0.2 45.6 0

Poisson 0.95–1.2 1010 (fixed) 56.6 11.0
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growth of clusters to minimise the risk of underestimation.  

As of 27 February 2020, the majority of the countries in 

the dataset had ongoing outbreaks (36 out of 43 countries  

analysed, accounting for 2,788 cases of the total 2,816). Even 

though we used the case counts in those countries only as the 

lower bounds of future final cluster sizes, which might have  

only partially informed of the underlying branching process, 

our model yielded estimates with moderate uncertainty levels 

(at least sufficient to suggest that k may be below 1). Together 

with the previous finding suggesting that the overdispersion  

parameter is unlikely to be biased downwards21, we believe 

our analysis supports the possibility of highly-overdispersed  

transmission of COVID-19.

A number of limitations need to be noted in this study. We used  

the confirmed case counts reported to WHO and did not account 

for possible underreporting of cases. Heterogeneities between 

countries in surveillance and intervention capacities, which 

might also be contributing to the estimated overdispersion, 

were not considered (although we investigated such effects by 

simulations; see Extended data, Figure S3)16. Reported cases 

whose site of infection classified as unknown, which should 

in principle be counted as either imported or local cases, were 

excluded from analysis. Some cases with a known site of  

infection could also have been misclassified (e.g., cases with  

travel history may have been infected locally). The distinction 

between countries with and without ongoing outbreak (7 days 

without any new confirmation of cases) was arbitrary. However, 

we believe that our conclusion is robust because the distinction  

does not change with different thresholds (4–14 days), 

within which the serial interval of SARS-CoV-2 is likely to  

fall22,23.

Our finding of a highly-overdispersed offspring distribution  

suggests that there is benefit to focusing intervention efforts on 

superspreading. As most infected individuals do not contribute  

to the expansion of transmission, the effective reproduction  

number could be drastically reduced by preventing relatively  

rare superspreading events. Identifying characteristics of settings  

that could lead to superspreading events will play a key role  

in designing effective control strategies.

Data availability
Source data
Zenodo: Extended data: Estimating the overdispersion in 

COVID-19 transmission using outbreak sizes outside China.  

https://doi.org/10.5281/zenodo.374034816.

This project contains the following source data taken from  

references 10 and 11: 

•     bycountries_27Feb2020.csv. (Imported/local case counts  

by country from WHO situation report 3810.)

•     dailycases_international_27Feb2020.csv. (Daily case counts  

by country from COVID2019.app11.)

Extended data
Zenodo: Extended data: Estimating the overdispersion in 

COVID-19 transmission using outbreak sizes outside China.  

https://doi.org/10.5281/zenodo.391157616.

This project contains the following extended data 

•     supplementarymaterials.pdf. (Supplementary material:  

Estimating the amount of superspreading using outbreak 

sizes of COVID-19 outside China.)

•     figS1.tif. (Figure S1. Offspring distributions for different  

R
0
 values. The probability mass functions of negative-

binomial distributions are shown. The overdispersion  

parameter k is fixed at 0.1.)

•     figS2.tif. (Supplementary Figure 2. Scatter plot of 

MCMC samples from a joint estimation of R
0
 and k. The  

dotted line represents the threshold R
0
 = 1)

•     figS3.tif. (Supplementary Figure 3. Estimates of over-

dispersion from simulations with underreporting.  

(A) Maximum-likelihood estimates (MLEs) of over-

dispersion parameter k with different distributions for 

country-specific reporting probability q
i
 (including  

constant q
i
 = 1). Both imported and local cases are  

assumed to be reported at probability q
i
 in country 

i. The blue dotted line indicates the true value k = 0.1.  

(B) MLEs where imported cases were assumed to 

be fully reported and local cases were reported at  

probability q
i
. (C) Probability density functions for beta  

distributions used in the simulation.)

Code availability
The reproducible code is available at: https://github.com/ 

akira-endo/COVID19_clustersize.

Archived code at time of publication: https://doi.org/10.5281/

zenodo.374174314.

License: MIT.
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National Institutes of Health, Bethesda, MD, USA 

In this study, the authors estimate the over-dispersion of SARS-CoV-2 transmission using imported 
and local COVID-19 cases reported during the early phase of the epidemic through fitting the 
outbreak size distribution of a over-dispersed branching process. The analysis is well executed. 
The manuscript is well written and the results are clearly presented. However, the data used in the 
study may have a few potential bias representing several alternative scenarios that I recommend 
the authors to explore:

The number of imported cases is likely an underestimate of the true number of cases as 
screening of travelers is unlikely to reach high detection rate for SARS-CoV-21. Certain 
studies estimated the reporting rate is only around 30-40%, even for countries with high 
surveillance intensity2. This is likely different from the reporting rate of local cases (see 
point 3). I recommend the authors explore reporting rate of imported cases and local cases 
separately. 
 

1. 

The over-dispersion estimated for SARS in the previous study is under un-controlled 
epidemic scenario3. However, for imported cases detected through travel screening, certain 
control measures is likely in-place such as isolation/quarantine, which will reduce the 
effective reproduction number, thus in Figure 1, the effective R0 range for imported cases 
could extend to <1. 
 

2. 

It's also quite likely that local transmission is heavily under-reported during February as 
well. A way to gauge this under-detection is to see when each country reported the first few 
deaths due to COVID-19. Assuming an infection fatality of 1% will suggest a few hundred 
cumulative infections about 2 weeks before the detection of death. The authors already 
listed a number of deaths at the same date of case reporting, I recommend the authors also 
reports the number of deaths 2-weeks later (or the delay from case detection to death that 
the authors finds appropriate) and comment on the possible rate of under reporting for 
local cases, and together with point 1, how it may affects the estimates of k.

3. 
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Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 30 Jun 2020
Akira Endo, London School of Hygiene & Tropical Medicine, London, UK 

Thank you for your constructive suggestions. We have discussed potential biases as 
suggested and performed additional analysis where applicable. Please find our responses 
below. 
 
1. The number of imported cases is likely an underestimate of the true number of 
cases as screening of travelers is unlikely to reach high detection rate for SARS-CoV-2. 
Certain studies estimated the reporting rate is only around 30-40%, even for countries 
with high surveillance intensity. This is likely different from the reporting rate of local 
cases (see point 3). I recommend the authors explore reporting rate of imported cases 
and local cases separately. 
 
> We agree that the number of imported cases is likely to be under ascertained. In our 
sensitivity analysis, we explored how the estimated value of k may be biased with different 
probabilities of reporting. We found that the same level of underreporting for both 
imported and local cases tend to result in overestimation of k, while the estimate was hardly 
affected if the imported cases are fully reported but the local cases are underreported. As 
the scenario suggested by the reviewer may likely to lie in between these two extreme 
scenarios we explored, we expect that such scenario would lead to the overestimation of k 
(but not as much as our “equally underreported” scenario; Figure S3A). 
 
2. The over-dispersion estimated for SARS in the previous study is under un-controlled 
epidemic scenario. However, for imported cases detected through travel screening, 
certain control measures is likely in-place such as isolation/quarantine, which will 
reduce the effective reproduction number, thus in Figure 1, the effective R0 range for 
imported cases could extend to <1. 
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> We have included the suggested scenario as part of our sensitivity analysis. Assuming that 
R0 for local cases is 2.5, we varied the effective reproduction number for the imported cases 
(0.5, 0.8 and 1.2) and estimated the value of k. We found that the estimates of k were larger 
than those in our baseline analysis for R0 = 2.5 if the assumed reproduction number for the 
imported cases (RI) was below 1 (k = 0.3 for RI = 0.5; k = 0.2 for RI = 0.8). For RI = 1.2, the 
estimate was similar to our baseline analysis (k = 0.1). We have added the description of this 
additional analysis in the supplementary document. 
  
3. It's also quite likely that local transmission is heavily under-reported during 
February as well. A way to gauge this under-detection is to see when each country 
reported the first few deaths due to COVID-19. Assuming an infection fatality of 1% 
will suggest a few hundred cumulative infections about 2 weeks before the detection 
of death. The authors already listed a number of deaths at the same date of case 
reporting, I recommend the authors also reports the number of deaths 2-weeks later 
(or the delay from case detection to death that the authors finds appropriate) and 
comment on the possible rate of under reporting for local cases, and together with 
point 1, how it may affects the estimates of k. 
 
> As the reviewer suggests, the number of deaths is a useful measure to assess 
underreporting. Assuming the average infection fatality 1% for the initial deaths may be 
subject to bias because the earliest cases may have specific age profiles that result in a 
different fatality. However, when averaged over the dataset, the overall case fatality may 
suggest the possible degree of underreporting in the dataset. As the mean lags of 8-13 days 
from case confirmation to death  have been used for early outbreaks in existing studies 
[1,2], we referred to the WHO situation report 45 (5 March) and 52 (12 March), published on 
the 7th and 14th day from the situation report 38 we used in the analysis [3,4]. The total 
number of deaths in the countries included in our analysis was 168 and 1,065, respecctively. 
Given 2,815 total confirmed cases as of February 27th, these suggest ascertainment ratios of 
16.8% and 2.6%, respectively (assuming the true infection fatality risk is 1%). However, these 
ratios may be underestimates because of the rapid growth in both cases and deaths. It was 
suggested that the lag distribution from confirmation to death has a large variation 
(coefficient of variation 50%-100% [1,2]), and early-reported deaths from the cases 
confirmed later than February 27th may have inflated the number of deaths in situation 
reports 45 and 52. In either case, we believe that the assumed reporting probability in our 
sensitivity analysis (Figure S3C) was consistent overall with these observations. Although we 
did not include the above calculation in the manuscript because it is only a rough estimation 
in which we are not completely confident, we cited Niehus et al. to show that our assumed 
range of the reporting probability in the sensitivity analysis was plausible: 
(Supplementary document, Section 3) An existing study suggested 38% as an optimistic global 
estimate of the detection probability for imported cases from Wuhan, China, with a substantial 
variation between countries [1]. 
 

Mizumoto K, Chowell G. Estimating Risk for Death from Coronavirus Disease, China, 
January–February 2020. Emerg Infect Dis. 2020;26(6):1251-1256. 
https://dx.doi.org/10.3201/eid2606.200233

1. 

Russell TW, Hellewell J, Jarvis CI, et al. Estimating the infection and case fatality ratio 2. 
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for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the 
Diamond Princess cruise ship, February 2020. Euro Surveill. 2020;25(12):2000256. 
doi:10.2807/1560-7917.ES.2020.25.12.2000256
 World Health Organization: Coronavirus disease 2019 (COVID-19) Situation Report – 
45. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200305-sitrep-45-covid-19.pdf

3. 

World Health Organization: Coronavirus disease 2019 (COVID-19) Situation Report – 
52. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200312-sitrep-52-covid-19.pdf

4. 
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Lin Wang   
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In this manuscript, Endo et al. estimated the overdispersion of COVID-19 transmission outside of 
China. The authors collected the number of imported and local cases in each affected country 
from the World Health Organization situation report. Using likelihood-based inference, they fitted 
a negative-binomial or Poisson offspring distribution to the empirical data. In summary, this study 
is scientifically sound and well presented. I only have a few suggestions.

The authors may wish to add one or two sentences about the convergence of MCMC chains, 
such as the diagnosis used. 
 

1. 

If I understood correctly, a thinning interval of 10 is used to sample the raw chains. With 
this thinning interval, is the auto-correlation sufficiently small? 
 

2. 

As to the statistical model, it seems that the authors assumed that all imported cases 
arrived and triggered the local epidemic at the same time. If the cases arrived at different 
time points, will the inferred results be different? This manuscript might be useful to 
understand the effect of continuous seeding: Characterizing the dynamics underlying global 
spread of epidemics1.

3. 
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Is the work clearly and accurately presented and does it cite the current literature?
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Are sufficient details of methods and analysis provided to allow replication by others?
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If applicable, is the statistical analysis and its interpretation appropriate?
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Are all the source data underlying the results available to ensure full reproducibility?
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 Jun 2020
Akira Endo, London School of Hygiene & Tropical Medicine, London, UK 

Thank you for your comments. We have added some technical details for better clarity as 
suggested. Please find our responses to each point below.  
 
1. The authors may wish to add one or two sentences about the convergence of MCMC 
chains, such as the diagnosis used.  
2. If I understood correctly, a thinning interval of 10 is used to sample the raw chains. 
With this thinning interval, is the auto-correlation sufficiently small? 
 
> We used the effective sample size to assess the convergence and (the weakness of) 
autocorrelation. For clarity, we have added a line in Statistical analysis section: “We 
confirmed that the final 500 samples have an effective sample size of at least 300, indicating 
sufficiently low auto-correlation.” 
  
3. As to the statistical model, it seems that the authors assumed that all imported 
cases arrived and triggered the local epidemic at the same time. If the cases arrived at 
different time points, will the inferred results be different? This manuscript might be 
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useful to understand the effect of continuous seeding: Characterizing the dynamics 
underlying global spread of epidemics. 
 
> We agree with the reviewer that continuous seeding is an important issue in time-series 
epidemic analysis. However, our approach was not sensitive to the assumption that all the 
imported cases arrived at the same point in time. Because we only imposed the condition 
that the final cluster size has to be at least the size of the currently observed number of 
cases, the temporal distribution of the imported cases does not change the likelihood 
function we used.  

Competing Interests: No competing interests were disclosed.

Comments on this article
Version 3

Reader Comment 10 Nov 2020
Timothy Pollington, University of Warwick, Coventry, UK 

Dear Akira, 
 
This is a useful paper for the k parameter estimate. I spotted a typo on figS2 which should read -
0.4? 
 
I'm looking for estimates of how k changes in time in a decreasing/increasing Rt environment for 
COVID-19. Basically like Lloyd-Smith et al.'s Fig3b but for COVID-19 and with more than 2 time 
points. I'd be interested to know any suggestions you can make. 
 
Kind regards, Tim.

Competing Interests: I'm working with the co-author Sam Abbott on a related piece of work that 
has not reached preprint stage yet.

Version 1

Reader Comment 18 Jun 2020
Richard Falk, No affiliation, San Rafael, CA, USA 

When countries have mitigations in place including wearing masks, this lowers the probability of 
transmission events from the more casual contacts and shifts the likelihood to more crowded 
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close-contact indoor poor air exchange environments where they were always risky but now 
represent the main situations that exceed the "probability gate" limited by mask-wearing and 
physical distancing elsewhere.  That is, there is a bias towards super-spreading events. 
 
Also, when countries put mitigations in place this shifts the probability of transmission to be more 
with those infected individuals with higher viral load (not necessarily measured in NP swabs but 
viral load where it counts in the lungs bringing virus-laden mucus to the vocal folds and epiglottis) 
or higher droplet/aerosol output because those with moderate viral load have much lower 
transmission such as from wearing masks or maintaining physical distancing.  That is, there is a 
bias towards super-spreader individuals. 
 
This latter point requires a more subtle and complex analysis because it also requires non-linear 
limits on super-spreading individuals and these exist in the form of 1) the dose-response curve that 
flattens towards 100% probability of infection (i.e. you cannot infect someone more than once -- 
that is, you can't count your very high viral load as infecting them three times as much) and 2) the 
limited number of contacts an individual has during the contagious period.  So as mitigations are 
removed, the super-spreading individuals infect at a relative lower proportional rate than 
moderate viral-load individuals -- that is, if the moderate viral-load individuals doubled in their R 
value when taking off their masks, the super-spreading individuals would be less than doubled (i.e. 
they are saturating in both the dose-response and opportunities). 
 
This means that the estimated "k" value would be higher during the unmitigated exponential 
growth phase of disease transmission and this appears to be the case in China where most 
transmission was within families.  After mitigation and the more restrictive the mitigation, the 
lower the "k" estimate would be because only those rarer individuals and events would occur and 
have one person infect many but have most of those infected not infect many others. 
 
So while it is reasonable to conclude that super-spreading individuals and/or super-spreader 
events are driving the majority of transmissions after mitigations are in place, it would be 
incorrect to conclude that this was (as much of) the situation when there were few 
mitigations and there was wider community spread.  If mitigations are generally followed, then 
this can result in outbreaks that quickly die off unless the super-spreading individuals or events 
were numerous enough to create chains (i.e. if the R value of a super-spreading individual was 
more than 10 and they represent 10% of people who are infected then the overall R > 1 would 
continue the spread). 
 
It would also be good to be able to distinguish between super-spreader individuals vs. super-
spreading events because the latter is more readily controlled via public policy by limiting crowds 
and requiring wearing masks.  So far it appears that outbreaks are largely super-spreading events 
and while they could be caused from individuals with higher viral load there does not appear to be 
evidence of people wearing masks indoors maintaining social distance and having proper air 
exchange causing outbreaks.
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Reader Comment 06 Jun 2020
Alex Cranberg, Aspect Managemebt Corp, Houston, USA 

These results and conclusions may be significantly affected by heterogeneity deriving from 
susceptibility as opposed to heterogeneity of transmission.  Have you modeled the difference 
between heterogeneity of spreading vs receptivity?
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